1
|
Yabushita T, Goyama S. Nucleic acid metabolism: the key therapeutic target for myeloid tumors. Exp Hematol 2025; 142:104693. [PMID: 39647658 DOI: 10.1016/j.exphem.2024.104693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Nucleic acid analogs, including cytarabine, decitabine, and azacitidine, have significantly advanced therapeutic approaches for myeloid tumors over the past five decades. Nucleic acid metabolism is a crucial pathway driving myeloid tumorigenesis, with emerging evidence indicating that myeloid tumors are particularly dependent on the de novo nucleotide synthesis pathway, underscoring its potential as a therapeutic target. This review provides a comprehensive overview of nucleic acid metabolism, focusing on de novo nucleotide synthesis. We then described the range of clinically utilized agents targeting nucleic acid metabolism and discussed our recent findings on the nonepigenetic actions of decitabine, as well as the therapeutic effects of inosine monophosphate dehydrogenase (IMPDH) inhibitors in the treatment of myeloid tumors.
Collapse
Affiliation(s)
- Tomohiro Yabushita
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan.
| |
Collapse
|
2
|
Shimizu N, Hamada Y, Morozumi R, Yamamoto J, Iwai S, Sugiyama KI, Ide H, Tsuda M. Repair of topoisomerase 1-induced DNA damage by tyrosyl-DNA phosphodiesterase 2 (TDP2) is dependent on its magnesium binding. J Biol Chem 2023; 299:104988. [PMID: 37392847 PMCID: PMC10407441 DOI: 10.1016/j.jbc.2023.104988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
Topoisomerases are enzymes that relax DNA supercoiling during replication and transcription. Camptothecin, a topoisomerase 1 (TOP1) inhibitor, and its analogs trap TOP1 at the 3'-end of DNA as a DNA-bound intermediate, resulting in DNA damage that can kill cells. Drugs with this mechanism of action are widely used to treat cancers. It has previously been shown that tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs TOP1-induced DNA damage generated by camptothecin. In addition, tyrosyl-DNA phosphodiesterase 2 (TDP2) plays critical roles in repairing topoisomerase 2 (TOP2)-induced DNA damage at the 5'-end of DNA and in promoting the repair of TOP1-induced DNA damage in the absence of TDP1. However, the catalytic mechanism by which TDP2 processes TOP1-induced DNA damage has not been elucidated. In this study, we found that a similar catalytic mechanism underlies the repair of TOP1- and TOP2-induced DNA damage by TDP2, with Mg2+-TDP2 binding playing a role in both repair mechanisms. We show chain-terminating nucleoside analogs are incorporated into DNA at the 3'-end and abort DNA replication to kill cells. Furthermore, we found that Mg2+-TDP2 binding also contributes to the repair of incorporated chain-terminating nucleoside analogs. Overall, these findings reveal the role played by Mg2+-TDP2 binding in the repair of both 3'- and 5'-blocking DNA damage.
Collapse
Affiliation(s)
- Naoto Shimizu
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yusaku Hamada
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ryosuke Morozumi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Masataka Tsuda
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
3
|
Li Y, Zhao D, Zhang W, Yang M, Wu Z, Shi W, Lan S, Guo Z, Yu H, Wu D. A novel camptothecin derivative, ZBH-01, exhibits superior antitumor efficacy than irinotecan by regulating the cell cycle. J Transl Med 2023; 21:422. [PMID: 37386467 PMCID: PMC10308760 DOI: 10.1186/s12967-023-04196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/14/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Irinotecan (CPT-11) is a classic chemotherapeutic agent that plays an important role in the clinical treatment of metastatic colon cancer and other malignant tumors. We previously designed a series of novel irinotecan derivatives. In this study, we select one representative, ZBH-01, to investigate its sophisticated antitumor mechanism in colon tumor cells. METHODS The cytotoxic activity of ZBH-01 on colon cancer cells was evaluate by MTT or Cell Counting Kit-8 (CCK8) assay, 3D and xenograft model. The inhibitory effect of ZBH-01 on TOP1 was detected by DNA relaxation assay and Immuno Complex of Ezyme (ICE) bioassay. The molecular mechanism of ZBH-01 was explored by Next-Generation Sequencing (NGS), bioinformatics analyses, flow cytometry, qRT-PCR, and western blot etc. RESULTS: ZBH-01 can induce obvious DNA damage and has superior antitumor activity against colon cancer cells compared to CPT-11 and SN38 (7-Ethyl-10-hydroxy camptothecin, the in vivo active form of CPT-11) both in vivo and in vitro. Its inhibitory effect on topoisomerase I (TOP1) was also comparable with these two control drugs. There are a much larger number of 842 downregulated and 927 upregulated mRNAs in ZBH-01 treatment group than that in the controls. The most significantly enriched KEGG pathways for these dysregulated mRNAs were DNA replication, the p53 signaling pathway, and the cell cycle. After constructing a protein-protein interaction (PPI) network and screening out a prominent cluster, 14 involved in the cell cycle process was identified. Consistently, ZBH-01 induced G0/G1 phase arrest in colon cancer cells, while CPT-11/SN38 caused S phase arrest. The initiation of apoptosis by ZBH-01 was also superior to CPT-11/SN38, followed by the increased expression of Bax, active caspase 3, and cleaved-PARP, and decreased expression of Bcl-2. Additionally, CCNA2 (cyclin A2), CDK2 (cyclin-dependent kinase 2), and MYBL2 (MYB proto-oncogene like 2) might be involved in the G0/G1 cell cycle arrest induced by ZBH-01. CONCLUSIONS ZBH-01 can be an antitumor candidate drug for preclinical study in the future.
Collapse
Affiliation(s)
- Yongqi Li
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Dawei Zhao
- Department of Breast Tumor, Jilin Cancer Hospital, Changchun, 130012, China
| | - Wenqiu Zhang
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Miaomiao Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Zhihui Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Weiguo Shi
- Institute of Pharmacology and Toxicology Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shijie Lan
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen Guo
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hong Yu
- Cell Biology Laboratory, Jilin Province Institute of Cancer Prevention and Treatment, Jilin Cancer Hospital, Changchun, 130012, China.
| | - Di Wu
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Fàbrega C, Clua A, Eritja R, Aviñó A. Oligonucleotides Carrying Nucleoside Antimetabolites as Potential Prodrugs. Curr Med Chem 2023; 30:1304-1319. [PMID: 34844535 PMCID: PMC11497139 DOI: 10.2174/0929867328666211129124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleoside and nucleobase antimetabolites are an important class of chemotherapeutic agents for the treatment of cancer as well as other diseases. INTRODUCTION In order to avoid undesirable side effects, several prodrug strategies have been developed. In the present review, we describe a relatively unknown strategy that consists of using oligonucleotides modified with nucleoside antimetabolites as prodrugs. METHODS The active nucleotides are generated by enzymatic degradation once incorporated into cells. This strategy has attracted large interest and is widely utilized at present due to the continuous developments made in therapeutic oligonucleotides and the recent advances in nanomaterials and nanomedicine. RESULTS A large research effort was made mainly in the improvement of the antiproliferative properties of nucleoside homopolymers, but recently, chemically modified aptamers, antisense oligonucleotides and/or siRNA carrying antiproliferative nucleotides have demonstrated a great potential due to the synergetic effect of both therapeutic entities. In addition, DNA nanostructures with interesting properties have been built to combine antimetabolites and enhancers of cellular uptake in the same scaffold. Finally, protein nanoparticles functionalized with receptor-binders and antiproliferative oligomers represent a new avenue for a more effective treatment in cancer therapy. CONCLUSION It is expected that oligonucleotides carrying nucleoside antimetabolites will be considered as potential drugs in the near future for biomedical applications.
Collapse
Affiliation(s)
- Carme Fàbrega
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Anna Clua
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| |
Collapse
|
5
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
6
|
Li C, Wang Q, Li D, Liu Y, Hu B, Feng Y, Zhang H, He Z, Luo C, Sun J. Molecular recognition-driven supramolecular nanoassembly of a hydrophobic uracil prodrug and hydrophilic cytarabine for precise combination treatment of solid and non-solid tumors. NANOSCALE HORIZONS 2022; 7:235-245. [PMID: 35048915 DOI: 10.1039/d1nh00590a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Combination chemotherapy has shown distinct therapeutic advantages over monotherapy in clinical cancer treatment, especially for two chemotherapeutic drugs with different mechanisms of action. However, how to achieve efficient co-delivery of two or more drugs with different physicochemical and pharmacokinetic properties for synergistic therapy is still a huge challenge. In particular, it is even more difficult to efficiently co-deliver a hydrophilic drug and a hydrophobic drug into one nanosystem. Herein, inspired by the natural Watson-Crick base pair molecular recognition in nucleic acids, a reduction-sensitive uracil prodrug of doxorubicin (U-SS-DOX) is synthesized and performs supramolecular co-assembly with cytarabine (Ara-C). Interestingly, the hydrophilic Ara-C molecules could readily co-assemble with U-SS-DOX, and multiple hydrogen bonds are found in the nanoassembly with an ultra-high drug loading rate. Moreover, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) is used as a fluorescent probe to investigate the pharmacokinetics of U : C NPs. It turns out that the DiR-labeled U : C NPs significantly prolong the systemic circulation and promote the tumor-specific accumulation of DiR when compared with DiR solution. Furthermore, the supramolecular nanoassembly demonstrates potent satisfactory therapeutic effects in treating both solid and non-solid tumors in vivo. This study provides a novel molecular co-assembly nanoplatform for efficient co-delivery of hydrophilic and hydrophobic drugs.
Collapse
Affiliation(s)
- Chang Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Qiu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Dan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Yubo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yao Feng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Haotian Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Cong Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| |
Collapse
|
7
|
Wu L, Ye K, Jiang S, Zhou G. Marine Power on Cancer: Drugs, Lead Compounds, and Mechanisms. Mar Drugs 2021; 19:md19090488. [PMID: 34564150 PMCID: PMC8472172 DOI: 10.3390/md19090488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, 19.3 million new cancer cases and almost 10.0 million cancer deaths occur each year. Recently, much attention has been paid to the ocean, the largest biosphere of the earth that harbors a great many different organisms and natural products, to identify novel drugs and drug candidates to fight against malignant neoplasms. The marine compounds show potent anticancer activity in vitro and in vivo, and relatively few drugs have been approved by the U.S. Food and Drug Administration for the treatment of metastatic malignant lymphoma, breast cancer, or Hodgkin's disease. This review provides a summary of the anticancer effects and mechanisms of action of selected marine compounds, including cytarabine, eribulin, marizomib, plitidepsin, trabectedin, zalypsis, adcetris, and OKI-179. The future development of anticancer marine drugs requires innovative biochemical biology approaches and introduction of novel therapeutic targets, as well as efficient isolation and synthesis of marine-derived natural compounds and derivatives.
