1
|
Samson Ezeh O, Hayami N, Mitai K, Kodama W, Iuchi S, Y. Yamamoto Y. Requirement of two simultaneous environmental signals for activation of Arabidopsis ELIP2 promoter in response to high light, cold, and UV-B stresses. PLANT SIGNALING & BEHAVIOR 2024; 19:2389496. [PMID: 39132719 PMCID: PMC11321413 DOI: 10.1080/15592324.2024.2389496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Arabidopsis EARLY LIGH-INDUCIBLE PROTEIN 2 (ELIP2) is a chlorophyll- and carotenoid-binding protein and is involved in photoprotection under stress conditions. Because its expression is induced through high light, cold, or UV-B stressors, its mechanism of induction has been studied. It is known that a functional unit found in the promoter, which is composed of Element B and Element A, is required and sufficient for full activation by these stressors. In this study, the role of each element in the unit was analyzed by introducing weak mutations in each element as synthetic promoters in addition to intensive repeat constructs of each single element. The results suggest that a stressor like cold stress generates two parallel signals in plant cells, and they merge at the promoter region for the activation of ELIP2 expression, which constitutes an "AND" gate and has a potential to realize strong response with high specificity by an environmental trigger.
Collapse
Affiliation(s)
| | - Natsuki Hayami
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Kana Mitai
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Wasei Kodama
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Yoshiharu Y. Yamamoto
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
- RIKEN CSRS, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
2
|
Wu B, Fu M, Du J, Wang M, Zhang S, Li S, Chen J, Zha W, Li C, Liu K, Xu H, Wang H, Shi S, Wu Y, Li P, You A, Zhou L. Identification of the Cold-Related Genes COLD11 and OsCTS11 via BSA-seq and Fine Mapping at the Rice Seedling Stage. RICE (NEW YORK, N.Y.) 2024; 17:72. [PMID: 39576378 PMCID: PMC11584825 DOI: 10.1186/s12284-024-00749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Cold stress has a significantly negative effect on the growth, development, and yield of rice. However, the genetic basis for the differences in the cold tolerance of Xian/indica and Geng/japonica rice seedlings is still largely unknown. In this study, an RIL population was generated by crossing of the cold-tolerant japonica variety Nipponbare and the cold-sensitive indica variety WD16343 for BSA-seq analysis, and a major cold tolerance QTL qCTS11 was identified on chromosome 11. This locus was narrowed to the 584 kb region through fine mapping. Sequence alignment and expression analysis identified the cloned gene COLD11 and a novel cold-related gene OsCTS11. According to the reported functional variation of COLD11, Nipponbare (TCG + 3GCG)×2 presented more GCG repeats in the 1st exon than WD16343 (TCG + 3GCG), partially explaining the difference in cold tolerance between the parents. OsCTS11, encoding a stress enhanced protein based on phylogenetic analysis, was strongly induced by cold stress and located in the chloroplast and the nucleus. oscts11-mutant lines generated via CRISPR/Cas9 system improved the cold tolerance of rice seedlings. Our study not only reveals novel genetic loci associated with cold tolerance, but also provides potentially valuable gene resources for the cultivation of cold-tolerant rice.
Collapse
Affiliation(s)
- Bian Wu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Minghui Fu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Jinghua Du
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjing Wang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Siyue Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Sanhe Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Junxiao Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wenjun Zha
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Changyan Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Kai Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huashan Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huiying Wang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaojie Shi
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yan Wu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Peide Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
3
|
Busch A, Gerbracht JV, Davies K, Hoecker U, Hess S. Comparative transcriptomics elucidates the cellular responses of an aeroterrestrial zygnematophyte to UV radiation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3624-3642. [PMID: 38520340 PMCID: PMC11156808 DOI: 10.1093/jxb/erae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
The zygnematophytes are the closest relatives of land plants and comprise several lineages that adapted to a life on land. Species of the genus Serritaenia form colorful, mucilaginous capsules, which surround the cells and block harmful solar radiation, one of the major terrestrial stressors. In eukaryotic algae, this 'sunscreen mucilage' represents a unique photoprotective strategy, whose induction and chemical background are unknown. We generated a de novo transcriptome of Serritaenia testaceovaginata and studied its gene regulation under moderate UV radiation (UVR) that triggers sunscreen mucilage under experimental conditions. UVR induced the repair of DNA and the photosynthetic apparatus as well as the synthesis of aromatic specialized metabolites. Specifically, we observed pronounced expressional changes in the production of aromatic amino acids, phenylpropanoid biosynthesis genes, potential cross-membrane transporters of phenolics, and extracellular, oxidative enzymes. Interestingly, the most up-regulated enzyme was a secreted class III peroxidase, whose embryophyte homologs are involved in apoplastic lignin formation. Overall, our findings reveal a conserved, plant-like UVR perception system (UVR8 and downstream factors) in zygnematophyte algae and point to a polyphenolic origin of the sunscreen pigment of Serritaenia, whose synthesis might be extracellular and oxidative, resembling that of plant lignins.
Collapse
Affiliation(s)
- Anna Busch
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Jennifer V Gerbracht
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Kevin Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, D-50674, Cologne, Germany
| | - Sebastian Hess
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| |
Collapse
|
4
|
Muino JM, Großmann C, Kleine T, Kaufmann K. Natural genetic variation in GLK1-mediated photosynthetic acclimation in response to light. BMC PLANT BIOLOGY 2024; 24:87. [PMID: 38311744 PMCID: PMC10840168 DOI: 10.1186/s12870-024-04741-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND GOLDEN-like (GLK) transcription factors are central regulators of chloroplast biogenesis in Arabidopsis and other species. Findings from Arabidopsis show that these factors also contribute to photosynthetic acclimation, e.g. to variation in light intensity, and are controlled by retrograde signals emanating from the chloroplast. However, the natural variation of GLK1-centered gene-regulatory networks in Arabidopsis is largely unexplored. RESULTS By evaluating the activities of GLK1 target genes and GLK1 itself in vegetative leaves of natural Arabidopsis accessions grown under standard conditions, we uncovered variation in the activity of GLK1 centered regulatory networks. This is linked with the ecogeographic origin of the accessions, and can be associated with a complex genetic variation across loci acting in different functional pathways, including photosynthesis, ROS and brassinosteroid pathways. Our results identify candidate upstream regulators that contribute to a basal level of GLK1 activity in rosette leaves, which can then impact the capacity to acclimate to different environmental conditions. Indeed, accessions with higher GLK1 activity, arising from habitats with a high monthly variation in solar radiation levels, may show lower levels of photoinhibition at higher light intensities. CONCLUSIONS Our results provide evidence for natural variation in GLK1 regulatory activities in vegetative leaves. This variation is associated with ecogeographic origin and can contribute to acclimation to high light conditions.
Collapse
Affiliation(s)
- Jose M Muino
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
- Current Address: German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Christopher Großmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Munich, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
5
|
Wang H, Liu J, Huang J, Xiao Q, Hayward A, Li F, Gong Y, Liu Q, Ma M, Fu D, Xiao M. Mapping and Identifying Candidate Genes Enabling Cadmium Accumulation in Brassica napus Revealed by Combined BSA-Seq and RNA-Seq Analysis. Int J Mol Sci 2023; 24:10163. [PMID: 37373312 DOI: 10.3390/ijms241210163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Rapeseed has the ability to absorb cadmium in the roots and transfer it to aboveground organs, making it a potential species for remediating soil cadmium (Cd) pollution. However, the genetic and molecular mechanisms underlying this phenomenon in rapeseed are still unclear. In this study, a 'cadmium-enriched' parent, 'P1', with high cadmium transport and accumulation in the shoot (cadmium root: shoot transfer ratio of 153.75%), and a low-cadmium-accumulation parent, 'P2', (with a cadmium transfer ratio of 48.72%) were assessed for Cd concentration using inductively coupled plasma mass spectrometry (ICP-MS). An F2 genetic population was constructed by crossing 'P1' with 'P2' to map QTL intervals and underlying genes associated with cadmium enrichment. Fifty extremely cadmium-enriched F2 individuals and fifty extremely low-accumulation F2 individuals were selected based on cadmium content and cadmium transfer ratio and used for bulk segregant analysis (BSA) in combination with whole genome resequencing. This generated a total of 3,660,999 SNPs and 787,034 InDels between these two segregated phenotypic groups. Based on the delta SNP index (the difference in SNP frequency between the two bulked pools), nine candidate Quantitative trait loci (QTLs) from five chromosomes were identified, and four intervals were validated. RNA sequencing of 'P1' and 'P2' in response to cadmium was also performed and identified 3502 differentially expressed genes (DEGs) between 'P1' and 'P2' under Cd treatment. Finally, 32 candidate DEGs were identified within 9 significant mapping intervals, including genes encoding a glutathione S-transferase (GST), a molecular chaperone (DnaJ), and a phosphoglycerate kinase (PGK), among others. These genes are strong candidates for playing an active role in helping rapeseed cope with cadmium stress. Therefore, this study not only sheds new light on the molecular mechanisms of Cd accumulation in rapeseed but could also be useful for rapeseed breeding programs targeting this trait.
