1
|
Vadlamani N, Ibrahimli S, Khan FA, Castillo JA, Amaravadi KSS, Nalisetty P, Khan S. Efficacy and Safety of Tetrabenazine in Reducing Chorea and Improving Motor Function in Individuals With Huntington's Disease: A Systematic Review. Cureus 2024; 16:e71476. [PMID: 39544557 PMCID: PMC11560395 DOI: 10.7759/cureus.71476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder that causes chorea and motor dysfunction due to a mutation in the Huntingtin (HTT) gene. Tetrabenazine (TBZ) is used to treat HD-related chorea, but its efficacy and safety require further investigation. This systematic review aims to assess the efficacy and safety of TBZ in reducing chorea and improving motor function in HD patients. A comprehensive search was conducted across multiple sources, including PubMed, PubMed Central, Cochrane Library, Wiley Library, and Google Scholar. Medical subject heading (MeSH) terms were used to enhance search precision. Narrative reviews, clinical practice guidelines, open-label trials, and observational studies were included. Data synthesis followed Cochrane's recommendations for narrative synthesis. Evidence from narrative reviews, clinical guidelines, and trials consistently supports TBZ's efficacy in reducing chorea and improving motor function in HD patients. However, potential side effects like sedation and depression have been noted. This review underscores TBZ's positive impact but emphasizes cautious consideration of associated risks, informing clinical management and further research directions.
Collapse
Affiliation(s)
- Nandini Vadlamani
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sabina Ibrahimli
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Farees Ahmad Khan
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jason A Castillo
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | | | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
2
|
Zhang Y, Ma Y, Wang Y, Zhang X, Zuo C, Shen L, Ding L. Lead-Free Perovskite Photodetectors: Progress, Challenges, and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006691. [PMID: 34028107 DOI: 10.1002/adma.202006691] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Indexed: 05/24/2023]
Abstract
State-of-the-art photodetectors which apply hybrid perovskite materials have emerged as powerful candidates for next-generation light sensing. Among them, lead-based ones are the most popular beyond doubt on account of their unique and superior optoelectronic properties. Nevertheless, trade-off toward commercialization exists between nontoxicity and high performance, with the poor stability of lead-based perovskites, indicating that it is indispensable to substitute lead with nontoxic element meanwhile bringing about a comparable figure of merit of photodetectors and relatively long-term stability. Herein, recent advances in lead-free perovskite photodetectors are reviewed, analyzing the principle while designing new materials and highlighting some remarkable progress, which are comparable, even superior, to lead-based photodetectors. Furthermore, their potential strategy in optical communication, image sensing, narrowband photodetection, etc., is examined and a perspective on developing new materials and photodetectors with superior properties for more practical applications is provided.
Collapse
Affiliation(s)
- Yiqi Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yao Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yaxi Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xindong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chuantian Zuo
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Liang Shen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
3
|
Gomboeva DE, Bragina EY, Nazarenko MS, Puzyrev VP. The Inverse Comorbidity between Oncological Diseases and Huntington’s Disease: Review of Epidemiological and Biological Evidence. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Mazurová Y. New Therapeutic Approaches for the Treatment of Huntington’s Disease. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2019.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The use of transplantation (TR) of fetal neural tissue as a therapeutic method started much later in patients suffering from Huntington’s disease (HD) than in those with Parkinson’s disease. The clinical trial, following a wide range of animal experiments (neurotoxic models and newly also transgenic mice), includes about 30 HD patients until now. Because of limited use of the human fetal tissue by ethical and technical concerns, there is necessity to search for the alternative sources for neural grafting. The first attempt with xenotransplantation (in 12 HD patients) and with TR of encapsulated genetically modified cells (in 6 HD patients) was performed, but no appreciable improvement of status in any of those patients was noted. Since no effective pharmacological treatment of HD is available, the TR of fetal neural tissue is now the only therapeutic approach which provides a reduction of symptoms in most of grafted patients. The possibilities are enormous offered by neural stem cells, optionally by embryonic stem cells, which could be expanded in cultures, cloned or genetically modified and then grafted into the patient’s brain. On the other hand, the neural progenitor and stem cells, normally present within the subependymal layer of the lateral brain ventricles also in adulthood, might be induced to become an endogenous source of glia and neurons participating in the brain’s repair.