Collapse
Affiliation(s)
- Lichuan Wu
- Medical College, Guangxi University, Nanning 530004, China;
| | - Ke Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
- Correspondence: (S.J.); (G.Z.)
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.J.); (G.Z.)
| |
Collapse
|
8
|
Silva Dos Santos M, Lobo MM, Amaral SS, Zanatta N, Viau CM, Saffi J. A novel 1-((3-(2-toluyl)-4,5-dihydroisoxazol-5-yl)methyl)-4-(trifluoromethyl)pyrimidin-2(1H)-one activates intrinsic mitochondria-dependent pathway and decreases angiogenesis in PC-3 cells. Eur J Pharmacol 2021; 899:174028. [PMID: 33727055 DOI: 10.1016/j.ejphar.2021.174028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/27/2022]
Abstract
Prostate cancer is among the most common cancer diagnoses in men, and the best treatment for patients with metastatic disease in advanced stages is still unclear. Previously, we have demonstrated that the three 1-(3-(aryl-4,5-dihydroisoxazol-5-yl)methyl)-4-trihalomethyl-1H-pyrimidin-2- ones derivatives (8a, 8e and 9c) present important cytotoxicity and selectivity for tumoral cells. Considering that various cytotoxic drugs have been assessed in patients with prostate cancer, but few drugs show survival advantage, we decided to study these three compounds (8a, 8e and 9c) in prostate cancer cells, androgen receptor (AR)-positive 22Rv-1 and AR-negative PC-3 cells. We obtained the half maximal inhibitory concentration (IC50) of 8a, 8e and 9c in prostate cancer cells and based on high selectivity of 9c to PC-3 cells, we determined the mechanism of this compound to induce cell death through different methods. We show here that 9c compound induces cell cycle arrest in G2/M, increasing the levels of reactive oxygen species and DNA damage, and triggers DNA damage response by ataxia-telangiectasia mutated (ATM) and histone H2AX phosphorylation induction. The compound also led PC-3 to lipid peroxidation and mitochondrial depolarization which triggered the activation of intrinsic pathway, confirmed by increase of cleaved caspase-9 and 3. In this work we also show the ability of 9c in reducing vascular endothelial growth factor expression (VEGF) and inhibiting topoisomerase I enzyme, therefore indicating a potential new molecule to be further investigated for prostate cancer management.
Collapse
Affiliation(s)
- Marcela Silva Dos Santos
- Department of Basic Health Sciences, Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Marcio Marçal Lobo
- Chemical Core Heterocycles (NUQUIMHE), Chemistry Department, Federal University of Santa Maria, Santa Maria (UFSM), RS, Brazil
| | - Simone Schneider Amaral
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Nilo Zanatta
- Chemical Core Heterocycles (NUQUIMHE), Chemistry Department, Federal University of Santa Maria, Santa Maria (UFSM), RS, Brazil
| | - Cassiana Macagnan Viau
- Department of Basic Health Sciences, Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Jenifer Saffi
- Department of Basic Health Sciences, Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Saha S, Sun Y, Huang SYN, Baechler SA, Pongor LS, Agama K, Jo U, Zhang H, Tse-Dinh YC, Pommier Y. DNA and RNA Cleavage Complexes and Repair Pathway for TOP3B RNA- and DNA-Protein Crosslinks. Cell Rep 2020; 33:108569. [PMID: 33378676 PMCID: PMC7859927 DOI: 10.1016/j.celrep.2020.108569] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
The present study demonstrates that topoisomerase 3B (TOP3B) forms both RNA and DNA cleavage complexes (TOP3Bccs) in vivo and reveals a pathway for repairing TOP3Bccs. For inducing and detecting cellular TOP3Bccs, we engineer a “self-trapping” mutant of TOP3B (R338W-TOP3B). Transfection with R338W-TOP3B induces R-loops, genomic damage, and growth defect, which highlights the importance of TOP3Bcc repair mechanisms. To determine how cells repair TOP3Bccs, we deplete tyrosyl-DNA phosphodiesterases (TDP1 and TDP2). TDP2-deficient cells show elevated TOP3Bccs both in DNA and RNA. Conversely, overexpression of TDP2 lowers cellular TOP3Bccs. Using recombinant human TDP2, we demonstrate that TDP2 can process both denatured and proteolyzed TOP3Bccs. We also show that cellular TOP3Bccs are ubiquitinated by the E3 ligase TRIM41 before undergoing proteasomal processing and excision by TDP2. Saha et al. introduce an approach to generate and detect the catalytic intermediates of TOP3B in DNA and RNA by engineering a self-poisoning enzyme, R338W-TOP3B. They reveal the cellular consequences of abortive TOP3Bcc formation and a repair pathway involving TRIM41, the proteasome, and TDP2 for processing of TOP3Bcc.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Andrea Baechler
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lorinc Sandor Pongor
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Gmeiner WH, Dominijanni A, Haber AO, Ghiraldeli LP, Caudell DL, D'Agostino R, Pasche BC, Smith TL, Deng Z, Kiren S, Mani C, Palle K, Brody JR. Improved Antitumor Activity of the Fluoropyrimidine Polymer CF10 in Preclinical Colorectal Cancer Models through Distinct Mechanistic and Pharmacologic Properties. Mol Cancer Ther 2020; 20:553-563. [PMID: 33361273 DOI: 10.1158/1535-7163.mct-20-0516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy regimens that include 5-fluorouracil (5-FU) are central to colorectal cancer treatment; however, risk/benefit concerns limit 5-FU's use, necessitating development of improved fluoropyrimidine (FP) drugs. In our study, we evaluated a second-generation nanoscale FP polymer, CF10, for improved antitumor activity. CF10 was more potent than the prototype FP polymer F10 and much more potent than 5-FU in multiple colorectal cancer cell lines including HCT-116, LS174T, SW480, and T84D. CF10 displayed improved stability to exonuclease degradation relative to F10 and reduced susceptibility to thymidine antagonism due to extension of the polymer with arabinosyl cytidine. In colorectal cancer cells, CF10 strongly inhibited thymidylate synthase (TS), induced Top1 cleavage complex formation and caused replication stress, while similar concentrations of 5-FU were ineffective. CF10 was well tolerated in vivo and invoked a reduced inflammatory response relative to 5-FU. Blood chemistry parameters in CF10-treated mice were within normal limits. In vivo, CF10 displayed antitumor activity in several colorectal cancer flank tumor models including HCT-116, HT-29, and CT-26. CF10's antitumor activity was associated with increased plasma levels of FP deoxynucleotide metabolites relative to 5-FU. CF10 significantly reduced tumor growth and improved survival (84.5 days vs. 32 days; P < 0.0001) relative to 5-FU in an orthotopic HCT-116-luc colorectal cancer model that spontaneously metastasized to liver. Improved survival in the orthotopic model correlated with localization of a fluorescent CF10 conjugate to tumor. Together, our preclinical data support an early-phase clinical trial of CF10 for treatment of colorectal cancer.
Collapse
Affiliation(s)
- William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
- Comprehensive Cancer Center Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anthony Dominijanni
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Alex O Haber
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lais P Ghiraldeli
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David L Caudell
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ralph D'Agostino
- Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Boris C Pasche
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas L Smith
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhiyong Deng
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sezgin Kiren
- Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina
| | - Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, Texas
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, Texas
| | - Jonathan R Brody
- Brenden Colson Center for Pancreatic Care, Departments of Surgery and Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
11
|
Sun Y, Saha LK, Saha S, Jo U, Pommier Y. Debulking of topoisomerase DNA-protein crosslinks (TOP-DPC) by the proteasome, non-proteasomal and non-proteolytic pathways. DNA Repair (Amst) 2020; 94:102926. [DOI: 10.1016/j.dnarep.2020.102926] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/24/2023]
|
12
|
Hatzl S, Perfler B, Wurm S, Uhl B, Quehenberger F, Ebner S, Troppmair J, Reinisch A, Wölfler A, Sill H, Zebisch A. Increased Expression of Micro-RNA-23a Mediates Chemoresistance to Cytarabine in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:496. [PMID: 32093419 PMCID: PMC7072365 DOI: 10.3390/cancers12020496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Resistance to chemotherapy is one of the primary obstacles in acute myeloid leukemia (AML) therapy. Micro-RNA-23a (miR-23a) is frequently deregulated in AML and has been linked to chemoresistance in solid cancers. We, therefore, studied its role in chemoresistance to cytarabine (AraC), which forms the backbone of all cytostatic AML treatments. Initially, we assessed AraC sensitivity in three AML cell lines following miR-23a overexpression/knockdown using MTT-cell viability and soft-agar colony-formation assays. Overexpression of miR-23a decreased the sensitivity to AraC, whereas its knockdown had the opposite effect. Analysis of clinical data revealed that high miR-23a expression correlated with relapsed/refractory (R/R) AML disease stages, the leukemic stem cell compartment, as well as with inferior overall survival (OS) and event-free survival (EFS) in AraC-treated patients. Mechanistically, we demonstrate that miR-23a targets and downregulates topoisomerase-2-beta (TOP2B), and that TOP2B knockdown mediates AraC chemoresistance as well. Likewise, low TOP2B expression also correlated with R/R-AML disease stages and inferior EFS/OS. In conclusion, we show that increased expression of miR-23a mediates chemoresistance to AraC in AML and that it correlates with an inferior outcome in AraC-treated AML patients. We further demonstrate that miR-23a causes the downregulation of TOP2B, which is likely to mediate its effects on AraC sensitivity.
Collapse
Affiliation(s)
- Stefan Hatzl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Bianca Perfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Sonja Wurm
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Barbara Uhl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Franz Quehenberger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria;
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.E.); (J.T.)
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.E.); (J.T.)
| | - Andreas Reinisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
- Otto-Loewi-Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| |
Collapse
|
13
|
Gmeiner WH. Entrapment of DNA topoisomerase-DNA complexes by nucleotide/nucleoside analogs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:994-1001. [PMID: 31930190 PMCID: PMC6953902 DOI: 10.20517/cdr.2019.95] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Topoisomerases are well-validated targets for cancer chemotherapy and DNA topoisomerase 1 (Top1) is the sole target of the camptothecin (CPT) class of anticancer drugs. Over the last 20 years, multiple studies have shown Top1 activity is modulated by non-native DNA structures and this can lead to trapping of Top1 cleavage complexes (Top1cc) and conversion to DNA double strand breaks. Among the perturbations to DNA structure that generate Top1cc are nucleoside analogs that are incorporated into genomic DNA during replication including cytarabine, gemcitabine, and 5-fluoro-2'-deoxyuridine (FdU). We review the literature summarizing the role of Top1cc in mediating the DNA damaging and cytotoxic activities of nucleoside analogs. We also summarize studies demonstrating distinct differences between Top1cc induced by nucleoside analogs and CPTs, particularly with regard to DNA repair. Collectively, these studies demonstrate that, while Top1 is a common target for both Top1 poisons such as CPT and nucleoside analogs such as FdU, these agents are not redundant. In recent years, studies have shown that Top1 poisons and nucleoside analogs together with other anti-cancer drugs such as cisplatin cause replication stress and the DNA repair pathways that modulate the cytotoxic activities of these compounds are being elucidated. We present an overview of this evolving literature, which has implications for how targeting of Top1 with nucleoside analogs can be used more effectively for cancer treatment.