Collapse
Affiliation(s)
- Huadong Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiajia Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Juan Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing Xiao
- Graduate School of Jiangxi Normal University, Jiangxi Normal University, Nanchang 330045, China
| | - Alice Hayward
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072, Australia
| | - Fuyan Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingying Gong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qian Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Miao Ma
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
6
|
Levin G, Schuster G. LHC-like Proteins: The Guardians of Photosynthesis. Int J Mol Sci 2023; 24:2503. [PMID: 36768826 PMCID: PMC9916820 DOI: 10.3390/ijms24032503] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
The emergence of chlorophyll-containing light-harvesting complexes (LHCs) was a crucial milestone in the evolution of photosynthetic eukaryotic organisms. Light-harvesting chlorophyll-binding proteins form complexes in proximity to the reaction centres of photosystems I and II and serve as an antenna, funnelling the harvested light energy towards the reaction centres, facilitating photochemical quenching, thereby optimizing photosynthesis. It is now generally accepted that the LHC proteins evolved from LHC-like proteins, a diverse family of proteins containing up to four transmembrane helices. Interestingly, LHC-like proteins do not participate in light harvesting to elevate photosynthesis activity under low light. Instead, they protect the photosystems by dissipating excess energy and taking part in non-photochemical quenching processes. Although there is evidence that LHC-like proteins are crucial factors of photoprotection, the roles of only a few of them, mainly the stress-related psbS and lhcSR, are well described. Here, we summarize the knowledge gained regarding the evolution and function of the various LHC-like proteins, with emphasis on those strongly related to photoprotection. We further suggest LHC-like proteins as candidates for improving photosynthesis in significant food crops and discuss future directions in their research.
Collapse
Affiliation(s)
- Guy Levin
- Faculty of Biology, Technion, Haifa 32000, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion, Haifa 32000, Israel
- Grand Technion Energy Program, Technion, Haifa 32000, Israel
| |
Collapse
|
7
|
Fuentes-Merlos MI, Bamba M, Sato S, Higashitani A. Comparative Transcriptome Analysis of Grafted Tomato with Drought Tolerance. PLANTS 2022; 11:plants11151947. [PMID: 35893651 PMCID: PMC9332811 DOI: 10.3390/plants11151947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Grafting is a method used in agriculture to improve crop production and tolerance to biotic and abiotic stress. This technique is widely used in tomato, Solanum lycopersicum L.; however, the effects of grafting on changes in gene expression associated with stress tolerance in shoot apical meristem cells are still under-discovered. To clarify the effect of grafting, we performed a transcriptomic analysis between non-grafted and grafted tomatoes using the tomato variety Momotaro-scion and rootstock varieties, TD1, GS, and GF. Drought tolerance was significantly improved not only by a combination of compatible resistant rootstock TD1 but also by self-grafted compared to non-grafted lines. Next, we found the differences in gene expression between grafted and non-grafted plants before and during drought stress treatment. These altered genes are involved in the regulation of plant hormones, stress response, and cell proliferation. Furthermore, when comparing compatible (Momo/TD1 and Momo/Momo) and incompatible (Momo/GF) grafted lines, the incompatible line reduced gene expression associated with phytohormones but increased in wounding and starvation stress-response genes. These results conclude that grafting generates drought stress tolerance through several gene expression changes in the apical meristem.
Collapse
Affiliation(s)
| | | | | | - Atsushi Higashitani
- Correspondence: (M.I.F.-M.); (A.H.); Tel.: +81-22-217-5715 (A.H.); Fax: +81-22-217-5691 (A.H.)
| |
Collapse
|
8
|
Light regulates chlorophyll biosynthesis via ELIP1 during the storage of Chinese cabbage. Sci Rep 2022; 12:11098. [PMID: 35773334 PMCID: PMC9247097 DOI: 10.1038/s41598-022-15451-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
Chlorophyll loss is a major problem during green vegetable storage. However, the molecular mechanism is still unclear. In this study, a 21 days of storage experiments showed chlorophyll content was higher in light-stored Chinese cabbage (Brassica chinensis L.) leaves than those in dark-stored samples. Transcriptome analyses were performed on these samples to determine the effects of light. Among 311 differentially expressed genes (DEGs), early light-induced protein 1 (ELIP1) was identified as the main control gene for chlorophyll synthesis. Tissues and subcellular localization indicated that ELIP1 was localized in the nucleus. Motifs structure analyses, chromatin immunoprecipitation (ChIP) assays, luciferase reporter assays, and overexpression experiments demonstrated that ELIP1 regulated the expressions of genomes uncoupled 4 (GUN4), Glutamyl-tRNA reductase family protein (HEMA1), and Mg-protoporphyrin IX methyltransferase (CHLM) by binding to G-box-like motifs and affected chlorophyll biosynthesis during the storage of Chinese cabbage. It is a possible common tetrapyrrole biosynthetic pathway for chlorophylls, hemes, and bilin pigments in photosynthetic organisms. Our research also revealed that white light can be used as a regulatory factor to improve the storage ability and extent shelf life of Chinese cabbage.
Collapse
|
9
|
Beleggia R, Omranian N, Holtz Y, Gioia T, Fiorani F, Nigro FM, Pecchioni N, De Vita P, Schurr U, David JL, Nikoloski Z, Papa R. Comparative Analysis Based on Transcriptomics and Metabolomics Data Reveal Differences between Emmer and Durum Wheat in Response to Nitrogen Starvation. Int J Mol Sci 2021; 22:4790. [PMID: 33946478 PMCID: PMC8124848 DOI: 10.3390/ijms22094790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/04/2022] Open
Abstract
Mounting evidence indicates the key role of nitrogen (N) on diverse processes in plant, including development and defense. Using a combined transcriptomics and metabolomics approach, we studied the response of seedlings to N starvation of two different tetraploid wheat genotypes from the two main domesticated subspecies: emmer and durum wheat. We found that durum wheat exhibits broader and stronger response in comparison to emmer as seen from the expression pattern of both genes and metabolites and gene enrichment analysis. They showed major differences in the responses to N starvation for transcription factor families, emmer showed differential reduction in the levels of primary metabolites while durum wheat exhibited increased levels of most of them to N starvation. The correlation-based networks, including the differentially expressed genes and metabolites, revealed tighter regulation of metabolism in durum wheat in comparison to emmer. We also found that glutamate and γ-aminobutyric acid (GABA) had highest values of centrality in the metabolic correlation network, suggesting their critical role in the genotype-specific response to N starvation of emmer and durum wheat, respectively. Moreover, this finding indicates that there might be contrasting strategies associated to GABA and glutamate signaling modulating shoot vs. root growth in the two different wheat subspecies.
Collapse
Affiliation(s)
- Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (F.M.N.); (N.P.); (P.D.V.)
| | - Nooshin Omranian
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; (N.O.); (Z.N.)
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Yan Holtz
- Montpellier SupAgro, UMR Amelioration Genetique et Adaptation des Plantes, 34060 Montpellier, France; (Y.H.); (J.L.D.)
| | - Tania Gioia
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | - Fabio Fiorani
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Julich GmbH, 52428 Julich, Germany; (F.F.); (U.S.)
| | - Franca M. Nigro
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (F.M.N.); (N.P.); (P.D.V.)
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (F.M.N.); (N.P.); (P.D.V.)
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (F.M.N.); (N.P.); (P.D.V.)
| | - Ulrich Schurr
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Julich GmbH, 52428 Julich, Germany; (F.F.); (U.S.)
| | - Jacques L. David
- Montpellier SupAgro, UMR Amelioration Genetique et Adaptation des Plantes, 34060 Montpellier, France; (Y.H.); (J.L.D.)
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; (N.O.); (Z.N.)
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Roberto Papa
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (F.M.N.); (N.P.); (P.D.V.)
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
10
|
Psencik J, Hey D, Grimm B, Lokstein H. Photoprotection of Photosynthetic Pigments in Plant One-Helix Protein 1/2 Heterodimers. J Phys Chem Lett 2020; 11:9387-9392. [PMID: 33095593 DOI: 10.1021/acs.jpclett.0c02660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One-helix proteins 1 and 2 (OHP1/2) are members of the family of light-harvesting-like proteins (LIL) in plants, and their potential function(s) have been initially analyzed only recently. OHP1 and OHP2 are structurally related to the transmembrane α-helices 1 and 3 of all members of the light-harvesting complex (LHC) superfamily. Arabidopsis thaliana OHPs form heterodimers which bind 6 chlorophylls (Chls) a and two carotenoids in vitro. Their function remains unclear, and therefore, a spectroscopic study with reconstituted OHP1/OHP2-complexes was performed. Steady-state spectroscopy did not indicate singlet excitation energy transfer between pigments. Thus, a light-harvesting function can be excluded. Possible pigment-storage and/or -delivery functions of OHPs require photoprotection of the bound Chls. Hence, Chl and carotenoid triplet formation and decays in reconstituted OHP1/2 dimers were measured using nanosecond transient absorption spectroscopy. Unlike in all other photosynthetic LHCs, unquenched Chl triplets were observed with unusually long lifetimes. Moreover, there were virtually no differences in both Chl and carotenoid triplet state lifetimes under either aerobic or anaerobic conditions. The results indicate that both Chls and carotenoids are shielded by the proteins from interactions with ambient oxygen and, thus, protected against formation of singlet oxygen. Only a minor portion of the Chl triplets was quenched by carotenoids. These results are in stark contrast to all previously observed photoprotective processes in LHC/LIL proteins and, thus, may constitute a novel mechanism of photoprotection in the plant photosynthetic apparatus.