Collapse
|
5
|
Wang Z, Wang Y, Wang Z, Zhao J, Gutkind JS, Srivatsan A, Zhang G, Liao HS, Fu X, Jin A, Tong X, Niu G, Chen X. Polymeric Nanovehicle Regulated Spatiotemporal Real-Time Imaging of the Differentiation Dynamics of Transplanted Neural Stem Cells after Traumatic Brain Injury. ACS NANO 2015; 9:6683-95. [PMID: 26020550 PMCID: PMC5238514 DOI: 10.1021/acsnano.5b00690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent advances in neural stem cell (NSC) transplantation have led to an inspiring progress in alleviating central nervous system (CNS) damages and restoring brain functions from diseases or injuries. One challenge of NSC transplantation is directed differentiation of transplanted NSCs into desired neuronal subtypes, such as neurons, to compensate the adverse impact of brain injury; another challenge lies in the lack of tools to noninvasively monitor the dynamics of NSC differentiation after transplantation in vivo. In this study, we developed a polymer nanovehicle for morphogen sustained release to overcome the drawbacks of conventional methods to realize the long-term directed NSC differentiation in vivo. Moreover, we constructed a bicistronic vector with a unique neuron specific gene tubb3 promoter to drive reporter gene expression for real-time imaging of NSC differentiation and migration. The developed uniform nanovehicle showed efficient NSC uptake and achieved a controlled release of morphogen in cytosol to consistently stimulate NSC differentiation into neurons at a sustainably effective concentration. The spatiotemporal imaging results showed a multiplexed migration, proliferation, differentiation, and apoptosis orchestra of transplanted NSCs regulated by nanovehicles in TBI mice. The imaging results also uncovered the peak time of NSC differentiation in vivo. Although we observed only a handful of NSCs ultimately migrated to the TBI area and differentiated into neurons, those neurons were functional, ameliorating the detrimental impact of TBI. The imaging findings enabled by the nanovehicle and the neuron specific bicistronic vector provide additional understanding of the in vivo behaviors of transplanted NSCs in neuronal regenerative medicine.
Collapse
Affiliation(s)
- Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yu Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhiyong Wang
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jun Zhao
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Avinash Srivatsan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Guofeng Zhang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hsien-Shun Liao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiao Fu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiao Tong
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Address correspondence to,
| |
Collapse
|
6
|
Cisbani G, Cicchetti F. Review: The fate of cell grafts for the treatment of Huntington's disease: thepost-mortemevidence. Neuropathol Appl Neurobiol 2014; 40:71-90. [DOI: 10.1111/nan.12104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022]
Affiliation(s)
- G. Cisbani
- Centre de Recherche du CHU de Québec (CHUL); Québec QC Canada
| | - F. Cicchetti
- Centre de Recherche du CHU de Québec (CHUL); Québec QC Canada
- Département de Psychiatrie et Neurosciences; Université Laval; Québec QC Canada
| |
Collapse
|
7
|
McLeod MC, Kobayashi NR, Sen A, Baghbaderani BA, Sadi D, Ulalia R, Behie LA, Mendez I. Transplantation of GABAergic cells derived from bioreactor-expanded human neural precursor cells restores motor and cognitive behavioral deficits in a rodent model of Huntington's disease. Cell Transplant 2012; 22:2237-56. [PMID: 23127784 DOI: 10.3727/096368912x658809] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that is characterized by progressive dementia, choreiform involuntary movements, and emotional deterioration. Neuropathological features include the progressive degeneration of striatal γ-aminobutyric acid (GABA) neurons. New therapeutic approaches, such as the transplantation of human neural precursor cells (hNPCs) to replace damaged or degenerated cells, are currently being investigated. The aim of this study was to investigate the potential for utilizing telencephalic hNPCs expanded in suspension bioreactors for cell restorative therapy in a rodent model of HD. hNPCs were expanded in a hydrodynamically controlled and homogeneous environment under serum-free conditions. In vitro analysis revealed that the bioreactor-expanded telencephalic (BET)-hNPCs could be differentiated into a highly enriched population of GABAergic neurons. Behavioral assessments of unilateral striatal quinolinic acid-lesioned rodents revealed a significant improvement in motor and memory deficits following transplantation with GABAergic cells differentiated from BET-hNPCs. Immunohistochemical analysis revealed that transplanted BET-hNPCs retained a GABAergic neuronal phenotype without aberrant transdifferentiation or tumor formation, indicating that BET-hNPCs are a safe source of cells for transplantation. This preclinical study has important implications as the transplantation of GABAergic cells derived from predifferentiated BET-hNPCs may be a safe and feasible cell replacement strategy to promote behavioral recovery in HD.