Collapse
Affiliation(s)
- William H. Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
14
|
Tyrosyl-DNA Phosphodiesterase I N-Terminal Domain Modifications and Interactions Regulate Cellular Function. Genes (Basel) 2019; 10:genes10110897. [PMID: 31698852 PMCID: PMC6895789 DOI: 10.3390/genes10110897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
The conserved eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1) removes a diverse array of adducts from the end of DNA strand breaks. Tdp1 specifically catalyzes the hydrolysis of phosphodiester linked DNA-adducts. These DNA lesions range from damaged nucleotides to peptide-DNA adducts to protein-DNA covalent complexes and are products of endogenously or exogenously induced insults or simply failed reaction products. These adducts include DNA inserted ribonucleotides and non-conventional nucleotides, as well as covalent reaction intermediates of DNA topoisomerases with DNA and a Tdp1-DNA adduct in trans. This implies that Tdp1 plays a role in maintaining genome stability and cellular homeostasis. Dysregulation of Tdp1 protein levels or catalysis shifts the equilibrium to genome instability and is associated with driving human pathologies such as cancer and neurodegeneration. In this review, we highlight the function of the N-terminal domain of Tdp1. This domain is understudied, structurally unresolved, and the least conserved in amino acid sequence and length compared to the rest of the enzyme. However, over time it emerged that the N-terminal domain was post-translationally modified by, among others, phosphorylation, SUMOylation, and Ubiquitinoylation, which regulate Tdp1 protein interactions with other DNA repair associated proteins, cellular localization, and Tdp1 protein stability.
Collapse
|
15
|
Nitiss KC, Nitiss JL, Hanakahi LA. DNA Damage by an essential enzyme: A delicate balance act on the tightrope. DNA Repair (Amst) 2019; 82:102639. [PMID: 31437813 DOI: 10.1016/j.dnarep.2019.102639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023]
Abstract
DNA topoisomerases are essential for DNA metabolic processes such as replication and transcription. Since DNA is double stranded, the unwinding needed for these processes results in DNA supercoiling and catenation of replicated molecules. Changing the topology of DNA molecules to relieve supercoiling or resolve catenanes requires that DNA be transiently cut. While topoisomerases carry out these processes in ways that minimize the likelihood of genome instability, there are several ways that topoisomerases may fail. Topoisomerases can be induced to fail by therapeutic small molecules such as by fluoroquinolones that target bacterial topoisomerases, or a variety of anti-cancer agents that target the eukaryotic enzymes. Increasingly, there have been a large number of agents and processes, including natural products and their metabolites, DNA damage, and the intrinsic properties of the enzymes that can lead to long-lasting DNA breaks that subsequently lead to genome instability, cancer, and other diseases. Understanding the processes that can interfere with topoisomerases and how cells respond when topoisomerases fail will be important in minimizing the consequences when enzymes need to transiently interfere with DNA integrity.
Collapse
Affiliation(s)
- Karin C Nitiss
- University of Illinois College of Medicine, Department of Biomedical Sciences, Rockford, IL, 61107, United States; University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States
| | - John L Nitiss
- University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States.
| | - Leslyn A Hanakahi
- University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States.
| |
Collapse
|
16
|
Marzi L, Agama K, Murai J, Difilippantonio S, James A, Peer CJ, Figg WD, Beck D, Elsayed MSA, Cushman M, Pommier Y. Novel Fluoroindenoisoquinoline Non-Camptothecin Topoisomerase I Inhibitors. Mol Cancer Ther 2018; 17:1694-1704. [PMID: 29748210 PMCID: PMC6072611 DOI: 10.1158/1535-7163.mct-18-0028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/29/2018] [Accepted: 05/04/2018] [Indexed: 01/12/2023]
Abstract
Contrary to other anticancer targets, topoisomerase I (TOP1) is targeted by only one chemical class of FDA-approved drugs: topotecan and irinotecan, the derivatives of the plant alkaloid, camptothecin. The indenoisoquinolines LMP400, LMP744, and LMP776 are novel noncamptothecin TOP1 inhibitors in clinical trial, which overcome the limitations of camptothecins. To further improve metabolic stability, their methoxy groups have been replaced by fluorine, as in the fluoroindenoisoquinolines NSC 781517 (LMP517), NSC 779135 (LMP135), and NSC 779134 (LMP134). We tested the induction and stability of TOP1 cleavage complexes (TOP1cc), and the induction and persistence of DNA damage measured by histone H2AX phosphorylation (γH2AX) compared with their parent compounds LMP744 and LMP776 in leukemia CCRF-CEM and colon carcinoma HCT116 cells. The fluoroindenoisoquinolines induced TOP1cc and γH2AX at nanomolar concentrations, and at higher levels than the parent indenoisoquinolines. The fluoroindenoisoquinoline LMP135 showed greater antitumor activity than topotecan in small-cell lung cancer cell H82 xenografts. It was also more potent than topotecan in the NCI-60 cancer cell line panel. Bioinformatics tools (http://discover.nci.nih.gov/cellminercdb) were used to investigate the following: (i) the correlations of fluoroindenoisoquinolines activity with other drugs, and (ii) genomic determinants of response in the NCI-60. The activity of the fluoroindenoisoquinolines was mostly correlated with camptothecin derivatives and the parent indenoisoquinolines, consistent with TOP1 targeting. Genomic analyses and activity assays in CCRF-CEM SLFN11-deleted cells showed that SLFN11 expression is a dominant determinant of response to LMP135. This study shows the potential value of the fluoroindenoisoquinolines for further development as novel anticancer agents targeting TOP1. Mol Cancer Ther; 17(8); 1694-704. ©2018 AACR.
Collapse
Affiliation(s)
- Laetitia Marzi
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Junko Murai
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Simone Difilippantonio
- Laboratory of Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Amy James
- Laboratory of Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Cody J Peer
- Clinical Pharmacology Program, Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - William D Figg
- Clinical Pharmacology Program, Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Daniel Beck
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and The Purdue Center for Cancer Research, Purdue University, Lafayette, Indiana
| | - Mohamed S A Elsayed
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and The Purdue Center for Cancer Research, Purdue University, Lafayette, Indiana
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and The Purdue Center for Cancer Research, Purdue University, Lafayette, Indiana
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
17
|
Croglio MP, Haake JM, Ryan CP, Wang VS, Lapier J, Schlarbaum JP, Dayani Y, Artuso E, Prandi C, Koltai H, Agama K, Pommier Y, Chen Y, Tricoli L, LaRocque JR, Albanese C, Yarden RI. Analogs of the novel phytohormone, strigolactone, trigger apoptosis and synergize with PARP inhibitors by inducing DNA damage and inhibiting DNA repair. Oncotarget 2017; 7:13984-4001. [PMID: 26910887 PMCID: PMC4924693 DOI: 10.18632/oncotarget.7414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/16/2016] [Indexed: 12/28/2022] Open
Abstract
Strigolactones are a novel class of plant hormones produced in roots that regulate shoot and root development. We previously reported that strigolactone analogs (SLs) induce G2/M cell cycle arrest and apoptosis in a variety of human cancer cells and inhibit tumor growth of human breast cancer xenografts in mice. SLs had no significant influences on non-transformed cells. Here we report for the first time that SLs induce DNA damage in the form of DNA double-strand breaks (DSBs) and activate the DNA damage response signaling by inducing phosphorylation of ATM, ATR and DNA-PKcs and co-localization of the DNA damage signaling protein, 53BP1, with γH2AX nuclear foci. We further report that in addition to DSBs induction, SLs simultaneously impair DSBs repair, mostly homology-directed repair (HDR) and to a lesser extent non-homologous end joining (NHEJ). In response to SLs, RAD51, the homologous DSB repair protein, is ubiquitinated and targeted for proteasomal degradation and it fails to co-localize with γH2AX foci. Interestingly, SLs synergize with DNA damaging agents-based therapeutics. The combination of PARP inhibitors and SLs showed an especially potent synergy, but only in BRCA1-proficient cells. No synergy was observed between SLs and PARP inhibitors in BRCA1-deficient cells, supporting a role for SLs in HDR impairment. Together, our data suggest that SLs increase genome instability and cell death by a unique mechanism of inducing DNA damage and inhibiting DNA repair.
Collapse
Affiliation(s)
- Michael P Croglio
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jefferson M Haake
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Colin P Ryan
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Victor S Wang
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jennifer Lapier
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jamie P Schlarbaum
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Yaron Dayani
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Emma Artuso
- Department of Chemistry, University of Turin, Turin, Italy
| | | | - Hinanit Koltai
- Institute of Plant Sciences, ARO, Volcani Center, Bet Dagan, Israel
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yu Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucas Tricoli
- The Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jeannine R LaRocque
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Christopher Albanese
- The Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington DC, USA.,Department of Pathology, Georgetown University Medical Center, NW, Washington DC, USA
| | - Ronit I Yarden
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA.,The Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington DC, USA
| |
Collapse
|
18
|
Al Abo M, Sasanuma H, Liu X, Rajapakse VN, Huang SY, Kiselev E, Takeda S, Plunkett W, Pommier Y. TDP1 is Critical for the Repair of DNA Breaks Induced by Sapacitabine, a Nucleoside also Targeting ATM- and BRCA-Deficient Tumors. Mol Cancer Ther 2017; 16:2543-2551. [PMID: 28802254 DOI: 10.1158/1535-7163.mct-17-0110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/24/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
2'-C-cyano-2'-deoxy-1-β-d-arabino-pentofuranosylcytosine (CNDAC) is the active metabolite of the anticancer drug, sapacitabine. CNDAC is incorporated into the genome during DNA replication and subsequently undergoes β-elimination that generates single-strand breaks with abnormal 3'-ends. Because tyrosyl-DNA phosphodiesterase 1 (TDP1) selectively hydrolyzes nonphosphorylated 3'-blocking ends, we tested its role in the repair of CNDAC-induced DNA damage. We show that cells lacking TDP1 (avian TDP1-/- DT40 cells and human TDP1 KO TSCER2 and HCT116 cells) exhibit marked hypersensitivity to CNDAC. We also identified BRCA1, FANCD2, and PCNA in the DNA repair pathways to CNDAC. Comparing CNDAC with the chemically related arabinosyl nucleoside analog, cytosine arabinoside (cytarabine, AraC) and the topoisomerase I inhibitor camptothecin (CPT), which both generate 3'-end blocking DNA lesions that are also repaired by TDP1, we found that inactivation of BRCA2 renders cells hypersensitive to CNDAC and CPT but not to AraC. By contrast, cells lacking PARP1 were only hypersensitive to CPT but not to CNDAC or AraC. Examination of TDP1 expression in the cancer cell line databases (CCLE, GDSC, NCI-60) and human cancers (TCGA) revealed a broad range of expression of TDP1, which was correlated with PARP1 expression, TDP1 gene copy number and promoter methylation. Thus, this study identifies the importance of TDP1 as a novel determinant of response to CNDAC across various cancer types (especially non-small cell lung cancers), and demonstrates the differential involvement of BRCA2, PARP1, and TDP1 in the cellular responses to CNDAC, AraC, and CPT. Mol Cancer Ther; 16(11); 2543-51. ©2017 AACR.