Collapse
Affiliation(s)
- Jakub Psencik
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Daniel Hey
- Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, Philippstrasse 13, D-10115 Berlin, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, Philippstrasse 13, D-10115 Berlin, Germany
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| |
Collapse
|
11
|
Ma JJ, Liu SW, Han FX, Li W, Li Y, Niu SH. Comparative transcriptome analyses reveal two distinct transcriptional modules associated with pollen shedding time in pine. BMC Genomics 2020; 21:504. [PMID: 32698817 PMCID: PMC7374968 DOI: 10.1186/s12864-020-06880-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Seasonal flowering time is an ecologically and economically important trait in temperate trees. Previous studies have shown that temperature in many tree species plays a pivotal role in regulating flowering time. However, genetic control of flowering time is not synchronised in different individual trees under comparable temperature conditions, the underlying molecular mechanism is mainly to be investigated. RESULTS In the present study, we analysed the transcript abundance in male cones and needles from six early pollen-shedding trees (EPs) and six neighbouring late pollen-shedding trees (LPs) in Pinus tabuliformis at three consecutive time points in early spring. We found that the EPs and LPs had distinct preferred transcriptional modules in their male cones and, interestingly, the expression pattern was also consistently maintained in needles even during the winter dormancy period. Additionally, the preferred pattern in EPs was also adopted by other fast-growing tissues, such as elongating new shoots. Enhancement of nucleic acid synthesis and stress resistance pathways under cold conditions can facilitate rapid growth and maintain higher transcriptional activity. CONCLUSIONS During the cold winter and early spring seasons, the EPs were more sensitive to relatively warmer temperatures and showed higher transcriptomic activity than the LPs, indicating that EPs required less heat accumulation for pollen shedding than LPs. These results provided a transcriptomic-wide understanding of the temporal regulation of pollen shedding in pines.
Collapse
Affiliation(s)
- Jing-Jing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Shuang-Wei Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Fang-Xu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Shi-Hui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| |
Collapse
|
12
|
Functional Aspects of Early Light-Induced Protein (ELIP) Genes from the Desiccation-Tolerant Moss Syntrichia caninervis. Int J Mol Sci 2020; 21:ijms21041411. [PMID: 32093042 PMCID: PMC7073071 DOI: 10.3390/ijms21041411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
The early light-induced proteins (ELIPs) are postulated to act as transient pigment-binding proteins that protect the chloroplast from photodamage caused by excessive light energy. Desert mosses such as Syntrichia caninervis, that are desiccation-tolerant and homoiochlorophyllous, are often exposed to high-light conditions when both hydrated and dry ELIP transcripts are accumulated in response to dehydration. To gain further insights into ELIP gene function in the moss S. caninervis, two ELIP cDNAs cloned from S. caninervis, ScELIP1 and ScELIP2 and both sequences were used as the basis of a transcript abundance assessment in plants exposed to high-light, UV-A, UV-B, red-light, and blue-light. ScELIPs were expressed separately in an ArabidopsisELIP mutant Atelip. Transcript abundance for ScELIPs in gametophytes respond to each of the light treatments, in similar but not in identical ways. Ectopic expression of either ScELIPs protected PSII against photoinhibition and stabilized leaf chlorophyll content and thus partially complementing the loss of AtELIP2. Ectopic expression of ScELIPs also complements the germination phenotype of the mutant and improves protection of the photosynthetic apparatus of transgenic Arabidopsis from high-light stress. Our study extends knowledge of bryophyte photoprotection and provides further insight into the molecular mechanisms related to the function of ELIPs.
Collapse
|
13
|
Li C, Liu X, Pan J, Guo J, Wang Q, Chen C, Li N, Zhang K, Yang B, Sun C, Deng X, Wang P. A lil3 chlp double mutant with exclusive accumulation of geranylgeranyl chlorophyll displays a lethal phenotype in rice. BMC PLANT BIOLOGY 2019; 19:456. [PMID: 31664904 PMCID: PMC6819399 DOI: 10.1186/s12870-019-2028-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/11/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Phytyl residues are the common side chains of chlorophyll (Chl) and tocopherols. Geranylgeranyl reductase (GGR), which is encoded by CHLP gene, is responsible for phytyl biosynthesis. The light-harvesting like protein LIL3 was suggested to be required for stability of GGR and protochlorophyllide oxidoreductase in Arabidopsis. RESULTS In this study, we isolated a yellow-green leaf mutant, 637ys, in rice (Oryza sativa). The mutant accumulated majority of Chls with unsaturated geranylgeraniol side chains and displayed a yellow-green leaf phenotype through the whole growth period. The development of chloroplasts was suppressed, and the major agronomic traits, especially No. of productive panicles per plant and of spikelets per panicle, dramatically decreased in 637ys. Besides, the mutant exhibited to be sensitive to light intensity and deficiency of tocopherols without obvious alteration in tocotrienols in leaves and grains. Map-based cloning and complementation experiment demonstrated that a point mutation on the OsLIL3 gene accounted for the mutant phenotype of 637ys. OsLIL3 is mainly expressed in green tissues, and its encoded protein is targeted to the chloroplast. Furthermore, the 637ys 502ys (lil3 chlp) double mutant exclusively accumulated geranylgeranyl Chl and exhibited lethality at the three-leaf stage. CONCLUSIONS We identified the OsLIL3 gene through a map-based cloning approach. Meanwhile, we demonstrated that OsLIL3 is of extreme importance to the function of OsGGR, and that the complete replacement of phytyl side chain of chlorophyll by geranylgeranyl chain could be fatal to plant survival in rice.
Collapse
Affiliation(s)
- Chunmei Li
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
- Zhongkai University of Agriculture and Engineering, 24 Dongsha Street, Haizhu District, Guangzhou, 510225, China
| | - Xin Liu
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jihong Pan
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Qian Wang
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Congping Chen
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Na Li
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Kuan Zhang
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Changhui Sun
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiaojian Deng
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
14
|
Wang X, Wu W, Jian S. Transcriptome analysis of two radiated Cycas species and the subsequent species delimitation of the Cycas taiwaniana complex. APPLICATIONS IN PLANT SCIENCES 2019; 7:e11292. [PMID: 31667020 PMCID: PMC6814181 DOI: 10.1002/aps3.11292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Cycas is an important gymnosperm genus, and the most diverse of all cycad genera. The C. taiwaniana complex of species are morphologically similar and difficult to distinguish due to a lack of genomic resources. METHODS We characterized the transcriptomes of two closely related and endangered Cycas species endemic to Hainan, China: C. hainanensis and C. changjiangensis. Three single-copy nuclear genes in the C. taiwaniana complex were sequenced based on these transcriptomes, enabling us to evaluate the species boundaries using the multispecies coalescent method implemented in the Bayesian Phylogenetics and Phylogeography program. RESULTS We obtained 68,184 and 81,561 unigenes for C. changjiangensis and C. hainanensis, respectively. We identified six positively selected genes that are mainly involved in stimulus responses, suggesting that environmental adaptation may have played an important role in the relatively recent divergence of these species. The similar K S distribution peaks at 1.0 observed for the paralogs in the two species indicate a common whole-genome duplication event. Our species delimitation analysis indicated that the C. taiwaniana complex consists of three distinct species, which correspond to the previously reported morphological differences. DISCUSSION Our study provides valuable genetic resources for Cycas species and guidance for the taxonomic treatment of the C. taiwaniana complex, as well as new insights into evolution of species within Cycas.
Collapse
Affiliation(s)
- Xin‐Hui Wang
- Guangdong Provincial Key Laboratory of Applied BotanySouth China Botanical GardenChinese Academy of SciencesGuangzhou510650People's Republic of China
- University of Chinese Academy of SciencesBeijing100040People's Republic of China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Applied BotanySouth China Botanical GardenChinese Academy of SciencesGuangzhou510650People's Republic of China
| | - Shu‐Guang Jian
- Guangdong Provincial Key Laboratory of Applied BotanySouth China Botanical GardenChinese Academy of SciencesGuangzhou510650People's Republic of China
| |
Collapse
|
15
|
Beverly DP, Guadagno CR, Bretfeld M, Speckman HN, Albeke SE, Ewers BE. Hydraulic and photosynthetic responses of big sagebrush to the 2017 total solar eclipse. Sci Rep 2019; 9:8839. [PMID: 31222163 PMCID: PMC6586607 DOI: 10.1038/s41598-019-45400-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 11/09/2022] Open
Abstract
The total solar eclipse of August 21, 2017 created a path of totality ~115 km in width across the United States. While eclipse observations have shown distinct responses in animal behavior often emulating nocturnal behavior, the influence of eclipses on plant physiology are less understood. We investigated physiological perturbations due to rapid changes of sunlight and air temperature in big sagebrush (Artemisia tridentata ssp. vaseyana), a desert shrub common within the path of eclipse totality. Leaf gas exchange, water potential, and chlorophyll a fluorescence were monitored during the eclipse and compared to responses obtained the day before in absence of the eclipse. On the day of the eclipse, air temperature decreased by 6.4 °C, coupled with a 1.0 kPa drop in vapor pressure deficit having a 9-minute lag following totality. Using chlorophyll a fluorescence measurements, we found photosynthetic efficiency of photosystem II (Fv'/Fm') recovered to near dark acclimated state (i.e., 87%), but the short duration of darkness did not allow for complete recovery. Gas exchange data and a simple light response model were used to estimate a 14% reduction in carbon assimilation for one day over sagebrush dominated areas within the path of totality for the Western United States.
Collapse
Affiliation(s)
- Daniel P Beverly
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA.
