1
|
Balint L, Patel S, Serafin DS, Zhang H, Quinn KE, Aghajanian A, Kistner BM, Caron KM. Lymphatic Activation of ACKR3 Signaling Regulates Lymphatic Response After Ischemic Heart Injury. Arterioscler Thromb Vasc Biol 2025; 45:754-768. [PMID: 40143814 PMCID: PMC12018146 DOI: 10.1161/atvbaha.124.322288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Ischemic heart disease is a prevalent cause of death and disability worldwide. Recent studies reported a rapid expansion of the cardiac lymphatic network upon ischemic heart injury and proposed that cardiac lymphatics may attenuate tissue edema and inflammatory mechanisms after ischemic heart injury. Nevertheless, the mechanisms through which hypoxic conditions affect cardiac lymphangiogenesis and function remain unclear. Here, we aimed to characterize the role of the AM (adrenomedullin) decoy receptor ACKR3 (atypical chemokine receptor-3) in the lymphatic response following ischemic heart injury. METHODS Spatial assessment of ACKR3 signaling in the heart after ischemic heart injury was conducted using ACKR3-Tango-GFP (green fluorescent protein) reporter mice. Roles of ACKR3 after ischemic heart injury were characterized in Ackr3∆Lyve1 mice and in cultured human lymphatic endothelial cells exposed to hypoxia. RESULTS Using the novel ACKR3-Tango-GFP reporter mice, we detected activation of ACKR3 signaling in cardiac lymphatics adjacent to the site of ischemic injury of left anterior descending artery ligation. Ackr3∆Lyve1 mice exhibited better survival after left anterior descending artery ligation, especially within the first couple of days post-injury, and were protected from the formation of acute tissue edema. Ackr3∆Lyve1 mice exhibited a denser cardiac lymphatic network after left anterior descending artery ligation, especially in the injured tissues. Transcriptomic analysis revealed changes in cardiac lymphatic gene expression patterns that have been associated with extracellular matrix remodeling and immune activation. We also found that ACKR3 plays a critical role in regulating continuous cell-cell junction dynamics in lymphatic endothelial cells under hypoxic conditions. CONCLUSIONS Lymphatic expression of ACKR3 governs numerous processes following ischemic heart injury, including the lymphangiogenic response, edema protection, and overall survival. These results expand our understanding of how the heart failure biomarker AM, regulated by lymphatic ACKR3, may exert its roles after ischemic cardiac injury.
Collapse
Affiliation(s)
- Laszlo Balint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Shubhangi Patel
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - D. Stephen Serafin
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Kelsey E. Quinn
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Amir Aghajanian
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
- Department of Medicine, Division of Cardiology, University of North Carolina at Chapel Hill
| | - Bryan M. Kistner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| |
Collapse
|
2
|
Balint L, Patel S, Serafin DS, Zhang H, Quinn KE, Aghajanian A, Kistner BM, Caron KM. Lymphatic activation of ACKR3 signaling regulates lymphatic response after ischemic heart injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626683. [PMID: 39679907 PMCID: PMC11642902 DOI: 10.1101/2024.12.04.626683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background Ischemic heart disease is a prevalent cause of death and disability worldwide. Recent studies reported a rapid expansion of the cardiac lymphatic network upon ischemic heart injury and proposed that cardiac lymphatics may attenuate tissue edema and inflammatory mechanisms after ischemic heart injury. Nevertheless, the mechanisms through which hypoxic conditions affect cardiac lymphangiogenesis and function remain unclear. Here, we aimed to characterize the role of the adrenomedullin decoy receptor atypical chemokine receptor 3 (ACKR3) in the lymphatic response following ischemic heart injury. Methods Spatial assessment of ACKR3 signaling in the heart after ischemic heart injury was conducted using ACKR3-TangoGFP reporter mice. Roles of ACKR3 after ischemic heart injury were characterized in Ackr3 ΔLyve 1 mice and in cultured human lymphatic endothelial cells (LECs) exposed to hypoxia. Results Using the novel ACKR3-Tango-GFP reporter mice, we detected activation of ACKR3 signaling in cardiac lymphatics adjacent to the site of ischemic injury of left anterior descending artery (LAD) ligation. Ackr3 ΔLyve 1 mice exhibited better survival and were protected from the formation of acute tissue edema after ischemic cardiac injury. Ackr3 ΔLyve 1 mice exhibited a denser cardiac lymphatic network after LAD ligation, especially in the injured tissues. Transcriptomic analysis revealed changes in cardiac lymphatic gene expression patterns that have been associated with extracellular matrix remodeling and immune activation. We also found that ACKR3 plays a critical role in the regulating continuous cell-cell junction dynamics in LECs under hypoxic conditions. Conclusions Lymphatic expression of ACKR3 governs numerous processes following ischemic heart injury, including the lymphangiogenic response, edema protection and overall survival. These results expand our understanding of how the heart failure biomarker adrenomedullin, regulated by lymphatic ACKR3, may exert its cardioprotective roles after ischemic cardiac injury.
Collapse
|
3
|
Kaufmann P, Ilina Y, Press M, Bergmann A. Sandwich immunoassay for adrenomedullin precursor and its practical application. Sci Rep 2024; 14:28091. [PMID: 39543387 PMCID: PMC11564509 DOI: 10.1038/s41598-024-79542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Adrenomedullin (ADM) is a multifaceted peptide hormone involved in numerous physiological processes, including vascular stability, vasodilation, angiogenesis, and anti-inflammatory responses. The processing of ADM results in several fragments, including midregional proadrenomedullin (MR-proADM), and glycine-extended ADM (ADM-Gly) and bioactive ADM (bio-ADM). MR-proADM, the stable ADM fragment, and bio-ADM, the active form of ADM with a short half-life, have been shown to be potent biomarkers in a variety of pathologies. ADM-Gly, the direct precursor of bio-ADM, is a predominant form in human plasma, but remains less understood and least investigated. This study presents the development of a specific immunoluminometric assay for the quantification of ADM-Gly and offers a robust one-step approach for large-scale sample screening. Applied to human and rodent plasma, it elucidates the release kinetics and plasma half-life of ADM-Gly. Our findings confirm the predominance of ADM-Gly in healthy individuals and its significant release under pathological conditions. Our immunoluminometric assay enables precise measurement of ADM-Gly, advancing research into ADM-related pathophysiology and supporting its use as a biomarker and therapeutic target in various diseases.
Collapse
Affiliation(s)
- Paul Kaufmann
- PAM Theragnostics GmbH, 16761, Hennigsdorf, Germany.
| | - Yulia Ilina
- PAM Theragnostics GmbH, 16761, Hennigsdorf, Germany
| | | | | |
Collapse
|
4
|
Do LNH, Delgado E, Lim CG, Bkhache M, Peluzzo AM, Hua Y, Oza M, Mohsin S, Chen H, Autieri MV, Kim S, Liu X. A neuro-lymphatic communication guides lymphatic development by CXCL12 and CXCR4 signaling. Development 2024; 151:dev202901. [PMID: 39470100 PMCID: PMC11634036 DOI: 10.1242/dev.202901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024]
Abstract
Lymphatic vessels grow through active sprouting and mature into a vascular complex that includes lymphatic capillaries and collecting vessels that ensure fluid transport. However, the signaling cues that direct lymphatic sprouting and patterning remain unclear. In this study, we demonstrate that chemokine signaling, specifically through CXCL12 and CXCR4, plays crucial roles in regulating lymphatic development. We show that LEC-specific Cxcr4-deficient mouse embryos and CXCL12 mutant embryos exhibit severe defects in lymphatic sprouting, migration and lymphatic valve formation. We also discovered that CXCL12, originating from peripheral nerves, directs the migration of dermal lymphatic vessels to align with nerves in developing skin. Deletion of Cxcr4 or blockage of CXCL12 and CXCR4 activity results in reduced VEGFR3 levels on the LEC surface. This, in turn, impairs VEGFC-mediated VEGFR3 signaling and downstream PI3K and AKT activities. Taken together, these data identify previously unknown chemokine signaling originating from peripheral nerves that guides dermal lymphatic sprouting and patterning. Our work identifies for the first time a neuro-lymphatics communication during mouse development and reveals a previously unreported mechanism by which CXCR4 modulates VEGFC, VEGFR3 and AKT signaling.
Collapse
Affiliation(s)
- Long Nguyen Hoang Do
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Esteban Delgado
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Casey G. Lim
- Center for Neural Development and Repair, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Meriem Bkhache
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Amanda M. Peluzzo
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yiming Hua
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Manisha Oza
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sadia Mohsin
- Aging+Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael V. Autieri
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Seonhee Kim
- Center for Neural Development and Repair, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
5
|
Woolley SA, Hopkins B, Khatkar MS, Jerrett IV, Willet CE, O’Rourke BA, Tammen I. A Splice Site Variant in ADAMTS3 Is the Likely Causal Variant for Pulmonary Hypoplasia with Anasarca in Persian/Persian-Cross Sheep. Animals (Basel) 2024; 14:2811. [PMID: 39409761 PMCID: PMC11475510 DOI: 10.3390/ani14192811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Pulmonary hypoplasia with anasarca, or hydrops fetalis, is characterized by stillbirth, diffuse oedema, and generalized lymph node hypoplasia. The enlarged fetus frequently causes dystocia. The disease has been reported in cattle and sheep as an inherited condition with a recessive mode of inheritance. This is the first report of the disease in Persian/Persian-cross sheep in Australia. Affected fetuses were reported from three flocks, and a total of eleven affected, eleven obligate carrier, and 188 related Persian/Persian-cross animals were available for analysis, as well as unrelated control animals. SNP genotyping revealed a region of homozygosity in affected animals on ovine chromosome six, which contained the functional candidate gene ADAMTS3. Whole genome sequencing of two affected fetuses and one obligate carrier ewe revealed a single nucleotide deletion, ENSOARG00000013204:g.87124344delC, located 3 bp downstream from a donor splice site region in the ADAMTS3 gene. Sanger sequencing of cDNA containing this variant further revealed that it is likely to introduce an early splice site in exon 14, resulting in a loss of 6 amino acids at the junction of exon 14 and intron 14/15. A genotyping assay was developed, and the ENSOARG00000013204:g.87124344delC segregated with disease in 209 animals, allowing for effective identification of carrier animals.
Collapse
Affiliation(s)
- Shernae A. Woolley
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bethany Hopkins
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mehar S. Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ian V. Jerrett
- Agriculture Victoria, AgriBio Centre, Bundoora, VIC 3083, Australia
| | - Cali E. Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, Australia
| | - Brendon A. O’Rourke
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW 2568, Australia;
| | - Imke Tammen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Serafin DS, Harris NR, Bálint L, Douglas ES, Caron KM. Proximity interactome of lymphatic VE-cadherin reveals mechanisms of junctional remodeling and reelin secretion. Nat Commun 2024; 15:7734. [PMID: 39232006 PMCID: PMC11374903 DOI: 10.1038/s41467-024-51918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
The adhesion receptor vascular endothelial (VE)-cadherin transduces an array of signals that modulate crucial lymphatic cell behaviors including permeability and cytoskeletal remodeling. Consequently, VE-cadherin must interact with a multitude of intracellular proteins to exert these functions. Yet, the full protein interactome of VE-cadherin in endothelial cells remains a mystery. Here, we use proximity proteomics to illuminate how the VE-cadherin interactome changes during junctional reorganization from dis-continuous to continuous junctions, triggered by the lymphangiogenic factor adrenomedullin. These analyses identified interactors that reveal roles for ADP ribosylation factor 6 (ARF6) and the exocyst complex in VE-cadherin trafficking and recycling. We also identify a requisite role for VE-cadherin in the in vitro and in vivo control of secretion of reelin-a lymphangiocrine glycoprotein with recently appreciated roles in governing heart development and injury repair. This VE-cadherin protein interactome shines light on mechanisms that control adherens junction remodeling and secretion from lymphatic endothelial cells.
