1
|
Borrelli MJ, Kolendowski B, DiMattia GE, Shepherd TG. Spatiotemporal analysis of ratiometric biosensors in live multicellular spheroids using SPoRTS. CELL REPORTS METHODS 2025; 5:100987. [PMID: 39965566 PMCID: PMC11955269 DOI: 10.1016/j.crmeth.2025.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
Here, we describe SPoRTS, an open-source workflow for high-throughput spatiotemporal image analysis of fluorescence-based ratiometric biosensors in living spheroids. To achieve this, we have implemented a fully automated algorithm for the acquisition of line intensity profile data, ultimately enabling semi-quantitative measurement of biosensor activity as a function of distance from the center of the spheroid. We demonstrate the functionality of SPoRTS via spatial analysis of live spheroids expressing a ratiometric biosensor based on the fluorescent, ubiquitin-based cell-cycle indicator (FUCCI) system, which identifies mitotic cells. We compare this FUCCI-based SPoRTS analysis with spatially quantified immunostaining for proliferation markers, finding that the results are strongly correlated.
Collapse
Affiliation(s)
- Matthew J Borrelli
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada; Department of Anatomy and Cell Biology, Western University, London, ON N6A 5C1, Canada
| | - Bart Kolendowski
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada
| | - Gabriel E DiMattia
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada; Department of Oncology, Western University, London, ON N6A 5W9, Canada; Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
| | - Trevor G Shepherd
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada; Department of Anatomy and Cell Biology, Western University, London, ON N6A 5C1, Canada; Department of Oncology, Western University, London, ON N6A 5W9, Canada; Department of Obstetrics and Gynecology, Western University, London, ON N6A 5W9, Canada.
| |
Collapse
|
2
|
Tragl A, Ptakova A, Sinica V, Meerupally R, König C, Roza C, Barvík I, Vlachova V, Zimmermann K. A fluorescent protein C-terminal fusion knock-in is functional with TRPA1 but not TRPC5. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119887. [PMID: 39662746 DOI: 10.1016/j.bbamcr.2024.119887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVE Transgenic mice with fluorescent protein (FP) reporters take full advantage of new in vivo imaging technologies. Therefore, we generated a TRPC5- and a TRPA1-reporter mouse based on FP C-terminal fusion, providing us with better alternatives for studying the physiology, interaction and coeffectors of these two TRP channels at the cellular and tissue level. METHODS We generated transgenic constructs of the murine TRPC5- and TRPA1-gene with a 3*GGGGS linker and C-terminal fusion to mCherry and mTagBFP, respectively. We microinjected zygotes to generate reporter mice. Reporter mice were examined for visible fluorescence in trigeminal ganglia with two-photon microscopy, immunohistochemistry and calcium imaging. RESULTS Both TRPC5-mCherry and TRPA1-mTagBFP knock-in mouse models were successful at the DNA and RNA level. However, at the protein level, TRPC5 resulted in no mCherry fluorescence. In contrast, sensory neurons derived from the TRPA1-reporter mice exhibited visible mTag-BFP fluorescence, although TRPA1 had apparently lost its ion channel function. CONCLUSIONS Creating transgenic mice with a TRP channel tagged at the C-terminus with a FP requires detailed investigation of the structural and functional consequences in a given cellular context and fine-tuning the design of specific constructs for a given TRP channel subtype. Different degrees of functional impairment of TRPA1 and TRPC5 constructs suggest a specific importance of the distal C-terminus for the regulation of these two channels in trigeminal neurons.
Collapse
Affiliation(s)
- Aaron Tragl
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Anesthesiology, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Alexandra Ptakova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Viktor Sinica
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Anesthesiology, Krankenhausstraße 12, 91054 Erlangen, Germany; Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Rathej Meerupally
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Anesthesiology, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Christine König
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Anesthesiology, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Carolina Roza
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Ivan Barvík
- Department of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - Katharina Zimmermann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Anesthesiology, Krankenhausstraße 12, 91054 Erlangen, Germany.
| |
Collapse
|
3
|
Bandaranayake UK, Sato H, Suzuki M. Development of molecular sensors based on fluorescent proteins for polarized macrophages identification. ANAL SCI 2024; 40:2133-2145. [PMID: 39235677 DOI: 10.1007/s44211-024-00649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Macrophages are a type of white blood cells that play key roles in innate immune responses as a part of cellular immunity for host defence and tissue homeostasis. To perform diverse functions, macrophages show high plasticity by transforming to polarized states. They are mainly identified as unpolarized, pro-inflammatory and antiinflammatory states and termed as M0, M1 and M2 macrophages respectively. Discriminating polarized states is important due to strict implication with inflammatory conditions resulting in many diseases as chronic inflammation, neurodegeneration, and cancer etc. Many polarization protein markers have been identified and applied to investigate expression profiles through PCR and other techniques with antibodies. However, they are time and cost consuming and sometimes show insufficient performances. We focused on the mannose receptor (CD206) as representative marker of M2 macrophage recognising terminal mannose. We developed dose dependent mannosylated fluorescent proteins (FPs) by conjugations with mannose derivative for around 20 modifiable sites on FPs surfaces. Maximum modifications did not spoil various features of FPs. We found further sensitive and specific discriminations among M2, M1 and M0 macrophages after treating polarized macrophages with adequately conditioned FPs compared to already established approaches using anti CD206 antibody through flow cytometric analysis. These results might be derived from direct ligand utilizations and increased avidity due to multivalent bindings with abundantly modified multimeric FPs. Our strategy is simple but addresses disadvantages of preceding methods. Moreover, this strategy is applicable to detect other cell surface receptors as FPs can be modified with ligands or recognizable aptamer like molecules.
Collapse
Affiliation(s)
- Udari Kalpana Bandaranayake
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Hiroki Sato
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1298, Japan
| | - Miho Suzuki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.
| |
Collapse
|
4
|
Pieri E, Walker AR, Zhu M, Martínez TJ. Conical Intersection Accessibility Dictates Brightness in Red Fluorescent Proteins. J Am Chem Soc 2024; 146:17646-17658. [PMID: 38885641 DOI: 10.1021/jacs.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Red fluorescent protein (RFP) variants are highly sought after for in vivo imaging since longer wavelengths improve depth and contrast in fluorescence imaging. However, the lower energy emission wavelength usually correlates with a lower fluorescent quantum yield compared to their green emitting counterparts. To guide the rational design of bright variants, we have theoretically assessed two variants (mScarlet and mRouge) which are reported to have very different brightness. Using an α-CASSCF QM/MM framework (chromophore and all protein residues within 6 Å of it in the QM region, for a total of more than 450 QM atoms), we identify key points on the ground and first excited state potential energy surfaces. The brighter variant mScarlet has a rigid scaffold, and the chromophore stays largely planar on the ground state. The dimmer variant mRouge shows more flexibility and can accommodate a pretwisted chromophore conformation which provides easier access to conical intersections. The main difference between the variants lies in the intersection seam regions, which appear largely inaccessible in mScarlet but partially accessible in mRouge. This observation is mainly related with changes in the cavity charge distribution, the hydrogen-bonding network involving the chromophore and a key ARG/THR mutation (which changes both charge and steric hindrance).
Collapse
Affiliation(s)
- Elisa Pieri
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Alice R Walker
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Mingning Zhu
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
5
|
Rajbongshi BK, Abdullah S, Lama B, Bhattacharyya HP, Sarma M. Regioselective and solvent-dependent photoisomerization induced internal conversion in red fluorescent protein chromophore analogues. RSC Adv 2024; 14:18373-18384. [PMID: 38860252 PMCID: PMC11163268 DOI: 10.1039/d4ra00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Photophysical properties of three red fluorescent protein (RFP) chromophore analogues are reported here. The three RFP chromophore analogues differ in the additional conjugation present in the RFP chromophore. The three chromophores do not exhibit any solvent effect in both absorption and fluorescence spectra. The photoirradiation experiments and recording of 1H NMR before and after irradiation on one of the three RFP model chromophores show isomerization of the (Z,E) diastereomer to the (E,E) diastereomer. Calculation of S0 and S1 potential energy curves shows the preference for isomerization through the exocyclic C[double bond, length as m-dash]C bond with Z-stereochemistry, thus corroborating the experimental results. The computational studies also suggest that torsional motion along the exocyclic C[double bond, length as m-dash]C bond pushes the molecules to a conical intersection, thus paving the pathway for radiationless deactivation.
Collapse
Affiliation(s)
| | - Sheikh Abdullah
- Department of Chemistry, Cotton University Panbazar Guwahati Assam 781001 India
| | - Bittu Lama
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| | | | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|
6
|
Suthya AR, Wong CHY, Bourne JH. Diving head-first into brain intravital microscopy. Front Immunol 2024; 15:1372996. [PMID: 38817606 PMCID: PMC11137164 DOI: 10.3389/fimmu.2024.1372996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Tissue microenvironments during physiology and pathology are highly complex, meaning dynamic cellular activities and their interactions cannot be accurately modelled ex vivo or in vitro. In particular, tissue-specific resident cells which may function and behave differently after isolation and the heterogenous vascular beds in various organs highlight the importance of observing such processes in real-time in vivo. This challenge gave rise to intravital microscopy (IVM), which was discovered over two centuries ago. From the very early techniques of low-optical resolution brightfield microscopy, limited to transparent tissues, IVM techniques have significantly evolved in recent years. Combined with improved animal surgical preparations, modern IVM technologies have achieved significantly higher speed of image acquisition and enhanced image resolution which allow for the visualisation of biological activities within a wider variety of tissue beds. These advancements have dramatically expanded our understanding in cell migration and function, especially in organs which are not easily accessible, such as the brain. In this review, we will discuss the application of rodent IVM in neurobiology in health and disease. In particular, we will outline the capability and limitations of emerging technologies, including photoacoustic, two- and three-photon imaging for brain IVM. In addition, we will discuss the use of these technologies in the context of neuroinflammation.