- Water Resources, Environmental Science and Engineering, University of Wyoming, Laramie, WY, 82071, USA.
| | | | - Mario Bretfeld
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Heather N Speckman
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Shannon E Albeke
- Department of Geography and Wyoming Geographic Information Service Center, University of Wyoming, Laramie, WY, 82071, USA
- Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
16
|
Zhao YJ, Liu XY, Guo R, Hu KR, Cao Y, Dai F. Comparative genomics and transcriptomics analysis reveals evolution patterns of selection in the Salix phylogeny. BMC Genomics 2019; 20:253. [PMID: 30925896 PMCID: PMC6440167 DOI: 10.1186/s12864-019-5627-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/20/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Willows are widely distributed in the northern hemisphere and have good adaptability to different living environment. The increasing of genome and transcriptome data provides a chance for comparative analysis to study the evolution patterns with the different origin and geographical distributions in the Salix phylogeny. RESULTS Transcript sequences of 10 Salicaceae species were downloaded from public databases. All pairwise of orthologues were identified by comparative analysis in these species, from which we constructed a phylogenetic tree and estimated the rate of diverse. Divergence times were estimated in the 10 Salicaceae using comparative transcriptomic analysis. All of the fast-evolving positive selection sequences were identified, and some cold-, drought-, light-, universal-, and heat- resistance genes were discovered. CONCLUSIONS The divergence time of subgenus Vetrix and Salix was about 17.6-16.0 Mya during the period of Middle Miocene Climate Transition (21-14 Mya). Subgenus Vetrix diverged to migratory and resident groups when the climate changed to the cool and dry trend by 14 Mya. Cold- and light- stress genes were involved in positive selection among the resident Vetrix, and which would help them to adapt the cooling stage. Universal- stress genes exhibited positive selection among the migratory group and subgenus Salix. These data are useful for comprehending the adaptive evolution and speciation in the Salix lineage.
Collapse
Affiliation(s)
- You-jie Zhao
- Key Laboratory of Forestry and Ecological Big Data State Forestry Administration, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
| | - Xin-yi Liu
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
| | - Ran Guo
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
| | - Kun-rong Hu
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
| | - Yong Cao
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
| | - Fei Dai
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
| |
Collapse
|
17
|
Albanese P, Manfredi M, Re A, Marengo E, Saracco G, Pagliano C. Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non-model organism aided by transcriptomic data integration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:786-800. [PMID: 30118564 DOI: 10.1111/tpj.14068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 05/02/2023]
Abstract
Plant thylakoid membranes contain hundreds of proteins that closely interact to cope with ever-changing environmental conditions. We investigated how Pisum sativum L. (pea) grown at different irradiances optimizes light-use efficiency through the differential accumulation of thylakoid proteins. Thylakoid membranes from plants grown under low (LL), moderate (ML) and high (HL) light intensity were characterized by combining chlorophyll fluorescence measurements with quantitative label-free proteomic analysis. Protein sequences retrieved from available transcriptomic data considerably improved thylakoid proteome profiling, increasing the quantifiable proteins from 63 to 194. The experimental approach used also demonstrates that this integrative omics strategy is powerful for unravelling protein isoforms and functions that are still unknown in non-model organisms. We found that the different growth irradiances affect the electron transport kinetics but not the relative abundance of photosystems (PS) I and II. Two acclimation strategies were evident. The behaviour of plants acclimated to LL was compared at higher irradiances: (i) in ML, plants turn on photoprotective responses mostly modulating the PSII light-harvesting capacity, either accumulating Lhcb4.3 or favouring the xanthophyll cycle; (ii) in HL, plants reduce the pool of light-harvesting complex II and enhance the PSII repair cycle. When growing at ML and HL, plants accumulate ATP synthase, boosting both cyclic and linear electron transport by finely tuning the ΔpH across the membrane and optimizing protein trafficking by adjusting the thylakoid architecture. Our results provide a quantitative snapshot of how plants coordinate light harvesting, electron transport and protein synthesis by adjusting the thylakoid membrane proteome in a light-dependent manner.
Collapse
Affiliation(s)
- Pascal Albanese
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Marcello Manfredi
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Angela Re
- Center for Sustainable Future Technologies-CSFT@POLITO, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino, Italy
| | - Emilio Marengo
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Guido Saracco
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| |
Collapse
|
18
|
Fan L, Wang G, Hu W, Pantha P, Tran KN, Zhang H, An L, Dassanayake M, Qiu QS. Transcriptomic view of survival during early seedling growth of the extremophyte Haloxylon ammodendron. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:475-489. [PMID: 30292980 DOI: 10.1016/j.plaphy.2018.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/08/2018] [Accepted: 09/18/2018] [Indexed: 05/27/2023]
Abstract
Seedling establishment in an extreme environment requires an integrated genomic and physiological response to survive multiple abiotic stresses. The extremophyte, Haloxylon ammodendron is a pioneer species capable of colonizing temperate desert sand dunes. We investigated the induced and basal transcriptomes in H. ammodendron under water-deficit stress during early seedling establishment. We find that not only drought-responsive genes, but multiple genes in pathways associated with salt, osmotic, cold, UV, and high-light stresses were induced, suggesting an altered regulatory stress response system. Additionally, H. ammodendron exhibited enhanced biotic stress tolerance by down-regulation of genes that were generally up-regulated during pathogen entry in susceptible plants. By comparing the H. ammodendron basal transcriptome to six closely related transcriptomes in Amaranthaceae, we detected enriched basal level transcripts in H. ammodendron that shows preadaptation to abiotic stress and pathogens. We found transcripts that were generally maintained at low levels and some induced only under abiotic stress in the stress-sensitive model, Arabidopsis thaliana to be highly expressed under basal conditions in the Amaranthaceae transcriptomes including H. ammodendron. H. ammodendron shows coordinated expression of genes that regulate stress tolerance and seedling development resource allocation to support survival against multiple stresses in a sand dune dominated temperate desert environment.
Collapse
Affiliation(s)
- Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Wei Hu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Pramod Pantha
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Kieu-Nga Tran
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Hua Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
19
|
Wang K, Liu Y, Tian J, Huang K, Shi T, Dai X, Zhang W. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:1032. [PMID: 28680431 PMCID: PMC5478880 DOI: 10.3389/fpls.2017.01032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/29/2017] [Indexed: 05/18/2023]
Abstract
Perennial ryegrass (Lolium perenne) is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.
Collapse
Affiliation(s)
- Kehua Wang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
- *Correspondence: Kehua Wang, Wanjun Zhang,
| | - Yanrong Liu
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Jinli Tian
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Kunyong Huang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Tianran Shi
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Xiaoxia Dai
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Wanjun Zhang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
- National Energy R&D Center for Biomass, China Agricultural UniversityBeijing, China
- *Correspondence: Kehua Wang, Wanjun Zhang,
| |
Collapse
|
20
|
Xia H, Zhang L, Wu G, Fu C, Long Y, Xiang J, Gan J, Zhou Y, Yu L, Li M. Genome-Wide Identification and Characterization of MicroRNAs and Target Genes in Lonicera japonica. PLoS One 2016; 11:e0164140. [PMID: 27711182 PMCID: PMC5053492 DOI: 10.1371/journal.pone.0164140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/20/2016] [Indexed: 11/18/2022] Open
Abstract
MiRNAs function in post-transcriptional regulation of gene expression and play very important roles in plant development. Lonicera japonica is one of the important medicinal plants in China. However, few studies on the discovery of conserved and novel miRNAs from L. japonica were reported. In this study, we employed deep sequencing technology to identify miRNAs in leaf and flower tissues of L. japonica. A total of 22.97 million clean reads from flower and leaf tissues were obtained, which generated 146 conserved miRNAs distributed in 20 families and 110 novel miRNAs. Accordingly, 72 differentially expressed miRNAs (P≤0.001) between leaves and flowers and their potential target genes were identified and validated. The qRT-PCR validation showed that majority of the differentially expressed miRNAs showed significant tissue-specific expression in L. japonica. Furthermore, the miRNA-mRNA and mRNA-mRNA regulatory networks were constructed using Cytoscape software. Taken together, this study identified a large number of miRNAs and target genes in L. japonica, which not only provides the first global miRNA expression profiles, but also sheds light on functional genomics research on L. japonica in the future.
Collapse
Affiliation(s)
- Heng Xia
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Libin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Gang Wu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chunhua Fu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China
| | - Jianping Gan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China
| | - Yanhong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Longjiang Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
21
|
Golubov A, Byeon B, Woycicki R, Laing C, Gannon V, Kovalchuk I. Transcriptomic profiling of Arabidopsis thaliana plants exposed to the human pathogen Escherichia coli O157-H7. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Miao L, Zhang L, Raboanatahiry N, Lu G, Zhang X, Xiang J, Gan J, Fu C, Li M. Transcriptome Analysis of Stem and Globally Comparison with Other Tissues in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1403. [PMID: 27708656 PMCID: PMC5030298 DOI: 10.3389/fpls.2016.01403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/02/2016] [Indexed: 05/25/2023]
Abstract
Brassica napus is one of the most important oilseed crops in the world. However, there is currently no enough stem transcriptome information and comparative transcriptome analysis of different tissues, which impedes further functional genomics research on B. napus. In this study, the stem transcriptome of B. napus was characterized by RNA-seq technology. Approximately 13.4 Gb high-quality clean reads with an average length of 100 bp were generated and used for comparative transcriptome analysis with the existing transcriptome sequencing data of roots, leaves, flower buds, and immature embryos of B. napus. All the transcripts were annotated against GO and KEGG databases. The common genes in five tissues, differentially expressed genes (DEGs) of the common genes between stems and other tissues, and tissue-specific genes were detected, and the main biochemical activities and pathways implying the common genes, DEGs and tissue-specific genes were investigated. Accordingly, the common transcription factors (TFs) in the five tissues and tissue-specific TFs were identified, and a TFs-based regulation network between TFs and the target genes involved in 'Phenylpropanoid biosynthesis' pathway were constructed to show several important TFs and key nodes in the regulation process. Collectively, this study not only provided an available stem transcriptome resource in B. napus, but also revealed valuable comparative transcriptome information of five tissues of B. napus for future investigation on specific processes, functions and pathways.
