1
|
Tecedor L, Chen YH, Leib DE, Ranum PT, Keiser MS, Lewandowski BC, Carrell EM, Lysenko E, Huerta-Ocampo I, Arora S, Cheng C, Liu X, Davidson BL. An AAV variant selected through NHP screens robustly transduces the brain and drives secreted protein expression in NHPs and mice. Sci Transl Med 2025; 17:eadr2531. [PMID: 40367194 DOI: 10.1126/scitranslmed.adr2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/08/2024] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
Recent work has shown that prolonged expression of recombinant proteins after adeno-associated virus (AAV)-mediated delivery of gene therapy to long-lived, ventricle-lining ependymal cells can profoundly affect disease phenotypes in animal models of neurodegenerative diseases. Here, we performed in vivo screens of millions of peptide-modified capsid variants of AAV1, AAV2, and AAV9 parental serotypes in adult nonhuman primates (NHPs) to identify capsids with potent transduction of key brain tissues, including ependyma, after intracerebroventricular injection. Through these screens, we identified an AAV capsid, AAV-Ep+, with markedly increased potency in transducing ependymal cells and cerebral neurons in NHPs. AAV-Ep+'s potency was conserved in three species of NHP, two mouse strains, and human neurons derived from induced pluripotent stem cells. To apply AAV-Ep+ to the treatment of ceroid lipofuscinosis type 2 disease, a lysosomal storage disorder caused by loss-of-function mutations in tripeptidyl-peptidase 1 (TPP1), we used the capsid to package the human TPP1 transgene (AAV-Ep+.hTPP1) and delivered the construct by intracerebroventricular injection into mice lacking TPP1 activity. AAV-Ep+ provided robust and therapeutically relevant TPP1 protein concentrations in these mice, significantly improving tremor and life span. In NHPs, high cerebrospinal fluid (CSF) TPP1 concentrations were achieved after intracerebroventricular delivery of AAV-Ep+.hTPP1 at a total dose of 1 × 1012 viral genomes, which was more than 30× lower than previously reported doses in NHPs. These results suggest that AAV-Ep+ may be a potent vector for gene therapy applications where CSF protein expression is required.
Collapse
Affiliation(s)
- Luis Tecedor
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yong Hong Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David E Leib
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Latus Bio, Philadelphia, PA 19104, USA
| | - Paul T Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Latus Bio, Philadelphia, PA 19104, USA
| | - Megan S Keiser
- Department of Neurological Surgery, NeuroTech Institute, Ohio State University, Columbus, OH 43210 USA
| | - Brian C Lewandowski
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elli M Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elena Lysenko
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Icnelia Huerta-Ocampo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sakshi Arora
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Congsheng Cheng
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xueyuan Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Han S, Yang EM, Hur EM. A brief guide for gene delivery to the brain using adeno-associated viral vectors. Mol Cells 2025; 48:100189. [PMID: 39904462 PMCID: PMC11879685 DOI: 10.1016/j.mocell.2025.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
The advent of recombinant adeno-associated viral (rAAV) vector-mediated gene delivery has accelerated the comprehensive analysis and manipulation of the nervous system owing to its ability to regulate gene expression in a spatiotemporal manner, thereby facilitating the study of brain physiology and the investigation of the pathophysiology of neurological disorders. Here, we provide a concise guide to stereotaxic gene delivery into the mouse brain using rAAV vectors. Key considerations for designing a customized rAAV vector are discussed, along with an overview of the surgical procedures of intracranial stereotaxic injection. This article aims to assist neuroscientists in establishing experimental setups for genetic manipulation in the mouse brain.
Collapse
Affiliation(s)
- Seungwan Han
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Eun Mo Yang
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Comparative Medicine Disease Research Center, Science Research Center, Seoul National University, Seoul 08826, South Korea; Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
3
|
Zwi-Dantsis L, Mohamed S, Massaro G, Moeendarbary E. Adeno-Associated Virus Vectors: Principles, Practices, and Prospects in Gene Therapy. Viruses 2025; 17:239. [PMID: 40006994 PMCID: PMC11861813 DOI: 10.3390/v17020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Gene therapy offers promising potential as an efficacious and long-lasting therapeutic option for genetic conditions, by correcting defective mutations using engineered vectors to deliver genetic material to host cells. Among these vectors, adeno-associated viruses (AAVs) stand out for their efficiency, versatility, and safety, making them one of the leading platforms in gene therapy. The enormous potential of AAVs has been demonstrated through their use in over 225 clinical trials and the FDA's approval of six AAV-based gene therapy products, positioning these vectors at the forefront of the field. This review highlights the evolution and current applications of AAVs in gene therapy, focusing on their clinical successes, ongoing developments, and the manufacturing processes required for the rapid commercial growth anticipated in the AAV therapy market. It also discusses the broader implications of these advancements for future therapeutic strategies targeting more complex and multi-systemic conditions and biological processes such as aging. Finally, we explore some of the major challenges currently confronting the field.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Saira Mohamed
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| |
Collapse
|
4
|
McDowall S, Bagda V, Hodgetts S, Mastaglia F, Li D. Controversies and insights into PTBP1-related astrocyte-neuron transdifferentiation: neuronal regeneration strategies for Parkinson's and Alzheimer's disease. Transl Neurodegener 2024; 13:59. [PMID: 39627843 PMCID: PMC11613593 DOI: 10.1186/s40035-024-00450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Promising therapeutic strategies are being explored to replace or regenerate the neuronal populations that are lost in patients with neurodegenerative disorders. Several research groups have attempted direct reprogramming of astrocytes into neurons by manipulating the expression of polypyrimidine tract-binding protein 1 (PTBP1) and claimed putative converted neurons to be functional, which led to improved disease outcomes in animal models of several neurodegenerative disorders. However, a few other studies reported data that contradict these claims, raising doubt about whether PTBP1 suppression truly reprograms astrocytes into neurons and the therapeutic potential of this approach. This review discusses recent advances in regenerative therapeutics including stem cell transplantations for central nervous system disorders, with a particular focus on Parkinson's and Alzheimer's diseases. We also provide a perspective on this controversy by considering that astrocyte heterogeneity may be the key to understanding the discrepancy in published studies, and that certain subpopulations of these glial cells may be more readily converted into neurons.
Collapse
Affiliation(s)
- Simon McDowall
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA, Australia
- Department of Anatomy and Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Vaishali Bagda
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Stuart Hodgetts
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA, Australia
| | - Frank Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
| | - Dunhui Li
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.
- Centre for Neuromuscular and Neurological Disorders, Nedlands, WA, Australia.
- Department of Neurology and Stephen and Denise Adams Center for Parkinson's Disease Research, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Mullagulova AI, Timechko EE, Solovyeva VV, Yakimov AM, Ibrahim A, Dmitrenko DD, Sufianov AA, Sufianova GZ, Rizvanov AA. Adeno-Associated Viral Vectors in the Treatment of Epilepsy. Int J Mol Sci 2024; 25:12081. [PMID: 39596149 PMCID: PMC11593886 DOI: 10.3390/ijms252212081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Epilepsy is a brain disorder characterized by a persistent predisposition to epileptic seizures. With various etiologies of epilepsy, a significant proportion of patients develop pharmacoresistance to antiepileptic drugs, which necessitates the search for new therapeutic methods, in particular, using gene therapy. This review discusses the use of adeno-associated viral (AAV) vectors in gene therapy for epilepsy, emphasizing their advantages, such as high efficiency of neuronal tissue transduction and low immunogenicity/cytotoxicity. AAV vectors provide the possibility of personalized therapy due to the diversity of serotypes and genomic constructs, which allows for increasing the specificity and effectiveness of treatment. Promising orientations include the modulation of the expression of neuropeptides, ion channels, transcription, and neurotrophic factors, as well as the use of antisense oligonucleotides to regulate seizure activity, which can reduce the severity of epileptic disorders. This review summarizes the current advances in the use of AAV vectors for the treatment of epilepsy of various etiologies, demonstrating the significant potential of AAV vectors for the development of personalized and more effective approaches to reducing seizure activity and improving patient prognosis.
Collapse
Affiliation(s)
- Aysilu I. Mullagulova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Elena E. Timechko
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Valeriya V. Solovyeva
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Alexey M. Yakimov
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Ahmad Ibrahim
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Diana D. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia;
| | - Albert A. Rizvanov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
- Division of Medical and Biological Sciences, Academy of Sciences of the Republic of Tatarstan, Kazan 420111, Russia
| |
Collapse
|
6
|
Xie S, Li F. Ependymal cells: roles in central nervous system infections and therapeutic application. J Neuroinflammation 2024; 21:255. [PMID: 39385253 PMCID: PMC11465851 DOI: 10.1186/s12974-024-03240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Ependymal cells are arranged along the inner surfaces of the ventricles and the central canal of the spinal cord, providing anatomical, physiological and immunological barriers that maintain cerebrospinal fluid (CSF) homeostasis. Based on this, studies have found that alterations in gene expression, cell junctions, cytokine secretion and metabolic disturbances can lead to dysfunction of ependymal cells, thereby participating in the onset and progression of central nervous system (CNS) infections. Additionally, ependymal cells can exhibit proliferative and regenerative potential as well as secretory functions during CNS injury, contributing to neuroprotection and post-injury recovery. Currently, studies on ependymal cell primarily focus on the basic investigations of their morphology, function and gene expression; however, there is a notable lack of clinical translational studies examining the molecular mechanisms by which ependymal cells are involved in disease onset and progression. This limits our understanding of ependymal cells in CNS infections and the development of therapeutic applications. Therefore, this review will discuss the molecular mechanism underlying the involvement of ependymal cells in CNS infections, and explore their potential for application in clinical treatment modalities.