Collapse
|
7
|
Rose K, Chen N, Andreev A, Chen J, Kefalov VJ, Chen J. Light regulation of rhodopsin distribution during outer segment renewal in murine rod photoreceptors. Curr Biol 2024; 34:1492-1505.e6. [PMID: 38508186 PMCID: PMC11003846 DOI: 10.1016/j.cub.2024.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Vision under dim light relies on primary cilia elaborated by rod photoreceptors in the retina. This specialized sensory structure, called the rod outer segment (ROS), comprises hundreds of stacked, membranous discs containing the light-sensitive protein rhodopsin, and the incorporation of new discs into the ROS is essential for maintaining the rod's health and function. ROS renewal appears to be primarily regulated by extrinsic factors (light); however, results vary depending on different model organisms. We generated two independent transgenic mouse lines where rhodopsin's fate is tracked by a fluorescently labeled rhodopsin fusion protein (Rho-Timer) and show that rhodopsin incorporation into nascent ROS discs appears to be regulated by both external lighting cues and autonomous retinal clocks. Live-cell imaging of the ROS isolated from mice exposed to six unique lighting conditions demonstrates that ROS formation occurs in a periodic manner in cyclic light, constant darkness, and artificial light/dark cycles. This alternating bright/weak banding of Rho-Timer along the length of the ROS relates to inhomogeneities in rhodopsin density and potential points of structural weakness. In addition, we reveal that prolonged dim ambient light exposure impacts not only the rhodopsin content of new discs but also that of older discs, suggesting a dynamic interchange of material between new and old discs. Furthermore, we show that rhodopsin incorporation into the ROS is greatly altered in two autosomal recessive retinitis pigmentosa mouse models, potentially contributing to the pathogenesis. Our findings provide insights into how extrinsic (light) and intrinsic (retinal clocks and genetic mutation) factors dynamically regulate mammalian ROS renewal.
Collapse
Affiliation(s)
- Kasey Rose
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Natalie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Andrey Andreev
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jiayan Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine CA 92697, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
8
|
Ossa-Hernández N, Marins LF, Almeida RV, Almeida DV. Red Fluorescent Protein Variant with a Dual-Peak Emission of Fluorescence. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1099-1109. [PMID: 37864761 DOI: 10.1007/s10126-023-10262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
The marine environment is a rich reservoir of diverse biological entities, many of which possess unique properties that are of immense value to biotechnological applications. One such example is the red fluorescent protein derived from the coral Discosoma sp. This protein, encoded by the DsRed gene, has been the subject of extensive research due to its potential applications in various fields. In the study, a variant of the red fluorescent protein was generated through random mutagenesis using the DsRed2 gene as a template. The process employed error-prone PCR (epPCR) to introduce random mutations, leading to the isolation of twelve gene variants. Among these, one variant stood out due to its unique spectral properties, exhibiting dual fluorescence emission at both 480 nm (green) and 550 nm (red). This novel variant was expressed in both Escherichia coli and zebrafish (Danio rerio) muscle, confirming the dual fluorescence emission in both model systems. One of the immediate applications of this novel protein variant is in ornamental aquaculture. The dual fluorescence can serve as a unique marker or trait, enhancing the aesthetic appeal of aquatic species in ornamental settings.
Collapse
Affiliation(s)
| | - Luis Fernando Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Rodrigo Volcan Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Daniela Volcan Almeida
- Departamento de Fisiologia e Farmacologia, Instituto de Biologia, Universidade Federal de Pelotas (UFPEL), Campus Universitário Capão do Leão s/n, CEP, Pelotas, RS, 96160-000, Brazil.
| |
Collapse
|
9
|
Imamura H, Otsubo S, Nishida M, Takekawa N, Imada K. Red fluorescent proteins engineered from green fluorescent proteins. Proc Natl Acad Sci U S A 2023; 120:e2307687120. [PMID: 37871160 PMCID: PMC10636333 DOI: 10.1073/pnas.2307687120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/31/2023] [Indexed: 10/25/2023] Open
Abstract
Fluorescent proteins (FPs) form a fluorophore through autocatalysis from three consecutive amino acid residues within a polypeptide chain. The two major groups, green FPs (GFPs) and red FPs (RFPs), have distinct fluorophore structures; RFPs have an extended π-conjugation system with an additional double bond. However, due to the low sequence homology between the two groups, amino acid residues essential for determining the different fluorophore structures were unclear. Therefore, engineering a GFP into an RFP has been challenging, and the exact mechanism of how GFPs and RFPs achieve different autocatalytic reactions remained elucidated. Here, we show the conversion of two coral GFPs, AzamiGreen (AG) and mcavGFP, into RFPs by defined mutations. Structural comparison of AG and AzamiRed1.0, an AG-derived RFP, revealed that the mutations triggered drastic rearrangements in the interaction networks between amino acid residues around the fluorophore, suggesting that coordinated multisite mutations are required for the green-to-red conversion. As a result of the structural rearrangements, a cavity suitable for the entry of an oxygen molecule, which is necessary for the double bond formation of the red fluorophores, is created in the proximity of the fluorophore. We also show that a monomeric variant of AzamiRed1.0 can be used for labeling organelles and proteins in mammalian cells. Our results provide a structural basis for understanding the red fluorophore formation mechanism and demonstrate that protein engineering of GFPs is a promising way to create RFPs suitable for fluorescent tags.
Collapse
Affiliation(s)
- Hiromi Imamura
- Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8501, Japan
| | - Shiho Otsubo
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka560-0043, Japan
| | - Mizuho Nishida
- Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8501, Japan
| | - Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka560-0043, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka560-0043, Japan
| |
Collapse
|
10
|
Chen C, Henderson JN, Ruchkin DA, Kirsh JM, Baranov MS, Bogdanov AM, Mills JH, Boxer SG, Fang C. Structural Characterization of Fluorescent Proteins Using Tunable Femtosecond Stimulated Raman Spectroscopy. Int J Mol Sci 2023; 24:11991. [PMID: 37569365 PMCID: PMC10418586 DOI: 10.3390/ijms241511991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore-environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore-environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
| | - Dmitry A. Ruchkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jacob M. Kirsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| |
Collapse
|
11
|
Gadella TWJ, van Weeren L, Stouthamer J, Hink MA, Wolters AHG, Giepmans BNG, Aumonier S, Dupuy J, Royant A. mScarlet3: a brilliant and fast-maturing red fluorescent protein. Nat Methods 2023; 20:541-545. [PMID: 36973546 DOI: 10.1038/s41592-023-01809-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/27/2023] [Indexed: 03/29/2023]
Abstract
We report the evolution of mScarlet3, a cysteine-free monomeric red fluorescent protein with fast and complete maturation, as well as record brightness, quantum yield (75%) and fluorescence lifetime (4.0 ns). The mScarlet3 crystal structure reveals a barrel rigidified at one of its heads by a large hydrophobic patch of internal residues. mScarlet3 behaves well as a fusion tag, displays no apparent cytotoxicity and it surpasses existing red fluorescent proteins as a Förster resonance energy transfer acceptor and as a reporter in transient expression systems.
Collapse
Affiliation(s)
- Theodorus W J Gadella
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Laura van Weeren
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Jente Stouthamer
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark A Hink
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Anouk H G Wolters
- Biomedical Sciences of Cells & Systems, University of Groningen UMC Groningen, Groningen, the Netherlands
| | - Ben N G Giepmans
- Biomedical Sciences of Cells & Systems, University of Groningen UMC Groningen, Groningen, the Netherlands
| | - Sylvain Aumonier
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Jérôme Dupuy
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Antoine Royant
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
- European Synchrotron Radiation Facility, Grenoble, France
| |
Collapse
|
12
|
Horiuchi Y, Makabe K, Laskaratou D, Hatori K, Sliwa M, Mizuno H, Hotta JI. Cloning and structural basis of fluorescent protein color variants from identical species of sea anemone, Diadumene lineata. Photochem Photobiol Sci 2023:10.1007/s43630-023-00399-0. [PMID: 36943649 DOI: 10.1007/s43630-023-00399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Diadumene lineata is a colorful sea anemone with orange stripe tissue of the body column and plain tentacles with red lines. We subjected Diadumene lineata to expression cloning and obtained genes encoding orange (OFP: DiLiFP561) and red fluorescent proteins (RFPs: DiLiFP570 and DiLiFP571). These proteins formed obligatory tetramers. All three proteins showed bright fluorescence with the brightness of 58.3 mM-1·cm-1 (DiLiFP561), 43.9 mM-1·cm-1 (DiLiFP570), and 31.2 mM-1·cm-1 (DiLiFP571), which were equivalent to that of commonly used red fluorescent proteins. Amplitude-weighted average fluorescence lifetimes of DiLiFP561, DiLiFP570 and DiLiFP571 were determined as 3.7, 3.6 and 3.0 ns. We determined a crystal structure of DiLiFP570 at 1.63 Å resolution. The crystal structure of DiLiFP570 revealed that the chromophore has an extended π-conjugated structure similar to that of DsRed. Most of the amino acid residues surrounding the chromophore were common between DiLiFP570 and DiLiFP561, except M159 of DiLiFP570 (Lysine in DiLiFP561), which is located close to the chromophore hydroxyl group. Interestingly, a similar K-to-M substitution has been reported in a red-shifted variant of DsRed (mRFP1). It is a striking observation that the naturally evolved color-change variants are consistent with the mutation induced via protein engineering processes. The newly cloned proteins are promising as orange and red fluorescent markers for imaging with long fluorescence lifetime.