Collapse
Affiliation(s)
- Muthana Al Abo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto, Japan
| | - Xiaojun Liu
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shar-Yin Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Evgeny Kiselev
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto, Japan
| | - William Plunkett
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
19
|
Patel AG, Flatten KS, Peterson KL, Beito TG, Schneider PA, Perkins AL, Harki DA, Kaufmann SH. Immunodetection of human topoisomerase I-DNA covalent complexes. Nucleic Acids Res 2016; 44:2816-26. [PMID: 26917015 PMCID: PMC4824114 DOI: 10.1093/nar/gkw109] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022] Open
Abstract
A number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors. Here, we report development of a monoclonal antibody that specifically recognizes covalent topo I-DNA complexes, but not free topo I or DNA, by immunoblotting, immunofluorescence or flow cytometry. Utilizing this antibody, we demonstrate readily detectable topo I-DNA covalent complexes after treatment with camptothecins, indenoisoquinolines and cisplatin but not nucleoside analogues. Topotecan-induced topo I-DNA complexes peak at 15-30 min after drug addition and then decrease, whereas indotecan-induced complexes persist for at least 4 h. Interestingly, simultaneous staining for covalent topo I-DNA complexes, phospho-H2AX and Rad51 suggests that topotecan-induced DNA double-strand breaks occur at sites distinct from stabilized topo I-DNA covalent complexes. These studies not only provide new insight into the action of topo I-directed agents, but also illustrate a strategy that can be applied to study additional topoisomerases and their inhibitors in vitro and in vivo.
Collapse
Affiliation(s)
- Anand G Patel
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Karen S Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin L Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas G Beito
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Paula A Schneider
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Angela L Perkins
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Comeaux EQ, van Waardenburg RCAM. Tyrosyl-DNA phosphodiesterase I resolves both naturally and chemically induced DNA adducts and its potential as a therapeutic target. Drug Metab Rev 2014; 46:494-507. [PMID: 25327705 DOI: 10.3109/03602532.2014.971957] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA is subject to a wide range of insults, resulting from endogenous and exogenous sources that need to be metabolized/resolved to maintain genome integrity. Tyrosyl-DNA phosphodiesterase I (Tdp1) is a eukaryotic DNA repair enzyme that catalyzes the removal of covalent 3'-DNA adducts. As a phospholipase D superfamily member Tdp1 utilizes two catalytic histidines each within a His-Lys-Asn motif. Tdp1 was discovered for its ability to hydrolyze the 3'-phospho-tyrosyl that in the cell covalently links DNA Topoisomerase I (Topo1) and DNA. Tdp1's list of substrates has since grown and can be divided into two groups: protein-DNA adducts, such as camptothecin stabilized Topo1-DNA adducts, and modified nucleotides, including oxidized nucleotides and chain terminating nucleoside analogs. Since many of Tdp1's substrates are generated by clinically relevant chemotherapeutics, Tdp1 became a therapeutic target for molecularly targeted small molecules. Tdp1's unique catalytic cycle allows for two different targeting strategies: (1) the intuitive inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of chemotherapeutically induced DNA adducts, thereby enhancing their toxicity and (2) stabilization of the Tdp1-DNA covalent reaction intermediate, prevents resolution of Tdp1-DNA adduct and increases the half-life of this potentially toxic DNA adduct. This concept is best illustrated by a catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy, and results in an increased stability of its Tdp1-DNA reaction intermediate. Here, we will discuss Tdp1 catalysis from a structure-function perspective, Tdp1 substrates and Tdp1 potential as a therapeutic target.
Collapse
Affiliation(s)
- Evan Q Comeaux
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham , Birmingham, AL , USA
| | | |
Collapse
|
21
|
Sobek S, Boege F. DNA topoisomerases in mtDNA maintenance and ageing. Exp Gerontol 2014; 56:135-41. [PMID: 24440386 DOI: 10.1016/j.exger.2014.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/26/2022]
Abstract
DNA topoisomerases pass DNA strands through each other, a function essential for all DNA metabolic processes that create supercoils or entanglements of DNA. Topoisomerases play an ambivalent role in nuclear genome maintenance: Deficiency compromises gene transcription, replication and chromosome segregation, while the inherent DNA-cleavage activity of the enzymes endangers DNA integrity. Indeed, many DNA-damaging agents act through enhancing topoisomerase DNA cleavage. Mitochondrial DNA (mtDNA) clearly requires topoisomerase activity for transcription and replication, because it is a closed, double-stranded DNA molecule. Three topoisomerases have so far been found in mammalian mitochondria (I, IIβ, IIIα), but their precise role in mtDNA metabolism, mitochondrial maintenance and respiratory function remains mostly unclear. It is a reasonable surmise that these enzymes exhibit similar ambiguity with respect to genome maintenance and gene transcription as their nuclear counterparts. Here, we review what is known about the physiological roles of mitochondrial topoisomerases and draft three scenarios of how these enzymes possibly contribute to ageing-related mtDNA attrition and respiratory chain dysfunction. These scenarios are: mtDNA attrition by exogenously stimulated topoisomerase DNA cleavage, unbalancing of mitochondrial and nuclear transcription by direct effects on mitochondrial transcription, and contributions to enhanced mtDNA entanglement and recombination.
Collapse
Affiliation(s)
- Stefan Sobek
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University, Med. Faculty, Düsseldorf, Germany
| | - Fritz Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University, Med. Faculty, Düsseldorf, Germany.
| |
Collapse
|
22
|
Huang SYN, Murai J, Dalla Rosa I, Dexheimer TS, Naumova A, Gmeiner WH, Pommier Y. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs. Nucleic Acids Res 2013; 41:7793-803. [PMID: 23775789 PMCID: PMC3763526 DOI: 10.1093/nar/gkt483] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs.
Collapse
Affiliation(s)
- Shar-yin N Huang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan, NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA and Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Prakasha Gowda AS, Polizzi JM, Eckert KA, Spratt TE. Incorporation of gemcitabine and cytarabine into DNA by DNA polymerase beta and ligase III/XRCC1. Biochemistry 2010; 49:4833-40. [PMID: 20459144 DOI: 10.1021/bi100200c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1-Beta-D-arabinofuranosylcytosine (cytarabine, araC) and 2',2'-difluoro-2'-deoxycytidine (gemcitabine, dFdC), are effective cancer chemotherapeutic agents due to their ability to become incorporated into DNA and then subsequently inhibit DNA synthesis by replicative DNA polymerases. However, the impact of these 3'-modified nucleotides on the activity of specialized DNA polymerases has not been investigated. The role of polymerase beta and base excision repair may be of particular importance due to the increased oxidative stress in tumors, increased oxidative stress caused by chemotherapy treatment, and the variable amounts of polymerase beta in tumors. Here we directly investigate the incorporation of the 5'-triphosphorylated form of araC, dFdC, 2'-fluoro-2'-deoxycytidine (FdC), and cytidine into two nicked DNA substrates and the subsequent ligation. Opposite template dG, the relative k(pol)/K(d) for incorporation was dCTP > araCTP, dFdCTP >> rCTP. The relative k(pol)/K(d) for FdCTP depended on sequence. The effect on k(pol)/K(d) was due largely to changes in k(pol) with no differences in the affinity of the nucleoside triphosphates to the polymerase. Ligation efficiency by T4 ligase and ligase III/XRCC1 was largely unaffected by the nucleotide analogues. Our results show that BER is capable of incorporating araC and dFdC into the genome.
Collapse
Affiliation(s)
- A S Prakasha Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University,Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
24
|
Cytosine arabinoside-induced cytogenotoxicity in bone marrow and spermatogonial cells of mice and its potential transmission through the male germline. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 673:29-36. [DOI: 10.1016/j.mrgentox.2008.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 11/11/2008] [Accepted: 11/16/2008] [Indexed: 11/20/2022]
|
25
|
Zhang H, Pommier Y. Mitochondrial topoisomerase I sites in the regulatory D-loop region of mitochondrial DNA. Biochemistry 2008; 47:11196-203. [PMID: 18826252 DOI: 10.1021/bi800774b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitochondrial DNA (mtDNA) is required for mitochondrial activities because it encodes key proteins for oxidative phosphorylation and the production of cellular ATP. We previously reported the existence of a specific mitochondrial topoisomerase gene, Top1mt, in all vertebrates. The corresponding polypeptide contains an N-terminal mitochondrial targeting sequence and is otherwise highly homologous to the nuclear topoisomerase I (Top1). In this study, we provide biochemical evidence of the presence of an endogenous Top1mt polypeptide in human mitochondria. Using novel antibodies against Top1mt, we detected the corresponding 70 kDa polypeptide in mitochondria but not in nuclear fractions. This polypeptide could be trapped to form covalent complexes with mtDNA when mitochondria from human cells were treated with camptothecin. Mapping of Top1mt sites in the regulatory D-loop region of mtDNA in mitochondria revealed the presence of an asymmetric cluster of Top1mt sites confined to a 150 bp segment downstream from, and adjacent to, the site at which replication is prematurely terminated, generating an approximately 650-base (7S DNA) product that forms the mitochondrial D-loop. Moreover, we show that inhibition of Top1mt by camptothecin reduces the level of formation of the 7S DNA. These results suggest novel roles for Top1mt in regulating mtDNA replication.