Collapse
Affiliation(s)
- Shiqi Xie
- Department of Pulmonary and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, 2901 Cao Lang Road, Jinshan District, Shanghai, China
| | - Feng Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, 2901 Cao Lang Road, Jinshan District, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, 130 Dong An Road, Xuhui District, Shanghai, China.
- Tuberculosis Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Cao Lang Road, Jinshan District, Shanghai, China.
| |
Collapse
|
7
|
Xu L, Yao S, Ding YE, Xie M, Feng D, Sha P, Tan L, Bei F, Yao Y. Designing and optimizing AAV-mediated gene therapy for neurodegenerative diseases: from bench to bedside. J Transl Med 2024; 22:866. [PMID: 39334366 PMCID: PMC11429861 DOI: 10.1186/s12967-024-05661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as an attractive tool for gene delivery, and demonstrated tremendous promise in gene therapy and gene editing-therapeutic modalities with potential "one-and-done" treatment benefits compared to conventional drugs. Given their tropisms for the central nervous system (CNS) across various species including humans, rAAVs have been extensively investigated in both pre-clinical and clinical studies targeting neurodegenerative disease. However, major challenges remain in the application of rAAVs for CNS gene therapy, such as suboptimal vector design, low CNS transduction efficiency and specificity, and therapy-induced immunotoxicity. Therefore, continuing efforts are being made to optimize the rAAV vectors from their "core" genetic payloads to their "coat" or capsid structure. In this review, we describe current approaches for rAAV vector design tailored for transgene expression in the CNS, summarize the development of CNS-targeting AAV serotypes, and highlight recent advancements in AAV capsid engineering, aimed at generating a new generation of rAAVs with improved CNS tropism. Additionally, we discuss various administration routes for delivering rAAVs to the CNS and provide an overview of AAV-mediated gene therapies currently under investigation in clinical trials for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Xu
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yifan Evan Ding
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dingqi Feng
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123, China
| | - Pengfei Sha
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lu Tan
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yizheng Yao
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Ye D, Chukwu C, Yang Y, Hu Z, Chen H. Adeno-associated virus vector delivery to the brain: Technology advancements and clinical applications. Adv Drug Deliv Rev 2024; 211:115363. [PMID: 38906479 PMCID: PMC11892011 DOI: 10.1016/j.addr.2024.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Adeno-associated virus (AAV) vectors have emerged as a promising tool in the development of gene therapies for various neurological diseases, including Alzheimer's disease and Parkinson's disease. However, the blood-brain barrier (BBB) poses a significant challenge to successfully delivering AAV vectors to the brain. Strategies that can overcome the BBB to improve the AAV delivery efficiency to the brain are essential to successful brain-targeted gene therapy. This review provides an overview of existing strategies employed for AAV delivery to the brain, including direct intraparenchymal injection, intra-cerebral spinal fluid injection, intranasal delivery, and intravenous injection of BBB-permeable AAVs. Focused ultrasound has emerged as a promising technology for the noninvasive and spatially targeted delivery of AAV administered by intravenous injection. This review also summarizes each strategy's current preclinical and clinical applications in treating neurological diseases. Moreover, this review includes a detailed discussion of the recent advances in the emerging focused ultrasound-mediated AAV delivery. Understanding the state-of-the-art of these gene delivery approaches is critical for future technology development to fulfill the great promise of AAV in neurological disease treatment.
Collapse
Affiliation(s)
- Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Chinwendu Chukwu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO 63110 USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
9
|
Yao Y, Bei F. Adeno-associated Virus-Mediated Gene Delivery Across the Blood-Brain Barrier. ADVANCES IN NEUROBIOLOGY 2024; 41:91-112. [PMID: 39589711 DOI: 10.1007/978-3-031-69188-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as a popular tool for gene therapy in the central nervous system (CNS). Given the dense vasculature in the CNS, systemic administration is an appealing approach for achieving a broad distribution of AAV vectors across the CNS. However, the blood-brain barrier (BBB) is a major obstacle that blocks the entry of AAV vectors into the brain and spinal cord. Thus, there is a great need to develop novel AAV vector technology with enhanced BBB penetration. In this chapter, we briefly summarize AAV biology, possible mechanisms for AAV vectors to overcome the BBB and further engineering strategies, and current clinical trials using systemic AAV gene therapy for CNS diseases.
Collapse
Affiliation(s)
- Yizheng Yao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Yadav D, Malviya R. Vector-Mediated Delivery of Transgenes and RNA Interference-Based Gene Silencing Sequences to Astrocytes for Disease Management: Advances and Prospectives. Curr Gene Ther 2024; 24:110-121. [PMID: 37921145 DOI: 10.2174/0115665232264527231013072728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 11/04/2023]
Abstract
Astrocytes are a type of important glial cell in the brain that serve crucial functions in regulating neuronal activity, facilitating communication between neurons, and keeping everything in balance. In this abstract, we explore current methods and future approaches for using vectors to precisely target astrocytes in the fight against various illnesses. In order to deliver therapeutic cargo selectively to astrocytes, researchers have made tremendous progress by using viral vectors such as adeno-associated viruses (AAVs) and lentiviruses. It has been established that engineered viral vectors are capable of either crossing the blood-brain barrier (BBB) or being delivered intranasally, which facilitates their entrance into the brain parenchyma. These vectors are able to contain transgenes that code for neuroprotective factors, synaptic modulators, or anti-inflammatory medicines, which pave the way for multiple approaches to disease intervention. Strategies based on RNA interference (RNAi) make vector-mediated astrocyte targeting much more likely to work. Small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) are two types of RNA that can be made to silence disease-related genes in astrocytes. Vector-mediated delivery in conjunction with RNAi techniques provides a powerful toolkit for investigating the complex biological pathways that contribute to disease development. However, there are still a number of obstacles to overcome in order to perfect the specificity, safety, and duration of vector-mediated astrocyte targeting. In order to successfully translate research findings into clinical practise, it is essential to minimise off-target effects and the risk of immunogenicity. To demonstrate the therapeutic effectiveness of these strategies, rigorous preclinical investigation and validation are required.
Collapse
Affiliation(s)
- Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
11
|
Soltani Dehnavi S, Cembran A, Mahmoudi N, Caballero Aguilar LM, Wang Y, Cheeseman S, Malagutti N, Franks S, Long B, Lisowski L, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Molecular camouflage by a context-specific hydrogel as the key to unlock the potential of viral vector gene therapy. CHEMICAL ENGINEERING JOURNAL 2023; 477:146857. [DOI: 10.1016/j.cej.2023.146857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Nakamura S, Morohoshi K, Inada E, Sato Y, Watanabe S, Saitoh I, Sato M. Recent Advances in In Vivo Somatic Cell Gene Modification in Newborn Pups. Int J Mol Sci 2023; 24:15301. [PMID: 37894981 PMCID: PMC10607593 DOI: 10.3390/ijms242015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Germline manipulation at the zygote stage using the CRISPR/Cas9 system has been extensively employed for creating genetically modified animals and maintaining established lines. However, this approach requires a long and laborious task. Recently, many researchers have attempted to overcome these limitations by generating somatic mutations in the adult stage through tail vein injection or local administration of CRISPR reagents, as a new strategy called "in vivo somatic cell genome editing". This approach does not require manipulation of early embryos or strain maintenance, and it can test the results of genome editing in a short period. The newborn is an ideal stage to perform in vivo somatic cell genome editing because it is immune-privileged, easily accessible, and only a small amount of CRISPR reagents is required to achieve somatic cell genome editing throughout the entire body, owing to its small size. In this review, we summarize in vivo genome engineering strategies that have been successfully demonstrated in newborns. We also report successful in vivo genome editing through the neonatal introduction of genome editing reagents into various sites in newborns (as exemplified by intravenous injection via the facial vein), which will be helpful for creating models for genetic diseases or treating many genetic diseases.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Kazunori Morohoshi
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Yoko Sato
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Aoi-ku, Shizuoka 420-0881, Japan;
| | - Satoshi Watanabe
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan;
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho 501-0296, Japan;
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan;
| |
Collapse
|
13
|
Ling Q, Herstine JA, Bradbury A, Gray SJ. AAV-based in vivo gene therapy for neurological disorders. Nat Rev Drug Discov 2023; 22:789-806. [PMID: 37658167 DOI: 10.1038/s41573-023-00766-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/03/2023]
Abstract
Recent advancements in gene supplementation therapy are expanding the options for the treatment of neurological disorders. Among the available delivery vehicles, adeno-associated virus (AAV) is often the favoured vector. However, the results have been variable, with some trials dramatically altering the course of disease whereas others have shown negligible efficacy or even unforeseen toxicity. Unlike traditional drug development with small molecules, therapeutic profiles of AAV gene therapies are dependent on both the AAV capsid and the therapeutic transgene. In this rapidly evolving field, numerous clinical trials of gene supplementation for neurological disorders are ongoing. Knowledge is growing about factors that impact the translation of preclinical studies to humans, including the administration route, timing of treatment, immune responses and limitations of available model systems. The field is also developing potential solutions to mitigate adverse effects, including AAV capsid engineering and designs to regulate transgene expression. At the same time, preclinical research is addressing new frontiers of gene supplementation for neurological disorders, with a focus on mitochondrial and neurodevelopmental disorders. In this Review, we describe the current state of AAV-mediated neurological gene supplementation therapy, including critical factors for optimizing the safety and efficacy of treatments, as well as unmet needs in this field.