Collapse
Affiliation(s)
- Yuki Horiuchi
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Danai Laskaratou
- Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Celestijnenlaan 200g, Post Box 2403, 3001, Leuven, Belgium
| | - Kuniyuki Hatori
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59000, Lille, France
| | - Hideaki Mizuno
- Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Celestijnenlaan 200g, Post Box 2403, 3001, Leuven, Belgium
| | - Jun-Ichi Hotta
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
13
|
Bui TYH, Dedecker P, Van Meervelt L. An unusual disulfide-linked dimerization in the fluorescent protein rsCherryRev1.4. Acta Crystallogr F Struct Biol Commun 2023; 79:38-44. [PMID: 36748340 PMCID: PMC9903139 DOI: 10.1107/s2053230x23000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
rsCherryRev1.4 has been reported as one of the reversibly photoswitchable variants of mCherry, and is an improved version with a faster off-switching speed and lower switching fatigue at high light intensities than its precursor rsCherryRev. However, rsCherryRev1.4 still has some limitations such as a tendency to dimerize as well as complex photophysical properties. Here, the crystal structure of rsCherryRev1.4 was determined at a resolution of 2 Å and it was discovered that it forms a dimer that shows disulfide bonding between the protomers. Mutagenesis, gel electrophoresis and size-exclusion chromatography strongly implicate Cys24 in this process. Replacing Cys24 in rsCherryRev1.4 resulted in a much lower tendency towards dimerization, while introducing Cys24 into mCherry correspondingly increased its dimerization. In principle, this finding opens the possibility of developing redox sensors based on controlled dimerization via disulfide cross-linking in fluorescent proteins, even though the actual application of engineering such sensors still requires additional research.
Collapse
Affiliation(s)
- Thi Yen Hang Bui
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Peter Dedecker
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Luc Van Meervelt
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
14
|
Stellon D, Talbot J, Hewitt AW, King AE, Cook AL. Seeing Neurodegeneration in a New Light Using Genetically Encoded Fluorescent Biosensors and iPSCs. Int J Mol Sci 2023; 24:1766. [PMID: 36675282 PMCID: PMC9861453 DOI: 10.3390/ijms24021766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases present a progressive loss of neuronal structure and function, leading to cell death and irrecoverable brain atrophy. Most have disease-modifying therapies, in part because the mechanisms of neurodegeneration are yet to be defined, preventing the development of targeted therapies. To overcome this, there is a need for tools that enable a quantitative assessment of how cellular mechanisms and diverse environmental conditions contribute to disease. One such tool is genetically encodable fluorescent biosensors (GEFBs), engineered constructs encoding proteins with novel functions capable of sensing spatiotemporal changes in specific pathways, enzyme functions, or metabolite levels. GEFB technology therefore presents a plethora of unique sensing capabilities that, when coupled with induced pluripotent stem cells (iPSCs), present a powerful tool for exploring disease mechanisms and identifying novel therapeutics. In this review, we discuss different GEFBs relevant to neurodegenerative disease and how they can be used with iPSCs to illuminate unresolved questions about causes and risks for neurodegenerative disease.
Collapse
Affiliation(s)
- David Stellon
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
15
|
Zheng Y, Wei L, Duan L, Yang F, Huang G, Xiao T, Wei M, Liang Y, Yang H, Li Z, Wang D. Rapid field testing of mercury pollution by designed fluorescent biosensor and its cells-alginate hydrogel-based paper assay. J Environ Sci (China) 2021; 106:161-170. [PMID: 34210432 DOI: 10.1016/j.jes.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 06/13/2023]
Abstract
With increasing industrial activities, mercury has been largely discharged into environment and caused serious environmental problems. The growing level of mercury pollution has become a huge threat to human health due to its significant biotoxicity. Therefore, the simple and fast means for on-site monitoring discharged mercury pollution are highly necessary to protect human beings from its pernicious effects in time. Herein, a "turn off" fluorescent biosensor (mCherry L199C) for sensing Hg2+ was successfully designed based on direct modification of the chromophore environment of fluorescent protein mCherry. For rapid screening and characterization, the designed variant of mCherry (mCherry L199C) was directly expressed on outer-membrane of Escherichia coli cells by cell surface display technique. The fluorescent biosensor was characterized to have favorable response to Hg2+ at micromole level among other metal ions and over a broad pH range. Further, the cells of the fluorescent biosensor were encapsulated in alginate hydrogel to develop the cells-alginate hydrogel-based paper. The cells-alginate hydrogel-based paper could detect mercury pollution in 5 min with simple operation process and inexpensive equipment, and it could keep fluorescence and activity stable at 4 °C for 24 hr, which would be a high-throughput screening tool in preliminarily reporting the presence of mercury pollution in natural setting.
Collapse
Affiliation(s)
- Yanan Zheng
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Liudan Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Linwei Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‑Bioresources, Guangxi University, Nanning 530004, China
| | - Fangfang Yang
- Guangxi-ASEAN Food Inspection and Testing Center, China
| | - Guixiang Huang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Tianyi Xiao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Min Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Yanling Liang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Huiting Yang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‑Bioresources, Guangxi University, Nanning 530004, China.
| | - Dan Wang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
16
|
Shen Y, Ji R, Chai R, Yuan N, Zhang J, Jing Y, Yang M, Zhang L, Hong Y, Lin J, Zhu C. A novel fluorescence immunochromatographic assay strip for the diagnosis of schistosomiasis japonica. Parasit Vectors 2021; 14:8. [PMID: 33407752 PMCID: PMC7788720 DOI: 10.1186/s13071-020-04511-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/01/2020] [Indexed: 11/18/2022] Open
Abstract
Background Schistosomiasis japonica is a severe zoonosis. Domestic animals are the primary source of infection and play an important role in disease transmission. Surveillance and diagnosis play key roles in schistosomiasis control; however, current techniques for the surveillance and diagnosis of the disease have limitations. In this study, we developed a novel fluorescence immunochromatographic assay (FICA) strip to detect anti-Schistosoma japonicum antibodies in host serum. Methods A FICA strip was developed for the diagnosis of Schistosoma japonicum in domestic animals. Streptococcus protein G (SPG) and soluble egg antigen (SEA) were transferred onto a nitrocellulose (NC) membrane to form the control line (C) and the test line (T), respectively. With fluorescence activity as well as binding activity to multispecies IgG, the recombinant protein rSPG-RFP was expressed and employed as an antibody indicator in the FICA strips. Results The dual gene fusion plasmid was verified by PCR and restriction enzyme digestion. The expressed recombinant protein was 39.72 kDa in size, which was consistent with the predicted molecular weight. The western blot results showed binding activity between rSPG-RFP and IgGs from different hosts. Fluorescence microscopy also showed the fluorescence activity of the protein present. The affinity constant (Ka) values of rSPG-RFP with rabbit, donkey, mouse and goat IgG were 1.9 × 105, 4.1 × 105, 1.7 × 105 and 5.4 × 105, respectively. Moreover, based on the recombinant protein, the test strip for detecting S. japonicum in buffaloes could distinguish positive from negative serum. The lower limit of detection of the FICA strip was 1:10,000. Compared with ELISA, the FICA strips exhibited similar results in the diagnosis of infection in clinical bovine serum samples, with a kappa value of 0.9660 and P < 0.01. The cross-reactivities of the FICA strips with Haemonchus contortus and Schistosoma turkestanicum (30.15% and 91.66%, respectively) were higher than those of ELISA (26.98% and 87.5%, respectively). Conclusions Based on the rSPG-RFP protein that we developed, strip detection can be completed within 15 min. Heightened sensitivity allows the strip to accurately identify schistosome antibodies in serum. In conclusion, this method is convenient, feasible, rapid and effective for detecting S. japonicum.![]()
Collapse
Affiliation(s)
- Yuanxi Shen
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Rongyi Ji
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Rui Chai
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nana Yuan
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiyue Zhang
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yi Jing
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Man Yang
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lanqi Zhang
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,University of Reading, Whiteknights, Reading, Berkshire, RG26UA, England
| | - Yang Hong
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiaojiao Lin
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chuangang Zhu
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
17
|
Pakhomov AA, Pastukhova AA, Tishkin GV, Martynov VI. Transformations of the Chromophore in the Course of Maturation of a Chromoprotein from Actinia equina. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
19
|
A transient decrease in mitochondrial activity contributes to establish the ganglion cell fate in retina adapted for high acuity vision. Dev Biol 2020; 469:96-110. [PMID: 33141037 DOI: 10.1016/j.ydbio.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
Abstract
Although the plan of the retina is well conserved in vertebrates, there are considerable variations in cell type diversity and number, as well as in the organization and properties of the tissue. The high ratios of retinal ganglion cells (RGCs) to cones in primate fovea and bird retinas favor neural circuits essential for high visual acuity and color vision. The role that cell metabolism could play in cell fate decision during embryonic development of the nervous system is still largely unknown. Here, we describe how subtle changes of mitochondrial activity along the pathway converting uncommitted progenitors into newborn RGCs increase the recruitment of RGC-fated progenitors. ATOH7, a proneural protein dedicated to the production of RGCs in vertebrates, activates transcription of the Hes5.3 gene in pre-committed progenitors. The HES5.3 protein, in turn, regulates a transient decrease in mitochondrial activity via the retinoic acid signaling pathway few hours before cell commitment. This metabolic shift lengthens the progression of the ultimate cell cycle and is a necessary step for upregulating Atoh7 and promoting RGC differentiation.