Collapse
Affiliation(s)
- Hongliang Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | |
Collapse
|
26
|
Sequential topoisomerase targeting and analysis of mechanisms of resistance to topotecan in patients with acute myelogenous leukemia. Anticancer Drugs 2008; 19:411-20. [PMID: 18454051 DOI: 10.1097/cad.0b013e3282f5218b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Resistance to topoisomerase I (TOP1)-targeting drugs such as topotecan often involves upregulation of topoisomerase II (TOP2), with accompanying increased sensitivity to TOP2-targeting drugs such as etoposide. This trial was designed to investigate sequential topoisomerase targeting in the treatment of patients with high-risk acute myelogenous leukemia. An initial cohort of patients received topotecan and cytosine arabinoside daily for 5 days. Serial samples of circulating mononuclear cells were examined to evaluate peak elevations of TOP2-alpha protein expression. In subsequent cohorts, etoposide was administered daily for 3 days, beginning 6 h after initiation of the topotecan infusion. The etoposide dose was escalated to determine a maximum-tolerated dose. Circulating mononuclear cells were analyzed for TOP1 mutations and ABCG2 protein expression. In addition, systemic and intracellular topotecan concentrations were measured. Thirty-one patients were enrolled. On the basis of TOP1-alpha protein levels in three patients with peripheral blast counts greater than 50%, etoposide administration began 6 h after initiation of the topotecan/cytosine arabinoside infusion. Using this schedule of administration, the maximum-tolerated dose of etoposide was 90 mg/m. No TOP1 mutations were identified, but increases in ABCG2 expression during the infusion were observed in mononuclear cells from two of four evaluable patients. Administration of etoposide 6 h after initiation of a topotecan/cytosine arabinoside infusion is feasible and is associated with clinical activity. Analysis of TOP2-alpha protein levels in this small number of patients indicated that peak increases occurred earlier than expected based on earlier publications. Upregulation of ABCG2 was detected in circulating cells and may represent an inducible form of drug resistance that should be investigated further.
Collapse
|
27
|
Takagi K, Dexheimer TS, Redon C, Sordet O, Agama K, Lavielle G, Pierré A, Bates SE, Pommier Y. Novel E-ring camptothecin keto analogues (S38809 and S39625) are stable, potent, and selective topoisomerase I inhibitors without being substrates of drug efflux transporters. Mol Cancer Ther 2008; 6:3229-38. [PMID: 18089716 DOI: 10.1158/1535-7163.mct-07-0441] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Camptothecin (CPT) analogues are powerful anticancer agents but are chemically unstable due to their alpha-hydroxylactone six-membered E-ring structure, which is essential for trapping topoisomerase I (Top1)-DNA cleavage complexes. To stabilize the E-ring, CPT keto analogues with a five-membered E-ring lacking the oxygen of the lactone ring (S38809 and S39625) have been synthesized. S39625 has been selected for advanced preclinical development based on its promising activity in tumor models. Here, we show that both keto analogues are active against purified Top1 and selective against Top1 in yeast and human cancer cells. The keto analogues show improved cytotoxicity toward colon, breast, and prostate cancer cells and leukemia cells compared with CPT. The drug-induced Top1-DNA cleavage complexes induced by the keto analogues show remarkable persistence both with purified Top1 and in cells following 1-h drug treatments. Moreover, we find that S39625 is not a substrate for either the ABCB1 (multidrug resistance-1/P-glycoprotein) or ABCG2 (mitoxantrone resistance/breast cancer resistance protein) drug efflux transporters, which sets S39625 apart from the clinically used CPT analogues topotecan or SN-38 (active metabolite of irinotecan). Finally, we show that nanomolar concentrations of S38809 or S39625 induce intense and persistent histone gamma-H2AX. The chemical stability of the keto analogues and the ability of S39625 to produce high levels of persistent Top1-DNA cleavage complex and its potent antiproliferative activity against human cancer cell lines make S39625 a promising new anticancer drug candidate. Histone gamma-H2AX could be used as a biomarker for the upcoming clinical trials of S39625.
Collapse
Affiliation(s)
- Kazutaka Takagi
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Building 37, Room 5068, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liao Z, Robey RW, Guirouilh-Barbat J, To KKW, Polgar O, Bates SE, Pommier Y. Reduced expression of DNA topoisomerase I in SF295 human glioblastoma cells selected for resistance to homocamptothecin and diflomotecan. Mol Pharmacol 2008; 73:490-7. [PMID: 17984197 PMCID: PMC2998068 DOI: 10.1124/mol.107.041178] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homocamptothecins (hCPTs) are a novel class of topoisomerase I (Top1) inhibitors with enhanced chemical stability compared with the currently used camptothecin (CPT) analogs irinotecan and topotecan. The hCPT derivative diflomotecan (BN80915) is currently in clinical trials. We established two resistant human glioblastoma cell lines, SF295/hCPT50 and SF295/BN50, by stepwise exposure of the parental SF295 line to increasing concentrations of hCPT and BN80915, respectively. The two resistant cell lines were 15- to 22-fold resistant to hCPT and BN80915 as well as 7- to 27-fold cross-resistant to other Top1 inhibitors, including CPT, topotecan, and the indenoisoquinolines MJ-III-65 (NSC 706744) and NSC 724998, but sensitive to the topoisomerase II inhibitors mitoxantrone and etoposide. Neither of the resistant cell lines displayed any detectable expression of the three major drug transporters P-glycoprotien, multidrug resistance-associated protein 1, or ATP-binding cassette, subfamily G (WHITE), member 2, as assessed by immunoblot or flow cytometry. Reduced expression of Top1 protein occurred at the transcriptional level in both of the resistant cell lines, consistent with the reduction of Top1 enzyme level as the major contribution to the resistance phenotype in SF295/hCPT50 and SF295/BN50 cells. Treatment of the resistant cell lines with the histone deacetylase inhibitor depsipeptide or the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine alone or concomitantly did not result in re-expression of Top1. Our studies suggest that selection for resistance to hCPT or BN80915 is primarily related to reduced Top1 expression at the transcriptional level, resulting in reduced enzyme levels.
Collapse
Affiliation(s)
- Zhiyong Liao
- Laboratory of Molecular Pharmacology, Bldg, 37, Rm 5068, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kelner MJ, McMorris TC, Rojas RJ, Estes LA, Suthipinijtham P. Synergy of Irofulven in combination with various anti-metabolites, enzyme inhibitors, and miscellaneous agents in MV522 lung carcinoma cells: marked interaction with gemcitabine and 5-fluorouracil. Invest New Drugs 2008; 26:407-15. [PMID: 18227973 DOI: 10.1007/s10637-008-9113-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 01/09/2008] [Indexed: 11/24/2022]
Abstract
The novel agent Irofulven (HMAF, NSC 683863) has demonstrated significant antitumor activity against solid tumors in various xenograft models and human clinical trials. The antitumor potential of combining irofulven with 72 different anti-metabolite, enzyme inhibiting, and miscellaneous agents was investigated in this study. The human lung carcinoma MV522 cell line and its corresponding xenograft model were used to evaluate the activity of irofulven in combination with these different agents. Irofulven in combination with select anti-metabolites, notably cytidine or adenine-derived agents, displayed strong synergistic activity in both in vitro and in vivo studies. Agents demonstrating strong synergistic interaction with irofulven included gemcitabine, cyclocytidine, cytarabine, fludarabine phosphate, cladribine, and 5-fluorouracil. Other anti-metabolites, enzyme inhibitors, and a variety of miscellaneous agents failed to interact beneficially when administered in combination with irofulven. The therapeutic activity of irofulven is enhanced considerably when irofulven is combined with select anti-metabolite agents, and further clinical evaluation of these combinations is warranted. The synergistic interaction with these combinations may stem from a variety of actions including inhibition of the nucleotide excision repair (NER) pathway, topoisomerase I activity, and caspase-dependent and independent induction of apoptosis.
Collapse
Affiliation(s)
- Michael J Kelner
- Department of Pathology, University of California, San Diego, USA.
| | | | | | | | | |
Collapse
|
30
|
Antony S, Agama KK, Miao ZH, Takagi K, Wright MH, Robles AI, Varticovski L, Nagarajan M, Morrell A, Cushman M, Pommier Y. Novel Indenoisoquinolines NSC 725776 and NSC 724998 Produce Persistent Topoisomerase I Cleavage Complexes and Overcome Multidrug Resistance. Cancer Res 2007; 67:10397-405. [PMID: 17974983 DOI: 10.1158/0008-5472.can-07-0938] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Smitha Antony
- Laboratory of Molecular Pharmacology, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mielke C, Kalfalah FM, Christensen MO, Boege F. Rapid and prolonged stalling of human DNA topoisomerase I in UVA-irradiated genomic areas. DNA Repair (Amst) 2007; 6:1757-63. [PMID: 17765665 DOI: 10.1016/j.dnarep.2007.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 12/31/2022]
Abstract
DNA topoisomerase I appears to be involved in DNA damage and repair in a complex manner. The enzyme is required for DNA maintenance and repair, but it may also damage DNA through its covalently DNA-bound, catalytic intermediate. The latter mechanism plays a role in tumor cell killing by camptothecins, but seems also involved in oxidative cell killing and certain stages of apoptosis. Stalling and/or suicidal DNA cleavage of topoisomerase I adjacent to nicks and modified DNA bases has been demonstrated in vitro. Here, we investigate the enzyme's interactions with UVA-induced DNA lesions inside living cells. We irradiated cells expressing GFP-tagged topoisomerase I with an UVA laser focused through a confocal microscope at confined areas of the nuclei. At irradiated sites, topoisomerase I accumulated within seconds, and accumulation lasted for more than 90 min. This effect was apparently due to reduced mobility, although the enzyme was not immobilized at the irradiated nuclear sites. Similar observations were made with mutant versions of topoisomerase I lacking the active site tyrosine or the N-terminal domain, but not with the N-terminal domain alone. Thus, accumulation of topoisomerase I at UVA-modified DNA sites is most likely due to non-covalent binding to damaged DNA, and not suicidal cleavage of such lesions. The rapid onset of accumulation suggests that topoisomerase I functions in this context as a component of DNA damage recognition and/or a cofactor of fast DNA-repair processes. However, the prolonged duration of accumulation suggests that it is also involved in more long-termed processes.
Collapse
Affiliation(s)
- Christian Mielke
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
32
|
Montaudon D, Palle K, Rivory LP, Robert J, Douat-Casassus C, Quideau S, Bjornsti MA, Pourquier P. Inhibition of topoisomerase I cleavage activity by thiol-reactive compounds: importance of vicinal cysteines 504 and 505. J Biol Chem 2007; 282:14403-12. [PMID: 17355975 DOI: 10.1074/jbc.m611673200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase I (Top1) is a nuclear enzyme that plays a crucial role in the removal of DNA supercoiling associated with replication and transcription. It is also the target of the anticancer agent, camptothecin (CPT). Top1 contains eight cysteines, including two vicinal residues (504 and 505), which are highly conserved across species. In this study, we show that thiol-reactive compounds such as N-ethylmaleimide and phenylarsine oxide can impair Top1 catalytic activity. We demonstrate that in contrast to CPT, which inhibits Top1-catalyzed religation, thiolation of Top1 inhibited the DNA cleavage step of the reaction. This inhibition was more pronounced when Top1 was preincubated with the thiol-reactive compound and could be reversed in the presence of dithiothreitol. We also established that phenylarsine oxide-mediated inhibition of Top1 cleavage involved the two vicinal cysteines 504 and 505, as this effect was suppressed when cysteines were mutated to alanines. Interestingly, mutation of Cys-505 also altered Top1 sensitivity to CPT, even in the context of the double Cys-504 to Cys-505 mutant, which relaxed supercoiled DNA with a comparable efficiency to that of wild-type Top1. This indicates that cysteine 505, which is located in the lower Lip domain of human Top1, is critical for optimal poisoning of the enzyme by CPT and its analogs. Altogether, our results suggest that conserved vicinal cysteines 504 and 505 of human Top1 play a critical role in enzyme catalytic activity and are the target of thiol-reactive compounds, which may be developed as efficient Top1 catalytic inhibitors.