Collapse
Affiliation(s)
- D Stephen Serafin
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, 27599, NC, USA
| | - Natalie R Harris
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, 27599, NC, USA
| | - László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, 27599, NC, USA
| | - Elizabeth S Douglas
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, 27599, NC, USA
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, 27599, NC, USA.
| |
Collapse
|
7
|
Palit S, Shrestha AK, Thapa S, L. Grimm S, Coarfa C, Theis F, Simon LM, Shivanna B. Leveraging Integrated RNA Sequencing to Decipher Adrenomedullin's Protective Mechanisms in Experimental Bronchopulmonary Dysplasia. Genes (Basel) 2024; 15:806. [PMID: 38927741 PMCID: PMC11202456 DOI: 10.3390/genes15060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly affecting premature infants, with limited therapeutic options and increased long-term consequences. Adrenomedullin (Adm), a proangiogenic peptide hormone, has been found to protect rodents against experimental BPD. This study aims to elucidate the molecular and cellular mechanisms through which Adm influences BPD pathogenesis using a lipopolysaccharide (LPS)-induced model of experimental BPD in mice. Bulk RNA sequencing of Adm-sufficient (wild-type or Adm+/+) and Adm-haplodeficient (Adm+/-) mice lungs, integrated with single-cell RNA sequencing data, revealed distinct gene expression patterns and cell type alterations associated with Adm deficiency and LPS exposure. Notably, computational integration with cell atlas data revealed that Adm-haplodeficient mouse lungs exhibited gene expression signatures characteristic of increased inflammation, natural killer (NK) cell frequency, and decreased endothelial cell and type II pneumocyte frequency. Furthermore, in silico human BPD patient data analysis supported our cell type frequency finding, highlighting elevated NK cells in BPD infants. These results underscore the protective role of Adm in experimental BPD and emphasize that it is a potential therapeutic target for BPD infants with an inflammatory phenotype.
Collapse
Affiliation(s)
- Subarna Palit
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Amrit Kumar Shrestha
- Division of Neonatology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA (B.S.)
| | - Shyam Thapa
- Division of Neonatology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA (B.S.)
| | - Sandra L. Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabian Theis
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, 85748 Garching, Germany
| | - Lukas M. Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Binoy Shivanna
- Division of Neonatology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA (B.S.)
| |
Collapse
|
8
|
Spoto S, Basili S, Cangemi R, Yuste JR, Lucena F, Romiti GF, Raparelli V, Argemi J, D’Avanzo G, Locorriere L, Masini F, Calarco R, Testorio G, Spiezia S, Ciccozzi M, Angeletti S. A Focus on the Pathophysiology of Adrenomedullin Expression: Endothelitis and Organ Damage in Severe Viral and Bacterial Infections. Cells 2024; 13:892. [PMID: 38891025 PMCID: PMC11172186 DOI: 10.3390/cells13110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Adrenomedullin (ADM) is a peptide hormone produced primarily in the adrenal glands, playing a crucial role in various physiological processes. As well as improving vascular integrity and decreasing vascular permeability, ADM acts as a vasodilator, positive inotrope, diuretic, natriuretic and bronchodilator, antagonizing angiotensin II by inhibiting aldosterone secretion. ADM also has antihypertrophic, anti-apoptotic, antifibrotic, antioxidant, angiogenic and immunoregulatory effects and antimicrobial properties. ADM expression is upregulated by hypoxia, inflammation-inducing cytokines, viral or bacterial substances, strength of shear stress, and leakage of blood vessels. These pathological conditions are established during systemic inflammation that can result from infections, surgery, trauma/accidents or burns. The ability to rapidly identify infections and the prognostic, predictive power makes it a valuable tool in severe viral and bacterial infections burdened by high incidence and mortality. This review sheds light on the pathophysiological processes that in severe viral or bacterial infections cause endothelitis up to the development of organ damage, the resulting increase in ADM levels dosed through its more stable peptide mid-regional proadrenomedullin (MR-proADM), the most significant studies that attest to its diagnostic and prognostic accuracy in highlighting the severity of viral or bacterial infections and appropriate therapeutic insights.
Collapse
Affiliation(s)
- Silvia Spoto
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University, Viale dell’Università, 30, 00185 Rome, Italy; (S.B.); (R.C.); (V.R.)
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University, Viale dell’Università, 30, 00185 Rome, Italy; (S.B.); (R.C.); (V.R.)
| | - José Ramón Yuste
- Division of Infectious Diseases, Faculty of Medicine, Clinica Universidad de Navarra, University of Navarra, Avda. Pío XII, 36, 31008 Pamplona, Spain;
- Department of Internal Medicine, Faculty of Medicine, Clinica Universidad de Navarra, University of Navarra, Avda. Pío XII, 36, 31008 Pamplona, Spain
| | - Felipe Lucena
- Departamento de Medicina Interna, Clinica Universidad de Navarra, Avda. Pío XII, 36, 31008 Pamplona, Spain; (F.L.); (J.A.)
| | - Giulio Francesco Romiti
- Department of Translational and Precision Medicine, Sapienza University, Viale dell’Università, 30, 00185 Rome, Italy; (S.B.); (R.C.); (V.R.)
| | - Valeria Raparelli
- Department of Translational and Precision Medicine, Sapienza University, Viale dell’Università, 30, 00185 Rome, Italy; (S.B.); (R.C.); (V.R.)
| | - Josepmaria Argemi
- Departamento de Medicina Interna, Clinica Universidad de Navarra, Avda. Pío XII, 36, 31008 Pamplona, Spain; (F.L.); (J.A.)
| | - Giorgio D’Avanzo
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Luciana Locorriere
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Francesco Masini
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Rodolfo Calarco
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Giulia Testorio
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Serenella Spiezia
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Silvia Angeletti
- Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy;
- Research Unit of Clinical Laboratory Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
9
|
Schaefer M, Stein A, Ruf B, Balling G, Palm J, Simmelbauer A, Cleuziou J, Sander M, Auer J, Borgmann K, Struck J, Hartmann O, Schulte J, Hörer J, Tassani-Prell P, Ewert P, Holdenrieder S, Wolf CM. Bioactive adrenomedullin (bio-ADM) is associated with endothelial dysfunction in infants and children with complex congenital heart disease undergoing open-heart surgery on cardiopulmonary bypass. Clin Chem Lab Med 2024; 62:551-561. [PMID: 37870269 DOI: 10.1515/cclm-2023-0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVES Children with congenital heart disease (CHD) undergoing cardiac surgery on cardiopulmonary bypass (CPB) are at risk for systemic inflammation leading to endothelial dysfunction associated with increased morbidity. Bioactive adrenomedullin (bio-ADM) is a peptide regulating vascular tone and endothelial permeability. The aim of this study was to evaluate the dynamics of plasma bio-ADM in this patient cohort and its role in capillary leak. METHODS Plasma samples from 73 pediatric CHD patients were collected for bio-ADM measurement at five different timepoints (TP) in the pre-, intra-, and post-operative period. The primary endpoint was a net increase in bio-ADM levels after surgery on CPB. Secondary endpoints included association of bio-ADM levels with clinical signs for endothelial dysfunction. RESULTS Bio-ADM levels increased after surgery on CPB from pre-operative median of 12 pg/mL (IQR [interquartile range] 12.0-14.8 pg/mL) to a maximum post-operative median of 48.8 pg/mL (IQR 34.5-69.6 pg/mL, p<0.001). Bio-ADM concentrations correlated positively with post-operative volume balance, (r=0.341; p=0.005), increased demand for vasoactive medication (duration: r=0.415; p<0.001; quantity: TP3: r=0.415, p<0.001; TP4: r=0.414, p<0.001), and hydrocortisone treatment for vasoplegia (bio-ADM median [IQR]:129.1 [55.4-139.2] pg/mL vs. 37.9 [25.2-64.6] pg/mL; p=0.034). Patients who required pleural effusion drainage revealed higher bio-ADM levels compared to those who did not (median [IQR]: 66.4 [55.4-90.9] pg/mL vs. 40.2 [28.2-57.0] pg/mL; p<0.001). CONCLUSIONS Bio-ADM is elevated in children after cardiac surgery and higher levels correlate with clinical signs of capillary leakage. The peptide should be considered as biomarker for endothelial dysfunction and as potential therapeutic target in this indication.
Collapse
Affiliation(s)
- Maike Schaefer
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Andreas Stein
- Department of Anesthesiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Bettina Ruf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Gunter Balling
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Jonas Palm
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Andreas Simmelbauer
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Julie Cleuziou
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Division for Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilian Universität München, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), German Heart Center Munich, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Michaela Sander
- Department of Laboratory Medicine, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Josef Auer
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Kristina Borgmann
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | | | | | | | - Jürgen Hörer
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Division for Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilian Universität München, Munich, Germany
| | - Peter Tassani-Prell
- Department of Anesthesiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Peter Ewert
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Stefan Holdenrieder
- Department of Laboratory Medicine, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Cordula M Wolf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine & Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
10
|
Shi Y, Ji S, Xu Y, Ji J, Yang X, Ye B, Lou J, Tao T. Global trends in research on endothelial cells and sepsis between 2002 and 2022: A systematic bibliometric analysis. Heliyon 2024; 10:e23599. [PMID: 38173483 PMCID: PMC10761786 DOI: 10.1016/j.heliyon.2023.e23599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Sepsis is a systemic syndrome involving physiological, pathological, and biochemical abnormalities precipitated by infection and is a major global public health problem. Endothelial cells (ECs) dysfunction is a major contributor to sepsis-induced multiple organ failure. This bibliometric analysis aimed to identify and characterize the status, evolution of the field, and new research trends of ECs and sepsis over the past 20 years. For this analysis, the Web of Science Core Collection database was searched to identify relevant publications on ECs in sepsis published between January 1, 2002, and December 31, 2022. Microsoft Excel 2021, VOSviewer software, CiteSpace software, and the online analysis platform of literature metrology (http://bibliometric.com) were used to visualize the trends of publications' countries/regions, institutions, authors, journals, and keywords. In total, 4200 articles were identified and screened, primarily originating from 86 countries/regions and 3489 institutions. The USA was the leading contributor to this research field, providing 1501 articles (35.74 %). Harvard University's scientists were the most prolific, with 129 articles. Overall, 21,944 authors were identified, among whom Bae Jong Sup was the most prolific, contributing 129 publications. Additionally, Levi Marcel was the most frequently co-cited author, appearing 538 times. The journals that published the most articles were SHOCK, CRITICAL CARE MEDICINE, and PLOS ONE, accounting for 10.79 % of the total. The current emerging hotspots are concentrated on "endothelial glycocalyx," "NLRP3 inflammasome," "extracellular vesicle," "biomarkers," and "COVID-19," among others. In conclusion, this study provides a comprehensive overview of the scientific productivity and emerging research trends in the field of ECs in sepsis. The evidence supporting the significant role of ECs in both physiological and pathological responses to sepsis is continuously growing. More in-depth studies of the molecular mechanisms underlying sepsis-induced endothelial dysfunction and EC-targeted therapies are warranted in the future.