Collapse
Affiliation(s)
- Qinglan Ling
- Department of Paediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jessica A Herstine
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Paediatrics, The Ohio State University, Columbus, OH, USA
| | - Allison Bradbury
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Paediatrics, The Ohio State University, Columbus, OH, USA
| | - Steven J Gray
- Department of Paediatrics, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Carrell EM, Chen YH, Ranum PT, Coffin SL, Singh LN, Tecedor L, Keiser MS, Hudry E, Hyman BT, Davidson BL. VWA3A-derived ependyma promoter drives increased therapeutic protein secretion into the CSF. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:296-304. [PMID: 37547292 PMCID: PMC10400871 DOI: 10.1016/j.omtn.2023.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) are a promising strategy to treat neurodegenerative diseases because of their ability to infect non-dividing cells and confer long-term transgene expression. Despite an ever-growing library of capsid variants, widespread delivery of AAVs in the adult central nervous system remains a challenge. We have previously demonstrated successful distribution of secreted proteins by infection of the ependyma, a layer of post-mitotic epithelial cells lining the ventricles of the brain and central column of the spinal cord, and subsequent protein delivery via the cerebrospinal fluid (CSF). Here we define a functional ependyma promoter to enhance expression from this cell type. Using RNA sequencing on human autopsy samples, we identified disease- and age-independent ependyma gene signatures. Associated promoters were cloned and screened as libraries in mouse and rhesus macaque to reveal cross-species function of a human DNA-derived von Willebrand factor domain containing 3A (VWA3A) promoter. When tested in mice, our VWA3A promoter drove strong, ependyma-localized expression of eGFP and increased secreted ApoE protein levels in the CSF by 2-12× over the ubiquitous iCAG promoter.
Collapse
Affiliation(s)
- Ellie M. Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yong Hong Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul T. Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephanie L. Coffin
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Larry N. Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Luis Tecedor
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S. Keiser
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eloise Hudry
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Liu YS, Wang ML, Hu NY, Li ZM, Wu JL, Li H, Li JT, Li XW, Yang JM, Gao TM, Chen YH. A comparison of the impact on neuronal transcriptome and cognition of rAAV5 transduction with three different doses in the mouse hippocampus. Front Mol Neurosci 2023; 16:1195327. [PMID: 37520430 PMCID: PMC10375024 DOI: 10.3389/fnmol.2023.1195327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Recombinant adeno-associated viruses (rAAVs) are widely used in genetic therapeutics. AAV5 has shown superior transduction efficiency, targeting neurons and glial cells in primate brains. Nonetheless, the comprehensive impact of AAV5 transduction on molecular and behavioral alterations remains unexplored. This study focuses on evaluating the effects of AAV5 transduction in the hippocampus, a critical region for memory formation and emotional processes. Methods In this experiment, fluorescence-activated cell sorting (FACS) was utilized to isolate the mCherry-labeled pyramidal neurons in the hippocampus of CaMkIIα-cre mice following three different doses rAAV5-mCherry infusion after 3 weeks, which were then subjected to RNA sequencing (RNA-seq) to assess gene expression profiles. The cytokines concentration, mRNA expression, and glial response in hippocampi were confirmed by ELASA, digital droplet PCR and immunohistochemistry respectively. Locomotion and anxiety-like behaviors were elevated by Open Field Test and Elevated Plus Maze Test, while the Y-Maze were used to assessed spatial working memory. Recognition memory and fear responses were examined by the Novel Object Recognition Test and Fear Conditioning Test, respectively. Results We found that 2.88 × 1010 v.g rAAV5 transduction significantly upregulated genes related to the immune response and apoptosis, and downregulated genes associated with mitochondrial function and synaptic plasticity in hippocampal pyramidal neurons, while did not induce neuronal loss and gliosis compared with 2.88 × 109 v.g and 2.88 × 108 v.g. Furthermore, the same doses impaired working memory and contextual fear memory, without effects on locomotion and anxiety-related behaviors. Discussion Our findings highlight the detrimental impact of high-dose administration compared to median-dose or low-dose, resulting in increased neural vulnerability and impaired memory. Therefore, when considering the expression effectiveness of exogenous genes, it is crucial to also take potential side effects into account in clinical settings. However, the precise molecular mechanisms underlying these drawbacks of high-dose rAAV5-mCherry still require further investigation in future studies.
Collapse
|
16
|
Thomson SB, Stam A, Brouwers C, Fodale V, Bresciani A, Vermeulen M, Mostafavi S, Petkau TL, Hill A, Yung A, Russell-Schulz B, Kozlowski P, MacKay A, Ma D, Beg MF, Evers MM, Vallès A, Leavitt BR. AAV5-miHTT-mediated huntingtin lowering improves brain health in a Huntington's disease mouse model. Brain 2023; 146:2298-2315. [PMID: 36508327 PMCID: PMC10232253 DOI: 10.1093/brain/awac458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/23/2022] [Accepted: 10/30/2022] [Indexed: 04/12/2024] Open
Abstract
Huntingtin (HTT)-lowering therapies show great promise in treating Huntington's disease. We have developed a microRNA targeting human HTT that is delivered in an adeno-associated serotype 5 viral vector (AAV5-miHTT), and here use animal behaviour, MRI, non-invasive proton magnetic resonance spectroscopy and striatal RNA sequencing as outcome measures in preclinical mouse studies of AAV5-miHTT. The effects of AAV5-miHTT treatment were evaluated in homozygous Q175FDN mice, a mouse model of Huntington's disease with severe neuropathological and behavioural phenotypes. Homozygous mice were used instead of the more commonly used heterozygous strain, which exhibit milder phenotypes. Three-month-old homozygous Q175FDN mice, which had developed acute phenotypes by the time of treatment, were injected bilaterally into the striatum with either formulation buffer (phosphate-buffered saline + 5% sucrose), low dose (5.2 × 109 genome copies/mouse) or high dose (1.3 × 1011 genome copies/mouse) AAV5-miHTT. Wild-type mice injected with formulation buffer served as controls. Behavioural assessments of cognition, T1-weighted structural MRI and striatal proton magnetic resonance spectroscopy were performed 3 months after injection, and shortly afterwards the animals were sacrificed to collect brain tissue for protein and RNA analysis. Motor coordination was assessed at 1-month intervals beginning at 2 months of age until sacrifice. Dose-dependent changes in AAV5 vector DNA level, miHTT expression and mutant HTT were observed in striatum and cortex of AAV5-miHTT-treated Huntington's disease model mice. This pattern of microRNA expression and mutant HTT lowering rescued weight loss in homozygous Q175FDN mice but did not affect motor or cognitive phenotypes. MRI volumetric analysis detected atrophy in four brain regions in homozygous Q175FDN mice, and treatment with high dose AAV5-miHTT rescued this effect in the hippocampus. Like previous magnetic resonance spectroscopy studies in Huntington's disease patients, decreased total N-acetyl aspartate and increased myo-inositol levels were found in the striatum of homozygous Q175FDN mice. These neurochemical findings were partially reversed with AAV5-miHTT treatment. Striatal transcriptional analysis using RNA sequencing revealed mutant HTT-induced changes that were partially reversed by HTT lowering with AAV5-miHTT. Striatal proton magnetic resonance spectroscopy analysis suggests a restoration of neuronal function, and striatal RNA sequencing analysis shows a reversal of transcriptional dysregulation following AAV5-miHTT in a homozygous Huntington's disease mouse model with severe pathology. The results of this study support the use of magnetic resonance spectroscopy in HTT-lowering clinical trials and strengthen the therapeutic potential of AAV5-miHTT in reversing severe striatal dysfunction in Huntington's disease.
Collapse
Affiliation(s)
- Sarah B Thomson
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and BC Children’s Hospital, Vancouver, BC V5Z4H4, Canada
| | - Anouk Stam
- Department of Research & Development, uniQure Biopharma B.V., 1105BP Amsterdam, The Netherlands
| | - Cynthia Brouwers
- Department of Research & Development, uniQure Biopharma B.V., 1105BP Amsterdam, The Netherlands
| | - Valentina Fodale
- Department of Translational Biology, IRBM S.p.A., Pomezia 00071, Italy
| | - Alberto Bresciani
- Department of Translational Biology, IRBM S.p.A., Pomezia 00071, Italy
| | - Michael Vermeulen
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and BC Children’s Hospital, Vancouver, BC V5Z4H4, Canada
| | - Sara Mostafavi
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and BC Children’s Hospital, Vancouver, BC V5Z4H4, Canada
| | - Terri L Petkau
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and BC Children’s Hospital, Vancouver, BC V5Z4H4, Canada
| | - Austin Hill
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and BC Children’s Hospital, Vancouver, BC V5Z4H4, Canada
| | - Andrew Yung
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC V6T2B5, Canada
| | - Bretta Russell-Schulz
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC V6T2B5, Canada
| | - Piotr Kozlowski
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC V6T2B5, Canada
| | - Alex MacKay
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC V6T2B5, Canada
| | - Da Ma
- Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27101, USA
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A0A7, Canada
| | - Melvin M Evers
- Department of Research & Development, uniQure Biopharma B.V., 1105BP Amsterdam, The Netherlands
| | - Astrid Vallès
- Department of Research & Development, uniQure Biopharma B.V., 1105BP Amsterdam, The Netherlands
| | - Blair R Leavitt
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and BC Children’s Hospital, Vancouver, BC V5Z4H4, Canada
| |
Collapse
|
17
|
Smith TJ, Fusco RM, Elmore ZC, Asokan A. Interplay between Furin and Sialoglycans in Modulating Adeno-Associated Viral Cell Entry. J Virol 2023; 97:e0009323. [PMID: 37097176 PMCID: PMC10231208 DOI: 10.1128/jvi.00093-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
Adeno-associated viruses (AAVs) are small, helper-dependent, single-stranded DNA viruses that exploit a broad spectrum of host factors for cell entry. During the course of infection, several AAV serotypes have been shown to transit through the trans-Golgi network within the host cell. In the current study, we investigated whether the Golgi-localized, calcium-dependent protease furin influences AAV transduction. While CRISPR/Cas9-mediated knockout (KO) of the Furin gene minimally affected the transduction efficiency of most recombinant AAV serotypes tested, we observed a striking increase in transgene expression (~2 log orders) for the African green monkey isolate AAV4. Interrogation of different steps in the infectious pathway revealed that AAV4 binding, uptake, and transcript levels are increased in furin KO cells, but postentry steps such as uncoating or nuclear entry remain unaffected. Recombinant furin does not cleave AAV4 capsid proteins nor alter cellular expression levels of essential factors such as AAVR or GPR108. Interestingly, fluorescent lectin screening revealed a marked increase in 2,3-O-linked sialoglycan staining on the surface and perinuclear space of furin KO cells. The essential nature of increased sialoglycan expression in furin KO cells in enhancing AAV4 transduction was further corroborated by (i) increased transduction by the closely related isolates AAVrh.32.33 and sea lion AAV and (ii) selective blockade or removal of cellular 2,3-O-linked sialoglycans by specific lectins or neuraminidase, respectively. Based on the overall findings, we postulate that furin likely plays a key role in regulating expression of cellular sialoglycans, which in turn can influence permissivity to AAVs and possibly other viruses. IMPORTANCE Adeno-associated viruses (AAVs) are a proven recombinant vector platform for gene therapy and have demonstrated success in the clinic. Continuing to improve our knowledge of AAV-host cell interactions is critical for improving the safety and efficacy. The current study dissects the interplay between furin, a common intracellular protease, and certain cell surface sialoglycans that serve as viral attachment factors for cell entry. Based on the findings, we postulate that differential expression of furin in host cells and tissues is likely to influence gene expression by certain recombinant AAV serotypes.