Collapse
|
20
|
Muslinkina L, Pletnev VZ, Pletneva NV, Ruchkin DA, Kolesov DV, Bogdanov AM, Kost LA, Rakitina TV, Agapova YK, Shemyakina II, Chudakov DM, Pletnev S. Two independent routes of post-translational chemistry in fluorescent protein FusionRed. Int J Biol Macromol 2020; 155:551-559. [PMID: 32243936 DOI: 10.1016/j.ijbiomac.2020.03.244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
The crystal structure of monomeric red fluorescent protein FusionRed (λex/λem 580/608 mn) has been determined at 1.09 Å resolution and revealed two alternative routes of post-translational chemistry, resulting in distinctly different products. The refinement occupancies suggest the 60:40 ratio of the mature Met63-Tyr64-Gly65 chromophore and uncyclized chromophore-forming tripeptide with the protein backbone cleaved between Met63 and the preceding Phe62 and oxidized Cα-Cβ bond of Tyr64. We analyzed the structures of FusionRed and several related red fluorescent proteins, identified structural elements causing hydrolysis of the peptide bond, and verified their impact by single point mutagenesis. These findings advance the understanding of the post-translational chemistry of GFP-like fluorescent proteins beyond the canonical cyclization-dehydration-oxidation mechanism. They also show that impaired cyclization does not prevent chromophore-forming tripeptide from further transformations enabled by the same set of catalytic residues. Our mutagenesis efforts resulted in inhibition of the peptide backbone cleavage, and a FusionRed variant with ~30% improved effective brightness.
Collapse
Affiliation(s)
- Liya Muslinkina
- Basic Science Program, Frederick National Laboratory for Cancer Research, Argonne, IL 60439, USA
| | - Vladimir Z Pletnev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nadya V Pletneva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A Ruchkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Danila V Kolesov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Lubov A Kost
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia K Agapova
- National Research Center "Kurchatov Institute," Moscow, Russia
| | - Irina I Shemyakina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergei Pletnev
- Basic Science Program, Frederick National Laboratory for Cancer Research, Argonne, IL 60439, USA.
| |
Collapse
|
21
|
Zhang K, He J, Liu L, Xie R, Qiu L, Li X, Yuan W, Chen K, Yin Y, Kyaw MMM, San AA, Li S, Tang X, Fu C, Li M. A convenient, rapid and efficient method for establishing transgenic lines of Brassica napus. PLANT METHODS 2020; 16:43. [PMID: 32256679 PMCID: PMC7106750 DOI: 10.1186/s13007-020-00585-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/18/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Brassica napus is an important oilseed crop that offers a considerable amount of biomass for global vegetable oil production. The establishment of an efficient genetic transformation system with a convenient transgenic-positive screening method is of great importance for gene functional analysis and molecular breeding. However, to our knowledge, there are few of the aforementioned systems available for efficient application in B. napus. RESULTS Based on the well-established genetic transformation system in B. napus, five vectors carrying the red fluorescence protein encoding gene from Discosoma sp. (DsRed) were constructed and integrated into rapeseed via Agrobacterium-mediated hypocotyl transformation. An average of 59.1% tissues were marked with red fluorescence by the visual screening method in tissue culture medium, 96.1% of which, on average, were amplified with the objective genes from eight different rapeseed varieties. In addition, the final transgenic-positive efficiency of the rooted plantlets reached up to 90.7% from red fluorescence marked tissues, which was much higher than that in previous reports. Additionally, visual screening could be applicable to seedlings via integration of DsRed, including seed coats, roots, hypocotyls and cotyledons during seed germination. These results indicate that the highly efficient genetic transformation system combined with the transgenic-positive visual screening method helps to conveniently and efficiently obtain transgenic-positive rapeseed plantlets. CONCLUSION A rapid, convenient and highly efficient method was developed to obtain transgenic plants, which can help to obtain the largest proportion of transgene-positive regenerated plantlets, thereby avoiding a long period of plant regeneration. The results of this study will benefit gene functional studies especially in high-throughput molecular biology research.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Lu Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Runda Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Lu Qiu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xicheng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Wenjue Yuan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - May Me Me Kyaw
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Aye Aye San
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Shisheng Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000 China
| | - Xianying Tang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074 China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000 China
| |
Collapse
|
22
|
Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020; 21:E2323. [PMID: 32230871 PMCID: PMC7177904 DOI: 10.3390/ijms21072323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.
Collapse
Affiliation(s)
- Denis V. Voronin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Physical and Colloid Chemistry, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
| | - Anastasiia A. Kozlova
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- School of Urbanistics, Civil Engineering and Architecture, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Alexey V. Ermakov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Biomedical Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail A. Makarkin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Olga A. Inozemtseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
23
|
Bridges MC, Woodley CM, Peters EC, May LA, Galloway SB. Expression and Characterization of a Bright Far-red Fluorescent Protein from the Pink-Pigmented Tissues of Porites lobata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:67-80. [PMID: 31853751 DOI: 10.1007/s10126-019-09931-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Members of the anthozoan green fluorescent protein (GFP) family display a diversity of photo-physical properties that can be associated with normal and damaged coral tissues. Poritid coral species often exhibit localized pink pigmentation in diseased or damaged tissues. Our spectral and histological analyses of pink-pigmented Porites lobata lesions show co-localization of bright red fluorescence with putative amoebocytes concentrating in the epidermis, suggesting an activated innate immune response. Here we report the cloning, expression, and characterization of a novel red fluorescent protein (plobRFP) from the pink-pigmented tissues associated with lesions on Porites lobata. In vitro, the recombinant plobRFP exhibits a distinct red emission signal of 614 nm (excitation maximum: 578 nm), making plobRFP the furthest red-shifted natural fluorescent protein isolated from a scleractinian coral. The recombinant protein has a high molar extinction coefficient (84,000 M-1 cm-1) and quantum yield (0.74), conferring a notable brightness to plobRFP. Sequence analysis suggests the distinct brightness and marked red shift may be inherent features of plobRFP's chromophore conformation. While plobRFP displays a tendency to aggregate, its high pH stability, photostability, and spectral properties make it a candidate for cell imaging applications and a potential template for engineering optimized RFPs. The association of plobRFP with a possible immune response furthers its potential use as a visual diagnostic and molecular biomarker for monitoring coral health.
Collapse
Affiliation(s)
- Mary C Bridges
- Graduate Program in Marine Biology, College of Charleston, Charleston, SC, USA
- National Centers for Coastal Ocean Science Charleston Laboratory, NOS, NOAA, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Cheryl M Woodley
- National Centers for Coastal Ocean Science Charleston Laboratory, NOS, NOAA, Charleston, SC, USA.
| | - Esther C Peters
- Department of Environmental Science & Policy, George Mason University, Fairfax, VA, USA
| | - Lisa A May
- Consolidated Safety Services, Inc., NCCOS Charleston Laboratory, NOS, NOAA, Charleston, SC, USA
| | - Sylvia B Galloway
- National Centers for Coastal Ocean Science Charleston Laboratory, NOS, NOAA, Charleston, SC, USA
| |
Collapse
|
24
|
Viola RE. The ammonia-lyases: enzymes that use a wide range of approaches to catalyze the same type of reaction. Crit Rev Biochem Mol Biol 2020; 54:467-483. [PMID: 31906712 DOI: 10.1080/10409238.2019.1708261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The paradigm that protein structure determines protein function has been clearly established. What is less clear is whether a specific protein structure is always required to carry out a specific function. Numerous cases are now known where there is no apparent connection between the biological function of a protein and the other members of its structural class, and where functionally related proteins can have quite diverse structures. A set of enzymes with these diverse properties, the ammonia-lyases, will be examined in this review. These are a class of enzymes that catalyze a relatively straightforward deamination reaction. However, the individual enzymes of this class possess a wide variety of different structures, utilize a diverse set of cofactors, and appear to catalyze this related reaction through a range of different mechanisms. This review aims to address a basic question: if there is not a specific protein structure and active site architecture that is both required and sufficient to define a catalyst for a given chemical reaction, then what factor(s) determine the structure and the mechanism that is selected to catalyze a particular reaction?
Collapse
Affiliation(s)
- Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, USA
| |
Collapse
|
25
|
Surana S, Villarroel‐Campos D, Lazo OM, Moretto E, Tosolini AP, Rhymes ER, Richter S, Sleigh JN, Schiavo G. The evolution of the axonal transport toolkit. Traffic 2019; 21:13-33. [DOI: 10.1111/tra.12710] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Surana
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - David Villarroel‐Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Oscar M. Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
| | - Edoardo Moretto
- UK Dementia Research InstituteUniversity College London London UK
| | - Andrew P. Tosolini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Sandy Richter
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
- Discoveries Centre for Regenerative and Precision MedicineUniversity College London London UK
| |
Collapse
|
26
|
Schiermeyer A, Schneider K, Kirchhoff J, Schmelter T, Koch N, Jiang K, Herwartz D, Blue R, Marri P, Samuel P, Corbin DR, Webb SR, Gonzalez DO, Folkerts O, Fischer R, Schinkel H, Ainley WM, Schillberg S. Targeted insertion of large DNA sequences by homology-directed repair or non-homologous end joining in engineered tobacco BY-2 cells using designed zinc finger nucleases. PLANT DIRECT 2019; 3:e00153. [PMID: 31360827 PMCID: PMC6639735 DOI: 10.1002/pld3.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/11/2019] [Accepted: 07/03/2019] [Indexed: 05/13/2023]
Abstract
Targeted integration of recombinant DNA fragments into plant genomes by DNA double-strand break (DSB) repair mechanisms has become a powerful tool for precision engineering of crops. However, many targeting platforms require the screening of many transgenic events to identify a low number of targeted events among many more random insertion events. We developed an engineered transgene integration platform (ETIP) that uses incomplete marker genes at the insertion site to enable rapid phenotypic screening and recovery of targeted events upon functional reconstitution of the marker genes. The two marker genes, encoding neomycin phosphotransferase II (nptII) and Discosoma sp. red fluorescent protein (DsRed) enable event selection on kanamycin-containing selective medium and subsequent screening for red fluorescent clones. The ETIP design allows targeted integration of donor DNA molecules either by homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated mechanisms. Targeted donor DNA integration is facilitated by zinc finger nucleases (ZFN). The ETIP cassette was introduced into Nicotiana tabacum BY-2 suspension cells to generate target cell lines containing a single copy locus of the transgene construct. The utility of the ETIP platform has been demonstrated by targeting DNA constructs containing up to 25-kb payload. The success rate for clean targeted DNA integration was up to 21% for HDR and up to 41% for NHEJ based on the total number of calli analyzed by next-generation sequencing (NGS). The rapid generation of targeted events with large DNA constructs expands the utility of the nuclease-mediated gene addition platform both for academia and the commercial sector.