Collapse
Affiliation(s)
- Yue Shi
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| | - Shunpan Ji
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| | - Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Jun Ji
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Xiaoming Yang
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Bo Ye
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| | - Jingsheng Lou
- Department of Anesthesiology, The General Hospital of the People's Liberation Army, Beijing, China
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Moztarzadeh S, Sepic S, Hamad I, Waschke J, Radeva MY, García-Ponce A. Cortactin is in a complex with VE-cadherin and is required for endothelial adherens junction stability through Rap1/Rac1 activation. Sci Rep 2024; 14:1218. [PMID: 38216638 PMCID: PMC10786853 DOI: 10.1038/s41598-024-51269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Vascular permeability is mediated by Cortactin (Cttn) and regulated by several molecules including cyclic-adenosine-monophosphate, small Rho family GTPases and the actin cytoskeleton. However, it is unclear whether Cttn directly interacts with any of the junctional components or if Cttn intervenes with signaling pathways affecting the intercellular contacts and the cytoskeleton. To address these questions, we employed immortalized microvascular myocardial endothelial cells derived from wild-type and Cttn-knock-out mice. We found that lack of Cttn compromised barrier integrity due to fragmented membrane distribution of different junctional proteins. Moreover, immunoprecipitations revealed that Cttn is within the VE-cadherin-based adherens junction complex. In addition, lack of Cttn slowed-down barrier recovery after Ca2+ repletion. The role of Cttn for cAMP-mediated endothelial barrier regulation was analyzed using Forskolin/Rolipram. In contrast to Cttn-KO, WT cells reacted with increased transendothelial electrical resistance. Absence of Cttn disturbed Rap1 and Rac1 activation in Cttn-depleted cells. Surprisingly, despite the absence of Cttn, direct activation of Rac1/Cdc42/RhoA by CN04 increased barrier resistance and induced well-defined cortical actin and intracellular actin bundles. In summary, our data show that Cttn is required for basal barrier integrity by allowing proper membrane distribution of junctional proteins and for cAMP-mediated activation of the Rap1/Rac1 signaling pathway.
Collapse
Affiliation(s)
- Sina Moztarzadeh
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sara Sepic
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Ibrahim Hamad
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Alexander García-Ponce
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
12
|
Jülke EM, Fischer JP, Els-Heindl S, Bierer D, Flamme I, Köbberling J, Riedl B, Beck-Sickinger AG. Rational design of highly stabilized and selective adrenomedullin analogs. J Pept Sci 2023; 29:e3530. [PMID: 37423610 DOI: 10.1002/psc.3530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
The peptide hormone adrenomedullin (ADM) consists of 52 amino acids with a disulfide bond and an amidated C-terminus. Due to the vasodilatory and cardioprotective effects, the agonistic activity of the peptide on the adrenomedullin 1 receptor (AM1 R) is of high pharmacological interest. However, the wild-type peptide shows low metabolic stability leading to rapid degradation in the cardiovascular system. Previous work by our group has identified proteolytic cleavage sites and demonstrated stabilization of ADM by lipidation, cyclization, and N-methylation. Nevertheless, these ADM analogs showed reduced activity and subtype selectivity toward the closely related calcitonin gene-related peptide receptor (CGRPR). Here, we report on the rational development of ADM derivatives with increased proteolytic stability and high receptor selectivity. Stabilizing motifs, including lactamization and lipidation, were evaluated regarding AM1 R and CGRPR activation. Furthermore, the central DKDK motif of the peptide was replaced by oligoethylene glycol linkers. The modified peptides were synthesized by Fmoc/t-Bu solid-phase peptide synthesis and receptor activation of AM1 R and CGRPR was measured by cAMP reporter gene assay. Peptide stability was tested in human blood plasma and porcine liver homogenate and analyzed by RP-HPLC and MALDI-ToF mass spectrometry. Combination of the favorable lactam, lipidation, ethylene glycol linker, and previously described disulfide mimetic resulted in highly stabilized analogs with a plasma half-life of more than 144 h. The compounds display excellent AM1 R activity and wild-type-like selectivity toward CGRPR. Additionally, dose-dependent vasodilatory effects of the ADM derivatives lasted for several hours in rodents. Thus, we successfully developed an ADM analog with long-term in vivo activity.
Collapse
Affiliation(s)
- Eva-Maria Jülke
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Jan-Patrick Fischer
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Donald Bierer
- Division Pharmaceuticals, Drug Discovery Sciences, Bayer AG, Wuppertal, Germany
| | - Ingo Flamme
- Division Pharmaceuticals, Research & Early Development, Bayer AG, Wuppertal, Germany
| | - Johannes Köbberling
- Division Pharmaceuticals, Drug Discovery Sciences, Bayer AG, Wuppertal, Germany
| | - Bernd Riedl
- Division Pharmaceuticals, Drug Discovery Sciences, Bayer AG, Wuppertal, Germany
| | | |
Collapse
|
13
|
Berkeley B, Tang MNH, Brittan M. Mechanisms regulating vascular and lymphatic regeneration in the heart after myocardial infarction. J Pathol 2023; 260:666-678. [PMID: 37272582 PMCID: PMC10953458 DOI: 10.1002/path.6093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Myocardial infarction, caused by a thrombus or coronary vascular occlusion, leads to irreversible ischaemic injury. Advances in early reperfusion strategies have significantly reduced short-term mortality after myocardial infarction. However, survivors have an increased risk of developing heart failure, which confers a high risk of death at 1 year. The capacity of the injured neonatal mammalian heart to regenerate has stimulated extensive research into whether recapitulation of developmental regeneration programmes may be beneficial in adult cardiovascular disease. Restoration of functional blood and lymphatic vascular networks in the infarct and border regions via neovascularisation and lymphangiogenesis, respectively, is a key requirement to facilitate myocardial regeneration. An improved understanding of the endogenous mechanisms regulating coronary vascular and lymphatic expansion and function in development and in adult patients after myocardial infarction may inform future therapeutic strategies and improve translation from pre-clinical studies. In this review, we explore the underpinning research and key findings in the field of cardiovascular regeneration, with a focus on neovascularisation and lymphangiogenesis, and discuss the outcomes of therapeutic strategies employed to date. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bronwyn Berkeley
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Michelle Nga Huen Tang
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
14
|
Shi L, Song H, Zhou B, Morrow BE. Crk/Crkl regulates early angiogenesis in mouse embryos by accelerating endothelial cell maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548782. [PMID: 37503032 PMCID: PMC10369973 DOI: 10.1101/2023.07.12.548782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Rationale Ubiquitously expressed cytoplasmic adaptors CRK and CRKL mediate multiple signaling pathways in mammalian embryogenesis. They are also associated with cardiovascular defects occurring in Miller-Dieker syndrome and 22q11.2 deletion syndrome, respectively. The embryonic mesoderm contributes to the formation of the cardiovascular system, yet the roles that Crk and Crkl play there are not understood on a single cell level. Objectives To determine functions of Crk and Crkl in the embryonic mesoderm during early mouse vascular development. Secondly, we will examine the molecular mechanisms responsible for early embryonic endothelial cell (EC) defects by performing single cell RNA-sequencing (scRNA-seq) and in vivo validation experiments. Methods and Results Inactivation of both Crk and Crkl together using Mesp1 Cre resulted embryonic lethality with severe vascular defects. Although vasculogenesis appeared normal, angiogenesis was disrupted both in the yolk sac and embryo proper, leading to disorganized vascular networks. We performed scRNA-seq of the Mesp1 Cre mesodermal lineage and found that there was upregulation of a great number of angiogenesis and cell migration related genes in ECs in the mutants, including NOTCH signaling genes such as Dll4 and Hey1 . Further bioinformatic analysis of EC subpopulations identified a relative increase in the number of more differentiated angiogenic ECs and decrease in EC progenitors. Consistent with this, we identified an expansion of Dll4 expressing cells within abnormal arteries, in vivo . Also, our bioinformatic data indicates that there is dysregulated expression of lineage genes that promote EC differentiation causing accelerated cell fate progression during EC differentiation. Conclusions Our results show that Crk and Crkl are crucial for regulating early embryonic angiogenesis. Combined inactivation of Crk/Crkl caused precocious EC maturation with an increase of atypical differentiated angiogenic ECs and failed vascular remodeling. This is in part due to increased NOTCH signaling and altered expression of cell migration genes.
Collapse
|
15
|
Babin KM, Karim JA, Gordon PH, Lennon J, Dickson A, Pioszak AA. Adrenomedullin 2/intermedin is a slow off-rate, long-acting endogenous agonist of the adrenomedullin 2 G protein-coupled receptor. J Biol Chem 2023:104785. [PMID: 37146967 DOI: 10.1016/j.jbc.2023.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
Adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and calcitonin gene-related peptide (CGRP) have signaling functions in the cardiovascular, lymphatic, and nervous systems by activating three heterodimeric receptors comprised of the class B GPCR CLR and a RAMP1, -2, or -3 modulatory subunit. CGRP and AM prefer the RAMP1 and RAMP2/3 complexes, respectively, whereas AM2/IMD is thought to be relatively non-selective. Accordingly, AM2/IMD exhibits overlapping actions with CGRP and AM, so the rationale for this third agonist for the CLR-RAMP complexes is unclear. Here, we report that AM2/IMD is kinetically selective for CLR-RAMP3, known as the AM2R, and we define the structural basis for its distinct kinetics. In live cell biosensor assays, AM2/IMD-AM2R elicited substantially longer duration cAMP signaling than the eight other peptide-receptor combinations. AM2/IMD and AM bound the AM2R with similar equilibrium affinities, but AM2/IMD had a much slower off-rate and longer receptor residence time, thus explaining its prolonged signaling capacity. Peptide and receptor chimeras and mutagenesis were used to map the regions responsible for the distinct binding and signaling kinetics to the AM2/IMD mid-region and the RAMP3 extracellular domain (ECD). Molecular dynamics simulations revealed how the former forms stable interactions at the CLR ECD-transmembrane domain interface and how the latter augments the CLR ECD binding pocket to anchor the AM2/IMD C-terminus. These two strong binding components only combine in the AM2R. Our findings uncover AM2/IMD-AM2R as a cognate pair with unique temporal features, reveal how AM2/IMD and RAMP3 collaborate to shape CLR signaling, and have significant implications for AM2/IMD biology.
Collapse
Affiliation(s)
- Katie M Babin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jordan A Karim
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Peyton H Gordon
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - James Lennon
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Alex Dickson
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824.
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
16
|
Abstract
In recent years, the lymphatic system has received increasing attention due to the fast-growing number of findings about its diverse novel functional roles in health and disease. It is well documented that the lymphatic vasculature plays major roles in the maintenance of tissue-fluid balance, the immune response, and in lipid absorption. However, recent studies have identified an additional growing number of novel and sometimes unexpected functional roles of the lymphatic vasculature in normal and pathological conditions in different organs. Among those, cardiac lymphatics have been shown to play important roles in heart development, ischemic cardiac disease, and cardiac disorders. In this review, we will discuss some of those novel functional roles of cardiac lymphatics, as well as the therapeutic potential of targeting lymphatics for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaolei Liu
- Lemole Center for Integrated Lymphatics Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
17
|
Bálint L, Nelson-Maney N, Tian Y, Serafin DS, Caron KM. Clinical Potential of Adrenomedullin Signaling in the Cardiovascular System. Circ Res 2023; 132:1185-1202. [PMID: 37104556 PMCID: PMC10155262 DOI: 10.1161/circresaha.123.321673] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023]
Abstract
Numerous clinical studies have revealed the utility of circulating AM (adrenomedullin) or MR-proAM (mid-regional proAM 45-92) as an effective prognostic and diagnostic biomarker for a variety of cardiovascular-related pathophysiologies. Thus, there is strong supporting evidence encouraging the exploration of the AM-CLR (calcitonin receptor-like receptor) signaling pathway as a therapeutic target. This is further bolstered because several drugs targeting the shared CGRP (calcitonin gene-related peptide)-CLR pathway are already Food and Drug Administration-approved and on the market for the treatment of migraine. In this review, we summarize the AM-CLR signaling pathway and its modulatory mechanisms and provide an overview of the current understanding of the physiological and pathological roles of AM-CLR signaling and the yet untapped potentials of AM as a biomarker or therapeutic target in cardiac and vascular diseases and provide an outlook on the recently emerged strategies that may provide further boost to the possible clinical applications of AM signaling.