Collapse
Affiliation(s)
- Marcus C McLeod
- Cell Restoration Laboratory, Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Tao D, Qiao X, Sun L, Hou C, Gao L, Zhang L, Shan Y, Liang Z, Zhang Y. Development of a highly efficient 2-D system with a serially coupled long column and its application in identification of rat brain integral membrane proteins with ionic liquids-assisted solubilization and digestion. J Proteome Res 2010; 10:732-8. [PMID: 21121671 DOI: 10.1021/pr100893j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two dimensional high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (2D-HPLC-ESI-MS/MS) is one of the most powerful techniques for high resolution, efficiency, and throughput separation and identification of proteomes. For a bottom-up strategy-based proteome analysis, usually multistep salt elution was needed in the first dimension separation by SCX, to simplify the peptides for the further second dimensional separation by RPLC. Here, by using a 30 cm-long serially coupled long column (SCLC) in the second dimension, we reduced the salt steps of SCX from 13 to 5 to shorten the total analysis time. Compared to the commonly applied 2D-HPLC with over 10-step salt elution in SCX and microRPLC with a short column (SC), named as SC-2D, the peak capacity of 2D-HPLC with a SCLC column, named as SCLC-2D, was increased 3.3-folds while the analysis time was increased by only 1.17-folds. Therefore, the time-based protein identification efficiency was ∼55 protein groups/h, nearly 2-fold of that for SC-2D (∼28 protein groups/h). With the further combination of assisted solubilization by ionic liquids and SCLC-2D, 608 integral membrane proteins (IMPs) (27.66% of the total 2198 proteins, FDR < 1%) were identified from rat brain, more than those obtained by the traditional urea method (252 unique IMPs, occupying 17.03% of total 1480 proteins). All of these results demonstrate the promise of the developed technique for large-scale proteome analysis.
Collapse
Affiliation(s)
- Dingyin Tao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shah A, Garzon-Muvdi T, Mahajan R, Duenas VJ, Quiñones-Hinojosa A. Animal models of neurological disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 671:23-40. [PMID: 20455493 DOI: 10.1007/978-1-4419-5819-8_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of animal models to study human pathology has proved valuable in a number of fields. Animal models of neurological disease have successfully and accurately recreated many aspects of human illness allowing for in-depth study ofneuropathophysiology. These models have been the source of a plethora of information, such as the importance of certain molecular mechanisms and genetic contributions in neurological disease. Additionally, animal models have been utilized in the discovery and testing of possible therapeutic treatments. Although most neurological diseases are still not yet completely understood and reliable treatment is lacking, animal models provide a major step in the right direction.
Collapse
Affiliation(s)
- Amol Shah
- UCSD School of Medicine, San Diego, California, USA
| | | | | | | | | |
Collapse
|
11
|
Stauber J, Lemaire R, Franck J, Bonnel D, Croix D, Day R, Wisztorski M, Fournier I, Salzet M. MALDI Imaging of Formalin-Fixed Paraffin-Embedded Tissues: Application to Model Animals of Parkinson Disease for Biomarker Hunting. J Proteome Res 2008; 7:969-78. [PMID: 18247558 DOI: 10.1021/pr070464x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Bonelli RM, Hofmann P. A systematic review of the treatment studies in Huntington's disease since 1990. Expert Opin Pharmacother 2007; 8:141-53. [PMID: 17257085 DOI: 10.1517/14656566.8.2.141] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant, inherited, neuropsychiatric disease that gives rise to progressive motor, cognitive and behavioural symptoms. Current drug therapy has no effect on the progression of disability, and the need for any pharmacological treatment should be carefully considered. Hyperkinesias and psychiatric symptoms may respond well to pharmacotherapy, but neuropsychological deficits and dementia remain untreatable. Pharmacological intervention in the treatment of the movement disorder of HD is aimed at restoring the balance of neurotransmitters in the basal ganglia. A surprising amount of current drug therapy of HD in clinical practice is based on studies published before 1990. The authors conducted a systematic review of pharmacological therapy in HD using the available papers that were published between 1990 and 2006.