Collapse
Affiliation(s)
- Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Katja Schneider
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Janina Kirchhoff
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Thomas Schmelter
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Natalie Koch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Ke Jiang
- Corteva AgriscienceIndianapolisINUSA
| | - Denise Herwartz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Ryan Blue
- Corteva AgriscienceIndianapolisINUSA
| | | | | | | | | | | | | | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Indiana Biosciences Research InstituteIndianapolisINUSA
| | - Helga Schinkel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | | | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| |
Collapse
|
27
|
Chang HY, Ko TP, Chang YC, Huang KF, Lin CY, Chou HY, Chiang CY, Tsai HJ. Crystal structure of the blue fluorescent protein with a Leu-Leu-Gly tri-peptide chromophore derived from the purple chromoprotein of Stichodactyla haddoni. Int J Biol Macromol 2019; 130:675-684. [PMID: 30836182 DOI: 10.1016/j.ijbiomac.2019.02.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 11/15/2022]
Abstract
Chromoproteins are a good source of engineered biological tools. We previously reported the development of a blue fluorescent protein, termed shBFP, which was derived from a purple chromoprotein shCP found in the sea anemone Stichodacyla haddoni. shBFP contains a Leu63-Leu64-Gly65 tri-peptide chromophore, and shows maximum excitation and emission wavelengths at 401 nm and 458 nm, along with a high quantum yield. How this chromophore endows shBFP with the unique fluorescence property in the absence of a hydroxyphenyl ring remained unclear. Here, we present the crystal structures of shCP and shBFP at 1.9- and 2.05-Å resolution, respectively. Both proteins crystallized as similar tetramers, but they are more likely to function as dimers in solution. The chromophore in shCP shows a trans-conformation and its non-planarity is similar to most other homologues. The shBFP chromophore also contains an imidazolidone moiety in its structure, but there are a smaller number of conjugated double bonds compared to shCP. Consequently, the chromophore may prefer absorbing shorter wavelength lights in the UV region, followed by the emission of blue fluorescence. These observations provide new insights into the molecular basis that correlates chromophore conformation with light absorption and fluorescence emission for the development of improved biomarkers.
Collapse
Affiliation(s)
- Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ching Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Yung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Hong-Yun Chou
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Yi Chiang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
28
|
Scarangella A, Soumbo M, Mlayah A, Bonafos C, Monje MC, Roques C, Marcelot C, Large N, Dammak T, Makasheva K. Detection of the conformational changes of Discosoma red fluorescent proteins adhered on silver nanoparticles-based nanocomposites via surface-enhanced Raman scattering. NANOTECHNOLOGY 2019; 30:165101. [PMID: 30654336 DOI: 10.1088/1361-6528/aaff79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Description of the relationship between protein structure and function remains a primary focus in molecular biology, biochemistry, protein engineering and bioelectronics. Moreover, the investigation of the protein conformational changes after adhesion and dehydration is of importance to tackle problems related to the interaction of proteins with solid surfaces. In this paper the conformational changes of wild-type Discosoma recombinant red fluorescent proteins (DsRed) adhered on silver nanoparticles (AgNPs)-based nanocomposites are explored via surface-enhanced Raman scattering (SERS). Originality in the present approach is to work on dehydrated DsRed thin protein layers in link with natural conditions during drying. To enable the SERS effect, plasmonic substrates consisting of a single layer of AgNPs encapsulated by an ultra-thin silica cover layer were elaborated by plasma process. The achieved enhancement of the electromagnetic field in the vicinity of the AgNPs is as high as 105. This very strong enhancement factor allowed detecting Raman signals from discontinuous layers of DsRed issued from solution with protein concentration of only 80 nM. Three different conformations of the DsRed proteins after adhesion and dehydration on the plasmonic substrates were identified. It was found that the DsRed chromophore structure of the adsorbed proteins undergoes optically assisted chemical transformations when interacting with the optical beam, which leads to reversible transitions between the three different conformations. The proposed time-evolution scenario endorses the dynamical character of the relationship between protein structure and function. It also confirms that the conformational changes of proteins with strong internal coherence, like DsRed proteins, are reversible.
Collapse
Affiliation(s)
- Adriana Scarangella
- LAPLACE, Université de Toulouse; CNRS, UPS, INPT; 118 route de Narbonne, F-31062 Toulouse, France. CEMES-CNRS; Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse, France. FERMaT, Université de Toulouse; CNRS, UPS, INPT, INSA; Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Filonov GS, Song W, Jaffrey SR. Spectral Tuning by a Single Nucleotide Controls the Fluorescence Properties of a Fluorogenic Aptamer. Biochemistry 2019; 58:1560-1564. [PMID: 30838859 DOI: 10.1021/acs.biochem.9b00048] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorogenic aptamers are genetically encoded RNA aptamers that bind and induce the fluorescence of otherwise nonfluorescent small molecule dyes. These RNA-fluorophore complexes can be highly fluorescent and useful for RNA visualization and genetically encoded biosensors. Notably, different RNA aptamers can bind the same fluorophore, resulting in complexes that exhibit spectrally distinct fluorescence properties. The basis for spectral tuning of small molecule fluorophores has not yet been studied. Here we explore the mechanism of spectral tuning in three highly related RNA aptamers, Broccoli, Orange Broccoli, and Red Broccoli, each of which binds the DFHO (3,5-difluoro-4-hydroxybenzylidene imidazolinone-2-oxime) fluorophore and generates distinct spectral emissions. We show that DFHO fluorescence spectral tuning is controlled by interaction of the oxime moiety of the fluorophore and one specific nucleotide that is different in each RNA aptamer. Our finding presents, for the first time, a mechanism by which RNA can control the properties of a bound small molecule fluorophore. More broadly, our finding can guide further development of fluorogenic aptamers with novel spectral properties.
Collapse
Affiliation(s)
- Grigory S Filonov
- Department of Pharmacology, Weill Medical College , Cornell University , New York , New York 10065 , United States
| | - Wenjiao Song
- Department of Pharmacology, Weill Medical College , Cornell University , New York , New York 10065 , United States
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College , Cornell University , New York , New York 10065 , United States
| |
Collapse
|
30
|
Kim SE, Hwang KY, Nam KH. Spectral and structural analysis of a red fluorescent protein from Acropora digitifera. Protein Sci 2019; 28:375-381. [PMID: 30368951 PMCID: PMC6319757 DOI: 10.1002/pro.3540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Fluorescent proteins (FPs) possess a wide variety of spectral properties that make them of widespread interest as optical markers. These proteins can be applied as pH indicators or metal biosensors. The discovery and characterization of new fluorescent proteins is expected to further extend their application. Here, we report the spectral and structural analysis of a red fluorescent protein from Acropora digitifera (designated AdRed). This protein shows a tetrameric state and is red emitting, with excitation and emission maxima at 567 and 612 nm, respectively. Its crystal structure shows the tetrameric interface stabilized by hydrogen bonding and salt bridges. The electron density map of the chromophore, consisting of Asp66-Tyr67-Gly68, shows the decarboxylated side chain of Asp66. Ser223, located near the chromophore, has the role of bridging His202 and Glu221, and is part of the hydrogen bond network. Mutated AdRed with Cys148Ser reveals a blue shift in fluorescence excitation and emission. Our results provide insights into understanding the molecular function of AdRed and other FPs.
Collapse
Affiliation(s)
- So Eun Kim
- Division of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoul02841Republic of Korea
| | - Kwang Yeon Hwang
- Division of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoul02841Republic of Korea
| | - Ki Hyun Nam
- Division of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoul02841Republic of Korea
- Institute of Life Science and Natural ResourcesKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
31
|
Pickett SB, Thomas ED, Sebe JY, Linbo T, Esterberg R, Hailey DW, Raible DW. Cumulative mitochondrial activity correlates with ototoxin susceptibility in zebrafish mechanosensory hair cells. eLife 2018; 7:38062. [PMID: 30596476 PMCID: PMC6345563 DOI: 10.7554/elife.38062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play a prominent role in mechanosensory hair cell damage and death. Although hair cells are thought to be energetically demanding cells, how mitochondria respond to these demands and how this might relate to cell death is largely unexplored. Using genetically encoded indicators, we found that mitochondrial calcium flux and oxidation are regulated by mechanotransduction and demonstrate that hair cell activity has both acute and long-term consequences on mitochondrial function. We tested whether variation in mitochondrial activity reflected differences in the vulnerability of hair cells to the toxic drug neomycin. We observed that susceptibility did not correspond to the acute level of mitochondrial activity but rather to the cumulative history of that activity.