Collapse
Affiliation(s)
- Timothy J. Smith
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert M. Fusco
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Zachary C. Elmore
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Aravind Asokan
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
18
|
Deschenes NM, Cheng C, Ryckman AE, Quinville BM, Khanal P, Mitchell M, Chen Z, Sangrar W, Gray SJ, Walia JS. Biochemical Correction of GM2 Ganglioside Accumulation in AB-Variant GM2 Gangliosidosis. Int J Mol Sci 2023; 24:ijms24119217. [PMID: 37298170 DOI: 10.3390/ijms24119217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
GM2 gangliosidosis is a group of genetic disorders that result in the accumulation of GM2 ganglioside (GM2) in brain cells, leading to progressive central nervous system (CNS) atrophy and premature death in patients. AB-variant GM2 gangliosidosis (ABGM2) arises from loss-of-function mutations in the GM2 activator protein (GM2AP), which is essential for the breakdown of GM2 in a key catabolic pathway required for CNS lipid homeostasis. In this study, we show that intrathecal delivery of self-complementary adeno-associated virus serotype-9 (scAAV9) harbouring a functional human GM2A transgene (scAAV9.hGM2A) can prevent GM2 accumulation in in GM2AP-deficient mice (Gm2a-/- mice). Additionally, scAAV9.hGM2A efficiently distributes to all tested regions of the CNS within 14 weeks post-injection and remains detectable for the lifespan of these animals (up to 104 weeks). Remarkably, GM2AP expression from the transgene scales with increasing doses of scAAV9.hGM2A (0.5, 1.0 and 2.0 × 1011 vector genomes (vg) per mouse), and this correlates with dose-dependent correction of GM2 accumulation in the brain. No severe adverse events were observed, and comorbidities in treated mice were comparable to those in disease-free cohorts. Lastly, all doses yielded corrective outcomes. These data indicate that scAAV9.hGM2A treatment is relatively non-toxic and tolerable, and biochemically corrects GM2 accumulation in the CNS-the main cause of morbidity and mortality in patients with ABGM2. Importantly, these results constitute proof-of-principle for treating ABGM2 with scAAV9.hGM2A by means of a single intrathecal administration and establish a foundation for future preclinical research.
Collapse
Affiliation(s)
- Natalie M Deschenes
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Camilyn Cheng
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alex E Ryckman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Brianna M Quinville
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Prem Khanal
- Department of Pediatrics, Queen's University, Kingston, ON K7L 2V7, Canada
| | - Melissa Mitchell
- Department of Pediatrics, Queen's University, Kingston, ON K7L 2V7, Canada
| | - Zhilin Chen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Waheed Sangrar
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jagdeep S Walia
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Pediatrics, Queen's University, Kingston, ON K7L 2V7, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
19
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
20
|
Eftekharpour E, Shcholok T. Cre-recombinase systems for induction of neuron-specific knockout models: a guide for biomedical researchers. Neural Regen Res 2023; 18:273-279. [PMID: 35900402 PMCID: PMC9396489 DOI: 10.4103/1673-5374.346541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Gene deletion has been a valuable tool for unraveling the mysteries of molecular biology. Early approaches included gene trapping and gene targetting to disrupt or delete a gene randomly or at a specific location, respectively. Using these technologies in mouse embryos led to the generation of mouse knockout models and many scientific discoveries. The efficacy and specificity of these approaches have significantly increased with the advent of new technology such as clustered regularly interspaced short palindromic repeats for targetted gene deletion. However, several limitations including unwanted off-target gene deletion have hindered their widespread use in the field. Cre-recombinase technology has provided additional capacity for cell-specific gene deletion. In this review, we provide a summary of currently available literature on the application of this system for targetted deletion of neuronal genes. This article has been constructed to provide some background information for the new trainees on the mechanism and to provide necessary information for the design, and application of the Cre-recombinase system through reviewing the most frequent promoters that are currently available for genetic manipulation of neurons. We additionally will provide a summary of the latest technological developments that can be used for targeting neurons. This may also serve as a general guide for the selection of appropriate models for biomedical research.
Collapse
|
21
|
Zhou K, Han J, Wang Y, Zhang Y, Zhu C. Routes of administration for adeno-associated viruses carrying gene therapies for brain diseases. Front Mol Neurosci 2022; 15:988914. [PMID: 36385771 PMCID: PMC9643316 DOI: 10.3389/fnmol.2022.988914] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 08/27/2023] Open
Abstract
Gene therapy is a powerful tool to treat various central nervous system (CNS) diseases ranging from monogenetic diseases to neurodegenerative disorders. Adeno-associated viruses (AAVs) have been widely used as the delivery vehicles for CNS gene therapies due to their safety, CNS tropism, and long-term therapeutic effect. However, several factors, including their ability to cross the blood-brain barrier, the efficiency of transduction, their immunotoxicity, loading capacity, the choice of serotype, and peripheral off-target effects should be carefully considered when designing an optimal AAV delivery strategy for a specific disease. In addition, distinct routes of administration may affect the efficiency and safety of AAV-delivered gene therapies. In this review, we summarize different administration routes of gene therapies delivered by AAVs to the brain in mice and rats. Updated knowledge regarding AAV-delivered gene therapies may facilitate the selection from various administration routes for specific disease models in future research.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Department of Hematology and Oncology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Centre for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Sabatino DE, Bushman FD, Chandler RJ, Crystal RG, Davidson BL, Dolmetsch R, Eggan KC, Gao G, Gil-Farina I, Kay MA, McCarty DM, Montini E, Ndu A, Yuan J. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Mol Ther 2022; 30:2646-2663. [PMID: 35690906 PMCID: PMC9372310 DOI: 10.1016/j.ymthe.2022.06.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.
Collapse
Affiliation(s)
- Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randy J Chandler
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | | | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adora Ndu
- BridgeBio Pharma, Inc., Palo Alto, CA, USA
| | - Jing Yuan
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
23
|
Hunter JE, Molony CM, Bagel JH, O’Donnell PA, Kaler SG, Wolfe JH. Transduction characteristics of alternative adeno-associated virus serotypes in the cat brain by intracisternal delivery. Mol Ther Methods Clin Dev 2022; 26:384-393. [PMID: 36034772 PMCID: PMC9391516 DOI: 10.1016/j.omtm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
Multiple studies have examined the transduction characteristics of different AAV serotypes in the mouse brain, where they can exhibit significantly different patterns of transduction. The pattern of transduction also varies with the route of administration. Much less information exists for the transduction characteristics in large-brained animals. Large animal models have brains that are closer in size and organization to the human brain, such as being gyrencephalic compared to the lissencephalic rodent brains, pathway organization, and certain electrophysiologic properties. Large animal models are used as translational intermediates to develop gene therapies to treat human diseases. Various AAV serotypes and routes of delivery have been used to study the correction of pathology in the brain in lysosomal storage diseases. In this study, we evaluated the ability of selected AAV serotypes to transduce cells in the cat brain when delivered into the cerebrospinal fluid via the cisterna magna. We previously showed that AAV1 transduced significantly greater numbers of cells than AAV9 in the cat brain by this route. In the present study, we evaluated serotypes closely related to AAVs 1 and 9 (AAVs 6, AS, hu32) that may mediate more extensive transduction, as well as AAVs 4 and 5, which primarily transduce choroid plexus epithelial (CPE) and ependymal lining cells in the rodent brain. The related serotypes tended to have similar patterns of transduction but were divergent in some specific brain structures.