Collapse
Affiliation(s)
- Raphael M Bonelli
- University Clinic of Psychiatry, Graz Medical University, Auenbruggerplatz 31, A-8036 Graz, Austria.
| | | |
Collapse
|
13
|
Hussain N, Flumerfelt BA, Rajakumar N. Glutamatergic regulation of long-term grafts of fetal lateral ganglionic eminence in a rat model of Huntington's disease. Neurobiol Dis 2004; 15:648-53. [PMID: 15056473 DOI: 10.1016/j.nbd.2003.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Revised: 08/27/2003] [Accepted: 12/12/2003] [Indexed: 11/29/2022] Open
Abstract
Transplanting fetal striatal tissue is currently considered to be an important alternative strategy in the treatment of Huntington's disease. Although grafted striatal tissue differentiates and shows certain structural and neurochemical features of the normal striatum and receives host afferents, it is not clear whether host-derived afferent inputs can modulate the activity of neurotransmitter receptors and their signaling in the graft. An intricate interaction between dopaminergic and glutamatergic systems is pivotal for striatal function. In the present study, the modulation of D(2) receptors in the graft by host-derived glutamatergic afferents via NMDA receptors was investigated using haloperidol-induced c-Fos expression. The results indicate that haloperidol induces c-Fos in a large number of neurons in the P-zones of the graft and this induction is significantly suppressed by pretreatment with the NMDA receptor antagonist, MK-801. Therefore, the NMDA receptor-mediated modulation of D(2) receptor function seen in the normal striatum is established in the striatostriatal grafts.
Collapse
Affiliation(s)
- N Hussain
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | |
Collapse
|
14
|
Fink JS, Kalda A, Ryu H, Stack EC, Schwarzschild MA, Chen JF, Ferrante RJ. Genetic and pharmacological inactivation of the adenosine A2A receptor attenuates 3-nitropropionic acid-induced striatal damage. J Neurochem 2003; 88:538-44. [PMID: 14720203 DOI: 10.1046/j.1471-4159.2003.02145.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine A2A receptor (A2AR) antagonism attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration and quinolinic acid-induced excitotoxicity in the neostriatum. As A2ARs are enriched in striatum, we investigated the effect of genetic and pharmacological A2A inactivation on striatal damage produced by the mitochondrial complex II inhibitor 3-nitropriopionic acid (3-NP). 3-NP was administered to A2AR knockout (KO) and wild-type (WT) littermate mice over 5 days. Bilateral striatal lesions were analyzed from serial brain tissue sections. Whereas all of the 3-NP-treated WT mice (C57BL/6 genetic background) had bilateral striatal lesions, only one of eight of the 3-NP-treated A2AR KO mice had detectable striatal lesions. Similar attenuation of 3-NP-induced striatal damage was observed in A2AR KO mice in a 129-Steel background. In addition, the effect of pharmacological antagonism on 3-NP-induced striatal neurotoxicity was tested by pre-treatment of C57Bl/6 mice with the A2AR antagonist 8-(3-chlorostyryl) caffeine (CSC). Although bilateral striatal lesions were observed in all mice treated either with 3-NP alone or 3-NP plus vehicle, there were no demonstrable striatal lesions in mice treated with CSC (5 mg/kg) plus 3-NP and in five of six mice treated with CSC (20 mg/kg) plus 3-NP. We conclude that both genetic and pharmacological inactivation of the A2AR attenuates striatal neurotoxicity produced by 3-NP. Since the clinical and neuropathological features of 3-NP-induced striatal damage resemble those observed in Huntington's disease, the results suggest that A2AR antagonism may be a potential therapeutic strategy in Huntington's disease patients.
Collapse
Affiliation(s)
- J Stephen Fink
- Department of Neurology, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Akbas F, Erginel-Unaltuna N. DNA testing for Huntington disease in the Turkish population. Eur Neurol 2003; 50:20-4. [PMID: 12824708 DOI: 10.1159/000070854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Accepted: 01/20/2003] [Indexed: 11/19/2022]
Abstract
Huntington disease (HD) is an autosomal dominant inherited disease, characterized by involuntary movements, behavioral and personality changes and dementia. Although the mean age at onset is about 40 years, onset varies from 5 to 79 years. Therefore, at-risk individuals are never sure to have escaped the disease. The genetic defect is a CAG trinucleotide repeat expansion at the 5' end of the IT-15 gene on chromosome 4. In this study, we analyzed 127 patients with HD and 122 healthy controls. The numbers of CAG repeats varied from 38 to 78 (median: 42) in 127 HD patients, while in healthy controls we observed only 10-35 CAG repeats (median: 18). The length of the CAG repeat expansion in Turkish HD patients and normal controls was similar to that reported from other populations. Negative correlations (r = -0.67) were also found between age of disease onset and repeat length.