Collapse
Affiliation(s)
- Liyun Miao
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Libin Zhang
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Nadia Raboanatahiry
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Guangyuan Lu
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Xuekun Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Jun Xiang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Jianping Gan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Chunhua Fu
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| |
Collapse
|
23
|
Komenda J, Sobotka R. Cyanobacterial high-light-inducible proteins — Protectors of chlorophyll–protein synthesis and assembly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:288-95. [DOI: 10.1016/j.bbabio.2015.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 12/24/2022]
|
24
|
Lohscheider JN, Rojas-Stütz MC, Rothbart M, Andersson U, Funck D, Mendgen K, Grimm B, Adamska I. Altered levels of LIL3 isoforms in Arabidopsis lead to disturbed pigment-protein assembly and chlorophyll synthesis, chlorotic phenotype and impaired photosynthetic performance. PLANT, CELL & ENVIRONMENT 2015; 38:2115-27. [PMID: 25808681 DOI: 10.1111/pce.12540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/04/2015] [Indexed: 05/10/2023]
Abstract
Light-harvesting complex (LHC)-like (LIL) proteins contain two transmembrane helices of which the first bears a chlorophyll (Chl)-binding motif. They are widespread in photosynthetic organisms, but almost nothing is known about their expression and physiological functions. We show that two LIL3 paralogues (LIL3:1 and LIL3:2) in Arabidopsis thaliana are expressed in photosynthetically active tissues and their expression is differentially influenced by light stress. Localization studies demonstrate that both isoforms are associated with subcomplexes of LHC antenna of photosystem II. Transgenic plants with reduced amounts of LIL3:1 exhibited a slightly impaired growth and have reduced Chl and carotenoid contents as compared to wild-type plants. Ectopic overexpression of either paralogue led to a developmentally regulated switch to co-suppression of both LIL3 isoforms, resulting in a circular chlorosis of the leaf rosettes. Chlorotic sectors show severely diminished levels of LIL3 isoforms and other proteins, and thylakoid morphology was changed. Additionally, the levels of enzymes involved in Chl biosynthesis are altered in lil3 mutant plants. Our data support a role of LIL3 paralogues in the regulation of Chl biosynthesis under light stress and under standard growth conditions as well as in a coordinated ligation of newly synthesized and/or rescued Chl molecules to their target apoproteins.
Collapse
Affiliation(s)
- Jens N Lohscheider
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
- Department of Plant Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Marc C Rojas-Stütz
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Maxi Rothbart
- Pflanzenphysiologie, Humboldt-Universität zu Berlin, DE-10115, Berlin, Germany
| | - Ulrica Andersson
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Dietmar Funck
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Kurt Mendgen
- Phytopathologie, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Bernhard Grimm
- Pflanzenphysiologie, Humboldt-Universität zu Berlin, DE-10115, Berlin, Germany
| | - Iwona Adamska
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
| |
Collapse
|
25
|
Mork-Jansson AE, Gargano D, Kmiec K, Furnes C, Shevela D, Eichacker LA. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana. FEBS Lett 2015; 589:3064-70. [PMID: 26320415 DOI: 10.1016/j.febslet.2015.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 11/15/2022]
Abstract
The two-helix light harvesting like (Lil) protein Lil3 belongs to the family of chlorophyll binding light harvesting proteins of photosynthetic membranes. A function in tetrapyrrol synthesis and stabilization of geranylgeraniol reductase has been shown. Lil proteins contain the chlorophyll a/b-binding motif; however, binding of chlorophyll has not been demonstrated. We find that Lil3.2 from Arabidopsis thaliana forms heterodimers with Lil3.1 and binds chlorophyll. Lil3.2 heterodimerization (25±7.8 nM) is favored relative to homodimerization (431±59 nM). Interaction of Lil3.2 with chlorophyll a (231±49 nM) suggests that heterodimerization precedes binding of chlorophyll in Arabidopsis thaliana.
Collapse
Affiliation(s)
| | - Daniela Gargano
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Karol Kmiec
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Clemens Furnes
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Dmitriy Shevela
- Center for Organelle Research, University of Stavanger, Stavanger, Norway; Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Sweden
| | | |
Collapse
|
26
|
Park S, Lee Y, Lee JH, Jin E. Expression of the high light-inducible Dunaliella LIP promoter in Chlamydomonas reinhardtii. PLANTA 2013; 238:1147-56. [PMID: 24043576 DOI: 10.1007/s00425-013-1955-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/28/2013] [Indexed: 05/24/2023]
Abstract
The development of highly inducible promoters is critical for designing effective transformation systems for transgenic analyses. In this study, we investigated the promoter of the light-inducible protein gene (LIP) of the marine alga Dunaliella sp. LIPs are homologs of the early light-induced proteins (ELIPs) of Arabidopsis thaliana. DNA sequence analysis revealed that the LIP promoter contains several light-responsive motifs. Constructs containing progressive truncations of the LIP promoter fused with a Renilla luciferase gene were introduced into Chlamydomonas reinhardtii to identify the light-responsive region in the promoter. Transcription from the LIP promoter was stimulated by high light (HL) in a light intensity-dependent manner. In contrast, oxidative stress induced by chemicals had little effect on the LIP promoter, which implies that the LIP promoter is exclusively induced by high light. Truncation of the promoter to a -100 base pair (bp) region abrogated light inducibility, which suggests the presence of a negative cis-regulatory element upstream of the -100 bp fragment. The LIP promoter can be utilized in transgenic research to specifically select and propagate transgenic microalgae under high-light conditions.
Collapse
Affiliation(s)
- Seunghye Park
- Department of Life Science, Hanyang University, Seoul, South Korea
| | - Yew Lee
- Department of Life Science, Hanyang University, Seoul, South Korea
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul, South Korea.
| |
Collapse
|
27
|
Takahashi K, Takabayashi A, Tanaka A, Tanaka R. Functional analysis of light-harvesting-like protein 3 (LIL3) and its light-harvesting chlorophyll-binding motif in Arabidopsis. J Biol Chem 2013; 289:987-99. [PMID: 24275650 DOI: 10.1074/jbc.m113.525428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The light-harvesting complex (LHC) constitutes the major light-harvesting antenna of photosynthetic eukaryotes. LHC contains a characteristic sequence motif, termed LHC motif, consisting of 25-30 mostly hydrophobic amino acids. This motif is shared by a number of transmembrane proteins from oxygenic photoautotrophs that are termed light-harvesting-like (LIL) proteins. To gain insights into the functions of LIL proteins and their LHC motifs, we functionally characterized a plant LIL protein, LIL3. This protein has been shown previously to stabilize geranylgeranyl reductase (GGR), a key enzyme in phytol biosynthesis. It is hypothesized that LIL3 functions to anchor GGR to membranes. First, we conjugated the transmembrane domain of LIL3 or that of ascorbate peroxidase to GGR and expressed these chimeric proteins in an Arabidopsis mutant lacking LIL3 protein. As a result, the transgenic plants restored phytol-synthesizing activity. These results indicate that GGR is active as long as it is anchored to membranes, even in the absence of LIL3. Subsequently, we addressed the question why the LHC motif is conserved in the LIL3 sequences. We modified the transmembrane domain of LIL3, which contains the LHC motif, by substituting its conserved amino acids (Glu-171, Asn-174, and Asp-189) with alanine. As a result, the Arabidopsis transgenic plants partly recovered the phytol-biosynthesizing activity. However, in these transgenic plants, the LIL3-GGR complexes were partially dissociated. Collectively, these results indicate that the LHC motif of LIL3 is involved in the complex formation of LIL3 and GGR, which might contribute to the GGR reaction.
Collapse
Affiliation(s)
- Kaori Takahashi
- From the Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan and
| | | | | | | |
Collapse
|
28
|
Rodríguez VM, Velasco P, Garrido JL, Revilla P, Ordás A, Butrón A. Genetic regulation of cold-induced albinism in the maize inbred line A661. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3657-67. [PMID: 23881393 PMCID: PMC3745721 DOI: 10.1093/jxb/ert189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In spite of multiple studies elucidating the regulatory pathways controlling chlorophyll biosynthesis and photosynthetic activity, little is known about the molecular mechanism regulating cold-induced chlorosis in higher plants. Herein the characterization of the maize inbred line A661 which shows a cold-induced albino phenotype is reported. The data show that exposure of seedlings to low temperatures during early leaf biogenesis led to chlorophyll losses in this inbred. A661 shows a high plasticity, recovering resting levels of photosynthesis activity when exposed to optimal temperatures. Biochemical and transcriptome data indicate that at suboptimal temperatures chlorophyll could not be fully accommodated in the photosynthetic antenna in A661, remaining free in the chloroplast. The accumulation of free chlorophyll activates the expression of an early light inducible protein (elip) gene which binds chlorophyll to avoid cross-reactions that could lead to the generation of harmful reactive oxygen species. Higher levels of the elip transcript were observed in plants showing a cold-induced albino phenotype. Forward genetic analysis reveals that a gene located on the short arm of chromosome 2 regulates this protective mechanism.