Collapse
Affiliation(s)
- Danièle Montaudon
- Groupe de Pharmacologie Moléculaire INSERM E347 and Institut Bergonié, 229 Cours de l'Argonne, Université Victor Segalen Bordeaux II, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Temmink OH, Hoebe EK, Fukushima M, Peters GJ. Irinotecan-induced cytotoxicity to colon cancer cells in vitro is stimulated by pre-incubation with trifluorothymidine. Eur J Cancer 2007; 43:175-183. [PMID: 17049227 DOI: 10.1016/j.ejca.2006.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 08/18/2006] [Accepted: 08/24/2006] [Indexed: 11/18/2022]
Abstract
SN38 is the active metabolite of the anti-cancer agent irinotecan (CPT-11) and is a potent inhibitor of topoisomerase-I (topo-I), leading to DNA strand breaks and eventually cell death. The pyrimidine analog trifluorothymidine (TFT) is part of the anti-cancer drug formulation TAS-102, which was developed to enhance the bioavailability of TFT in vivo, and is currently being evaluated as an oral chemotherapeutic agent in phase I clinical studies. In this study, the combined cytotoxic effects of dual-targeted TFT with SN38 were investigated in a panel of human colon cancer cell lines (WiDr, H630, Colo320, SNU-C4, SW1116). We used different drug combination treatment schedules of SN38 with TFT, and possible synergism was evaluated using median drug effect analysis resulting in combination indexes (CI), in which CI<0.9 indicates synergism, CI=0.9-1.1 indicates additivity and CI>1.1 indicates antagonism. Drug target analysis was performed to investigate the effect of TFT on SN38-induced DNA damage, cell cycle delay and apoptosis. Simultaneous exposure to SN38 in combination with TFT was not more than additive, whereas pre-incubation with TFT resulted in synergism with SN38 (CI=0.3-0.6). Only for Colo320 synergism could be induced for both simultaneous and sequential drug combinations. SN38 and TFT induced most DNA damage in H630 and Colo320 cells, which was increased in combination. TFT pre-incubation further enhanced SN38-induced DNA strand breaks in H630 and Colo320 (>20%), which was most pronounced in H630 cells (p<0.01). Exposure to SN38 alone induced a clear cell cycle G2M-phase arrest and pre-incubation with TFT enhanced this effect in WiDr and H630 (p<0.05). Both drugs induced significant apoptosis; SN38-induced apoptosis increased significantly in the presence of TFT (p<0.01), either when added simultaneously (about 3-fold) or at pre-incubation (about 2-fold). Topo-I protein levels varied among the cell lines and TFT hardly affected these. In conclusion, TFT pre-incubation can enhance SN38-induced cytotoxicity to colon cancer cells resulting in synergism between the drugs, thereby increasing DNA damage and apoptosis induction.
Collapse
Affiliation(s)
- Olaf H Temmink
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
34
|
Léonce S, Kraus-Berthier L, Golsteyn RM, David-Cordonnier MH, Tardy C, Lansiaux A, Poindessous V, Larsen AK, Pierré A. Generation of Replication-Dependent Double-Strand Breaks by the Novel N2-G-Alkylator S23906-1. Cancer Res 2006; 66:7203-10. [PMID: 16849567 DOI: 10.1158/0008-5472.can-05-3946] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
S23906-1, a new DNA alkylating agent that reacts with the exocyclic 2-NH2 group of guanine residues yielding monofunctional adducts, is currently under clinical evaluation in phase I trials. To investigate the mechanism of action of S23906-1, we compared parental KB-3-1 cells and KB/S23-500 cells that are 15-fold resistant to S23906-1. Cell death induced by 1 micromol/L S23906-1 in KB-3-1 cells was associated with their irreversible arrest in the G2-M phases of the cell cycle followed by apoptosis, whereas a proportion of the resistant KB/S23-500 cells were able to exit from the G2 arrest and divide, leading to a significantly lower rate of apoptosis. The attenuated apoptotic response was associated with decreased Chk2 protein phosphorylation, indicating that the DNA damage signaling pathways are more potently activated in the sensitive cells. However, similar rates of adduct formation and repair were measured in both cell lines. Exposure to S23906-1 induced a higher formation of DNA breaks, measured by the comet assay, in sensitive cells. In agreement, a histone H2AX phosphorylation assay revealed that S23906-1 induced double-strand breaks (DSB) in a dose- and time-dependent manner and that these were more persistent in the parental cells. These DSBs were found mainly in S-phase cells and inhibited by aphidicolin, suggesting that they are DNA replication-mediated DSBs. These results suggest that secondary DNA lesions play an important role in the cytotoxicity of this compound and make histone H2AX phosphorylation an attractive marker for monitoring the efficacy of S23906-1.
Collapse
Affiliation(s)
- Stéphane Léonce
- Institut de Recherches Servier, Cancer Drug Discovery, Croissy sur Seine, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rockstroh A, Kleinert A, Kramer M, Grosse F, Søe K. Cellular stress triggers the human topoisomerase I damage response independently of DNA damage in a p53 controlled manner. Oncogene 2006; 26:123-31. [PMID: 16799632 DOI: 10.1038/sj.onc.1209766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 'human topoisomerase I (htopoI) damage response' was reported to be triggered by various kinds of DNA lesions. Also, a high and persistent level of htopoI cleavage complexes correlated with apoptosis. In the present study, we demonstrate that DNA damage-independent induction of cell death using colcemid and tumor necrosis factor alpha is also accompanied by a strong htopoI response that correlates with the onset of apoptotic hallmarks. Consequently, these results suggest that htopoI cleavage complex formation may be caused by signaling pathways independent of the kind of cellular stress. Thus, protein interactions or signaling cascades induced by DNA damage or cellular stress might lead to the formation of stabilized cleavage complexes rather than the DNA lesion itself. Finally, we show that p53 not only plays a key role in the regulation of the htopoI response to UV-C irradiation but also to treatment with colcemid.
Collapse
Affiliation(s)
- A Rockstroh
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute eV, Biochemistry, Jena, Germany
| | | | | | | | | |
Collapse
|
36
|
Colón-Cesario M, Wang J, Ramos X, García HG, Dávila JJ, Laguna J, Rosado C, Peña de Ortiz S. An inhibitor of DNA recombination blocks memory consolidation, but not reconsolidation, in context fear conditioning. J Neurosci 2006; 26:5524-33. [PMID: 16707804 PMCID: PMC6675301 DOI: 10.1523/jneurosci.3050-05.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genomic recombination requires cutting, processing, and rejoining of DNA by endonucleases, polymerases, and ligases, among other factors. We have proposed that DNA recombination mechanisms may contribute to long-term memory (LTM) formation in the brain. Our previous studies with the nucleoside analog 1-beta-D-arabinofuranosylcytosine triphosphate (ara-CTP), a known inhibitor of DNA ligases and polymerases, showed that this agent blocked consolidation of conditioned taste aversion without interfering with short-term memory (STM). However, because polymerases and ligases are also essential for DNA replication, it remained unclear whether the effects of this drug on consolidation were attributable to interference with DNA recombination or neurogenesis. Here we show, using C57BL/6 mice, that ara-CTP specifically blocks consolidation but not STM of context fear conditioning, a task previously shown not to require neurogenesis. The effects of a single systemic dose of cytosine arabinoside (ara-C) on LTM were evident as early as 6 h after training. In addition, although ara-C impaired LTM, it did not impair general locomotor activity nor induce brain neurotoxicity. Importantly, hippocampal, but not insular cortex, infusions of ara-C also blocked consolidation of context fear conditioning. Separate studies revealed that context fear conditioning training significantly induced nonhomologous DNA end joining activity indicative of DNA ligase-dependent recombination in hippocampal, but not cortex, protein extracts. Finally, unlike inhibition of protein synthesis, systemic ara-C did not block reconsolidation of context fear conditioning. Our results support the idea that DNA recombination is a process specific to consolidation that is not involved in the postreactivation editing of memories.
Collapse
|
37
|
Cline SD, Hanawalt PC. Topoisomerase deficiencies subtly enhance global genomic repair of ultraviolet-induced DNA damage in Saccharomyces cerevisiae. DNA Repair (Amst) 2006; 5:611-7. [PMID: 16516562 DOI: 10.1016/j.dnarep.2006.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 11/25/2022]
Abstract
Genetic integrity depends upon the precision of all pathways that manipulate DNA. DNA repair mechanisms prevent mutations and aberrant recombination events by removing DNA damage. DNA topoisomerases maintain favorable nucleic acid topology for replication, transcription, and chromosome segregation. However, topoisomerases can also become trapped on DNA at sites of damage, and thereby, might alter the efficiency of DNA repair. The activities of the three nuclear DNA topoisomerases (Top1, Top2, and Top3) in the yeast Saccharomyces cerevisiae were examined for their influence upon the nucleotide excision repair (NER) of DNA damage induced by ultraviolet (UV) irradiation. A 10-20% increase in the global genomic repair (GGR) of cyclobutane pyrimidine dimers (CPDs) was observed with impaired Top1 or Top2 function. The GGR of 6-4 photoproducts (6-4PPs) and the strand-specific removal of CPDs from the yeast RPB2 gene were unaffected by the loss of topoisomerase activity. Even though the deletion of TOP3 conferred UV sensitivity, neither the GGR nor the strand-specific repair of UV-induced DNA damage was compromised in top3Delta yeast. Top1 and Top2 in DNA complexes near CPDs may inhibit GGR recognition of these lesions and produce protein-linked DNA breaks, resulting in CPD repair by an alternate pathway. While the physiological role of topoisomerase association with DNA damage has yet to be determined, these enzymes do not play a direct role in the NER pathways for removing UV-induced lesions in yeast.