Collapse
Affiliation(s)
- Jacqueline E. Hunter
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Caitlyn M. Molony
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica H. Bagel
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia A. O’Donnell
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen G. Kaler
- Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - John H. Wolfe
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA,W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding author John H. Wolfe, Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104-4399, USA.
| |
Collapse
|
24
|
Gupta M. Parvovirus Vectors: The Future of Gene Therapy. Vet Med Sci 2022. [DOI: 10.5772/intechopen.105085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The unique diversity of parvoviral vectors with innate antioncogenic properties, autonomous replication, ease of recombinant vector production and stable transgene expression in target cells makes them an attractive choice as viral vectors for gene therapy protocols. Amongst various parvoviruses that have been identified so far, recombinant vectors originating from adeno-associated virus, minute virus of mice (MVM), LuIII and parvovirus H1 have shown promising results in many preclinical models of human diseases including cancer. The adeno-associated virus (AAV), a non-pathogenic human parvovirus, has gained attention as a potentially useful vector. The improved understanding of the metabolism of vector genomes and the mechanism of transduction by AAV vectors is leading to advancement in the development of more sophisticated AAV vectors. The in-depth studies of AAV vector biology is opening avenues for more robust design of AAV vectors that have potentially increased transduction efficiency, increased specificity in cellular targeting, and an increased payload capacity. This chapter gives an overview of the application of autonomous parvoviral vectors and AAV vectors, based on our current understanding of viral biology and the state of the platform.
Collapse
|
25
|
Gallagher T. Interview with Beverly Davidson, PhD. Hum Gene Ther 2022; 33:347-350. [PMID: 35442068 DOI: 10.1089/hum.2022.29205.int] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Wu BW, Yee MB, Goldstein RS, Kinchington PR. Antiviral Targeting of Varicella Zoster Virus Replication and Neuronal Reactivation Using CRISPR/Cas9 Cleavage of the Duplicated Open Reading Frames 62/71. Viruses 2022; 14:v14020378. [PMID: 35215971 PMCID: PMC8880005 DOI: 10.3390/v14020378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/29/2022] Open
Abstract
Varicella Zoster Virus (VZV) causes Herpes Zoster (HZ), a common debilitating and complicated disease affecting up to a third of unvaccinated populations. Novel antiviral treatments for VZV reactivation and HZ are still in need. Here, we evaluated the potential of targeting the replicating and reactivating VZV genome using Clustered Regularly Interspaced Short Palindromic Repeat-Cas9 nucleases (CRISPR/Cas9) delivered by adeno-associated virus (AAV) vectors. After AAV serotype and guide RNA (gRNA) optimization, we report that a single treatment with AAV2-expressing Staphylococcus aureus CRISPR/Cas9 (saCas9) with gRNA to the duplicated and essential VZV genes ORF62/71 (AAV2-62gRsaCas9) greatly reduced VZV progeny yield and cell-to-cell spread in representative epithelial cells and in lytically infected human embryonic stem cell (hESC)-derived neurons. In contrast, AAV2-62gRsaCas9 did not reduce the replication of a recombinant virus mutated in the ORF62 targeted sequence, establishing that antiviral effects were a consequence of VZV-genome targeting. Delivery to latently infected and reactivation-induced neuron cultures also greatly reduced infectious-virus production. These results demonstrate the potential of AAV-delivered genome editors to limit VZV productive replication in epithelial cells, infected human neurons, and upon reactivation. The approach could be developed into a strategy for the treatment of VZV disease and virus spread in HZ.
Collapse
Affiliation(s)
- Betty W. Wu
- Graduate Program in Microbiology and Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Michael B. Yee
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | | | - Paul R. Kinchington
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Correspondence: ; Tel.: +1-412-647-6319
| |
Collapse
|
27
|
Balachandar L, Borrego D, Diaz JR. Serotype-based evaluation of an optogenetic construct in rat cortical astrocytes. Biochem Biophys Res Commun 2022; 593:35-39. [DOI: 10.1016/j.bbrc.2022.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
|
28
|
Fakhiri J, Grimm D. Best of most possible worlds: Hybrid gene therapy vectors based on parvoviruses and heterologous viruses. Mol Ther 2021; 29:3359-3382. [PMID: 33831556 PMCID: PMC8636155 DOI: 10.1016/j.ymthe.2021.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Parvoviruses and especially the adeno-associated virus (AAV) species provide an exciting and versatile platform for the rational design or molecular evolution of human gene-therapy vectors, documented by literature from over half a century, hundreds of clinical trials, and the recent commercialization of multiple AAV gene therapeutics. For the last three decades, the power of these vectors has been further potentiated through various types of hybrid vectors created by intra- or inter-genus juxtaposition of viral DNA and protein cis elements or by synergistic complementation of parvoviral features with those of heterologous, prokaryotic, or eukaryotic viruses. Here, we provide an overview of the history and promise of this rapidly expanding field of hybrid parvoviral gene-therapy vectors, starting with early generations of chimeric particles composed of a recombinant AAV genome encapsidated in shells of synthetic AAVs or of adeno-, herpes-, baculo-, or protoparvoviruses. We then dedicate our attention to two newer, highly promising types of hybrid vectors created via (1) pseudotyping of AAV genomes with bocaviral serotypes and capsid mutants or (2) packaging of AAV DNA into, or tethering of entire vector particles to, bacteriophages. Finally, we conclude with an outlook summarizing critical requirements and improvements toward clinical translation of these original concepts.
Collapse
Affiliation(s)
- Julia Fakhiri
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
29
|
Srivastava V, Singh A, Jain GK, Ahmad FJ, Shukla R, Kesharwani P. Viral vectors as a promising nanotherapeutic approach against neurodegenerative disorders. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Ultrasound-Mediated Blood-Brain Barrier Opening Improves Whole Brain Gene Delivery in Mice. Pharmaceutics 2021; 13:pharmaceutics13081245. [PMID: 34452206 PMCID: PMC8399273 DOI: 10.3390/pharmaceutics13081245] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 02/05/2023] Open
Abstract
Gene therapy represents a powerful therapeutic tool to treat diseased tissues and provide a durable and effective correction. The central nervous system (CNS) is the target of many gene therapy protocols, but its high complexity makes it one of the most difficult organs to reach, in part due to the blood-brain barrier that protects it from external threats. Focused ultrasound (FUS) coupled with microbubbles appears as a technological breakthrough to deliver therapeutic agents into the CNS. While most studies focus on a specific targeted area of the brain, the present work proposes to permeabilize the entire brain for gene therapy in several pathologies. Our results show that, after i.v. administration and FUS sonication in a raster scan manner, a self-complementary AAV9-CMV-GFP vector strongly and safely infected the whole brain of mice. An increase in vector DNA (19.8 times), GFP mRNA (16.4 times), and GFP protein levels (17.4 times) was measured in whole brain extracts of FUS-treated GFP injected mice compared to non-FUS GFP injected mice. In addition to this increase in GFP levels, on average, a 7.3-fold increase of infected cells in the cortex, hippocampus, and striatum was observed. No side effects were detected in the brain of treated mice. The combining of FUS and AAV-based gene delivery represents a significant improvement in the treatment of neurological genetic diseases.
Collapse
|
31
|
Vallès A, Evers MM, Stam A, Sogorb-Gonzalez M, Brouwers C, Vendrell-Tornero C, Acar-Broekmans S, Paerels L, Klima J, Bohuslavova B, Pintauro R, Fodale V, Bresciani A, Liscak R, Urgosik D, Starek Z, Crha M, Blits B, Petry H, Ellederova Z, Motlik J, van Deventer S, Konstantinova P. Widespread and sustained target engagement in Huntington's disease minipigs upon intrastriatal microRNA-based gene therapy. Sci Transl Med 2021; 13:13/588/eabb8920. [PMID: 33827977 DOI: 10.1126/scitranslmed.abb8920] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022]
Abstract
Huntingtin (HTT)-lowering therapies hold promise to slow down neurodegeneration in Huntington's disease (HD). Here, we assessed the translatability and long-term durability of recombinant adeno-associated viral vector serotype 5 expressing a microRNA targeting human HTT (rAAV5-miHTT) administered by magnetic resonance imaging-guided convention-enhanced delivery in transgenic HD minipigs. rAAV5-miHTT (1.2 × 1013 vector genome (VG) copies per brain) was successfully administered into the striatum (bilaterally in caudate and putamen), using age-matched untreated animals as controls. Widespread brain biodistribution of vector DNA was observed, with the highest concentration in target (striatal) regions, thalamus, and cortical regions. Vector DNA presence and transgene expression were similar at 6 and 12 months after administration. Expression of miHTT strongly correlated with vector DNA, with a corresponding reduction of mutant HTT (mHTT) protein of more than 75% in injected areas, and 30 to 50% lowering in distal regions. Translational pharmacokinetic and pharmacodynamic measures in cerebrospinal fluid (CSF) were largely in line with the effects observed in the brain. CSF miHTT expression was detected up to 12 months, with CSF mHTT protein lowering of 25 to 30% at 6 and 12 months after dosing. This study demonstrates widespread biodistribution, strong and durable efficiency of rAAV5-miHTT in disease-relevant regions in a large brain, and the potential of using CSF analysis to determine vector expression and efficacy in the clinic.