Collapse
Affiliation(s)
- Sarah B Pickett
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States
| | - Eric D Thomas
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States
| | - Joy Y Sebe
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Robert Esterberg
- Department of Biological Structure, University of Washington, Seattle, United States.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - Dale W Hailey
- Department of Biological Structure, University of Washington, Seattle, United States.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| |
Collapse
|
32
|
Grabarek D, Andruniów T. Assessment of Functionals for TDDFT Calculations of One- and Two-Photon Absorption Properties of Neutral and Anionic Fluorescent Proteins Chromophores. J Chem Theory Comput 2018; 15:490-508. [PMID: 30485096 DOI: 10.1021/acs.jctc.8b00769] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Performance of DFT functionals with different percentages of exact Hartree-Fock exchange energy (EX) is assessed for recovery of the CC2 reference one- (OPA) and two-photon absorption (TPA) spectra of fluorescent proteins chromophores in vacuo. The investigated DFT functionals, together with their EX contributions are BLYP (0%), B3LYP (20%), B1LYP (25%), BHandHLYP (50%), and CAM-B3LYP (19% at short range and 65% at long range). Our test set consists of anionic and neutral chromophores as naturally occurring in the fluorescent proteins. For the first time, we compare TDDFT and CC2 methods for higher excited states than the S1 state, exhibiting relatively large TPA intensity. Our TDDFT results for neutral chromophores reveal an increase in excitation energies as well as TPA and OPA intensities errors, compared to CC2-derived results, as the DFT functional contains less exact exchange. The long-range-corrected CAM-B3LYP functional performs the best, closely followed by BHandHLYP, while BLYP usually significantly underestimates all investigated spectral properties, hence being the worst in reproducing the reference CC2 results. The hybrid B3LYP and B1LYP functionals can be roughly placed in between. We propose that TDDFT may underestimate the TPA intensities for neutral chromophores of fluorescent proteins due to underestimated oscillator strengths between some excited states. In the case of anionic chromophores, we find that B3LYP and B1LYP functionals overcome others in terms of reproducing CC2 excitation energies. On the other hand, however, TPA intensity is usually significantly underestimated, and in this respect, CAM-B3LYP functional seems to be again superior. In contrast to the case of neutral chromophores, it seems that a large magnitude of excited-state dipole moments or changes in dipole moments upon excitation may be the driving force behind high TPA transition moments.
Collapse
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering and Modelling Group , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| |
Collapse
|
33
|
Monomerization of the photoconvertible fluorescent protein SAASoti by rational mutagenesis of single amino acids. Sci Rep 2018; 8:15542. [PMID: 30341334 PMCID: PMC6195611 DOI: 10.1038/s41598-018-33250-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
Photoconvertible fluorescent proteins (PCFPs) are widely used as markers for the visualization of intracellular processes and for sub-diffraction single-molecule localization microscopy. Although wild type of a new photoconvertible fluorescent protein SAASoti tends to aggregate, we succeeded, via rational mutagenesis, to obtain variants that formed either tetramers or monomers. We compare two approaches: one is based on the structural similarity between SAASoti and Kaede, which helped us to identify a single point mutation (V127T) at the protein’s hydrophobic interface that leads to monomerization. The other is based on a chemical modification of amino groups of SAASoti with succinic anhydride, which converts the protein aggregates into monomers. Mass-spectrometric analysis helped us to identify that the modification of a single ε-amino group of lysine K145 in the strongly charged interface AB was sufficient to convert the protein into its tetrameric form. Furthermore, site-directed mutagenesis was used to generate mutants that proved to be either monomeric or tetrameric, both capable of rapid green-to-red photoconversion. This allows SAASoti to be used as a photoconvertible fluorescent marker for in vivo cell studies.
Collapse
|
34
|
Lee W, Kim I, Rhee YM. A proton transfer network that generates deprotonated tyrosine is a key to producing reactive oxygen species in phototoxic KillerRed protein. Phys Chem Chem Phys 2018; 20:22342-22350. [PMID: 30128469 DOI: 10.1039/c8cp02939c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
KillerRed is the first genetically encoded photosensitizer that can induce cytotoxicity upon light exposure. Nevertheless, its phototoxicity is still lower than that of chemical photosensitizers, and the efforts to further develop KillerRed variants with enhanced phototoxicity have been impeded because the mechanism by which it generates cytotoxic reactive oxygen species (ROS) has remained elusive. To shed light on this issue, we employ quantum mechanics/molecular mechanics (QM/MM) modeling with statistical free energy analysis to examine the photo-induced electron transfer reaction occurring in KillerRed. We identify a deprotonated tyrosine residue (Tyr110) as an electron donor and further show that adjacent glutamate and serine residues play essential roles in deprotonating Tyr110. We also show that water mediation is important in the proton transfer and that protein fluctuations importantly govern the fate of the excited system. We provide clues about why KillerRed can only exhibit a low ROS yield and suggest future directions of mutagenesis toward an enhanced phototoxicity.
Collapse
Affiliation(s)
- Wook Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | | | | |
Collapse
|
35
|
de Wergifosse M, Botek E, De Meulenaere E, Clays K, Champagne B. ONIOM Investigation of the Second-Order Nonlinear Optical Responses of Fluorescent Proteins. J Phys Chem B 2018; 122:4993-5005. [DOI: 10.1021/acs.jpcb.8b01430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Marc de Wergifosse
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Edith Botek
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Evelien De Meulenaere
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
- Laboratory for Molecular Electronics and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Koen Clays
- Laboratory for Molecular Electronics and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Benoît Champagne
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
36
|
Scarangella A, Soumbo M, Villeneuve-Faure C, Mlayah A, Bonafos C, Monje MC, Roques C, Makasheva K. Adsorption properties of BSA and DsRed proteins deposited on thin SiO 2 layers: optically non-absorbing versus absorbing proteins. NANOTECHNOLOGY 2018; 29:115101. [PMID: 29318999 DOI: 10.1088/1361-6528/aaa68b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein adsorption on solid surfaces is of interest for many industrial and biomedical applications, where it represents the conditioning step for micro-organism adhesion and biofilm formation. To understand the driving forces of such an interaction we focus in this paper on the investigation of the adsorption of bovine serum albumin (BSA) (optically non-absorbing, model protein) and DsRed (optically absorbing, naturally fluorescent protein) on silica surfaces. Specifically, we propose synthesis of thin protein layers by means of dip coating of the dielectric surface in protein solutions with different concentrations (0.01-5.0 g l-1). We employed spectroscopic ellipsometry as the most suitable and non-destructive technique for evaluation of the protein layers' thickness and optical properties (refractive index and extinction coefficient) after dehydration, using two different optical models, Cauchy for BSA and Lorentz for DsRed. We demonstrate that the thickness, the optical properties and the wettability of the thin protein layers can be finely controlled by proper tuning of the protein concentration in the solution. These results are correlated with the thin layer morphology, investigated by AFM, FTIR and PL analyses. It is shown that the proteins do not undergo denaturation after dehydration on the silica surface. The proteins arrange themselves in a lace-like network for BSA and in a rod-like structure for DsRed to form mono- and multi-layers, due to different mechanisms driving the organization stage.
Collapse
Affiliation(s)
- A Scarangella
- LAPLACE, Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062, Toulouse, France. CEMES-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055, Toulouse, France. FERMaT, Université de Toulouse, CNRS, UPS, INPT, INSA, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Monitoring ligand-dependent assembly of receptor ternary complexes in live cells by BRETFect. Proc Natl Acad Sci U S A 2018; 115:E2653-E2662. [PMID: 29487210 DOI: 10.1073/pnas.1716224115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is currently an unmet need for versatile techniques to monitor the assembly and dynamics of ternary complexes in live cells. Here we describe bioluminescence resonance energy transfer with fluorescence enhancement by combined transfer (BRETFect), a high-throughput technique that enables robust spectrometric detection of ternary protein complexes based on increased energy transfer from a luciferase to a fluorescent acceptor in the presence of a fluorescent intermediate. Its unique donor-intermediate-acceptor relay system is designed so that the acceptor can receive energy either directly from the donor or indirectly via the intermediate in a combined transfer, taking advantage of the entire luciferase emission spectrum. BRETFect was used to study the ligand-dependent cofactor interaction properties of the estrogen receptors ERα and ERβ, which form homo- or heterodimers whose distinctive regulatory properties are difficult to dissect using traditional methods. BRETFect uncovered the relative capacities of hetero- vs. homodimers to recruit receptor-specific cofactors and regulatory proteins, and to interact with common cofactors in the presence of receptor-specific ligands. BRETFect was also used to follow the assembly of ternary complexes between the V2R vasopressin receptor and two different intracellular effectors, illustrating its use for dissection of ternary protein-protein interactions engaged by G protein-coupled receptors. Our results indicate that BRETFect represents a powerful and versatile technique to monitor the dynamics of ternary interactions within multimeric complexes in live cells.
Collapse
|
38
|
Cackovic J, Gutierrez-Luke S, Call GB, Juba A, O'Brien S, Jun CH, Buhlman LM. Vulnerable Parkin Loss-of-Function Drosophila Dopaminergic Neurons Have Advanced Mitochondrial Aging, Mitochondrial Network Loss and Transiently Reduced Autophagosome Recruitment. Front Cell Neurosci 2018; 12:39. [PMID: 29497364 PMCID: PMC5818410 DOI: 10.3389/fncel.2018.00039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Selective degeneration of substantia nigra dopaminergic (DA) neurons is a hallmark pathology of familial Parkinson's disease (PD). While the mechanism of degeneration is elusive, abnormalities in mitochondrial function and turnover are strongly implicated. An Autosomal Recessive-Juvenile Parkinsonism (AR-JP) Drosophila melanogaster model exhibits DA neurodegeneration as well as aberrant mitochondrial dynamics and function. Disruptions in mitophagy have been observed in parkin loss-of-function models, and changes in mitochondrial respiration have been reported in patient fibroblasts. Whether loss of parkin causes selective DA neurodegeneration in vivo as a result of lost or decreased mitophagy is unknown. This study employs the use of fluorescent constructs expressed in Drosophila DA neurons that are functionally homologous to those of the mammalian substantia nigra. We provide evidence that degenerating DA neurons in parkin loss-of-function mutant flies have advanced mitochondrial aging, and that mitochondrial networks are fragmented and contain swollen organelles. We also found that mitophagy initiation is decreased in park (Drosophila parkin/PARK2 ortholog) homozygous mutants, but autophagosome formation is unaffected, and mitochondrial network volumes are decreased. As the fly ages, autophagosome recruitment becomes similar to control, while mitochondria continue to show signs of damage, and climbing deficits persist. Interestingly, aberrant mitochondrial morphology, aging and mitophagy initiation were not observed in DA neurons that do not degenerate. Our results suggest that parkin is important for mitochondrial homeostasis in vulnerable Drosophila DA neurons, and that loss of parkin-mediated mitophagy may play a role in degeneration of relevant DA neurons or motor deficits in this model.