Collapse
Affiliation(s)
- Víctor M Rodríguez
- Misión Biológica de Galicia (MBG-CSIC), Apartado 28, E-36080 Pontevedra, Spain.
| | | | | | | | | | | |
Collapse
|
29
|
Nymark M, Valle KC, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM, Brembu T. Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum. PLoS One 2013; 8:e58722. [PMID: 23520530 PMCID: PMC3592843 DOI: 10.1371/journal.pone.0058722] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/05/2013] [Indexed: 01/04/2023] Open
Abstract
Photosynthetic diatoms that live suspended throughout the water column will constantly be swept up and down by vertical mixing. When returned to the photic zone after experiencing longer periods in darkness, mechanisms exist that enable the diatoms both to survive sudden light exposure and immediately utilize the available energy in photosynthesis and growth. We have investigated both the response to prolonged darkness and the re-acclimation to moderate intensity white irradiance (E = 100 µmol m−2 s−1) in the diatom Phaeodactylum tricornutum, using an integrated approach involving global transcriptional profiling, pigment analyses, imaging and photo-physiological measurements. The responses were studied during continuous white light, after 48 h of dark treatment and after 0.5 h, 6 h, and 24 h of re-exposure to the initial irradiance. The analyses resulted in several intriguing findings. Dark treatment of the cells led to 1) significantly decreased nuclear transcriptional activity, 2) distinct intracellular changes, 3) fixed ratios of the light-harvesting pigments despite a decrease in the total cell pigment pool, and 4) only a minor drop in photosynthetic efficiency (ΦPSII_max). Re-introduction of the cells to the initial light conditions revealed 5) distinct expression profiles for nuclear genes involved in photosynthesis and those involved in photoprotection, 6) rapid rise in photosynthetic parameters (α and rETRmax) within 0.5 h of re-exposure to light despite a very modest de novo synthesis of photosynthetic compounds, and 7) increasingly efficient resonance energy transfer from fucoxanthin chlorophyll a/c-binding protein complexes to photosystem II reaction centers during the first 0.5 h, supporting the observations stated in 6). In summary, the results show that despite extensive transcriptional, metabolic and intracellular changes, the ability of cells to perform photosynthesis was kept intact during the length of the experiment. We conclude that P. tricornutum maintains a functional photosynthetic apparatus during dark periods that enables prompt recovery upon re-illumination.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristin C. Valle
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kasper Hancke
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjersti Andresen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Johnsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail: (TB); (AB)
| | - Tore Brembu
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail: (TB); (AB)
| |
Collapse
|
30
|
Fan J, Cui Y, Huang J, Wang W, Yin W, Hu Z, Li Y. Suppression subtractive hybridization reveals transcript profiling of Chlorella under heterotrophy to photoautotrophy transition. PLoS One 2012; 7:e50414. [PMID: 23209737 PMCID: PMC3510161 DOI: 10.1371/journal.pone.0050414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/19/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Microalgae have been extensively investigated and exploited because of their competitive nutritive bioproducts and biofuel production ability. Chlorella are green algae that can grow well heterotrophically and photoautotrophically. Previous studies proved that shifting from heterotrophy to photoautotrophy in light-induced environments causes photooxidative damage as well as distinct physiologic features that lead to dynamic changes in Chlorella intracellular components, which have great potential in algal health food and biofuel production. However, the molecular mechanisms underlying the trophic transition remain unclear. METHODOLOGY/PRINCIPAL FINDINGS In this study, suppression subtractive hybridization strategy was employed to screen and characterize genes that are differentially expressed in response to the light-induced shift from heterotrophy to photoautotrophy. Expressed sequence tags (ESTs) were obtained from 770 and 803 randomly selected clones among the forward and reverse libraries, respectively. Sequence analysis identified 544 unique genes in the two libraries. The functional annotation of the assembled unigenes demonstrated that 164 (63.1%) from the forward library and 62 (21.8%) from the reverse showed significant similarities with the sequences in the NCBI non-redundant database. The time-course expression patterns of 38 selected differentially expressed genes further confirmed their responsiveness to a diverse trophic status. The majority of the genes enriched in the subtracted libraries were associated with energy metabolism, amino acid metabolism, protein synthesis, carbohydrate metabolism, and stress defense. CONCLUSIONS/SIGNIFICANCE The data presented here offer the first insights into the molecular foundation underlying the diverse microalgal trophic niche. In addition, the results can be used as a reference for unraveling candidate genes associated with the transition of Chlorella from heterotrophy to photoautotrophy, which holds great potential for further improving its lipid and nutrient production.
Collapse
Affiliation(s)
- Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yanbin Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jianke Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Weiliang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Weibo Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail: (YL); (ZH)
| | - Yuanguang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- * E-mail: (YL); (ZH)
| |
Collapse
|
31
|
Ruckle ME, Burgoon LD, Lawrence LA, Sinkler CA, Larkin RM. Plastids are major regulators of light signaling in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:366-90. [PMID: 22383539 PMCID: PMC3375971 DOI: 10.1104/pp.112.193599] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/29/2012] [Indexed: 05/20/2023]
Abstract
We previously provided evidence that plastid signaling regulates the downstream components of a light signaling network and that this signal integration coordinates chloroplast biogenesis with both the light environment and development by regulating gene expression. We tested these ideas by analyzing light- and plastid-regulated transcriptomes in Arabidopsis (Arabidopsis thaliana). We found that the enrichment of Gene Ontology terms in these transcriptomes is consistent with the integration of light and plastid signaling (1) down-regulating photosynthesis and inducing both repair and stress tolerance in dysfunctional chloroplasts and (2) helping coordinate processes such as growth, the circadian rhythm, and stress responses with the degree of chloroplast function. We then tested whether factors that contribute to this signal integration are also regulated by light and plastid signals by characterizing T-DNA insertion alleles of genes that are regulated by light and plastid signaling and that encode proteins that are annotated as contributing to signaling, transcription, or no known function. We found that a high proportion of these mutant alleles induce chloroplast biogenesis during deetiolation. We quantified the expression of four photosynthesis-related genes in seven of these enhanced deetiolation (end) mutants and found that photosynthesis-related gene expression is attenuated. This attenuation is particularly striking for Photosystem II subunit S expression. We conclude that the integration of light and plastid signaling regulates a number of END genes that help optimize chloroplast function and that at least some END genes affect photosynthesis-related gene expression.
Collapse
Affiliation(s)
| | | | | | | | - Robert M. Larkin
- Michigan State University-Department of Energy Plant Research Laboratory (M.E.R., L.A.L., C.A.S., R.M.L.), Department of Biochemistry and Molecular Biology (M.E.R., L.D.B., R.M.L.), and Gene Expression in Development and Disease Initiative (L.D.B.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
32
|
Light Stress Proteins in Viruses, Cyanobacteria and Photosynthetic Eukaryota. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
33
|
The Extended Light-Harvesting Complex (LHC) Protein Superfamily: Classification and Evolutionary Dynamics. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
34
|
|
35
|
Ballottari M, Girardon J, Dall'osto L, Bassi R. Evolution and functional properties of photosystem II light harvesting complexes in eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:143-57. [PMID: 21704018 DOI: 10.1016/j.bbabio.2011.06.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 11/28/2022]
Abstract
Photoautotrophic organisms, the major agent of inorganic carbon fixation into biomass, convert light energy into chemical energy. The first step of photosynthesis consists of the absorption of solar energy by pigments binding protein complexes named photosystems. Within photosystems, a family of proteins called Light Harvesting Complexes (LHC), responsible for light harvesting and energy transfer to reaction centers, has evolved along with eukaryotic organisms. Besides light absorption, these proteins catalyze photoprotective reactions which allowed functioning of oxygenic photosynthetic machinery in the increasingly oxidant environment. In this work we review current knowledge of LHC proteins serving Photosystem II. Balance between light harvesting and photoprotection is critical in Photosystem II, due to the lower quantum efficiency as compared to Photosystem I. In particular, we focus on the role of each antenna complex in light harvesting, energy transfer, scavenging of reactive oxygen species, chlorophyll triplet quenching and thermal dissipation of excess energy. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Ca' Vignal 1, Strada le Grazie 15, I-37134 Verona, Italy
| | | | | | | |
Collapse
|
36
|
The small CAB-like proteins of the cyanobacterium Synechocystis sp. PCC 6803: their involvement in chlorophyll biogenesis for Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1143-51. [PMID: 21605542 DOI: 10.1016/j.bbabio.2011.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 11/23/2022]
Abstract
The five small CAB-like proteins (ScpA-E) of the cyanobacterium Synechocystis sp. PCC 6803 belong to the family of stress-induced light-harvesting-like proteins, but are constitutively expressed in a mutant deficient of Photosystem I (PSI). Using absorption, fluorescence and thermoluminescence measurements this PSI-less strain was compared with a mutant, in which all SCPs were additionally deleted. Depletion of SCPs led to structural rearrangements in Photosystem II (PSII): less photosystems were assembled; and in these, the Q(B) site was modified. Despite the lower amount of PSII, the SCP-deficient cells contained the same amount of phycobilisomes (PBS) as the control. Although the excess PBS were functionally disconnected, their fluorescence was quenched under high irradiance by the activated Orange Carotenoid Protein (OCP). Additionally the amount of OCP, but not of the iron-stress induced protein (isiA), was higher in this SCP-depleted mutant compared with the control. As previously described, the lack of SCPs affects the chlorophyll biosynthesis (Vavilin, D., Brune, D. C., Vermaas, W. (2005) Biochim Biophys Acta 1708, 91-101). We demonstrate that chlorophyll synthesis is required for efficient PSII repair and that it is partly impaired in the absence of SCPs. At the same time, the amount of chlorophyll also seems to influence the expression of ScpC and ScpD.