Collapse
Affiliation(s)
- László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Nathan Nelson-Maney
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Yanna Tian
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - D. Stephen Serafin
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| |
Collapse
|
18
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Babin KM, Karim JA, Gordon PH, Lennon J, Dickson A, Pioszak AA. Adrenomedullin 2/intermedin is a slow off-rate, long-acting endogenous agonist of the adrenomedullin 2 G protein-coupled receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523955. [PMID: 36711519 PMCID: PMC9882245 DOI: 10.1101/2023.01.13.523955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The signaling peptides adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and CGRP have overlapping and distinct functions in the cardiovascular, lymphatic, and nervous systems by activating three shared receptors comprised of the class B GPCR CLR in complex with a RAMP1, -2, or -3 modulatory subunit. Here, we report that AM2/IMD, which is thought to be a non-selective agonist, is kinetically selective for CLR-RAMP3, known as the AM 2 R. AM2/IMD-AM 2 R elicited substantially longer duration cAMP signaling than the eight other peptide-receptor combinations due to AM2/IMD slow off-rate binding kinetics. The regions responsible for the slow off-rate were mapped to the AM2/IMD mid-region and the RAMP3 extracellular domain. MD simulations revealed how these bestow enhanced stability to the complex. Our results uncover AM2/IMD-AM 2 R as a cognate pair with unique temporal features, define the mechanism of kinetic selectivity, and explain how AM2/IMD and RAMP3 collaborate to shape the signaling output of a clinically important GPCR.
Collapse
Affiliation(s)
- Katie M. Babin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jordan A. Karim
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Peyton H. Gordon
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - James Lennon
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Alex Dickson
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Augen A. Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Lead contact
| |
Collapse
|
20
|
Harris NR, Bálint L, Dy DM, Nielsen NR, Méndez HG, Aghajanian A, Caron KM. The ebb and flow of cardiac lymphatics: a tidal wave of new discoveries. Physiol Rev 2023; 103:391-432. [PMID: 35953269 PMCID: PMC9576179 DOI: 10.1152/physrev.00052.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022] Open
Abstract
The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease. It covers the revised paradigm of microvascular forces and fluid movement around the capillary as well as the arsenal of preclinical tools and animal models used to model myocardial edema and cardiac disease. Clinical studies of myocardial edema and their prognostic significance are examined in parallel to the recent elegant animal studies discerning the pathophysiological role and therapeutic potential of cardiac lymphatics in different cardiovascular disease models. This review highlights the outstanding questions of interest to both basic scientists and clinicians regarding the roles of cardiac lymphatics in health and disease.
Collapse
Affiliation(s)
- Natalie R Harris
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Danielle M Dy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hernán G Méndez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amir Aghajanian
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
21
|
Hellenthal KEM, Brabenec L, Wagner NM. Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells 2022; 11:cells11121935. [PMID: 35741064 PMCID: PMC9221661 DOI: 10.3390/cells11121935] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic inflammation can be triggered by infection, surgery, trauma or burns. During systemic inflammation, an overshooting immune response induces tissue damage resulting in organ dysfunction and mortality. Endothelial cells make up the inner lining of all blood vessels and are critically involved in maintaining organ integrity by regulating tissue perfusion. Permeability of the endothelial monolayer is strictly controlled and highly organ-specific, forming continuous, fenestrated and discontinuous capillaries that orchestrate the extravasation of fluids, proteins and solutes to maintain organ homeostasis. In the physiological state, the endothelial barrier is maintained by the glycocalyx, extracellular matrix and intercellular junctions including adherens and tight junctions. As endothelial cells are constantly sensing and responding to the extracellular environment, their activation by inflammatory stimuli promotes a loss of endothelial barrier function, which has been identified as a hallmark of systemic inflammation, leading to tissue edema formation and hypotension and thus, is a key contributor to lethal outcomes. In this review, we provide a comprehensive summary of the major players, such as the angiopoietin-Tie2 signaling axis, adrenomedullin and vascular endothelial (VE-) cadherin, that substantially contribute to the regulation and dysregulation of endothelial permeability during systemic inflammation and elucidate treatment strategies targeting the preservation of vascular integrity.
Collapse
|
22
|
Talkington AM, Davis RB, Datto NC, Goodwin ER, Miller LA, Caron KM. Dermal Lymphatic Capillaries Do Not Obey Murray's Law. Front Cardiovasc Med 2022; 9:840305. [PMID: 35498025 PMCID: PMC9039365 DOI: 10.3389/fcvm.2022.840305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Lymphatic vessels serve as a major conduit for the transport of interstitial fluid, immune cells, lipids and drugs. Therefore, increased knowledge about their development and function is relevant to clinical issues ranging from chronic inflammation and edema, to cancer metastasis to targeted drug delivery. Murray's Law is a widely-applied branching rule upheld in diverse circulatory systems including leaf venation, sponge canals, and various human organs for optimal fluid transport. Considering the unique and diverse functions of lymphatic fluid transport, we specifically address the branching of developing lymphatic capillaries, and the flow of lymph through these vessels. Using an empirically-generated dataset from wild type and genetic lymphatic insufficiency mouse models we confirmed that branching blood capillaries consistently follow Murray's Law. However surprisingly, we found that the optimization law for lymphatic vessels follows a different pattern, namely a Murray's Law exponent of ~1.45. In this case, the daughter vessels are smaller relative to the parent than would be predicted by the hypothesized radius-cubed law for impermeable vessels. By implementing a computational fluid dynamics model, we further examined the extent to which the assumptions of Murray's Law were violated. We found that the flow profiles were predominantly parabolic and reasonably followed the assumptions of Murray's Law. These data suggest an alternate hypothesis for optimization of the branching structure of the lymphatic system, which may have bearing on the unique physiological functions of lymphatics compared to the blood vascular system. Thus, it may be the case that the lymphatic branching structure is optimized to enhance lymph mixing, particle exchange, or immune cell transport, which are particularly germane to the use of lymphatics as drug delivery routes.
Collapse
Affiliation(s)
- Anne M. Talkington
- Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,*Correspondence: Anne M. Talkington
| | - Reema B. Davis
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nicholas C. Datto
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Emma R. Goodwin
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura A. Miller
- Department of Mathematics, University of Arizona, Tucson, AZ, United States
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Kathleen M. Caron
| |
Collapse
|
23
|
Sheng B, Wei H, Li Z, Wei H, Zhao Q. PAM variants were associated with type 2 diabetes mellitus risk in the Chinese population. Funct Integr Genomics 2022; 22:525-535. [PMID: 35394266 DOI: 10.1007/s10142-022-00840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 08/30/2023]
Abstract
This study aimed to assess the association between PAM single-nucleotide polymorphisms (SNPs) and T2DM risk in the Chinese population. We performed the genotype of PAM SNPs using Agena MassARRAY in 1002 subjects. The effect of PAM polymorphisms on T2DM occurrence was evaluated by logistic regression analysis. False-positive report probability (FPRP) was utilized to assess the noteworthiness of the significant results. This study showed that PAM rs406761, rs17154889, and rs6889592 were related to an increased risk of T2DM. The similar results were also in subjects with ≤ 60 years. Rs2431320 and rs406761 were related to an increased risk of T2DM in males, and rs6889592 was only found to be associated with T2DM risk in females. Rs2431320 and rs406761 increased T2DM risk in people with BMI > 24, and rs6889592 and rs26431 significantly correlated with T2DM risk in people with BMI ≤ 24. By comparing patients with no retinopathy with controls, the correlation between PAM rs406761 and rs17154889 and T2DM risk was observed. The significant association between T2DM risk and PAM SNPs was remarkable by FPRP values. PAM SNPs were correlated with T2DM risk in the Chinese population, illustrating the importance of PAM SNPs in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Binwu Sheng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Huiyi Wei
- Medical School of Yan'an University, Yan'an, Shaanxi, 710000, China
| | - Zhiying Li
- Department of Geratology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Haoyang Wei
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Qingbin Zhao
- Department of Geratology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
24
|
Kita T, Kitamura K. Translational studies of adrenomedullin and related peptides regarding cardiovascular diseases. Hypertens Res 2022; 45:389-400. [PMID: 34992239 PMCID: PMC8732970 DOI: 10.1038/s41440-021-00806-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
Adrenomedullin (AM) is a vasodilative peptide with various physiological functions, including the maintenance of vascular tone and endothelial barrier function. AM levels are markedly increased during severe inflammation, such as that associated with sepsis; thus, AM is expected to be a useful clinical marker and therapeutic agent for inflammation. However, as the increase in AM levels in cardiovascular diseases (CVDs) is relatively low compared to that in infectious diseases, the value of AM as a marker of CVDs seems to be less important. Limitations pertaining to the administrative route and short half-life of AM in the bloodstream (<30 min) restrict the therapeutic applications of AM for CVDs. In early human studies, various applications of AM for CVDs were attempted, including for heart failure, myocardial infarction, pulmonary hypertension, and peripheral artery disease; however, none achieved success. We have developed AM as a therapeutic agent for inflammatory bowel disease in which the vasodilatory effect of AM is minimized. A clinical trial evaluating this AM formulation for acute cerebral infarction is ongoing. We have also developed AM derivatives that exhibit a longer half-life and less vasodilative activity. These AM derivatives can be administered by subcutaneous injection at long-term intervals. Accordingly, these derivatives will reduce the inconvenience in use compared to that for native AM and expand the possible applications of AM for treating CVDs. In this review, we present the latest translational status of AM and its derivatives.
Collapse
Affiliation(s)
- Toshihiro Kita
- Department of Projects Research, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan.
| | - Kazuo Kitamura
- Department of Projects Research, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
25
|
Kita T, Kitamura K. Adrenomedullin Therapy in Moderate to Severe COVID-19. Biomedicines 2022; 10:biomedicines10030533. [PMID: 35327335 PMCID: PMC8945653 DOI: 10.3390/biomedicines10030533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The 2019 coronavirus (COVID-19) pandemic is still in progress, and a significant number of patients have presented with severe illness. Recently introduced vaccines, antiviral medicines, and antibody formulations can suppress COVID-19 symptoms and decrease the number of patients exhibiting severe disease. However, complete avoidance of severe COVID-19 has not been achieved, and more importantly, there are insufficient methods to treat it. Adrenomedullin (AM) is an endogenous peptide that maintains vascular tone and endothelial barrier function. The AM plasma level is markedly increased during severe inflammatory disorders, such as sepsis, pneumonia, and COVID-19, and is associated with the severity of inflammation and its prognosis. In this study, exogenous AM administration reduced inflammation and related organ damage in rodent models. The results of this study strongly suggest that AM could be an alternative therapy in severe inflammation disorders, including COVID-19. We have previously developed an AM formulation to treat inflammatory bowel disease and are currently conducting an investigator-initiated phase 2a trial for moderate to severe COVID-19 using the same formulation. This review presents the basal AM information and the most recent translational AM/COVID-19 study.
Collapse
|
26
|
Cheng W, Liu F, Ren Z, Chen W, Chen Y, Liu T, Ma Y, Cao N, Wang J. Parallel functional assessment of m6A sites in human endodermal differentiation with base editor screens. Nat Commun 2022; 13:478. [PMID: 35078991 PMCID: PMC8789821 DOI: 10.1038/s41467-022-28106-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
AbstractN6-methyladenosine (m6A) plays important role in lineage specifications of embryonic stem cells. However, it is still difficult to systematically dissect the specific m6A sites that are essential for early lineage differentiation. Here, we develop an adenine base editor-based strategy to systematically identify functional m6A sites that control lineage decisions of human embryonic stem cells. We design 7999 sgRNAs targeting 6048 m6A sites to screen for m6A sites that act as either boosters or barriers to definitive endoderm specification of human embryonic stem cells. We identify 78 sgRNAs enriched in the non-definitive endoderm cells and 137 sgRNAs enriched in the definitive endoderm cells. We successfully validate two definitive endoderm promoting m6A sites on SOX2 and SDHAF1 as well as a definitive endoderm inhibiting m6A site on ADM. Our study provides a functional screening of m6A sites and paves the way for functional studies of m6A at individual m6A site level.