Collapse
Affiliation(s)
- Astrid Vallès
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands.
| | - Melvin M Evers
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands.
| | - Anouk Stam
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Marina Sogorb-Gonzalez
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Cynthia Brouwers
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Carlos Vendrell-Tornero
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Seyda Acar-Broekmans
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Lieke Paerels
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Jiri Klima
- Institute of Animal Physiology and Genetics, Rumburská 89, 277 21 Libechov, Czech Republic
| | - Bozena Bohuslavova
- Institute of Animal Physiology and Genetics, Rumburská 89, 277 21 Libechov, Czech Republic
| | - Roberta Pintauro
- Department of Translational Biology, IRBM Science Park S.p.A., Via Pontina km 30,600, 00071 Pomezia, Italy
| | - Valentina Fodale
- Department of Translational Biology, IRBM Science Park S.p.A., Via Pontina km 30,600, 00071 Pomezia, Italy
| | - Alberto Bresciani
- Department of Translational Biology, IRBM Science Park S.p.A., Via Pontina km 30,600, 00071 Pomezia, Italy
| | - Roman Liscak
- Department of Stereotactic Radioneurosurgery, Na Homolce Hospital, Roentgenova 37/2, 150 30, Prague 5, Czech Republic
| | - Dusan Urgosik
- Department of Stereotactic Radioneurosurgery, Na Homolce Hospital, Roentgenova 37/2, 150 30, Prague 5, Czech Republic
| | - Zdenek Starek
- Interventional Cardiac Electrophysiology, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Michal Crha
- Small Animal Clinic, Veterinary and Pharmaceutical University, Palackého třída 1946/1, 612 42 Brno, Czech Republic
| | - Bas Blits
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Harald Petry
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Rumburská 89, 277 21 Libechov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Rumburská 89, 277 21 Libechov, Czech Republic
| | - Sander van Deventer
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Pavlina Konstantinova
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| |
Collapse
|
32
|
Gene Therapy for Mucopolysaccharidosis Type II-A Review of the Current Possibilities. Int J Mol Sci 2021; 22:ijms22115490. [PMID: 34070997 PMCID: PMC8197095 DOI: 10.3390/ijms22115490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder based on a mutation in the IDS gene that encodes iduronate 2-sulphatase. As a result, there is an accumulation of glycosaminoglycans-heparan sulphate and dermatan sulphate-in almost all body tissues, which leads to their dysfunction. Currently, the primary treatment is enzyme replacement therapy, which improves the course of the disease by reducing somatic symptoms, including hepatomegaly and splenomegaly. The enzyme, however, does not cross the blood-brain barrier, and no improvement in the function of the central nervous system has been observed in patients with the severe form of the disease. An alternative method of treatment that solves typical problems of enzyme replacement therapy is gene therapy, i.e., delivery of the correct gene to target cells through an appropriate vector. Much progress has been made in applying gene therapy for MPS II, from cellular models to human clinical trials. In this article, we briefly present the history and basics of gene therapy and discuss the current state of knowledge about the methods of this therapy in mucopolysaccharidosis type II.
Collapse
|
33
|
Korneyenkov MA, Zamyatnin AA. Next Step in Gene Delivery: Modern Approaches and Further Perspectives of AAV Tropism Modification. Pharmaceutics 2021; 13:pharmaceutics13050750. [PMID: 34069541 PMCID: PMC8160765 DOI: 10.3390/pharmaceutics13050750] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Today, adeno-associated virus (AAV) is an extremely popular choice for gene therapy delivery. The safety profile and simplicity of the genome organization are the decisive advantages which allow us to claim that AAV is currently among the most promising vectors. Several drugs based on AAV have been approved in the USA and Europe, but AAV serotypes’ unspecific tissue tropism is still a serious limitation. In recent decades, several techniques have been developed to overcome this barrier, such as the rational design, directed evolution and chemical conjugation of targeting molecules with a capsid. Today, all of the abovementioned approaches confer the possibility to produce AAV capsids with tailored tropism, but recent data indicate that a better understanding of AAV biology and the growth of structural data may theoretically constitute a rational approach to most effectively produce highly selective and targeted AAV capsids. However, while we are still far from this goal, other approaches are still in play, despite their drawbacks and limitations.
Collapse
Affiliation(s)
- Maxim A. Korneyenkov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: ; Tel.: +7-495-622-9843
| |
Collapse
|
34
|
Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov 2021; 20:362-383. [PMID: 33649582 DOI: 10.1038/s41573-021-00139-y] [Citation(s) in RCA: 559] [Impact Index Per Article: 139.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Axel H Meyer
- DMPK and Bioanalytical Research, AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Robert D Bell
- Rare Disease Research Unit, Worldwide Research, Development and Medicine, Pfizer, Cambridge, MA, USA
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
35
|
Poth KM, Texakalidis P, Boulis NM. Chemogenetics: Beyond Lesions and Electrodes. Neurosurgery 2021; 89:185-195. [PMID: 33913505 PMCID: PMC8279839 DOI: 10.1093/neuros/nyab147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
The field of chemogenetics has rapidly expanded over the last decade, and engineered receptors are currently utilized in the lab to better understand molecular interactions in the nervous system. We propose that chemogenetic receptors can be used for far more than investigational purposes. The potential benefit of adding chemogenetic neuromodulation to the current neurosurgical toolkit is substantial. There are several conditions currently treated surgically, electrically, and pharmacologically in clinic, and this review highlights how chemogenetic neuromodulation could improve patient outcomes over current neurosurgical techniques. We aim to emphasize the need to take these techniques from bench to bedside.
Collapse
Affiliation(s)
- Kelly M Poth
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
36
|
Lotun A, Gessler DJ, Gao G. Canavan Disease as a Model for Gene Therapy-Mediated Myelin Repair. Front Cell Neurosci 2021; 15:661928. [PMID: 33967698 PMCID: PMC8102781 DOI: 10.3389/fncel.2021.661928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, the scientific and therapeutic fields for rare, genetic central nervous system (CNS) diseases such as leukodystrophies, or white matter disorders, have expanded significantly in part due to technological advancements in cellular and clinical screenings as well as remedial therapies using novel techniques such as gene therapy. However, treatments aimed at normalizing the pathological changes associated with leukodystrophies have especially been complicated due to the innate and variable effects of glial abnormalities, which can cause large-scale functional deficits in developmental myelination and thus lead to downstream neuronal impairment. Emerging research in the past two decades have depicted glial cells, particularly oligodendrocytes and astrocytes, as key, regulatory modulators in constructing and maintaining myelin function and neuronal viability. Given the significance of myelin formation in the developing brain, myelin repair in a time-dependent fashion is critical in restoring homeostatic functionality to the CNS of patients diagnosed with white matter disorders. Using Canavan Disease (CD) as a leukodystrophy model, here we review the hypothetical roles of N-acetylaspartate (NAA), one of the brain's most abundant amino acid derivatives, in Canavan disease's CNS myelinating pathology, as well as discuss the possible functions astrocytes serve in both CD and other leukodystrophies' time-sensitive disease correction. Through this analysis, we also highlight the potential remyelinating benefits of gene therapy for other leukodystrophies in which alternative CNS cell targeting for white matter disorders may be an applicable path for reparative treatment.
Collapse
Affiliation(s)
- Anoushka Lotun
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
37
|
Chowdhury EA, Meno-Tetang G, Chang HY, Wu S, Huang HW, Jamier T, Chandran J, Shah DK. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv Drug Deliv Rev 2021; 170:214-237. [PMID: 33486008 DOI: 10.1016/j.addr.2021.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
While protein therapeutics are one of the most successful class of drug molecules, they are expensive and not suited for treating chronic disorders that require long-term dosing. Adeno-associated virus (AAV) mediated in vivo gene therapy represents a viable alternative, which can deliver the genes of protein therapeutics to produce long-term expression of proteins in target tissues. Ongoing clinical trials and recent regulatory approvals demonstrate great interest in these therapeutics, however, there is a lack of understanding regarding their cellular disposition, whole-body disposition, dose-exposure relationship, exposure-response relationship, and how product quality and immunogenicity affects these important properties. In addition, there is a lack of quantitative studies to support the development of pharmacokinetic-pharmacodynamic models, which can support the discovery, development, and clinical translation of this delivery system. In this review, we have provided a state-of-the-art overview of current progress and limitations related to AAV mediated delivery of protein therapeutic genes, along with our perspective on the steps that need to be taken to improve clinical translation of this therapeutic modality.
Collapse
|
38
|
Ocana-Santero G, Díaz-Nido J, Herranz-Martín S. Future Prospects of Gene Therapy for Friedreich's Ataxia. Int J Mol Sci 2021; 22:1815. [PMID: 33670433 PMCID: PMC7918362 DOI: 10.3390/ijms22041815] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Friedreich's ataxia is an autosomal recessive neurogenetic disease that is mainly associated with atrophy of the spinal cord and progressive neurodegeneration in the cerebellum. The disease is caused by a GAA-expansion in the first intron of the frataxin gene leading to a decreased level of frataxin protein, which results in mitochondrial dysfunction. Currently, there is no effective treatment to delay neurodegeneration in Friedreich's ataxia. A plausible therapeutic approach is gene therapy. Indeed, Friedreich's ataxia mouse models have been treated with viral vectors en-coding for either FXN or neurotrophins, such as brain-derived neurotrophic factor showing promising results. Thus, gene therapy is increasingly consolidating as one of the most promising therapies. However, several hurdles have to be overcome, including immunotoxicity and pheno-toxicity. We review the state of the art of gene therapy in Friedreich's ataxia, addressing the main challenges and the most feasible solutions for them.
Collapse
Affiliation(s)
- Gabriel Ocana-Santero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (G.O.-S.); (J.D.-N.)