Collapse
|
37
|
Neilson JAD, Durnford DG. Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. PHOTOSYNTHESIS RESEARCH 2010; 106:57-71. [PMID: 20596891 DOI: 10.1007/s11120-010-9576-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/16/2010] [Indexed: 05/25/2023]
Abstract
Eukaryotes acquired photosynthetic metabolism over a billion years ago, and during that time the light-harvesting antennae have undergone significant structural and functional divergence. The antenna systems are generally used to harvest and transfer excitation energy into the reaction centers to drive photosynthesis, but also have the dual role of energy dissipation. Phycobilisomes formed the first antenna system in oxygenic photoautotrophs, and this soluble protein complex continues to be the dominant antenna in extant cyanobacteria, glaucophytes, and red algae. However, phycobilisomes were lost multiple times during eukaryotic evolution in favor of a thylakoid membrane-integral light-harvesting complex (LHC) antenna system found in the majority of eukaryotic taxa. While photosynthesis spread across different eukaryotic kingdoms via endosymbiosis, the antenna systems underwent extensive modification as photosynthetic groups optimized their light-harvesting capacity and ability to acclimate to changing environmental conditions. This review discusses the different classes of LHCs within photosynthetic eukaryotes and examines LHC diversification in different groups in a structural and functional context.
Collapse
Affiliation(s)
- Jonathan A D Neilson
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | | |
Collapse
|
38
|
LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. Proc Natl Acad Sci U S A 2010; 107:16721-5. [PMID: 20823244 DOI: 10.1073/pnas.1004699107] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The light-harvesting chlorophyll-binding (LHC) proteins are major constituents of eukaryotic photosynthetic machinery. In plants, six different groups of proteins, LHC-like proteins, share a conserved motif with LHC. Although the evolution of LHC and LHC-like proteins is proposed to be a key for the diversification of modern photosynthetic eukaryotes, our knowledge of the evolution and functions of LHC-like proteins is still limited. In this study, we aimed to understand specifically the function of one type of LHC-like proteins, LIL3 proteins, by analyzing Arabidopsis mutants lacking them. The Arabidopsis genome contains two gene copies for LIL3, LIL3:1 and LIL3:2. In the lil3:1/lil3:2 double mutant, the majority of chlorophyll molecules are conjugated with an unsaturated geranylgeraniol side chain. This mutant is also deficient in α-tocopherol. These results indicate that reduction of both the geranylgeraniol side chain of chlorophyll and geranylgeranyl pyrophosphate, which is also an essential intermediate of tocopherol biosynthesis, is compromised in the lil3 mutants. We found that the content of geranylgeranyl reductase responsible for these reactions was severely reduced in the lil3 double mutant, whereas the mRNA level for this enzyme was not significantly changed. We demonstrated an interaction of geranylgeranyl reductase with both LIL3 isoforms by using a split ubiquitin assay, bimolecular fluorescence complementation, and combined blue-native and SDS polyacrylamide gel electrophoresis. We propose that LIL3 is functionally involved in chlorophyll and tocopherol biosynthesis by stabilizing geranylgeranyl reductase.
Collapse
|
39
|
Engelken J, Brinkmann H, Adamska I. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evol Biol 2010; 10:233. [PMID: 20673336 PMCID: PMC3020630 DOI: 10.1186/1471-2148-10-233] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/30/2010] [Indexed: 11/26/2022] Open
Abstract
Background The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants, red algae, glaucophytes and in diatoms with complex plastids, could represent an important and previously missing link in the evolution of the extended LHC protein superfamily.
Collapse
|
40
|
Heddad M, Adamska I. The evolution of light stress proteins in photosynthetic organisms. Comp Funct Genomics 2010; 3:504-10. [PMID: 18629257 PMCID: PMC2448420 DOI: 10.1002/cfg.221] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2002] [Accepted: 10/14/2002] [Indexed: 11/10/2022] Open
Abstract
The Elip (early light-inducible protein) family in pro- and eukaryotic photosynthetic organisms consists of more than 100 different stress proteins. These proteins
accumulate in photosynthetic membranes in response to light stress and have
photoprotective functions. At the amino acid level, members of the Elip family are
closely related to light-harvesting chlorophyll a/b-binding (Cab) antenna proteins
of photosystem I and II, present in higher plants and some algae. Based on their
predicted secondary structure, members of the Elip family are divided into three
groups: (a) one-helix Hlips (high light-induced proteins), also called Scps (small
Cab-like proteins) or Ohps (one-helix proteins); (b) two-helix Seps (stress-enhanced
proteins); and (c) three-helix Elips and related proteins. Despite having different
physiological functions it is believed that eukaryotic three-helix Cab proteins evolved
from the prokaryotic Hlips through a series of duplications and fusions. In this
review we analyse the occurrence of Elip family members in various photosynthetic
prokaryotic and eukaryotic organisms and discuss their evolutionary relationship
with Cab proteins.
Collapse
Affiliation(s)
- Mounia Heddad
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm S-10691, Sweden
| | | |
Collapse
|
41
|
Bonente G, Passarini F, Cazzaniga S, Mancone C, Buia MC, Tripodi M, Bassi R, Caffarri S. The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching. Photochem Photobiol 2009; 84:1359-70. [PMID: 19067957 DOI: 10.1111/j.1751-1097.2008.00456.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To avoid photodamage, photosynthetic organisms have developed mechanisms to evade or dissipate excess energy. Lumen overacidification caused by light-induced electron transport triggers quenching of excited chlorophylls and dissipation of excess energy into heat. In higher plants participation of the PsbS protein as the sensor of low lumenal pH was clearly demonstrated. Although light-dependent energy quenching is a property of all photosynthetic organisms, large differences in amplitude and kinetics can be observed thus raising the question whether a single common mechanism is in action. We performed a detailed study of PsbS expression/accumulation in Chlamydomonas reinhardtii and investigated its accumulation in other algae and plants. We showed that PsbS cannot be detected in Chlamydomonas under a wide range of growth conditions. Overexpression of the endogenous psbs gene showed that the corresponding protein could not be addressed to the thylakoid membranes. Survey of different unicellular green algae showed no accumulation of anti-PsbS reactive proteins differently from multicellular species. Nevertheless, some unicellular species exhibit high energy quenching activity, suggesting that a PsbS-independent mechanism is activated. By correlating growth habitat and PsbS accumulation in different species, we suggest that during the evolution the light environment has been a determinant factor for the conservation/loss of the PsbS function.
Collapse
Affiliation(s)
- Giulia Bonente
- Laboratoire de Génétique et Biophysique des Plantes, UMR6191 CEA CNRS Université Aix-Marseille II, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Storm P, Hernandez-Prieto MA, Eggink LL, Hoober JK, Funk C. The small CAB-like proteins of Synechocystis sp. PCC 6803 bind chlorophyll. In vitro pigment reconstitution studies on one-helix light-harvesting-like proteins. PHOTOSYNTHESIS RESEARCH 2008; 98:479-488. [PMID: 18836846 DOI: 10.1007/s11120-008-9368-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 09/15/2008] [Indexed: 05/26/2023]
Abstract
The large family of light-harvesting-like proteins contains members with one to four membrane spanning helices with significant homology to the chlorophyll a/b-binding antenna proteins of plants. From structural as well as evolutionary perspective, it is likely that the members of this family bind chlorophylls and carotenoids. However, undisputable evidence is still lacking. The cyanobacterial small CAB-like proteins (SCPs) are one-helix proteins with compelling similarity to the first and third transmembrane helix of LHCII (LHCIIb) including the chlorophyll-binding motifs. They have been proposed to act as chlorophyll-carrier proteins. Here, we analyze the in vivo absorption spectra of single scp deletion mutants in Synechocystis sp. PCC 6803 and compare the in vitro pigment binding ability of the SCP pairs ScpC/D and ScpB/E with the one of LHCII and a synthetic peptide containing the chlorophyll-binding motif (Eggink LL, Hoober JK (2000) J Biol Chem 275:9087-9090). We demonstrate that deletion of scpB alters the pigmentation in the cyanobacterial cell. Furthermore, we are able to show that chlorophylls and carotenoids interact in vitro with the pairs of ScpC/D and ScpB/E, demonstrated by fluorescence resonance energy transfer and circular dichroism.
Collapse
Affiliation(s)
- Patrik Storm
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
43
|
Masuda T, Fujita Y. Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 2008; 7:1131-49. [PMID: 18846277 DOI: 10.1039/b807210h] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorophylls are the most abundant tetrapyrrole molecules essential for photosynthesis in photosynthetic organisms. After many years of intensive research, most of the genes encoding the enzymes for the pathway have been identified, and recently the underlying molecular mechanisms have been elucidated. These studies revealed that the regulation of chlorophyll metabolism includes all levels of control to allow a balanced metabolic flow in response to external and endogenous factors and to ensure adaptation to varying needs of chlorophyll during plant development. Furthermore, identification of biosynthetic genes from various organisms and genetic analysis of functions of identified genes enables us to predict the evolutionary scenario of chlorophyll metabolism. In this review, based on recent findings, we discuss the regulation and evolution of chlorophyll metabolism.