Collapse
Affiliation(s)
- Fahri Akbas
- Department of Genetics, Experimental Medical Research Institute, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
16
|
Goellner GM, Rechsteiner M. Are Huntington's and polyglutamine-based ataxias proteasome storage diseases? Int J Biochem Cell Biol 2003; 35:562-71. [PMID: 12672449 DOI: 10.1016/s1357-2725(02)00388-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To date, 10 neurological diseases, including Huntington's and several ataxias, are caused by a lengthening of glutamine (Q) tracts in various proteins. Even though the Q expansions arise in unrelated proteins, the diseases share three striking features: (1) 35 contiguous glutamines constitutes the pathological threshold for 9 of the 10 diseases; (2) the Q-expanded proteins are expressed in many tissues, yet pathology is largely restricted to neurons; and (3) the Q-expanded proteins or fragments thereof form nuclear inclusions that also contain ubiquitin, proteasomes and chaperones. Our studies of the proteasome activator REGgamma suggest a possible explanation for these shared properties. REGgamma is highly expressed in brain, located in the nucleus and actually suppresses the proteasome active sites principally responsible for cleaving glutamine-MCA bonds. These observations coupled with reports that peptides longer than 35 residues, the polyQ pathology threshold, are unable to diffuse out of the proteasome suggest the following hypothesis. Proteins containing long glutamine tracts are efficiently pumped into REGgamma-capped 26S proteasomes, but REGgamma suppression of cleavage after glutamine produces polyQ fragments too long to diffuse out of the 20S proteolytic core thereby inactivating the 26S proteasome. In effect, we hypothesize that the polyQ pathologies may be proteasomal storage diseases analogous to disorders of lysosome catabolism.
Collapse
Affiliation(s)
- Geoffrey M Goellner
- Department of Biochemistry, University of Utah, 50 N Medical Drive, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
17
|
Blum D, Galas MC, Gall D, Cuvelier L, Schiffmann SN. Striatal and Cortical Neurochemical Changes Induced by Chronic Metabolic Compromise in the 3-Nitropropionic Model of Huntington's Disease. Neurobiol Dis 2002; 10:410-26. [PMID: 12270701 DOI: 10.1006/nbdi.2002.0512] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we aimed to determine the time-course of neurochemical changes occurring following metabolic impairments produced by 3-nitropropionic (3NP) acid in a rat model of Huntington's disease. We found that the occurrence of striatal lesions was accompanied by (1) strong transcriptional alterations within the degenerative lateral striatum, (2) receptor upregulations within the preserved medial striatum, and (3) transcriptional increases within the unaltered cerebral cortex. These phenomena were preceded by transcriptional modifications in striatal subareas prone to degeneration even before the lesion was visible but not in the overlying cortex, known to be spared in this model. Of great interest, the density of A(2A) receptor binding sites, located on striato-pallidal neurons, was (1) downregulated at the time of worsening of symptoms and (2) strongly upregulated within the spared medial striatum after the lesion occurrence. This study therefore highlights the differential neurochemical responses produced by 3NP depending on the fate of the metabolically inhibited area and strongly suggests the involvement of A(2A) receptors in the development of striatal pathology under metabolic compromise.
Collapse
Affiliation(s)
- David Blum
- Laboratoire de Neurophysiologie, ULB-Erasme, CP601, 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Dystonias are a heterogeneous group of disorders which are known to have a strong inherited basis. This review details recent advances in our understanding of the genetic basis of dystonias, including the primary dystonias, the 'dystonia-plus' syndromes and heredodegenerative disorders. The review focuses particularly on clinical and genetic features and molecular mechanisms. Conditions discussed in detail include idiopathic torsion dystonia (DYT1), focal dystonias (DYT7) and mixed dystonias (DYT6 and DYT13), dopa-responsive dystonia, myoclonus dystonia, rapid-onset dystonia parkinsonism, Fahr disease, Aicardi-Goutieres syndrome, Hallervorden-Spatz syndrome, X-linked dystonia parkinsonism, deafness-dystonia syndrome, mitochondrial dystonias, neuroacanthocytosis and the paroxysmal dystonias/dyskinesias.
Collapse
Affiliation(s)
- Andrea H Németh
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Headington, Oxford OX3 7BN, UK.
| |
Collapse
|