Collapse
Affiliation(s)
- Juliana Cackovic
- Arizona College of Medicine, Midwestern University, Glendale, AZ, United States
| | | | - Gerald B Call
- Arizona College of Medicine, Midwestern University, Glendale, AZ, United States
| | - Amber Juba
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Glendale, AZ, United States
| | - Stephanie O'Brien
- Arizona College of Medicine, Midwestern University, Glendale, AZ, United States
| | - Charles H Jun
- Arizona College of Medicine, Midwestern University, Glendale, AZ, United States
| | - Lori M Buhlman
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Glendale, AZ, United States
| |
Collapse
|
39
|
Wilson RJ, Drake JC, Cui D, Zhang M, Perry HM, Kashatus JA, Kusminski CM, Scherer PE, Kashatus DF, Okusa MD, Yan Z. Conditional MitoTimer reporter mice for assessment of mitochondrial structure, oxidative stress, and mitophagy. Mitochondrion 2017; 44:20-26. [PMID: 29274400 PMCID: PMC6387589 DOI: 10.1016/j.mito.2017.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/24/2017] [Accepted: 12/15/2017] [Indexed: 11/18/2022]
Abstract
Assessment of structural and functional changes of mitochondria is vital for biomedical research as mitochondria are the power plants essential for biological processes and tissue/organ functions. Others and we have developed a novel reporter gene, pMitoTimer, which codes for a redox sensitive mitochondrial targeted protein that switches from green fluorescence protein (GFP) to red fluorescent protein (DsRed) when oxidized. It has been shown in transfected cells, transgenic C. elegans and Drosophila m., as well as somatically transfected adult skeletal muscle that this reporter gene allows quantifiable assessment of mitochondrial structure, oxidative stress, and lysosomal targeting of mitochondria-containing autophagosomes. Here, we generated CAG-CAT-MitoTimer transgenic mice using a transgene containing MitoTimer downstream of LoxP-flanked bacterial chloramphenicol acetyltransferase (CAT) gene with stop codon under the control of the cytomegalovirus (CMV) enhancer fused to the chicken β-actin promoter (CAG). When CAG-CAT-MitoTimer mice were crossbred with various tissue-specific (muscle, adipose tissue, kidney, and pancreatic tumor) or global Cre transgenic mice, the double transgenic offspring showed MitoTimer expression in tissue-specific or global manner. Lastly, we show that hindlimb ischemia-reperfusion caused early, transient increases of mitochondrial oxidative stress, mitochondrial fragmentation and lysosomal targeting of autophagosomes containing mitochondria as well as a later reduction of mitochondrial content in skeletal muscle along with mitochondrial oxidative stress in sciatic nerve. Thus, we have generated conditional MitoTimer mice and provided proof of principle evidence of their utility to simultaneously assess mitochondrial structure, oxidative stress, and mitophagy in vivo in a tissue-specific, controllable fashion.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Joshua C Drake
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Di Cui
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mei Zhang
- Department of Medicine-Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Heather M Perry
- Department of Medicine-Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Jennifer A Kashatus
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | | | - Philipp E Scherer
- Department of Internal Medicine, UT Southwestern, Dallas, TX, United States
| | - David F Kashatus
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mark D Okusa
- Department of Medicine-Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Zhen Yan
- Department of Medicine-Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States.
| |
Collapse
|
40
|
Song W, Filonov GS, Kim H, Hirsch M, Li X, Moon JD, Jaffrey SR. Imaging RNA polymerase III transcription using a photostable RNA-fluorophore complex. Nat Chem Biol 2017; 13:1187-1194. [PMID: 28945233 PMCID: PMC5679246 DOI: 10.1038/nchembio.2477] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 08/09/2017] [Indexed: 11/09/2022]
Abstract
Quantitative measurement of transcription rates in live cells is important for revealing mechanisms of transcriptional regulation. This is particularly challenging when measuring the activity of RNA polymerase III (Pol III), which transcribes growth-promoting small RNAs. To address this issue, we developed Corn, a genetically encoded fluorescent RNA reporter suitable for quantifying RNA transcription in cells. Corn binds and induces fluorescence of 3,5-difluoro-4-hydroxybenzylidene-imidazolinone-2-oxime, which resembles the fluorophore found in red fluorescent protein (RFP). Notably, Corn shows high photostability, enabling quantitative fluorescence imaging of mTOR-dependent Pol III transcription. We found that, unlike actinomycin D, mTOR inhibitors resulted in heterogeneous transcription suppression in individual cells. Quantitative imaging of Corn-tagged Pol III transcript levels revealed distinct Pol III transcription 'trajectories' elicited by mTOR inhibition. Together, these studies provide an approach for quantitative measurement of Pol III transcription by direct imaging of Pol III transcripts containing a photostable RNA-fluorophore complex.
Collapse
Affiliation(s)
- Wenjiao Song
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Grigory S. Filonov
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Hyaeyeong Kim
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Markus Hirsch
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Xing Li
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Jared D. Moon
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Samie R. Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
41
|
Warner KD, Sjekloća L, Song W, Filonov GS, Jaffrey SR, Ferré-D’Amaré AR. A homodimer interface without base pairs in an RNA mimic of red fluorescent protein. Nat Chem Biol 2017; 13:1195-1201. [PMID: 28945234 PMCID: PMC5663454 DOI: 10.1038/nchembio.2475] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 08/03/2017] [Indexed: 11/09/2022]
Abstract
Corn, a 28-nucleotide RNA, increases yellow fluorescence of its cognate ligand 3,5-difluoro-4-hydroxybenzylidene-imidazolinone-2-oxime (DFHO) by >400-fold. Corn was selected in vitro to overcome limitations of other fluorogenic RNAs, particularly rapid photobleaching. We now report the Corn-DFHO co-crystal structure, discovering that the functional species is a quasisymmetric homodimer. Unusually, the dimer interface, in which six unpaired adenosines break overall two-fold symmetry, lacks any intermolecular base pairs. The homodimer encapsulates one DFHO at its interprotomer interface, sandwiching it with a G-quadruplex from each protomer. Corn and the green-fluorescent Spinach RNA are structurally unrelated. Their convergent use of G-quadruplexes underscores the usefulness of this motif for RNA-induced small-molecule fluorescence. The asymmetric dimer interface of Corn could provide a basis for the development of mutants that only fluoresce as heterodimers. Such variants would be analogous to Split GFP, and may be useful for analyzing RNA co-expression or association, or for designing self-assembling RNA nanostructures.
Collapse
Affiliation(s)
- Katherine Deigan Warner
- Biochemistry and Biophysics Center, National Heart, Lung and Blood
Institute, Bethesda, Maryland, USA
| | - Ljiljana Sjekloća
- Biochemistry and Biophysics Center, National Heart, Lung and Blood
Institute, Bethesda, Maryland, USA
| | - Wenjiao Song
- Department of Pharmacology, Weill-Cornell Medical College, Cornell
University, New York, New York, USA
| | - Grigory S. Filonov
- Department of Pharmacology, Weill-Cornell Medical College, Cornell
University, New York, New York, USA
| | - Samie R. Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell
University, New York, New York, USA
| | - Adrian R. Ferré-D’Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood
Institute, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Shinde DN, Trivedi R, Vamsi Krishna N, Giribabu L, Sridhar B, Rathod B, Prakasham R. Facile synthesis, characterisation and anti‐inflammatory activities of ferrocenyl ester derivatives of 4‐arylidene‐5‐imidazolinones. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dilip N. Shinde
- Inorganic and Physical Chemistry DivisionCSIR‐Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐IICT Campus Hyderabad 500007 India
| | - Rajiv Trivedi
- Inorganic and Physical Chemistry DivisionCSIR‐Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐IICT Campus Hyderabad 500007 India
| | - N. Vamsi Krishna
- Inorganic and Physical Chemistry DivisionCSIR‐Indian Institute of Chemical Technology Hyderabad 500007 India
| | - L. Giribabu
- Inorganic and Physical Chemistry DivisionCSIR‐Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐IICT Campus Hyderabad 500007 India
| | - B. Sridhar
- Center for X‐ray CrystallographyCSIR‐Indian Institute of Chemical Technology Hyderabad 500007 India
| | - B.B. Rathod
- Medicinal Chemistry and Biotechnology DivisionCSIR‐Indian Institute of Chemical Technology Hyderabad 500007 India
| | - R.S. Prakasham
- Medicinal Chemistry and Biotechnology DivisionCSIR‐Indian Institute of Chemical Technology Hyderabad 500007 India
| |
Collapse
|
43
|
Wang JH, Shao XX, Hu MJ, Wei D, Liu YL, Xu ZG, Guo ZY. A novel BRET-based binding assay for interaction studies of relaxin family peptide receptor 3 with its ligands. Amino Acids 2017; 49:895-903. [PMID: 28161795 DOI: 10.1007/s00726-017-2387-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 01/06/2023]
Abstract
Relaxin family peptide receptor 3 (RXFP3) is an A-class G protein-coupled receptor that is implicated in the regulation of food intake and stress response upon activation by its cognate agonist relaxin-3. To study its interaction with various ligands, we developed a novel bioluminescence resonance energy transfer (BRET)-based binding assay using the brightest NanoLuc as an energy donor and a newly developed cyan-excitable orange fluorescent protein (CyOFP) as an energy acceptor. An engineered CyOFP without intrinsic cysteine residues but with an introduced cysteine at the C-terminus was overexpressed in Escherichia coli and chemically conjugated to the A-chain N-terminus of an easily labeled chimeric R3/I5 peptide via an intermolecular disulfide linkage. After the CyOFP-conjugated R3/I5 bound to a shortened human RXFP3 (removal of 33 N-terminal residues) fused with the NanoLuc reporter at the N-terminus, high BRET signals were detected. Saturation binding and real-time binding assays demonstrated that this BRET pair retained high binding affinity with fast association/dissociation. Using this BRET pair, binding potencies of various ligands with RXFP3 were conveniently measured through competition binding assays. Thus, the novel BRET-based binding assay facilitates interaction studies of RXFP3 with various ligands. The engineered CyOFP without intrinsic cysteine residues may also be applied to other BRET-based binding assays in future studies.