Collapse
|
27
|
Duval V, Alayrac P, Silvestre JS, Levoye A. Emerging Roles of the Atypical Chemokine Receptor 3 (ACKR3) in Cardiovascular Diseases. Front Endocrinol (Lausanne) 2022; 13:906586. [PMID: 35846294 PMCID: PMC9276939 DOI: 10.3389/fendo.2022.906586] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
Chemokines, and their receptors play a crucial role in the pathophysiology of cardiovascular diseases (CVD). Chemokines classically mediate their effects by binding to G-protein-coupled receptors. The discovery that chemokines can also bind to atypical chemokine receptors (ACKRs) and initiate alternative signaling pathways has changed the paradigm regarding chemokine-related functions. Among these ACKRs, several studies have highlighted the exclusive role of ACKR3, previously known as C-X-C chemokine receptor type 7 (CXCR7), in CVD. Indeed, ACKR3 exert atheroprotective, cardioprotective and anti-thrombotic effects through a wide range of cells including endothelial cells, platelets, inflammatory cells, fibroblasts, vascular smooth muscle cells and cardiomyocytes. ACKR3 functions as a scavenger receptor notably for the pleiotropic chemokine CXCL12, but also as a activator of different pathways such as β-arrestin-mediated signaling or modulator of CXCR4 signaling through the formation of ACKR3-CXCR4 heterodimers. Hence, a better understanding of the precise roles of ACKR3 may pave the way towards the development of novel and improved therapeutic strategies for CVD. Here, we summarize the structural determinant characteristic of ACKR3, the molecules targeting this receptor and signaling pathways modulated by ACKR3. Finally, we present and discuss recent findings regarding the role of ACKR3 in CVD.
Collapse
Affiliation(s)
- Vincent Duval
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
| | - Paul Alayrac
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
| | - Jean-Sébastien Silvestre
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
| | - Angélique Levoye
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
- UFR Santé Médecine Biologie Humaine, Université Sorbonne Paris Nord, Bobigny, France
- *Correspondence: Angélique Levoye,
| |
Collapse
|
28
|
Shrestha AK, Menon RT, Yallampalli C, Barrios R, Shivanna B. Adrenomedullin Deficiency Potentiates Lipopolysaccharide-Induced Experimental Bronchopulmonary Dysplasia in Neonatal Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2080-2090. [PMID: 34508690 DOI: 10.1016/j.ajpath.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023]
Abstract
Lung inflammation interrupts alveolarization and causes bronchopulmonary dysplasia (BPD). Besides mechanical ventilation and hyperoxia, sepsis contributes to BPD pathogenesis. Adrenomedullin (Adm) is a multifunctional peptide that exerts anti-inflammatory effects in the lungs of adult rodents. Whether Adm mitigates sepsis-induced neonatal lung injury is unknown. The lung phenotype of mice exposed to early postnatal lipopolysaccharide (LPS) was recently shown to be similar to that in human BPD. This model was used to test the hypothesis that Adm-deficient neonatal mice will display increased LPS-induced lung injury than their wild-type (WT) littermates. Adm-deficient mice or their WT littermates were intraperitoneally administered 6 mg/kg of LPS or vehicle daily on postnatal days (PNDs) 3 to 5. The lungs were harvested at several time points to quantify inflammation, alveolarization, and vascularization. The extent of LPS-induced lung inflammation in Adm-deficient mice was 1.6-fold to 10-fold higher than their WT littermates. Strikingly, Adm deficiency induced STAT1 activation and potentiated STAT3 activation in LPS-exposed lungs. The severity of LPS-induced interruption of lung development was also greater in Adm-deficient mice at PND7. At PND14, LPS-exposed WT littermates displayed substantial improvement in lung development, whereas LPS-exposed Adm-deficient mice continued to have decreased lung development. These data indicate that Adm is necessary to decrease lung inflammation and injury and promote repair of the injured lungs in LPS-exposed neonatal mice.
Collapse
Affiliation(s)
- Amrit K Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Chandrasekhar Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
29
|
Paudel S, Liu B, Cummings MJ, Quinn KE, Bazer FW, Caron KM, Wang X. Temporal and spatial expression of adrenomedullin and its receptors in the porcine uterus and peri-implantation conceptuses. Biol Reprod 2021; 105:876-891. [PMID: 34104954 DOI: 10.1093/biolre/ioab110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023] Open
Abstract
Adrenomedullin (ADM) is an evolutionarily conserved multi-functional peptide hormone that regulates implantation, embryo spacing and placentation in humans and rodents. However, the potential roles of ADM in implantation and placentation in pigs, as a litter-bearing species, are not known. This study determined abundances of ADM in uterine luminal fluid, and the patterns of expression of ADM and its receptor components (CALCRL, RAMP2, RAMP3, and ACKR3) in uteri from cyclic and pregnant gilts, as well as conceptuses (embryonic/fetus and its extra-embryonic membranes) during the peri-implantation period of pregnancy. Total recoverable ADM was greater in the uterine fluid of pregnant compared with cyclic gilts between Days 10 and 16 post-estrus, and was from uterine luminal epithelial (LE) and conceptus trophectoderm (Tr) cells. Uterine expression of CALCRL, RAMP2, and ACKR3 were affected by day (P < 0.05), pregnant status (P < 0.01) and/or day x status (P < 0.05). Within porcine conceptuses, expression of CALCRL, RAMP2 and ACKR3 increased between Days 10 and 16 of pregnancy. Using an established porcine trophectoderm (pTr1) cell line, it was determined that 10-7 M ADM stimulated proliferation of pTr1 cells (P < 0.05) at 48 h, and increased phosphorylated mechanistic target of rapamycin (p-MTOR) and 4E binding protein 1 (p-4EBP1) by 6.1- and 4.9-fold (P < 0.0001), respectively. These novel results indicate a significant role for ADM in uterine receptivity for implantation and conceptus growth and development in pigs. They also provide a framework for future studies of ADM signaling to affect proliferation and migration of Tr cells, spacing of blastocysts, implantation and placentation in pigs.
Collapse
Affiliation(s)
- Sudikshya Paudel
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Bangmin Liu
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Magdalina J Cummings
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Kelsey E Quinn
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station TX, 77843, USA
| | - Kathleen M Caron
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| |
Collapse
|
30
|
van Lier D, Kox M, Pickkers P. Promotion of vascular integrity in sepsis through modulation of bioactive adrenomedullin and dipeptidyl peptidase 3. J Intern Med 2021; 289:792-806. [PMID: 33381880 PMCID: PMC8246835 DOI: 10.1111/joim.13220] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Sepsis represents one of the major medical challenges of the 21st century. Despite substantial improvements in the knowledge on pathophysiological mechanisms, this has so far not translated into novel adjuvant treatment strategies for sepsis. In sepsis, both vascular tone and vascular integrity are compromised, and contribute to the development of shock, which is strongly related to the development of organ dysfunction and mortality. In this review, we focus on dipeptidyl peptidase 3 (DPP3) and adrenomedullin (ADM), two molecules that act on the vasculature and are involved in the pathophysiology of sepsis and septic shock. DPP3 is an ubiquitous cytosolic enzyme involved in the degradation of several important signalling molecules essential for regulation of vascular tone, including angiotensin II. ADM is a key hormone involved in the regulation of vascular tone and endothelial barrier function. Previous studies have shown that circulating concentrations of both DPP3 and ADM are independently associated with the development of organ failure and adverse outcome in sepsis. We now discuss new evidence illustrating that these molecules indeed represent two distinct pathways involved in the development of septic shock. Recently, both ADM-enhancing therapies aimed at improving endothelial barrier function and vascular tone and DPP3-blocking therapies aimed at restoring systemic angiotensin responses have been shown to improve outcome in various preclinical sepsis models. Given the current lack of effective adjuvant therapies in sepsis, additional research on the therapeutic application of these peptides in humans is highly warranted.
Collapse
Affiliation(s)
- D van Lier
- From the, Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Kox
- From the, Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - P Pickkers
- From the, Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Iriarte A, Ochoa-Callejero L, García-Sanmartín J, Cerdà P, Garrido P, Narro-Íñiguez J, Mora-Luján JM, Jucglà A, Sánchez-Corral MA, Cruellas F, Gamundi E, Ribas J, Castellote J, Viñals F, Martínez A, Riera-Mestre A. Adrenomedullin as a potential biomarker involved in patients with hereditary hemorrhagic telangiectasia. Eur J Intern Med 2021; 88:89-95. [PMID: 33888392 DOI: 10.1016/j.ejim.2021.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adrenomedullin (AM) is a vasoactive peptide mostly secreted by endothelial cells with an important role in preserving endothelial integrity. The relationship between AM and hereditary hemorrhagic telangiectasia (HHT) is unknown. We aimed to compare the serum levels and tissue expression of AM between HHT patients and controls. METHODS Serum AM levels were measured by radioimmunoassay and compared between control and HHT groups. AM levels were also compared among HHT subgroups according to clinical characteristics. The single nucleotide polymorphism (SNP) rs4910118 was assessed by restriction analysis and sequencing. AM immunohistochemistry was performed on biopsies of cutaneous telangiectasia from eight HHT patients and on the healthy skin from five patients in the control group. RESULTS Forty-five HHT patients and 50 healthy controls were included, mean age (SD) was 50.7 (14.9) years and 46.4 (9.9) years (p = 0.102), respectively. HHT patients were mostly female (60% vs 38%, p = 0.032). Median [Q1-Q3] serum AM levels were 68.3 [58.1-80.6] pg/mL in the HHT group and 47.7 [43.2-53.8] pg/mL in controls (p<0.001), with an optimal AM cut-off according to Youden's J statistic of 55.32 pg/mL (J:0.729). Serum AM levels were similar in the HHT subgroups. No patient with HHT had the SNP rs4910118. AM immunoreactivity was found with high intensity in the abnormal blood vessels of HHT biopsies. CONCLUSIONS We detected higher AM serum levels and tissue expression in patients with HHT than in healthy controls. The role of AM in HHT, and whether AM may constitute a novel biomarker and therapeutic target, needs further investigation.
Collapse
Affiliation(s)
- A Iriarte
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Internal Medicine Department. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain
| | - L Ochoa-Callejero
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño Spain
| | - J García-Sanmartín
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño Spain
| | - P Cerdà
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Internal Medicine Department. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain
| | - P Garrido
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño Spain
| | - J Narro-Íñiguez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño Spain
| | - J M Mora-Luján
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Internal Medicine Department. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain
| | - A Jucglà
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain; Dermatology Department. Hospital Universitari de Bellvitge, Barcelona Spain
| | - M A Sánchez-Corral
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain; Cardiology Department. Hospital Universitari de Bellvitge, Barcelona Spain
| | - F Cruellas
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain; Otorhinolaryngology Department. Hospital Universitari de Bellvitge, Barcelona Spain
| | - E Gamundi
- Hematology Department. Hospital Universitari de Bellvitge, Barcelona Spain
| | - J Ribas
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain; Pneumology Department. Hospital Universitari de Bellvitge, Barcelona Spain
| | - J Castellote
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain; Liver Transplant Unit, Gastroenterology Department. Hospital Universitari de Bellvitge, Barcelona Spain; Physiological Sciences Department. Faculty of Medicine and Health Sciences. Universitat de Barcelona, Barcelona, Spain
| | - F Viñals
- Physiological Sciences Department. Faculty of Medicine and Health Sciences. Universitat de Barcelona, Barcelona, Spain; Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona Spain; Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - A Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño Spain
| | - A Riera-Mestre
- HHT Unit. Hospital Universitari de Bellvitge, Barcelona Spain; Internal Medicine Department. Hospital Universitari de Bellvitge, Barcelona Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona Spain; Faculty of Medicine and Health Sciences. Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
32
|
Simon TP, Stoppe C, Breuer T, Stiehler L, Dreher M, Kersten A, Kluge S, Karakas M, Zechendorf E, Marx G, Martin L. Prognostic Value of Bioactive Adrenomedullin in Critically Ill Patients with COVID-19 in Germany: An Observational Cohort Study. J Clin Med 2021; 10:jcm10081667. [PMID: 33924637 PMCID: PMC8069401 DOI: 10.3390/jcm10081667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has placed a significant burden on hospitals worldwide. Objective biomarkers for early risk stratification and clinical management are still lacking. The aim of this work was to determine whether bioactive adrenomedullin can assist in the risk stratification and clinical management of critically ill COVID-19 patients. Fifty-three patients with confirmed COVID-19 were included in this prospective observational cohort study between March and April 2020. Bioactive adrenomedullin (bio-ADM) plasma concentration was measured daily for seven days after admission. The prognostic value and clinical significance of bio-ADM plasma levels were evaluated for the severity of respiratory failure, the need for extracorporeal organ support and outcome (28-day mortality). Bio-ADM levels increased with the severity of acute respiratory distress syndrome (ARDS; p < 0.001) and were significantly elevated in invasively ventilated patients (p = 0.006) and patients in need of extracorporeal membrane oxygenation (p = 0.040) or renal replacement therapy (RRT; p < 0.001) compared to patients without these conditions. Non-survivors showed significantly higher bio-ADM levels than survivors (p = 0.010). Bio-ADM levels predicted 28-day mortality (C-index 0.72, 95% confidence interval 0.56–0.87, p < 0.001). Bio-ADM plasma levels correlate with disease severity, the need for extracorporeal organ assistance, and outcome, and highlight the promising value of bio-ADM in the early risk stratification and management of patients with COVID-19.