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, University of Oxford, Oxford OX1 3PT, UK
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (G.O.-S.); (J.D.-N.)
| | - Saúl Herranz-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (G.O.-S.); (J.D.-N.)
| |
Collapse
|
39
|
O'Carroll SJ, Cook WH, Young D. AAV Targeting of Glial Cell Types in the Central and Peripheral Nervous System and Relevance to Human Gene Therapy. Front Mol Neurosci 2021; 13:618020. [PMID: 33505247 PMCID: PMC7829478 DOI: 10.3389/fnmol.2020.618020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Different glial cell types are found throughout the central (CNS) and peripheral nervous system (PNS), where they have important functions. These cell types are also involved in nervous system pathology, playing roles in neurodegenerative disease and following trauma in the brain and spinal cord (astrocytes, microglia, oligodendrocytes), nerve degeneration and development of pain in peripheral nerves (Schwann cells, satellite cells), retinal diseases (Müller glia) and gut dysbiosis (enteric glia). These cell type have all been proposed as potential targets for treating these conditions. One approach to target these cell types is the use of gene therapy to modify gene expression. Adeno-associated virus (AAV) vectors have been shown to be safe and effective in targeting cells in the nervous system and have been used in a number of clinical trials. To date, a number of studies have tested the use of different AAV serotypes and cell-specific promoters to increase glial cell tropism and expression. However, true glial-cell specific targeting for a particular glial cell type remains elusive. This review provides an overview of research into developing glial specific gene therapy and discusses some of the issues that still need to be addressed to make glial cell gene therapy a clinical reality.
Collapse
Affiliation(s)
- Simon J O'Carroll
- Spinal Cord Injury Research Group, Department of Anatomy and Medical Imaging, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - William H Cook
- Molecular Neurotherapeutics Group, Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Deborah Young
- Molecular Neurotherapeutics Group, Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
40
|
Luchicchi A, Pattij T, Viaña JNM, de Kloet S, Marchant N. Tracing goes viral: Viruses that introduce expression of fluorescent proteins in chemically-specific neurons. J Neurosci Methods 2020; 348:109004. [PMID: 33242528 DOI: 10.1016/j.jneumeth.2020.109004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Over the last century, there has been great progress in understanding how the brain works. In particular, the last two decades have been crucial in gaining more awareness over the complex functioning of neurotransmitter systems. The use of viral vectors in neuroscience has been pivotal for such development. Exploiting the properties of viral particles, modifying them according to the research needs, and making them target chemically-specific neurons, techniques such as optogenetics and chemogenetics have been developed, which could lead to a giant step toward gene therapy for brain disorders. In this review, we aim to provide an overview of some of the most widely used viral techniques in neuroscience. We will discuss advantages and disadvantages of these methods. In particular, attention is dedicated to the pivotal role played by the introduction of adeno-associated virus and the retrograde tracer canine-associated-2 Cre virus in order to achieve optimal visualization, and interrogation, of chemically-specific neuronal populations and their projections.
Collapse
Affiliation(s)
- Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands.
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands
| | - John Noel M Viaña
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, de Boelelaan 1085, 1081HZ, Amsterdam, the Netherlands; Australian National Centre for the Public Awareness of Science, ANU College of Science, The Australian National University, Linnaeus Way, Acton, ACT 2601, Australia
| | - Sybren de Kloet
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, de Boelelaan 1085, 1081HZ, Amsterdam, the Netherlands
| | - Nathan Marchant
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Fenno LE, Ramakrishnan C, Kim YS, Evans KE, Lo M, Vesuna S, Inoue M, Cheung KYM, Yuen E, Pichamoorthy N, Hong ASO, Deisseroth K. Comprehensive Dual- and Triple-Feature Intersectional Single-Vector Delivery of Diverse Functional Payloads to Cells of Behaving Mammals. Neuron 2020; 107:836-853.e11. [PMID: 32574559 PMCID: PMC7687746 DOI: 10.1016/j.neuron.2020.06.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 01/12/2023]
Abstract
The resolution and dimensionality with which biologists can characterize cell types have expanded dramatically in recent years, and intersectional consideration of such features (e.g., multiple gene expression and anatomical parameters) is increasingly understood to be essential. At the same time, genetically targeted technology for writing in and reading out activity patterns for cells in living organisms has enabled causal investigation in physiology and behavior; however, cell-type-specific delivery of these tools (including microbial opsins for optogenetics and genetically encoded Ca2+ indicators) has thus far fallen short of versatile targeting to cells jointly defined by many individually selected features. Here, we develop a comprehensive intersectional targeting toolbox including 39 novel vectors for joint-feature-targeted delivery of 13 molecular payloads (including opsins, indicators, and fluorophores), systematic approaches for development and optimization of new intersectional tools, hardware for in vivo monitoring of expression dynamics, and the first versatile single-virus tools (Triplesect) that enable targeting of triply defined cell types.
Collapse
Affiliation(s)
- Lief E Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kathryn E Evans
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Maisie Lo
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kathy Y M Cheung
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Elle Yuen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Alice S O Hong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B 2020; 10:1347-1359. [PMID: 32963936 PMCID: PMC7488363 DOI: 10.1016/j.apsb.2020.01.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Gene therapy is rapidly emerging as a powerful therapeutic strategy for a wide range of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Some early clinical trials have failed to achieve satisfactory therapeutic effects. Efforts to enhance effectiveness are now concentrating on three major fields: identification of new vectors, novel therapeutic targets, and reliable of delivery routes for transgenes. These approaches are being assessed closely in preclinical and clinical trials, which may ultimately provide powerful treatments for patients. Here, we discuss advances and challenges of gene therapy for neurodegenerative disorders, highlighting promising technologies, targets, and future prospects.
Collapse
Key Words
- AADC, aromatic-l-amino-acid
- AAVs, adeno-associated viruses
- AD, Alzheimer's disease
- ARSA, arylsulfatase A
- ASOs, antisense oligonucleotides
- ASPA, aspartoacylase
- Adeno-associated viruses
- Adv, adenovirus
- BBB, blood–brain barrier
- BCSFB, blood–cerebrospinal fluid barrier
- BRB, blood–retina barrier
- Bip, glucose regulated protein 78
- CHOP, CCAAT/enhancer binding homologous protein
- CLN6, ceroidlipofuscinosis neuronal protein 6
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Central nervous system
- Delivery routes
- ER, endoplasmic reticulum
- FDA, U.S. Food and Drug Administration
- GAA, lysosomal acid α-glucosidase
- GAD, glutamic acid decarboxylase
- GDNF, glial derived neurotrophic factor
- Gene therapy
- HD, Huntington's disease
- HSPGs, heparin sulfate proteoglycans
- HTT, mutant huntingtin
- IDS, iduronate 2-sulfatase
- LVs, retrovirus/lentivirus
- Lamp2a, lysosomal-associated membrane protein 2a
- NGF, nerve growth factor
- Neurodegenerative disorders
- PD, Parkinson's disease
- PGRN, Progranulin
- PINK1, putative kinase 1
- PTEN, phosphatase and tensin homolog
- RGCs, retinal ganglion cells
- RNAi, RNA interference
- RPE, retinal pigmented epithelial
- SGSH, lysosomal heparan-N-sulfamidase gene
- SMN, survival motor neuron
- SOD, superoxide dismutase
- SUMF, sulfatase-modifying factor
- TFEB, transcription factor EB
- TPP1, tripeptidyl peptidase 1
- TREM2, triggering receptor expressed on myeloid cells 2
- UPR, unfolded protein response
- ZFPs, zinc finger proteins
- mTOR, mammalian target of rapamycin
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| |
Collapse
|
43
|
Caron NS, Southwell AL, Brouwers CC, Cengio LD, Xie Y, Black HF, Anderson LM, Ko S, Zhu X, van Deventer SJ, Evers MM, Konstantinova P, Hayden MR. Potent and sustained huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease. Nucleic Acids Res 2020; 48:36-54. [PMID: 31745548 PMCID: PMC7145682 DOI: 10.1093/nar/gkz976] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative disease caused by a pathogenic expansion of a CAG repeat in the huntingtin (HTT) gene. There are no disease-modifying therapies for HD. Artificial microRNAs targeting HTT transcripts for degradation have shown preclinical promise and will soon enter human clinical trials. Here, we examine the tolerability and efficacy of non-selective HTT lowering with an AAV5 encoded miRNA targeting human HTT (AAV5-miHTT) in the humanized Hu128/21 mouse model of HD. We show that intrastriatal administration of AAV5-miHTT results in potent and sustained HTT suppression for at least 7 months post-injection. Importantly, non-selective suppression of huntingtin was generally tolerated, however high dose AAV5-miHTT did induce astrogliosis. We observed an improvement of select behavioural and modest neuropathological HD-like phenotypes in Hu128/21 mice, suggesting a potential therapeutic benefit of miRNA-mediated non-selective HTT lowering. Finally, we also observed that potent reduction of wild type HTT (wtHTT) in Hu21 control mice was tolerated up to 7 months post-injection but may induce impairment of motor coordination and striatal atrophy. Taken together, our data suggests that in the context of HD, the therapeutic benefits of mHTT reduction may outweigh the potentially detrimental effects of wtHTT loss following non-selective HTT lowering.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Cynthia C Brouwers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Louisa Dal Cengio
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Yuanyun Xie
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Lisa M Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Xiang Zhu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Sander J van Deventer
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Melvin M Evers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Management of Neuroinflammatory Responses to AAV-Mediated Gene Therapies for Neurodegenerative Diseases. Brain Sci 2020; 10:brainsci10020119. [PMID: 32098339 PMCID: PMC7071492 DOI: 10.3390/brainsci10020119] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, adeno-associated virus (AAV)-mediated gene therapies have attracted clinical interest for treating neurodegenerative diseases including spinal muscular atrophy (SMA), Canavan disease (CD), Parkinson’s disease (PD), and Friedreich’s ataxia (FA). The influx of clinical findings led to the first approved gene therapy for neurodegenerative disorders in 2019 and highlighted new safety concerns for patients. Large doses of systemically administered AAV stimulate host immune responses, resulting in anti-capsid and anti-transgene immunity with implications for transgene expression, treatment longevity, and patient safety. Delivering lower doses directly to the central nervous system (CNS) is a promising alternative, resulting in higher transgene expression with decreased immune responses. However, neuroinflammatory responses after CNS-targeted delivery of AAV are a critical concern. Reported signs of AAV-associated neuroinflammation in preclinical studies include dorsal root ganglion (DRG) and spinal cord pathology with mononuclear cell infiltration. In this review, we discuss ways to manage neuroinflammation, including choice of AAV capsid serotypes, CNS-targeting routes of delivery, genetic modifications to the vector and/or transgene, and adding immunosuppressive strategies to clinical protocols. As additional gene therapies for neurodegenerative diseases enter clinics, tracking biomarkers of neuroinflammation will be important for understanding the impact immune reactions can have on treatment safety and efficacy.