Collapse
Affiliation(s)
- Jia-Hui Wang
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng-Jun Hu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dian Wei
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
44
|
Simeon S, Shoombuatong W, Anuwongcharoen N, Preeyanon L, Prachayasittikul V, Wikberg JES, Nantasenamat C. osFP: a web server for predicting the oligomeric states of fluorescent proteins. J Cheminform 2016; 8:72. [PMID: 28053671 PMCID: PMC5167684 DOI: 10.1186/s13321-016-0185-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/29/2016] [Indexed: 11/10/2022] Open
Abstract
Background Currently, monomeric fluorescent proteins (FP) are ideal markers for protein tagging. The prediction of oligomeric states is helpful for enhancing live biomedical imaging. Computational prediction of FP oligomeric states can accelerate the effort of protein engineering efforts of creating monomeric FPs. To the best of our knowledge, this study represents the first computational model for predicting and analyzing FP oligomerization directly from the amino acid sequence. Results After data curation, an exhaustive data set consisting of 397 non-redundant FP oligomeric states was compiled from the literature. Results from benchmarking of the protein descriptors revealed that the model built with amino acid composition descriptors was the top performing model with accuracy, sensitivity and specificity in excess of 80% and MCC greater than 0.6 for all three data subsets (e.g. training, tenfold cross-validation and external sets). The model provided insights on the important residues governing the oligomerization of FP. To maximize the benefit of the generated predictive model, it was implemented as a web server under the R programming environment. Conclusion osFP affords a user-friendly interface that can be used to predict the oligomeric state of FP using the protein sequence. The advantage of osFP is that it is platform-independent meaning that it can be accessed via a web browser on any operating system and device. osFP is freely accessible at http://codes.bio/osfp/ while the source code and data set is provided on GitHub at https://github.com/chaninn/osFP/.. ![]()
Collapse
Affiliation(s)
- Saw Simeon
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Nuttapat Anuwongcharoen
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Likit Preeyanon
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Virapong Prachayasittikul
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Jarl E S Wikberg
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| |
Collapse
|
45
|
Wiens MD, Shen Y, Li X, Salem MA, Smisdom N, Zhang W, Brown A, Campbell RE. A Tandem Green-Red Heterodimeric Fluorescent Protein with High FRET Efficiency. Chembiochem 2016; 17:2361-2367. [PMID: 27781394 DOI: 10.1002/cbic.201600492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 12/28/2022]
Abstract
The tetrameric red fluorescent protein from Discosoma sp. coral (DsRed) has previously been engineered to produce dimeric and monomeric fluorescent variants with excitation and emission profiles that span the visible spectrum. The brightest of the effectively monomeric DsRed variants is tdTomato-a tandem fusion of a dimeric DsRed variant. Here we describe the engineering of brighter red (RRvT), green (GGvT), and green-red heterodimeric (GRvT) tdTomato variants. GRvT exhibited 99 % intramolecular FRET efficiency, resulting in long Stokes shift red fluorescence. These new variants could prove useful for multicolor live-cell imaging applications.
Collapse
Affiliation(s)
- Matthew D Wiens
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Yi Shen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Xi Li
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - M Alaraby Salem
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Nick Smisdom
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
- Present address: Faculty of Medicine and Life Sciences, Universiteit Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Wei Zhang
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
46
|
Stępkowski TM, Męczyńska-Wielgosz S, Kruszewski M. mitoLUHMES: An Engineered Neuronal Cell Line for the Analysis of the Motility of Mitochondria. Cell Mol Neurobiol 2016; 37:1055-1066. [PMID: 27832395 PMCID: PMC5494036 DOI: 10.1007/s10571-016-0438-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/22/2016] [Indexed: 01/21/2023]
Abstract
Perturbations in the transport of mitochondria and their quality control in neuronal cells underlie many types of neurological pathologies, whereas systems enabling convenient analysis of mitochondria behavior in cellular models of neurodegenerative diseases are limited. In this study, we present a modified version of lund human mesencephalic cells, mitoLUHMES, expressing GFP and mitochondrially targeted DsRed2 fluorescent proteins, intended for in vitro analysis of mitochondria trafficking by real-time fluorescence microscopy. This cell line can be easily differentiated into neuronal phenotype and allows us to observe movements of single mitochondria in single cells grown in high-density cultures. We quantified the perturbations in mitochondria morphology and dynamics in cells treated with model neurotoxins: carbonyl cyanide m-chlorophenylhydrazone and 6-hydroxydopamine. For the first time we filmed the processes of fission, fusion, pausing, and reversal of mitochondria movement direction in LUHMES cells. We present a detailed analysis of mitochondria length, velocity, and frequency of movement for static, anterograde, and retrograde motile mitochondria. The observed neurotoxin treatment-mediated decreases in morphological and kinetic parameters of mitochondria provide foundation for the future studies exploiting mitoLUHMES as a new model for neurobiology.
Collapse
Affiliation(s)
- Tomasz M Stępkowski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna16, 03-195, Warsaw, Poland.
| | - Sylwia Męczyńska-Wielgosz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna16, 03-195, Warsaw, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna16, 03-195, Warsaw, Poland.,Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland.,Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, ul. Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
47
|
Fluorescence bioimaging of intracellular signaling and its clinical application. J Oral Biosci 2016; 58:113-119. [PMID: 32512679 DOI: 10.1016/j.job.2016.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fluorescent proteins have continued to shed light on cell biology since the cDNA of wild type green fluorescent protein was first isolated. Nowadays, these remarkable proteins are useful tools, not only in basic research, but also in clinical medicine. HIGHLIGHT By taking advantage of fluorescent protein-based technologies, we identified a signaling network critical for influenza virus internalization and infection. In addition, we developed a highly sensitive biosensor for monitoring kinase activity that utilizes energy transfer between fluorescent proteins. This has led to a high-performance clinical test that enables the prediction of future therapeutic responses and the risk of acquired drug resistance for each individual patient before beginning molecular target therapy. CONCLUSION Technologies that utilize fluorescent proteins, such as the biosensor presented here, should find increasing applications in clinical medicine.
Collapse
|
48
|
Chiang CY, Lin CY, Chen YT, Tsai HJ. Blue fluorescent protein derived from the mutated purple chromoprotein isolated from the sea anemone Stichodactyla haddoni. Protein Eng Des Sel 2016; 29:523-530. [PMID: 27578888 DOI: 10.1093/protein/gzw041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 11/14/2022] Open
Abstract
Chromoproteins, especially far-red fluorescent proteins with long stokes shift, are good sources for engineering biological research tools. However, chromoproteins have not been used for developing fluorescent proteins with short emission wavelength. Therefore, we herein report the development of a blue fluorescent protein, termed shBFP, which is derived from a purple chromoprotein isolated from the sea anemone Stichodacyla haddoni (shCP) after shCP was simultaneously mutated on E63L and Y64L. The shBFP chromophore is composed of Leu-Leu-Gly, which introduced a maximum excitation and emission wavelength at 401 nm and 458 nm, respectively, and a quantum yield of 0.79. Interestingly, the N158S and L173I double mutations of shBFP conducted in the chromophore environment further shifted the maximum excitation to 375 nm, and elevated the quantum yield to 0.84. Thus, shBFP, which is based on the Leu-Leu-Gly chromophore composition, results in higher quantum yields and short wavelength emission. Additionally, we found that the cDNA of shBFP is stably expressed in zebrafish embryos with fidelity, indicating the application of shBFP as a biomarker or selective marker.
Collapse
Affiliation(s)
- Cheng-Yi Chiang
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei106, Taiwan
| | - Cheng-Yung Lin
- Institute of Biomedical Sciences, MacKay Medical College, No. 46, Section 3, Zhongzhen Road, Sanzhi Dist., New Taipei City252, Taiwan
| | - Yen-Ting Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei106, Taiwan
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, MacKay Medical College, No. 46, Section 3, Zhongzhen Road, Sanzhi Dist., New Taipei City252, Taiwan
| |
Collapse
|
49
|
Tainaka K, Kuno A, Kubota SI, Murakami T, Ueda HR. Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling. Annu Rev Cell Dev Biol 2016; 32:713-741. [DOI: 10.1146/annurev-cellbio-111315-125001] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuki Tainaka
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Shimpei I. Kubota
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatzya Murakami
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
50
|
Ng HL, Lin MZ. Structure-guided wavelength tuning in far-red fluorescent proteins. Curr Opin Struct Biol 2016; 39:124-133. [PMID: 27468111 PMCID: PMC5548387 DOI: 10.1016/j.sbi.2016.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/28/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
In recent years, protein engineers have succeeded in tuning the excitation spectra of natural fluorescent proteins from green wavelengths into orange and red wavelengths, resulting in the creation of a series of fluorescent proteins with emission in the far-red portions of the optical spectrum. These results have arisen from the synergistic combination of structural knowledge of fluorescent proteins, chemical intuition, and high-throughput screening methods. Here we review structural features found in autocatalytic far-red fluorescent proteins, and discuss how they add to our understanding of the biophysical mechanisms of wavelength tuning in biological chromophores.
Collapse
Affiliation(s)
- Ho-Leung Ng
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, USA; University of Hawaii Cancer Center, Honolulu, HI, USA.
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|