Collapse
Affiliation(s)
- Susan D Cline
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
38
|
Zhang H, Fang Y, Li Y. Liquid Chromatographic Analysis of Arabinosylcytosin and 1-β-D-Arabinofuranosyluracil in Treatment with Cyclophosphamide and Pirarubicin. Chromatographia 2006. [DOI: 10.1365/s10337-005-0705-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Pommier Y, Barcelo J, Rao VA, Sordet O, Jobson AG, Thibaut L, Miao Z, Seiler J, Zhang H, Marchand C, Agama K, Redon C. Repair of topoisomerase I-mediated DNA damage. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:179-229. [PMID: 16891172 PMCID: PMC2576451 DOI: 10.1016/s0079-6603(06)81005-6] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Topoisomerase I (Top1) is an abundant and essential enzyme. Top1 is the selective target of camptothecins, which are effective anticancer agents. Top1-DNA cleavage complexes can also be trapped by various endogenous and exogenous DNA lesions including mismatches, abasic sites and carcinogenic adducts. Tyrosyl-DNA phosphodiesterase (Tdp1) is one of the repair enzymes for Top1-DNA covalent complexes. Tdp1 forms a multiprotein complex that includes poly(ADP) ribose polymerase (PARP). PARP-deficient cells are hypersensitive to camptothecins and functionally deficient for Tdp1. We will review recent developments in several pathways involved in the repair of Top1 cleavage complexes and the role of Chk1 and Chk2 checkpoint kinases in the cellular responses to Top1 inhibitors. The genes conferring camptothecin hypersensitivity are compiled for humans, budding yeast and fission yeast.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Juana Barcelo
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - V. Ashutosh Rao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Olivier Sordet
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Andrew G. Jobson
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Laurent Thibaut
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Zheyong Miao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Jennifer Seiler
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Christophe Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| |
Collapse
|
40
|
Soret J, Gabut M, Tazi J. SR Proteins as Potential Targets for Therapy. ALTERNATIVE SPLICING AND DISEASE 2006; 44:65-87. [PMID: 17076265 DOI: 10.1007/978-3-540-34449-0_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serine- and arginine-rich (SR) proteins constitute a highly conserved family of pre-mRNA splicing factors that play key roles in the regulation of splice site selection, and thereby in the control of alternative splicing processes. In addition to conserved sequences at the splice junctions, splice site selection also depends upon different sets of auxiliary cis regulatory elements known as exonic and intronic splicing enhancers (ESEs and ISEs) or exonic and intronic silencers (ESSs and ISSs). Specific binding of SR proteins to their cognate splicing enhancers as well as binding of splicing repressor to silencer sequences serve to enhance or inhibit recognition of weak splice sites by the splicing machinery. Given that the vast majority of human genes contain introns and that most pre-mRNAs containing multiple exons undergo alternative splicing, mutations disrupting or creating such auxiliary elements can result in aberrant splicing events at the origin of various human diseases. In the past few years, numerous studies have reported several approaches allowing correction of such aberrant splicing events by targeting either the mutated sequences or the splicing regulators whose binding is affected by the mutation. The aim of the present review is to highlight the different means by which it is possible to modulate the activity of SR splicing factors and to bring out those holding the greatest promises for the development of therapeutic treatments.
Collapse
Affiliation(s)
- Johann Soret
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, IFR 122, Centre National de Recherche Scientifique, 1919, route de Mende, 34293 Montpellier, France
| | | | | |
Collapse
|
41
|
Rao VA, Fan AM, Meng L, Doe CF, North PS, Hickson ID, Pommier Y. Phosphorylation of BLM, dissociation from topoisomerase IIIalpha, and colocalization with gamma-H2AX after topoisomerase I-induced replication damage. Mol Cell Biol 2005; 25:8925-37. [PMID: 16199871 PMCID: PMC1265790 DOI: 10.1128/mcb.25.20.8925-8937.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Topoisomerase I-associated DNA single-strand breaks selectively trapped by camptothecins are lethal after being converted to double-strand breaks by replication fork collisions. BLM (Bloom's syndrome protein), a RecQ DNA helicase, and topoisomerase IIIalpha (Top3alpha) appear essential for the resolution of stalled replication forks (Holliday junctions). We investigated the involvement of BLM in the signaling response to Top1-mediated replication DNA damage. In BLM-complemented cells, BLM colocalized with promyelocytic leukemia protein (PML) nuclear bodies and Top3alpha. Fibroblasts without BLM showed an increased sensitivity to camptothecin, enhanced formation of Top1-DNA complexes, and delayed histone H2AX phosphorylation (gamma-H2AX). Camptothecin also induced nuclear relocalization of BLM, Top3alpha, and PML protein and replication-dependent phosphorylation of BLM on threonine 99 (T99p-BLM). T99p-BLM was also observed following replication stress induced by hydroxyurea. Ataxia telangiectasia mutated (ATM) protein and AT- and Rad9-related protein kinases, but not DNA-dependent protein kinase, appeared to play a redundant role in phosphorylating BLM. Following camptothecin treatment, T99p-BLM colocalized with gamma-H2AX but not with Top3alpha or PML. Thus, BLM appears to dissociate from Top3alpha and PML following its phosphorylation and facilitates H2AX phosphorylation in response to replication double-strand breaks induced by Top1. A defect in gamma-H2AX signaling in response to unrepaired replication-mediated double-strand breaks might, at least in part, explain the camptothecin-sensitivity of BLM-deficient cells.
Collapse
Affiliation(s)
- V Ashutosh Rao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Adams DJ, da Silva MW, Flowers JL, Kohlhagen G, Pommier Y, Colvin OM, Manikumar G, Wani MC. Camptothecin analogs with enhanced activity against human breast cancer cells. I. Correlation of potency with lipophilicity and persistence in the cleavage complex. Cancer Chemother Pharmacol 2005; 57:135-44. [PMID: 16151810 DOI: 10.1007/s00280-005-0007-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
The effect of 7-alkyl substitutions on growth inhibition in seven Camptothecin (CPT) ring systems with various groups at the ten position was evaluated in three human breast cancer cell lines that model (1) hormone-sensitive (MCF-7/wt), (2) hormone insensitive (MDA-MB-231), or (3) alkylator-resistant (MCF-7/4-hc) forms of disease. To assess the impact of persistence of cleavage complexes on antiproliferative activity, a post-exposure recovery period in drug-free medium was incorporated into the growth inhibition assay. This modification produced on average a twofold reduction in the growth inhibition endpoint (the IC50), suggesting a greater apoptotic response. The results further revealed a three log range in potency from a mean IC50 of 2 nM (7-butyl-10,11-methylenedioxy-CPT) to 2.5 microM (7-bromomethyl-10-hydryoxy-CPT). Increasing 7-alkyl chain length in six of the ten-substituted CPTs enhanced potency, which was directly correlated with persistence of topoisomerase I-induced DNA cleavage complexes in 10-hydroxy, 10-methoxy, and 10,11-methylenedioxy substituted CPTs. Modeling of the binding mode of 7-butyl-10-amino-CPT revealed a direct hydrogen bond contact for the 10-amino to the side chain of Glu-356 of Core Subdomain I of top1 in addition to known contacts found for other camptothecins. More important, residues 350-356 and 425-431 of Core Subdomain I may provide induced fit stabilization to the lipophilic alkyl moiety at the seven position.
Collapse
Affiliation(s)
- David J Adams
- Department of Medicine, Duke Comprehensive Cancer Center, Duke University Medical Center, Durham, NC, 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Liao ZY, Sordet O, Zhang HL, Kohlhagen G, Antony S, Gmeiner WH, Pommier Y. A novel polypyrimidine antitumor agent FdUMP[10] induces thymineless death with topoisomerase I-DNA complexes. Cancer Res 2005; 65:4844-51. [PMID: 15930305 DOI: 10.1158/0008-5472.can-04-1302] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
FdUMP[10], a 10mer of 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP), the thymidylate synthase inhibitory metabolite of 5-fluorouracil (FU), is most closely correlated with the DNA topoisomerase I (Top1) inhibitor camptothecin in the National Cancer Institute COMPARE analysis, but not with FU. FdUMP[10] exhibits more potent antiproliferative activity than FdUMP or 5-fluoro-2'-deoxyuridine (FdU) and is markedly more active than FU. Camptothecin-resistant P388/CPT45 cells lacking Top1 are cross-resistant to FdUMP[10] as well as to FdUMP, FdU, and the thymidylate synthase inhibitor raltitrexed (Tomudex). FdUMP[10] induces DNA single-strand breaks and cellular Top1-DNA complexes. Such complexes are also observed in response to FdUMP, FdU, raltitrexed, and FU. The FdUMP[10]-induced Top1-DNA complexes are not inhibited by the caspase inhibitor z-VAD-fmk and form independently of apoptotic DNA fragmentation, indicating that they do not correspond to apoptotic Top1-DNA complexes. In biochemical assay, Top1 is directly trapped at uracil and FdU misincorporation sites. We propose that FdUMP[10] damages DNA by trapping Top1 at uracil and FdU misincorporation sites resulting from thymidylate synthase inhibition and thymine depletion.
Collapse
Affiliation(s)
- Zhi-Yong Liao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhang X, Kiechle FL. Cytosine arabinoside substitution decreases transcription factor-DNA binding element complex formation. Arch Pathol Lab Med 2005; 128:1364-71. [PMID: 15578880 DOI: 10.5858/2004-128-1364-casdtf] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The pyrimidine nucleoside analog, cytosine arabinoside (Ara-C), is an effective therapeutic agent for acute leukemia. The phosphorylated triphosphate, cytosine arabinoside triphosphate, competes with deoxycytosine triphosphate as a substrate for incorporation into DNA. Once incorporated into DNA, it inhibits DNA polymerase and topoisomerase I and modifies the tertiary structure of DNA. OBJECTIVE To determine if the substitution of Ara-C for cytosine in double-stranded oligonucleotides that contain 4 specific transcription factor binding sites (TATA, GATA, C/EBP, and AP-2alpha) alters transcription factor binding to their respective DNA binding elements. DESIGN Transcription factors were obtained from nuclear extracts from human promyelocytic leukemia HL-60 cells. [32P]-end-labeled double-stranded oligonucleotides that contained 1 or 2 specific transcription factor binding sites with or without Ara-C substitution for cytosine were used to assess transcription factor binding by electrophoretic mobility shift assay. RESULTS The substitution of Ara-C for cytosine within and outside the transcription factor binding element (AP-2alpha, C/EBP), outside the binding element only (GATA, TATA), or within the binding element only (AP-2alpha) all result in a reduction in transcription factor binding to their respective DNA binding element. CONCLUSION The reduction of the binding capacity of transcription factors with their respective DNA binding elements may depend on structural changes within oligonucleotides induced by Ara-C incorporation. This altered binding capacity of transcription factors to their DNA binding elements may represent one mechanism for Ara-C cytotoxicity secondary to inhibition of transcription of new messenger RNAs and, subsequently, translation of new proteins.