Collapse
Affiliation(s)
- Tim-Philipp Simon
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany; (T.-P.S.); (C.S.); (T.B.); (L.S.); (E.Z.); (G.M.)
| | - Christian Stoppe
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany; (T.-P.S.); (C.S.); (T.B.); (L.S.); (E.Z.); (G.M.)
| | - Thomas Breuer
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany; (T.-P.S.); (C.S.); (T.B.); (L.S.); (E.Z.); (G.M.)
| | - Lara Stiehler
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany; (T.-P.S.); (C.S.); (T.B.); (L.S.); (E.Z.); (G.M.)
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.D.); (A.K.)
| | - Alexander Kersten
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.D.); (A.K.)
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (S.K.); (M.K.)
| | - Mahir Karakas
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (S.K.); (M.K.)
| | - Elisabeth Zechendorf
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany; (T.-P.S.); (C.S.); (T.B.); (L.S.); (E.Z.); (G.M.)
| | - Gernot Marx
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany; (T.-P.S.); (C.S.); (T.B.); (L.S.); (E.Z.); (G.M.)
| | - Lukas Martin
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany; (T.-P.S.); (C.S.); (T.B.); (L.S.); (E.Z.); (G.M.)
- Correspondence: ; Tel.: +49-(0)241-8037606
| |
Collapse
|
33
|
Meyrath M, Palmer CB, Reynders N, Vanderplasschen A, Ollert M, Bouvier M, Szpakowska M, Chevigné A. Proadrenomedullin N-Terminal 20 Peptides (PAMPs) Are Agonists of the Chemokine Scavenger Receptor ACKR3/CXCR7. ACS Pharmacol Transl Sci 2021; 4:813-823. [PMID: 33860204 PMCID: PMC8033753 DOI: 10.1021/acsptsci.1c00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 11/30/2022]
Abstract
Adrenomedullin (ADM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two peptides with vasodilative, bronchodilative, and angiogenic properties, originating from a common precursor, proADM. Previous studies proposed that the atypical chemokine receptor ACKR3 might act as a low-affinity scavenger for ADM, regulating its availability for its cognate receptor calcitonin receptor-like receptor (CLR) in complex with a receptor activity modifying protein (RAMP). In this study, we compared the activation of ACKR3 by ADM and PAMP, as well as other related members of the calcitonin gene-related peptide (CGRP) family. Irrespective of the presence of RAMPs, ADM was the only member of the CGRP family to show moderate activity toward ACKR3. Remarkably, PAMP, and especially further processed PAMP-12, had a stronger potency toward ACKR3 than ADM. Importantly, PAMP-12 induced β-arrestin recruitment and was efficiently internalized by ACKR3 without inducing G protein or ERK signaling in vitro. Our results further extend the panel of endogenous ACKR3 ligands and broaden ACKR3 functions to a regulator of PAMP-12 availability for its primary receptor Mas-related G-protein-coupled receptor member X2 (MrgX2).
Collapse
Affiliation(s)
- Max Meyrath
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette L-4354, Luxembourg
| | - Christie B Palmer
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette L-4354, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette 4365, Luxembourg
| | - Nathan Reynders
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette L-4354, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette 4365, Luxembourg
| | - Alain Vanderplasschen
- Immunology-Vaccinology, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège BE 4000, Belgium
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette L-4354, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense 5230, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, H3C 3J7 Quebec, Canada
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette L-4354, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette L-4354, Luxembourg
| |
Collapse
|
34
|
Mokshagundam D, Kowalski W, Garcia-Pak I, Klaunberg B, Nam J, Mukouyama YS, Leatherbury L. Ultrahigh-Frequency Echocardiography of Autonomic Devoid Phox2B Homozygous Embryos Does Not Reveal a Significant Cardiac Phenotype before Embryo Death. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:751-758. [PMID: 33293111 PMCID: PMC8520219 DOI: 10.1016/j.ultrasmedbio.2020.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
In vivo micro-imaging of mice is useful in studying the genetic basis of cardiac development in mutant embryos. We examined Phox2b-/- mutant mice, which lack autonomic innervation to the heart and die in utero, and investigated whether this lack of innervation causes cardiac dysfunction during embryogenesis. A VisualSonics Vevo 2100 ultrahigh-frequency linear array ultrasound machine with 30- and 40-MHz probes was used to analyze embryo size, gross characteristics, ventricular contractility and rhythm. Phox2b-/- mutant embryos underwent cessation of heartbeat and death at a greater rate than wild-type controls. We did not observe a hydrops phenotype or congenital heart defects in Phox2b-/- mutants. Analysis of heart rhythm revealed no significant correlation with genotype. Absent these signs of a progressive pathology, we suggest that Phox2b-/- mutant embryos likely die of sudden death secondary to acute arrhythmia. These data provide insight into the role of cardiac autonomic innervation during development.
Collapse
Affiliation(s)
- Deepa Mokshagundam
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute
- Division of Pediatric Cardiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010
| | - William Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute
| | - Iris Garcia-Pak
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute
| | - Brenda Klaunberg
- NIH Mouse Imaging Facility, National Institutes of Health, 10 Center Drive, Bethesda, MD20892
| | - Joseph Nam
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute
| | - Yoh-suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute
| | - Linda Leatherbury
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute
- Division of Pediatric Cardiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010
| |
Collapse
|
35
|
Vázquez R, Riveiro ME, Berenguer-Daizé C, O'Kane A, Gormley J, Touzelet O, Rezai K, Bekradda M, Ouafik L. Targeting Adrenomedullin in Oncology: A Feasible Strategy With Potential as Much More Than an Alternative Anti-Angiogenic Therapy. Front Oncol 2021; 10:589218. [PMID: 33489885 PMCID: PMC7815935 DOI: 10.3389/fonc.2020.589218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
The development, maintenance and metastasis of solid tumors are highly dependent on the formation of blood and lymphatic vessels from pre-existing ones through a series of processes that are respectively known as angiogenesis and lymphangiogenesis. Both are mediated by specific growth-stimulating molecules, such as the vascular endothelial growth factor (VEGF) and adrenomedullin (AM), secreted by diverse cell types which involve not only the cancerogenic ones, but also those constituting the tumor stroma (i.e., macrophages, pericytes, fibroblasts, and endothelial cells). In this sense, anti-angiogenic therapy represents a clinically-validated strategy in oncology. Current therapeutic approaches are mainly based on VEGF-targeting agents, which, unfortunately, are usually limited by toxicity and/or tumor-acquired resistance. AM is a ubiquitous peptide hormone mainly secreted in the endothelium with an important involvement in blood vessel development and cardiovascular homeostasis. In this review, we will introduce the state-of-the-art in terms of AM physiology, while putting a special focus on its pro-tumorigenic role, and discuss its potential as a therapeutic target in oncology. A large amount of research has evidenced AM overexpression in a vast majority of solid tumors and a correlation between AM levels and disease stage, progression and/or vascular density has been observed. The analysis presented here indicates that the involvement of AM in the pathogenesis of cancer arises from: 1) direct promotion of cell proliferation and survival; 2) increased vascularization and the subsequent supply of nutrients and oxygen to the tumor; 3) and/or alteration of the cell phenotype into a more aggressive one. Furthermore, we have performed a deep scrutiny of the pathophysiological prominence of each of the AM receptors (AM1 and AM2) in different cancers, highlighting their differential locations and functions, as well as regulatory mechanisms. From the therapeutic point of view, we summarize here an exhaustive series of preclinical studies showing a reduction of tumor angiogenesis, metastasis and growth following treatment with AM-neutralizing antibodies, AM receptor antagonists, or AM receptor interference. Anti-AM therapy is a promising strategy to be explored in oncology, not only as an anti-angiogenic alternative in the context of acquired resistance to VEGF treatment, but also as a potential anti-metastatic approach.
Collapse
Affiliation(s)
- Ramiro Vázquez
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France.,Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Maria E Riveiro
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France
| | | | - Anthony O'Kane
- Discovery and Scientific Affairs Department, Fusion Antibodies plc., Belfast, United Kingdom
| | - Julie Gormley
- Discovery and Scientific Affairs Department, Fusion Antibodies plc., Belfast, United Kingdom
| | - Olivier Touzelet
- Discovery and Scientific Affairs Department, Fusion Antibodies plc., Belfast, United Kingdom
| | - Keyvan Rezai
- Department of Radio-Pharmacology, Institute Curie-René Huguenin Hospital, Saint-Cloud, France
| | - Mohamed Bekradda
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France
| | - L'Houcine Ouafik
- Aix Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, CHU Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| |
Collapse
|
36
|
Pacharne S, Livesey M, Kadmiel M, Wang N, Caron KM, Richards GO, Skerry TM. Accelerated Development With Increased Bone Mass and Skeletal Response to Loading Suggest Receptor Activity Modifying Protein-3 as a Bone Anabolic Target. Front Endocrinol (Lausanne) 2021; 12:807882. [PMID: 35095771 PMCID: PMC8790142 DOI: 10.3389/fendo.2021.807882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Knockout technologies provide insights into physiological roles of genes. Studies initiated into endocrinology of heteromeric G protein-coupled receptors included deletion of receptor activity modifying protein-3, an accessory protein that alters ligand selectivity of calcitonin and calcitonin-like receptors. Initially, deletion of Ramp3-/- appeared phenotypically silent, but it has emerged that mice have a high bone mass phenotype, and more subtle alterations to angiogenesis, amylin homeostasis, and a small proportion of the effects of adrenomedullin on cardiovascular and lymphatic systems. Here we explore in detail, effects of Ramp3-/- deletion on skeletal growth/development, bone mass and response of bone to mechanical loading mimicking exercise. Mouse pups lacking RAMP3 are healthy and viable, having accelerated development of the skeleton as assessed by degree of mineralisation of specific bones, and by microCT measurements. Specifically, we observed that neonates and young mice have increased bone volume and mineralisation in hindlimbs and vertebrae and increased thickness of bone trabeculae. These changes are associated with increased osteoblast numbers and bone apposition rate in Ramp3-/- mice, and increased cell proliferation in epiphyseal growth plates. Effects persist for some weeks after birth, but differences in gross bone mass between RAMP3 and WT mice lose significance in older animals although architectural differences persist. Responses of bones of 17-week old mice to mechanical loading that mimics effects of vigorous exercise is increased significantly in Ramp3-/- mice by 30% compared with WT control mice. Studies on cultured osteoblasts from Ramp3-/- mice indicate interactions between mRNA expression of RAMPs1 and 3, but not RAMP2 and 3. Our preliminary data shows that Ramp3-/- osteoblasts had increased expression β-catenin, a component of the canonical Wnt signalling pathway known to regulate skeletal homeostasis and mechanosensitivity. Given interactions of RAMPs with both calcitonin and calcitonin-like receptors to alter ligand selectivity, and with other GPCRs to change trafficking or ligand bias, it is not clear whether the bone phenotype of Ramp3-/- mice is due to alterations in signalling mediated by one or more GPCRS. However, as antagonists of RAMP-interacting receptors are growing in availability, there appears the likelihood that manipulation of the RAMP3 signalling system could provide anabolic effects therapeutically.