Collapse
|
45
|
Nair RR, Blankvoort S, Lagartos MJ, Kentros C. Enhancer-Driven Gene Expression (EDGE) Enables the Generation of Viral Vectors Specific to Neuronal Subtypes. iScience 2020; 23:100888. [PMID: 32087575 PMCID: PMC7033522 DOI: 10.1016/j.isci.2020.100888] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/03/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Although a variety of remarkable molecular tools for studying neural circuits have recently been developed, the ability to deploy them in particular neuronal subtypes is limited by the fact that native promoters are almost never specific enough. We recently showed that one can generate transgenic mice with anatomical specificity surpassing that of native promoters by combining enhancers uniquely active in particular brain regions with a heterologous minimal promoter, an approach we call EDGE (Enhancer-Driven Gene Expression). Here we extend this strategy to the generation of viral (rAAV) vectors, showing that some EDGE rAAVs can recapitulate the specificity of the corresponding transgenic lines in wild-type animals, even of another species. This approach thus holds the promise of enabling circuit-specific manipulations in wild-type animals, not only enhancing our understanding of brain function, but perhaps one day even providing novel therapeutic avenues to approach disorders of the brain. rAAVs with enhancers unique to a brain region specify cell types of that brain region This requires viral constructs optimized to express only with enhancers One rAAV distinguishes distinct subtypes of excitatory neurons in a cortical layer The same specificity is seen in wild-type animals of at least two species
Collapse
Affiliation(s)
| | - Stefan Blankvoort
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Norway
| | - Maria Jose Lagartos
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Norway
| | - Cliff Kentros
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Norway; Institute of Neuroscience, University of Oregon, Eugene OR, USA.
| |
Collapse
|
46
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
47
|
Haery L, Deverman BE, Matho KS, Cetin A, Woodard K, Cepko C, Guerin KI, Rego MA, Ersing I, Bachle SM, Kamens J, Fan M. Adeno-Associated Virus Technologies and Methods for Targeted Neuronal Manipulation. Front Neuroanat 2019; 13:93. [PMID: 31849618 PMCID: PMC6902037 DOI: 10.3389/fnana.2019.00093] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Cell-type-specific expression of molecular tools and sensors is critical to construct circuit diagrams and to investigate the activity and function of neurons within the nervous system. Strategies for targeted manipulation include combinations of classical genetic tools such as Cre/loxP and Flp/FRT, use of cis-regulatory elements, targeted knock-in transgenic mice, and gene delivery by AAV and other viral vectors. The combination of these complex technologies with the goal of precise neuronal targeting is a challenge in the lab. This report will discuss the theoretical and practical aspects of combining current technologies and establish best practices for achieving targeted manipulation of specific cell types. Novel applications and tools, as well as areas for development, will be envisioned and discussed.
Collapse
Affiliation(s)
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | | | - Ali Cetin
- Allen Institute for Brain Science, Seattle, WA, United States
| | - Kenton Woodard
- Penn Vector Core, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Connie Cepko
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| | | | | | | | | | | | | |
Collapse
|
48
|
Taghian T, Marosfoi MG, Puri AS, Cataltepe OI, King RM, Diffie EB, Maguire AS, Martin DR, Fernau D, Batista AR, Kuchel T, Christou C, Perumal R, Chandra S, Gamlin PD, Bertrand SG, Flotte TR, McKenna-Yasek D, Tai PWL, Aronin N, Gounis MJ, Sena-Esteves M, Gray-Edwards HL. A Safe and Reliable Technique for CNS Delivery of AAV Vectors in the Cisterna Magna. Mol Ther 2019; 28:411-421. [PMID: 31813800 DOI: 10.1016/j.ymthe.2019.11.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022] Open
Abstract
Global gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord. However, translation of this technique to clinical practice is challenging due to the risk of serious and potentially fatal complications in patients. Herein, we report development of a gene therapy delivery method to the CM through adaptation of an intravascular microcatheter, which can be safely navigated intrathecally under fluoroscopic guidance. We examined the safety, reproducibility, and distribution/transduction of this method in sheep using a self-complementary adeno-associated virus 9 (scAAV9)-GFP vector. This technique was used to treat two Tay-Sachs disease patients (30 months old and 7 months old) with AAV gene therapy. No adverse effects were observed during infusion or post-treatment. This delivery technique is a safe and minimally invasive alternative to direct infusion into the CM, achieving broad distribution of AAV gene transfer to the CNS.
Collapse
Affiliation(s)
- Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Miklos G Marosfoi
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ajit S Puri
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Neurological Surgery, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Oguz I Cataltepe
- Department of Neurological Surgery, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Robert M King
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Elise B Diffie
- Scott-Ritchey Research Center, Auburn University, Auburn, AL 36849, USA
| | - Anne S Maguire
- Scott-Ritchey Research Center, Auburn University, Auburn, AL 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, AL 36849, USA; Department of Anatomy, Physiology and Pharmacology, Auburn University, AL 36849, USA
| | - Deborah Fernau
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ana Rita Batista
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tim Kuchel
- South Australian Health and Medical Research Institute, Gillies Plains, SA 5086, Australia
| | - Chris Christou
- South Australian Health and Medical Research Institute, Gillies Plains, SA 5086, Australia
| | - Raj Perumal
- South Australian Health and Medical Research Institute, Gillies Plains, SA 5086, Australia
| | | | - Paul D Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephanie G Bertrand
- Department of Environmental Population Health, Cummings Veterinary School at Tufts University, Grafton, MA 01536, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Diane McKenna-Yasek
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Matthew J Gounis
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Miguel Sena-Esteves
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Heather L Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
49
|
Walker MC, Kullmann DM. Optogenetic and chemogenetic therapies for epilepsy. Neuropharmacology 2019; 168:107751. [PMID: 31494141 DOI: 10.1016/j.neuropharm.2019.107751] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
Abstract
Drug-resistant epilepsy remains a significant health-care burden. The most effective treatment is surgery, but this is suitable for very few patients because of the unacceptable consequences of removing brain tissue. In contrast, gene therapy can regulate neuronal excitability in the epileptic focus whilst preserving function. Optogenetics and chemogenetics have the advantage that they are titratable therapies. Optogenetics uses light to control the excitability of specific neuronal populations. Optogenetics can be used in a closed-loop paradigm in which the light source is activated only when seizures are detected. However, expression of foreign proteins raises concerns about immunogenicity. Chemogenetics relies on the modification of an endogenous receptor or the production of a modified chimeric receptor that responds to an exogenous ligand. The main chemogenetic approach applied to epilepsy is to use designer receptors exclusively activated by designer drugs (DREADDs), which have been mainly modified muscarinic receptors or kappa-opioid receptors. Genetically modified human muscarinic receptor DREADDs are activated not by acetylcholine but by specific drugs such as clozapine-n-oxide or olanzepine. The dose of the drugs can be titrated in order to suppress seizures without adverse effects. Lastly, there is a chemogenetic approach that is activated by an endogenous ligand, glutamate. This takes advantage of invertebrate glutamate receptors that are chloride permeable. These bind glutamate released during seizure activity, and the resultant chloride current inhibits neuronal activity. The exogenous ligand, ivermectin, can also be given to reduce neuronal activity either chronically or as a rescue medication. The translation of this technology is hampered by the expression of a foreign protein. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
50
|
Morquette B, Juźwik CA, Drake SS, Charabati M, Zhang Y, Lécuyer MA, Galloway DA, Dumas A, de Faria Junior O, Paradis-Isler N, Bueno M, Rambaldi I, Zandee S, Moore C, Bar-Or A, Vallières L, Prat A, Fournier AE. MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis. Brain 2019; 142:2979-2995. [DOI: 10.1093/brain/awz245] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/27/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of miRNAs has been observed in many neurodegenerative diseases, including multiple sclerosis. Morquette et al. show that overexpression of miR-223-3p prevents accumulation of axonal damage in a rodent model of multiple sclerosis, in part through regulation of glutamate receptor signalling. Manipulation of miRNA levels may have therapeutic potential.
Collapse
Affiliation(s)
- Barbara Morquette
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Camille A Juźwik
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Sienna S Drake
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Marc Charabati
- CHUM research centre - Université de Montreal, Montréal, QC, Canada
| | - Yang Zhang
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | | | - Dylan A Galloway
- Division of BioMedical Sciences Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Aline Dumas
- Neuroscience Unit, University Hospital Centre of Québec - Laval University, Québec City, QC, Canada
| | | | | | - Mardja Bueno
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Isabel Rambaldi
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Stephanie Zandee
- CHUM research centre - Université de Montreal, Montréal, QC, Canada
| | - Craig Moore
- Division of BioMedical Sciences Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Amit Bar-Or
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luc Vallières
- Neuroscience Unit, University Hospital Centre of Québec - Laval University, Québec City, QC, Canada
| | - Alexandre Prat
- CHUM research centre - Université de Montreal, Montréal, QC, Canada
| | - Alyson E Fournier
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| |
Collapse
|