Collapse
Affiliation(s)
- Ximbo Zhang
- Department of Clinical Pathology, William Beaumont Hospital, Royal Oak, Mich 48073, USA
| | | |
Collapse
|
45
|
Abstract
OBJECTIVE To review the advances in clinically useful molecular biologic techniques and to identify their applications, as presented at the 12th Annual William Beaumont Hospital DNA Symposium. DATA SOURCES The 7 manuscripts submitted were reviewed and their major findings were compared with literature on the same or related topics. STUDY SELECTION Manuscripts address the use of molecular techniques in the detection of severe acute respiratory syndrome (SARS) and bacterial ribosome mutations, which may lead to ribosome-targeted drug resistance; pharmacogenomics as a clinical laboratory service and example of warfarin dosing using CYP2C9 mutation analysis; definition of the potential of cytosine arabinoside incorporation into DNA to disrupt transcription using an in vitro model of oligonucleotides; use of laser capture microdissection to isolate solid tumor cells free of nontumor cells; and molecular methods used to classify lymphomas. DATA SYNTHESIS Two current issues related to the use of molecular tests in the clinical laboratories are (1) decentralization of molecular-based testing to a variety of nonmolecular laboratories and (2) need for wider acceptance of molecular-based testing through its incorporation in clinical practice guidelines. Molecular methods have had a major impact on infectious disease through the rapid identification of new infectious agents, SARS, and the characterization of drug resistance. Pharmacogenomics identifies the genetic basis for heritable and interindividual variation in response to drugs. The incorporation of the nucleoside analog, cytosine arabinoside, into DNA leads to local perturbation of DNA structure and reduces the ability of transcription factors to bind to their specific DNA binding elements as measured by electrophoretic mobility shift assays. Laser capture microdissection of tumor cells can provide an adequate number of cells for whole genome amplification. Gene expression microassay profiles of various lymphomas have modified classification systems and predict prognosis and response to therapy. CONCLUSIONS The current -omics era will continue to emphasize the use of microarrays and database software for genomic, transcriptomic, and proteomic screening to search for a useful clinical assay. The number of molecular pathologic techniques will expand as additional disease-associated mutations are defined.
Collapse
Affiliation(s)
- Frederick L Kiechle
- Department of Clinical Pathology, William Beaumont Hospital, Royal Oak, Mich 48073, USA.
| | | | | |
Collapse
|
46
|
Antony S, Kohlhagen G, Agama K, Jayaraman M, Cao S, Durrani FA, Rustum YM, Cushman M, Pommier Y. Cellular topoisomerase I inhibition and antiproliferative activity by MJ-III-65 (NSC 706744), an indenoisoquinoline topoisomerase I poison. Mol Pharmacol 2005; 67:523-30. [PMID: 15531731 DOI: 10.1124/mol.104.003889] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To overcome camptothecin's (CPT) lactone instability, reversibility of the drug-target interaction, and drug resistance, attempts to synthesize compounds that are CPT-like in their specificity and potency yet display a unique profile have been underway. In this pursuit, we have identified one of the idenoisoquinoline derivatives, MJ-III-65 (NSC 706744; 6-[3-(2-hydroxyethyl)amino-1-propyl]-5,6-dihydro-2,3-dimethoxy-8,9-methylenedioxy-5,11-dioxo-11H-indeno[1,2-c]isoquinoline) with both similarities and differences from CPT. MJ-III-65 traps topoisomerase I (Top1) reversibly like CPT but with different DNA sequence preferences. Consistent with Top1 poisoning, protein-linked DNA breaks were detected in cells treated with MJ-III-65 at nanomolar concentrations. These MJ-III-65-induced protein-linked DNA breaks were resistant to reversal after an hour of drug removal, compared with CPT, which completely reversed. Studies in human cells in culture found MJ-III-65 to be cytotoxic. Furthermore, limited cross-resistance was observed in camptothecin-resistant cell lines. MJ-III-65 also exhibits antitumor activity in mouse tumor xenografts.
Collapse
Affiliation(s)
- Smitha Antony
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, 37 Convent Dr., National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Takagaki K, Katsuma S, Kaminishi Y, Horio T, Tanaka T, Ohgi T, Yano J. Role of Chk1 and Chk2 in Ara-C-induced differentiation of human leukemia K562 cells. Genes Cells 2005; 10:97-106. [PMID: 15676021 DOI: 10.1111/j.1365-2443.2005.00821.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human chronic myelogenous leukemia K562 cells are relatively resistant to the anti-metabolite cytosine arabinoside (Ara-C) and, when treated with Ara-C, they differentiate into erythrocytes without undergoing apoptosis. In this study we investigated the mechanism by which Ara-C induces K562 cells to differentiate. We first observed that Ara-C-induced differentiation of these cells is completely inhibited by the radiosensitizing agent caffeine, an inhibitor of ATM and ATR protein kinases. We next found that Ara-C activates Chk1 and Chk2 in the cells, and that the activation of Chk1, but not of Chk2, was almost completely inhibited by caffeine. Proteasome-mediated degradation of Cdc25A and phosphorylation of Cdc25C were induced by Ara-C treatment, presumably due to the activation of Chk2 and Chk1, respectively. To directly observe the effects of checkpoint kinase activation in Ara-C-induced differentiation, we suppressed Chk1 or Chk2 with the Chk1-specific inhibitor Go6976, by generating cell lines stably over-expressing dominant-negative forms of Chk2, or by siRNA-mediated knock-down of the Chk1 or the Chk2 gene. The results suggest that Ara-C-induced erythroid differentiation of K562 cells depends on both Chk1 and Chk2 pathways.
Collapse
Affiliation(s)
- Kazuchika Takagaki
- Research Laboratories, Nippon Shinyaku Co. Ltd, 3-14-1 Sakura, Tsukuba, Ibaraki 305-0003, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Brachman EE, Kmiec EB. Gene repair in mammalian cells is stimulated by the elongation of S phase and transient stalling of replication forks. DNA Repair (Amst) 2005; 4:445-57. [PMID: 15725625 DOI: 10.1016/j.dnarep.2004.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 11/16/2004] [Accepted: 11/25/2004] [Indexed: 01/10/2023]
Abstract
The repair of point mutations directed by modified single-stranded DNA oligonucleotides is dependent on the activity of proteins involved in homologous recombination (HR). As a consequence, factors that stimulate homologous recombination, such as double strand breaks, can impact the frequency with which repair occurs. Here, we report that the stalling of replication forks can also activate the gene repair pathway and lead to an enhanced level of nucleotide exchange. The mammalian cell line, DLD-1, containing an integrated mutant eGFP gene, was used as an assay system to explore how replication fork activity affects the overall repair reaction. The addition of 2',3'-dideoxycytidine (ddC), a nucleoside analog that retards the rate of elongation and effectively stalls the replication fork, results in a lengthened S phase and an increased number of gene repair events. This stimulation was reversed when caffeine was added to the reaction at concentrations that block the homologous recombination pathway. In contrast, the nucleoside analog, 1-beta-D-arabinofuranosylcytosine which stops replication in these cells, failed to stimulate the gene repair reaction to any appreciable degree until the block is released and active replication resumes. Furthermore, overexpression of wild-type p53 which is known to bind transiently to stalled replication forks blocked the stimulatory effect of ddC. Overexpression of mutant p53 genes, deficient in the capacity to bind DNA, however, did not inhibit the reaction. Our results indicate that an expansion of S phase and a transient stalling of replication forks can increase the frequency of targeted gene repair.
Collapse
Affiliation(s)
- Erin E Brachman
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
49
|
Nagarajan M, Morrell A, Fort BC, Meckley MR, Antony S, Kohlhagen G, Pommier Y, Cushman M. Synthesis and anticancer activity of simplified indenoisoquinoline topoisomerase I inhibitors lacking substituents on the aromatic rings. J Med Chem 2004; 47:5651-61. [PMID: 15509164 DOI: 10.1021/jm040025z] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The indenoisoquinolines are a class of cytotoxic topoisomerase I inhibitors that offer certain advantages over the camptothecins, including the greater stabilities of the compounds themselves, as well as the greater stabilities of their drug-enzyme-DNA cleavage complexes. To investigate the possible biological roles of the di(methoxy) and methylenedioxy substituents present on the aromatic rings of the previously synthesized indenoisoquinoline topoisomerase I inhibitors, a series of compounds lacking these substituents was synthesized and tested for both cytotoxicity in cancer cell cultures and for enzyme inhibitory activity. The results indicate that the aromatic substituents make a small, but consistently observable contribution to the biological activity. Molecular models derived for the binding of the unsubstituted indenoisoquinolines in ternary complex with DNA and topoisomerase I indicate that the substituents on the lactam nitrogen project out of the major groove, and the carbonyl group is directed out of the minor groove, where it is involved in a hydrogen bonding interaction with the side chain guanidine group of Arg364. The DNA cleavage patterns observed in the presence of topoisomerase I and various indenoisoquinolines were similar, although significant differences were detected. There were also variations in the DNA cleavage pattern seen with camptothecin vs the indenoisoquinolines, which indicates that these two classes of topoisomerase I inhibitors are likely to target the cancer cell genome differently, resulting in different spectra of anticancer activity. The most cytotoxic of the presently synthesized indenoisoquinolines has a 4-amino-n-butyl group on the lactam nitrogen.
Collapse
Affiliation(s)
- Muthukaman Nagarajan
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
van Waardenburg RCAM, de Jong LA, van Eijndhoven MAJ, Verseyden C, Pluim D, Jansen LET, Bjornsti MA, Schellens JHM. Platinated DNA adducts enhance poisoning of DNA topoisomerase I by camptothecin. J Biol Chem 2004; 279:54502-9. [PMID: 15471886 DOI: 10.1074/jbc.m410103200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Camptothecins constitute a novel class of chemotherapeutics that selectively target DNA topoisomerase I (Top1) by reversibly stabilizing a covalent enzyme-DNA intermediate. This cytotoxic mechanism contrasts with that of platinum drugs, such as cisplatin, which induce inter- and intrastrand DNA adducts. In vitro combination studies using platinum drugs combined with Top1 poisons, such as topotecan, showed a schedule-dependent synergistic activity, with promising results in the clinic. However, whereas the molecular mechanism of these single agents may be relatively well understood, the mode of action of these chemotherapeutic agents in combination necessitates a more complete understanding. Indeed, we recently reported that a functional homologous recombination pathway is required for cisplatin and topotecan synergy yet represses the synergistic toxicity of 1-beta-D-arabinofuranosyl cytidine in combination with topotecan (van Waardenburg, R. C., de Jong, L. A., van Delft, F., van Eijndhoven, M. A., Bohlander, M., Bjornsti, M. A., Brouwer, J., and Schellens, J. H. (2004) Mol. Cancer Ther. 3, 393-402). Here we provide direct evidence for Pt-1,3-d(GTG) poisoning of Top1 in vitro and demonstrate that persistent Pt-DNA adducts correlate with increased covalent Top1-DNA complexes in vivo. This contrasts with a lack of persistent lesions induced by the alkylating agent bis[chloroethyl]nitrosourea, which exhibits only additive activity with topotecan in a range of cell lines. In human IGROV-1 ovarian cancer cells, the synergistic activity of cisplatin with topotecan requires processive DNA polymerization, whereas overexpression of Top1 enhances yeast cell sensitivity to cisplatin. These results indicate that the cytotoxic activity of cisplatin is due, in part, to poisoning of Top1, which is exacerbated in the presence of topotecan.
Collapse
Affiliation(s)
- Robert C A M van Waardenburg
- Department of Experimental Therapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|