Collapse
Affiliation(s)
- Suruchi Pacharne
- Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Matthew Livesey
- Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Mahita Kadmiel
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ning Wang
- Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gareth O. Richards
- Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Tim M. Skerry
- Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Tim M. Skerry,
| |
Collapse
|
37
|
Thiele C, Simon TP, Szymanski J, Daniel C, Golias C, Hartmann O, Struck J, Martin L, Marx G, Schuerholz T. Effects of the Non-Neutralizing Humanized Monoclonal Anti-Adrenomedullin Antibody Adrecizumab on Hemodynamic and Renal Injury in a Porcine Two-Hit Model. Shock 2020; 54:810-818. [PMID: 32554994 DOI: 10.1097/shk.0000000000001587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adrenomedullin is a vasoactive peptide that improves endothelial barrier function in sepsis, but may also cause hypotension and organ failure. Treatment with a non-neutralizing monoclonal anti-adrenomedullin antibody showed improvement in murine sepsis models. We tested the effects of the humanized monoclonal anti-adrenomedullin antibody Adrecizumab in a porcine two-hit model of hemorrhagic and septic shock.In this randomized, blinded study 12 German Landrace pigs were bled to half of baseline mean arterial pressure for 45 min. Sepsis was induced using an Escherichia coli clot placed into the abdominal cavity 6 h after hemorrhagic shock. Animals received either 2 mg/kg BW anti-adrenomedullin antibody or vehicle solution immediately after sepsis induction. After 4 h, resuscitation was initiated using balanced crystalloids and noradrenalin to maintain a central venous pressure of 8 to 12 mm Hg, a mean arterial pressure ≥ 65 mm Hg, and a ScvO2 ≥70% for another 8 h. Hemodynamic parameters, laboratory parameters, and kidney histology were assessed.The amount of volume resuscitation was significantly lower and significantly less animals developed a septic shock in the antibody-treated group, compared with the vehicle group. Kidney histology showed significantly lower granulocytes in both cortex and medulla in antibody-treated animals, while the remaining four kidney measures (serum creatinine and urine output and cortical and medullary injury in histopathology) did not reach the significance levels. After induction of sepsis, plasma adrenomedullin increased immediately in both the groups, but increased quicker and more pronounced in the antibody group.In this two-hit shock model, treatment with an anti-adrenomedullin antibody significantly increased plasma adrenomedullin levels, while significantly less animals developed septic shock and renal granulocyte extravasation was significantly reduced. Thus, therapy with Adrecizumab may provide benefit in sepsis, and clinical investigation of this drug candidate is warranted.
Collapse
Affiliation(s)
- Christoph Thiele
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim-Philipp Simon
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Jeanine Szymanski
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christos Golias
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | | | | | - Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias Schuerholz
- Department of Anesthesia and Intensive Care, University Hospital Rostock, Rostock, Germany
| |
Collapse
|
38
|
Fischer JP, Els-Heindl S, Beck-Sickinger AG. Adrenomedullin - Current perspective on a peptide hormone with significant therapeutic potential. Peptides 2020; 131:170347. [PMID: 32569606 DOI: 10.1016/j.peptides.2020.170347] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
The peptide hormone adrenomedullin (ADM) consists of 52 amino acids and plays a pivotal role in the regulation of many physiological processes, particularly those of the cardiovascular and lymphatic system. Like calcitonin (CT), calcitonin gene-related peptide (CGRP), intermedin (IMD) and amylin (AMY), it belongs to the CT/CGRP family of peptide hormones, which despite their low little sequence identity share certain characteristic structural features as well as a complex multicomponent receptor system. ADM, IMD and CGRP exert their biological effects by activation of the calcitonin receptor-like receptor (CLR) as a complex with one of three receptor activity-modifying proteins (RAMP), which alter the ligand affinity. Selectivity within the receptor system is largely mediated by the amidated C-terminus of the peptide hormones, which bind to the extracellular domains of the receptors. This enables their N-terminus consisting of a disulfide-bonded ring structure and a helical segment to bind within the transmembrane region and to induce an active receptor confirmation. ADM is expressed in a variety of tissues in the human body and is fundamentally involved in multitude biological processes. Thus, it is of interest as a diagnostic marker and a promising candidate for therapeutic interventions. In order to fully exploit the potential of ADM, it is necessary to improve its pharmacological profile by increasing the metabolic stability and, ideally, creating receptor subtype-selective analogs. While several successful attempts to prolong the half-life of ADM were recently reported, improving or even retaining receptor selectivity remains challenging.
Collapse
Affiliation(s)
- Jan-Patrick Fischer
- Institut für Biochemie, Universität Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Sylvia Els-Heindl
- Institut für Biochemie, Universität Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | | |
Collapse
|
39
|
Booe JM, Warner ML, Pioszak AA. Picomolar Affinity Antagonist and Sustained Signaling Agonist Peptide Ligands for the Adrenomedullin and Calcitonin Gene-Related Peptide Receptors. ACS Pharmacol Transl Sci 2020; 3:759-772. [PMID: 32832875 DOI: 10.1021/acsptsci.0c00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/31/2022]
Abstract
The calcitonin receptor-like class B G protein-coupled receptor (CLR) mediates adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) functions including vasodilation, cardioprotection, and nociception. Receptor activity-modifying proteins (RAMP1-3) form heterodimers with CLR and determine its peptide ligand selectivity through an unresolved mechanism. The CGRP (RAMP1:CLR) and AM (RAMP2/3:CLR) receptors are proven or promising drug targets, but short AM and CGRP plasma half-lives limit their therapeutic utility. Here, we used synthetic peptide combinatorial library and rational design approaches to probe the ligand selectivity determinants and develop truncated AM and CGRP antagonist variants with receptor extracellular domain binding affinities that were enhanced ∼1000-fold into the low nanomolar range. Receptor binding studies and a high-resolution crystal structure of a novel library-identified AM variant bound to the RAMP2-CLR extracellular domain complex explained the increased affinities and defined roles for AM Lys46 and RAMP modulation of CLR conformation in the ligand selectivity mechanism. In longer AM and CGRP scaffolds that also bind the CLR transmembrane domain, the variants generated picomolar affinity antagonists, one with an estimated 12.5 h CGRP receptor residence time, and sustained signaling agonists "ss-AM" and "ss-CGRP" that exhibited persistent cAMP signaling after ligand washout. Sustained signaling was demonstrated in primary human umbilical vein endothelial cells and the SK-N-MC cell line, which endogenously express AM and CGRP receptors, respectively. This work clarifies the RAMP-modulated CLR ligand selectivity mechanism and provides AM and CGRP variants that are valuable pharmacological tools and may have potential as long-acting therapeutics.
Collapse
Affiliation(s)
- Jason M Booe
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Margaret L Warner
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
40
|
Oliver G, Kipnis J, Randolph GJ, Harvey NL. The Lymphatic Vasculature in the 21 st Century: Novel Functional Roles in Homeostasis and Disease. Cell 2020; 182:270-296. [PMID: 32707093 PMCID: PMC7392116 DOI: 10.1016/j.cell.2020.06.039] [Citation(s) in RCA: 427] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
Mammals have two specialized vascular circulatory systems: the blood vasculature and the lymphatic vasculature. The lymphatic vasculature is a unidirectional conduit that returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays major roles in immune cell trafficking and lipid absorption. As we discuss in this review, the molecular characterization of lymphatic vascular development and our understanding of this vasculature's role in pathophysiological conditions has greatly improved in recent years, changing conventional views about the roles of the lymphatic vasculature in health and disease. Morphological or functional defects in the lymphatic vasculature have now been uncovered in several pathological conditions. We propose that subtle asymptomatic alterations in lymphatic vascular function could underlie the variability seen in the body's response to a wide range of human diseases.
Collapse
Affiliation(s)
- Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
41
|
Roehrkasse AM, Warner ML, Booe JM, Pioszak AA. Biochemical characterization of G protein coupling to calcitonin gene-related peptide and adrenomedullin receptors using a native PAGE assay. J Biol Chem 2020; 295:9736-9751. [PMID: 32487746 PMCID: PMC7363127 DOI: 10.1074/jbc.ra120.013854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/27/2020] [Indexed: 11/06/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP), adrenomedullin (AM), and adrenomedullin 2/intermedin (AM2/IMD) have overlapping and unique functions in the nervous and circulatory systems including vasodilation, cardioprotection, and pain transmission. Their actions are mediated by the class B calcitonin-like G protein-coupled receptor (CLR), which heterodimerizes with three receptor activity-modifying proteins (RAMP1-3) that determine its peptide ligand selectivity. How the three agonists and RAMPs modulate CLR binding to transducer proteins remains poorly understood. Here, we biochemically characterized agonist-promoted G protein coupling to each CLR·RAMP complex. We adapted a native PAGE method to assess the formation and thermostabilities of detergent-solubilized fluorescent protein-tagged CLR·RAMP complexes expressed in mammalian cells. Addition of agonist and the purified Gs protein surrogate mini-Gs (mGs) yielded a mobility-shifted agonist·CLR·RAMP·mGs quaternary complex gel band that was sensitive to antagonists. Measuring the apparent affinities of the agonists for the mGs-coupled receptors and of mGs for the agonist-occupied receptors revealed that both ligand and RAMP control mGs coupling and defined how agonist engagement of the CLR extracellular and transmembrane domains affects transducer recruitment. Using mini-Gsq and -Gsi chimeras, we observed a coupling rank order of mGs > mGsq > mGsi for each receptor. Last, we demonstrated the physiological relevance of the native gel assays by showing that they can predict the cAMP-signaling potencies of AM and AM2/IMD chimeras. These results highlight the power of the native PAGE assay for membrane protein biochemistry and provide a biochemical foundation for understanding the molecular basis of shared and distinct signaling properties of CGRP, AM, and AM2/IMD.
Collapse
Affiliation(s)
- Amanda M Roehrkasse
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Margaret L Warner
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jason M Booe
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
42
|
Avgoustou P, Jailani ABA, Zirimwabagabo JO, Tozer MJ, Gibson KR, Glossop PA, Mills JEJ, Porter RA, Blaney P, Bungay PJ, Wang N, Shaw AP, Bigos KJA, Holmes JL, Warrington JI, Skerry TM, Harrity JPA, Richards GO. Discovery of a First-in-Class Potent Small Molecule Antagonist against the Adrenomedullin-2 Receptor. ACS Pharmacol Transl Sci 2020; 3:706-719. [PMID: 32832872 DOI: 10.1021/acsptsci.0c00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 01/10/2023]
Abstract
The hormone adrenomedullin has both physiological and pathological roles in biology. As a potent vasodilator, adrenomedullin is critically important in the regulation of blood pressure, but it also has several roles in disease, of which its actions in cancer are becoming recognized to have clinical importance. Reduced circulating adrenomedullin causes increased blood pressure but also reduces tumor progression, so drugs blocking all effects of adrenomedullin would be unacceptable clinically. However, there are two distinct receptors for adrenomedullin, each comprising the same G protein-coupled receptor (GPCR), the calcitonin receptor-like receptor (CLR), together with a different accessory protein known as a receptor activity-modifying protein (RAMP). The CLR with RAMP2 forms an adrenomedullin-1 receptor, and the CLR with RAMP3 forms an adrenomedullin-2 receptor. Recent research suggests that a selective blockade of adrenomedullin-2 receptors would be therapeutically valuable. Here we describe the design, synthesis, and characterization of potent small-molecule adrenomedullin-2 receptor antagonists with 1000-fold selectivity over the adrenomedullin-1 receptor, although retaining activity against the CGRP receptor. These molecules have clear effects on markers of pancreatic cancer progression in vitro, drug-like pharmacokinetic properties, and inhibit xenograft tumor growth and extend life in a mouse model of pancreatic cancer. Taken together, our data support the promise of a new class of anticancer therapeutics as well as improved understanding of the pharmacology of the adrenomedullin receptors and other GPCR/RAMP heteromers.