Collapse
Affiliation(s)
- Tatsuru Masuda
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan.
| | | |
Collapse
|
44
|
Wang Q, Jantaro S, Lu B, Majeed W, Bailey M, He Q. The high light-inducible polypeptides stabilize trimeric photosystem I complex under high light conditions in Synechocystis PCC 6803. PLANT PHYSIOLOGY 2008; 147:1239-50. [PMID: 18502976 PMCID: PMC2442545 DOI: 10.1104/pp.108.121087] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 05/19/2008] [Indexed: 05/21/2023]
Abstract
The high light-inducible polypeptides (HLIPs) are critical for survival under high light (HL) conditions in Synechocystis PCC 6803. In this article, we determined the localization of all four HLIPs in thylakoid protein complexes and examined effects of hli gene deletion on the photosynthetic protein complexes. The HliA and HliB proteins were found to be associated with trimeric photosystem I (PSI) complexes and the Slr1128 protein, whereas HliC was associated with PsaL and TMP14. The HliD was associated with partially dissociated PSI complexes. The PSI activities of the hli mutants were 3- to 4-fold lower than that of the wild type. The hli single mutants lost more than 30% of the PSI trimers after they were incubated in intermediate HL for 12 h. The reduction of PSI trimers were further augmented in these cells by the increase of light intensity. The quadruple hli deletion mutant contained less than one-half of PSI trimers following 12-h incubation in intermediate HL. It lost essentially all of the PSI trimers upon exposure to HL for 12 h. Furthermore, a mutant lacking both PSI trimers and Slr1128 showed growth defects similar to that of the quadruple hli deletion mutant under different light conditions. These results suggest that the HLIPs stabilize PSI trimers, interact with Slr1128, and protect cells under HL conditions.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Applied Science, University of Arkansas, Little Rock, Arkansas 72204, USA
| | | | | | | | | | | |
Collapse
|
45
|
Alós E, Roca M, Iglesias DJ, Mínguez-Mosquera MI, Damasceno CMB, Thannhauser TW, Rose JKC, Talón M, Cercós M. An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. PLANT PHYSIOLOGY 2008; 147:1300-15. [PMID: 18467459 PMCID: PMC2442528 DOI: 10.1104/pp.108.119917] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/05/2008] [Indexed: 05/20/2023]
Abstract
A Citrus sinensis spontaneous mutant, navel negra (nan), produces fruit with an abnormal brown-colored flavedo during ripening. Analysis of pigment composition in the wild-type and nan flavedo suggested that typical ripening-related chlorophyll (Chl) degradation, but not carotenoid biosynthesis, was impaired in the mutant, identifying nan as a type C stay-green mutant. nan exhibited normal expression of Chl biosynthetic and catabolic genes and chlorophyllase activity but no accumulation of dephytylated Chl compounds during ripening, suggesting that the mutation is not related to a lesion in any of the principal enzymatic steps in Chl catabolism. Transcript profiling using a citrus microarray indicated that a citrus ortholog of a number of SGR (for STAY-GREEN) genes was expressed at substantially lower levels in nan, both prior to and during ripening. However, the pattern of catabolite accumulation and SGR sequence analysis suggested that the nan mutation is distinct from those in previously described stay-green mutants and is associated with an upstream regulatory step, rather than directly influencing a specific component of Chl catabolism. Transcriptomic and comparative proteomic profiling further indicated that the nan mutation resulted in the suppressed expression of numerous photosynthesis-related genes and in the induction of genes that are associated with oxidative stress. These data, along with metabolite analyses, suggest that nan fruit employ a number of molecular mechanisms to compensate for the elevated Chl levels and associated photooxidative stress.
Collapse
Affiliation(s)
- Enriqueta Alós
- Instituto Valenciano de Investigaciones Agrarias, Centro de Genómica, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation. PLoS One 2008; 3:e2033. [PMID: 18446222 PMCID: PMC2323573 DOI: 10.1371/journal.pone.0002033] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 03/09/2008] [Indexed: 12/17/2022] Open
Abstract
Background In eukaryotes the photosynthetic antenna system is composed of subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. The moss Physcomitrella patens is a member of a lineage that diverged from seed plants early after land colonization and therefore by studying this organism, we may gain insight into adaptations to the aerial environment. Principal Findings In this study, we characterized the antenna protein multigene family in Physcomitrella patens, by sequence analysis as well as biochemical and functional investigations. Sequence identification and analysis showed that some antenna polypeptides, such as Lhcb3 and Lhcb6, are present only in land organisms, suggesting they play a role in adaptation to the sub-aerial environment. Our functional analysis which showed that photo-protective mechanisms in Physcomitrella patens are very similar to those in seed plants fits with this hypothesis. In particular, Physcomitrella patens also activates Non Photochemical Quenching upon illumination, consistent with the detection of an ortholog of the PsbS protein. As a further adaptation to terrestrial conditions, the content of Photosystem I low energy absorbing chlorophylls also increased, as demonstrated by differences in Lhca3 and Lhca4 polypeptide sequences, in vitro reconstitution experiments and low temperature fluorescence spectra. Conclusions This study highlights the role of Lhc family members in environmental adaptation and allowed proteins associated with mechanisms of stress resistance to be identified within this large family.
Collapse
|
47
|
Gao C, Wang Y, Liu G, Yang C, Jiang J, Li H. Expression profiling of salinity-alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispid. PLANT MOLECULAR BIOLOGY 2008; 66:245-58. [PMID: 18058243 DOI: 10.1007/s11103-007-9266-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 11/14/2007] [Indexed: 05/08/2023]
Abstract
Tamarix hispida, a woody halophyte, thrives in saline and saline-alkali soil. To better understand the gene expression profiles that manifest in response to saline-alkali stress, three cDNA libraries were constructed from leaf tissue of T. hispida plants that were well watered and exposed to NaHCO3 for 24 and 52 h. A total of 9,447 high quality expressed sequence tags (ESTs) were obtained from the three libraries. These ESTs represent 3,945 unigenes, including 986 contigs and 2,959 singlets. The numbers of unigenes obtained from the three libraries were 1,752, 1,558 and 1,675, respectively. The EST analysis was performed to compare gene expression in the three cDNA libraries; the transcripts responsive to NaHCO3 were identified. The differentially expressed transcripts were identified. The up-regulation genes were involved in a variety function areas, such as stress-related proteins, hormone signaling transduction, antioxidative response, transcriptional regulators, protein synthesis and destination, ion homeostasis, photosynthesis and metabolism. The results indicated that the response to NaHCO3 in T. hispida is a complex one, involving multiple physiological and metabolic pathways. Nine gene expression patterns were compared in response to NaHCO3 and NaCl using real time reverse transcription-polymerase chain reaction (RT-PCR). Gene expression trends were similar after a 24-h exposure to either NaCl or NaHCO3, however, great variability was found after a 52-h exposure, indicating that short-term responses to either salt may not be obviously different.
Collapse
Affiliation(s)
- Caiqiu Gao
- Heilongjiang Key Laboratory of Forest Tree Genetics and Breeding, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | | | | | | | | | | |
Collapse
|
48
|
Kufryk G, Hernandez-Prieto MA, Kieselbach T, Miranda H, Vermaas W, Funk C. Association of small CAB-like proteins (SCPs) of Synechocystis sp. PCC 6803 with Photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 95:135-45. [PMID: 17912610 DOI: 10.1007/s11120-007-9244-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/06/2007] [Indexed: 05/03/2023]
Abstract
The cyanobacterial small CAB-like proteins (SCPs) are one-helix proteins with compelling similarity to the first and third transmembrane helix of proteins belonging to the CAB family of light-harvesting complex proteins in plants. The SCP proteins are transiently expressed at high light intensity and other stress conditions but their exact function remains largely unknown. Recently we showed association of ScpD with light-stressed, monomeric Photosystem II in Synechocystis sp. PCC 6803 (Yao et al. J Biol Chem 282:267-276, 2007). Here we show that ScpB associates with Photosystem II at normal growth conditions. Moreover, upon introduction of a construct into Synechocystis so that ScpB is expressed continuously under normal growth conditions, ScpE was detected under non-stressed conditions as well, and was copurified with tagged ScpB and Photosystem II. We also report on a one-helix protein, Slr1544, that is somewhat similar to the SCPs and whose gene is cotranscribed with that of ScpD; Slr1544 is another member of the extended light-harvesting-like (Lil) protein family, and we propose to name it LilA.
Collapse
Affiliation(s)
- Galyna Kufryk
- Department of Chemistry, Umeå University, Umeå, 901 87, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Kilian O, Steunou AS, Grossman AR, Bhaya D. A novel two domain-fusion protein in cyanobacteria with similarity to the CAB/ELIP/HLIP superfamily: evolutionary implications and regulation. MOLECULAR PLANT 2008; 1:155-166. [PMID: 20031922 DOI: 10.1093/mp/ssm019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Vascular plants contain abundant, light-harvesting complexes in the thylakoid membrane that are non-covalently associated with chlorophylls and carotenoids. These light-harvesting chlorophyll a/b binding (LHC) proteins are members of an extended CAB/ELIP/HLIP superfamily of distantly related polypeptides, which have between one and four transmembrane helices (TMH). This superfamily includes the single TMH, high-light-inducible proteins (Hlips), found in cyanobacteria that are induced by various stress conditions, including high light, and are considered ancestral to the LHC proteins. The roles of, and evolutionary relationships between, these superfamily members are of particular interest, since they function in both light harvesting and photoprotection and may have evolved through tandem gene duplication and fusion events. We have investigated the Hlips (hli gene family) in the thermophilic unicellular cyanobacterium Synechococcus OS-B'. The five hli genes present on the genome of Synechococcus OS-B' are relatively similar, but transcript analyses indicate that there are different patterns of transcript accumulation when the cells are exposed to various growth conditions, suggesting that different Hlips may have specific functions. Hlip5 has an additional TMH at the N-terminus as a result of a novel fusion event. This additional TMH is very similar to a conserved hypothetical, single membrane-spanning polypeptide present in most cyanobacteria. The evolutionary significance of these results is discussed.
Collapse
Affiliation(s)
- Oliver Kilian
- Department of Plant Biology, The Carnegie Institution, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|