Collapse
Affiliation(s)
- Paris Avgoustou
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Ameera B A Jailani
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | | | | | - Karl R Gibson
- Sandexis Medicinal Chemistry Ltd, Sandwich, Kent CT13 9ND, U.K
| | - Paul A Glossop
- Sandexis Medicinal Chemistry Ltd, Sandwich, Kent CT13 9ND, U.K
| | - James E J Mills
- Sandexis Medicinal Chemistry Ltd, Sandwich, Kent CT13 9ND, U.K
| | | | - Paul Blaney
- Concept Life Sciences, High Peak, SK23 0PG, U.K
| | - Peter J Bungay
- Sympetrus Ltd., Bishop's Stortford, Hertfordshire CM23 3BT, U.K
| | - Ning Wang
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Alice P Shaw
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Kamilla J A Bigos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Joseph L Holmes
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Jessica I Warrington
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Timothy M Skerry
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Joseph P A Harrity
- Department of Chemistry, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Gareth O Richards
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| |
Collapse
|
43
|
Gancz D, Perlmoter G, Yaniv K. Formation and Growth of Cardiac Lymphatics during Embryonic Development, Heart Regeneration, and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037176. [PMID: 31818858 DOI: 10.1101/cshperspect.a037176] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lymphatic system plays crucial roles in regulating fluid homeostasis, immune surveillance, and lipid transport. As is in most of the body's organs, the heart possesses an extensive lymphatic network. Moreover, a robust lymphangiogenic response has been shown to take place following myocardial infarction, highlighting cardiac lymphatics as potential targets for therapeutic intervention. Yet, the unique molecular properties and functions of the heart's lymphatic system have only recently begun to be addressed. In this review, we discuss the mechanisms underlying the formation and growth of cardiac lymphatics during embryonic development and describe their characteristics across species. We further summarize recent findings highlighting diverse cellular origins for cardiac lymphatic endothelial cells and how they integrate to form a single functional lymphatic network. Finally, we outline novel therapeutic avenues aimed at enhancing lymphatic vessel formation and integrity following cardiac injury, which hold great promise for promoting healing of the infarcted heart.
Collapse
Affiliation(s)
- Dana Gancz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gal Perlmoter
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
44
|
Liang YL, Belousoff MJ, Fletcher MM, Zhang X, Khoshouei M, Deganutti G, Koole C, Furness SGB, Miller LJ, Hay DL, Christopoulos A, Reynolds CA, Danev R, Wootten D, Sexton PM. Structure and Dynamics of Adrenomedullin Receptors AM 1 and AM 2 Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins. ACS Pharmacol Transl Sci 2020; 3:263-284. [PMID: 32296767 PMCID: PMC7155201 DOI: 10.1021/acsptsci.9b00080] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 12/14/2022]
Abstract
Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) receptors are critically important for metabolism, vascular tone, and inflammatory response. AM receptors are also required for normal lymphatic and blood vascular development and angiogenesis. They play a pivotal role in embryo implantation and fertility and can provide protection against hypoxic and oxidative stress. CGRP and AM receptors are heterodimers of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) (CGRPR), as well as RAMP2 or RAMP3 (AM1R and AM2R, respectively). However, the mechanistic basis for RAMP modulation of CLR phenotype is unclear. In this study, we report the cryo-EM structure of the AM1R in complex with AM and Gs at a global resolution of 3.0 Å, and structures of the AM2R in complex with either AM or intermedin/adrenomedullin 2 (AM2) and Gs at 2.4 and 2.3 Å, respectively. The structures reveal distinctions in the primary orientation of the extracellular domains (ECDs) relative to the receptor core and distinct positioning of extracellular loop 3 (ECL3) that are receptor-dependent. Analysis of dynamic data present in the cryo-EM micrographs revealed additional distinctions in the extent of mobility of the ECDs. Chimeric exchange of the linker region of the RAMPs connecting the TM helix and the ECD supports a role for this segment in controlling receptor phenotype. Moreover, a subset of the motions of the ECD appeared coordinated with motions of the G protein relative to the receptor core, suggesting that receptor ECD dynamics could influence G protein interactions. This work provides fundamental advances in our understanding of GPCR function and how this can be allosterically modulated by accessory proteins.
Collapse
Affiliation(s)
- Yi-Lynn Liang
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Matthew J. Belousoff
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Madeleine M. Fletcher
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Xin Zhang
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Maryam Khoshouei
- Department
of Molecular Structural Biology, Max Planck
Institute of Biochemistry, 82152 Martinsried, Germany
| | - Giuseppe Deganutti
- School
of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Cassandra Koole
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Sebastian G. B. Furness
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Laurence J. Miller
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | - Debbie L. Hay
- School
of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Arthur Christopoulos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | | | - Radostin Danev
- Graduate
School of Medicine, University of Tokyo, S402, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Denise Wootten
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| | - Patrick M. Sexton
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
45
|
Garelja M, Au M, Brimble MA, Gingell JJ, Hendrikse ER, Lovell A, Prodan N, Sexton PM, Siow A, Walker CS, Watkins HA, Williams GM, Wootten D, Yang SH, Harris PWR, Hay DL. Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors. ACS Pharmacol Transl Sci 2020; 3:246-262. [PMID: 32296766 PMCID: PMC7155197 DOI: 10.1021/acsptsci.9b00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a regulatory role in the vasculature. Receptors for AM comprise the class B G protein-coupled receptor, the calcitonin-like receptor (CLR), in complex with one of three receptor activity-modifying proteins (RAMPs). The C-terminus of AM is involved in binding to the extracellular domain of the receptor, while the N-terminus is proposed to interact with the juxtamembranous portion of the receptor to activate signaling. There is currently limited information on the molecular determinants involved in AM signaling, thus we set out to define the importance of the AM N-terminus through five signaling pathways (cAMP production, ERK phosphorylation, CREB phosphorylation, Akt phosphorylation, and IP1 production). We characterized the three CLR:RAMP complexes through the five pathways, finding that each had a distinct repertoire of intracellular signaling pathways that it is able to regulate. We then performed an alanine scan of AM from residues 15-31 and found that most residues could be substituted with only small effects on signaling, and that most substitutions affected signaling through all receptors and pathways in a similar manner. We identify F18, T20, L26, and I30 as being critical for AM function, while also identifying an analogue (AM15-52 G19A) which has unique signaling properties relative to the unmodified AM. We interpret our findings in the context of new structural information, highlighting the complementary nature of structural biology and functional assays.
Collapse
Affiliation(s)
- Michael
L. Garelja
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Maggie Au
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Joseph J. Gingell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Erica R. Hendrikse
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Annie Lovell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Nicole Prodan
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Patrick M. Sexton
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew Siow
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Harriet A. Watkins
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Geoffrey M. Williams
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Denise Wootten
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sung H. Yang
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W. R. Harris
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
46
|
Serafin DS, Harris NR, Nielsen NR, Mackie DI, Caron KM. Dawn of a New RAMPage. Trends Pharmacol Sci 2020; 41:249-265. [PMID: 32115276 PMCID: PMC7236817 DOI: 10.1016/j.tips.2020.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/08/2023]
Abstract
Receptor activity-modifying proteins (RAMPs) interact with G-protein-coupled receptors (GPCRs) to modify their functions, imparting significant implications upon their physiological and therapeutic potentials. Resurging interest in identifying RAMP-GPCR interactions has recently been fueled by coevolution studies and orthogonal technological screening platforms. These new studies reveal previously unrecognized RAMP-interacting GPCRs, many of which expand beyond Class B GPCRs. The consequences of these interactions on GPCR function and physiology lays the foundation for new molecular therapeutic targets, as evidenced by the recent success of erenumab. Here, we highlight recent papers that uncovered novel RAMP-GPCR interactions, human RAMP-GPCR disease-causing mutations, and RAMP-related human pathologies, paving the way for a new era of RAMP-targeted drug development.
Collapse
Affiliation(s)
- D Stephen Serafin
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie R Harris
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Duncan I Mackie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
47
|
Menon RT, Shrestha AK, Reynolds CL, Barrios R, Caron KM, Shivanna B. Adrenomedullin Is Necessary to Resolve Hyperoxia-Induced Experimental Bronchopulmonary Dysplasia and Pulmonary Hypertension in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:711-722. [PMID: 32093901 DOI: 10.1016/j.ajpath.2019.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/29/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is an infantile lung disease characterized by aberrant angiogenesis and impaired resolution of lung injury. Adrenomedullin (AM) signals through calcitonin receptor-like receptor and receptor activity-modifying protein 2 and modulates lung injury initiation. However, its role in lung injury resolution and the mechanisms by which it regulates angiogenesis remain unclear. Consequently, we hypothesized that AM resolves hyperoxia-induced BPD and PH via endothelial nitric oxide synthase (NOS3). AM-sufficient (ADM+/+) or -deficient (ADM+/-) mice were exposed to normoxia or hyperoxia through postnatal days (PNDs) 1 to 14, and the hyperoxia-exposed mice were allowed to recover in normoxia for an additional 56 days. Lung injury and development and PH were quantified at different time points. Human pulmonary microvascular endothelial cells were also used to examine the effects of AM signaling on the NOS3 pathway and angiogenesis. Lung blood vessels and NOS3 expression decreased and the extent of hyperoxia-induced BPD and PH increased in ADM+/- mice compared with ADM+/+ mice. Hyperoxia-induced apoptosis and PH resolved by PND14 and PND70, respectively, in ADM+/+ mice but not in ADM+/- mice. Knockdown of ADM, calcitonin receptor-like receptor, and receptor activity-modifying protein 2 in vitro decreased NOS3 expression, nitric oxide generation, and angiogenesis. Furthermore, NOS3 knockdown abrogated the angiogenic effects of AM. Collectively, these results indicate that AM resolves hyperoxic lung injury via NOS3.
Collapse
Affiliation(s)
- Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Corey L Reynolds
- Mouse Phenotyping Core, Baylor College of Medicine, Houston, Texas
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
48
|
Xie J, Guo J, Kanwal Z, Wu M, Lv X, Ibrahim NA, Li P, Buabeid MA, Arafa ESA, Sun Q. Calcitonin and Bone Physiology: In Vitro, In Vivo, and Clinical Investigations. Int J Endocrinol 2020; 2020:3236828. [PMID: 32963524 PMCID: PMC7501564 DOI: 10.1155/2020/3236828] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Calcitonin was discovered as a peptide hormone that was known to reduce the calcium levels in the systemic circulation. This hypocalcemic effect is produced due to multiple reasons such as inhibition of bone resorption or suppression of calcium release from the bone. Thus, calcitonin was said as a primary regulator of the bone resorption process. This is the reason why calcitonin has been used widely in clinics for the treatment of bone disorders such as osteoporosis, hypercalcemia, and Paget's disease. However, presently calcitonin usage is declined due to the development of efficacious formulations of new drugs. Calcitonin gene-related peptides and several other peptides such as intermedin, amylin, and adrenomedullin (ADM) are categorized in calcitonin family. These peptides are known for the structural similarity with calcitonin. Aside from having a similar structure, these peptides have few overlapping biological activities and signal transduction action through related receptors. However, several other activities are also present that are peptide specific. In vitro and in vivo studies documented the posttreatment effects of calcitonin peptides, i.e., positive effect on bone osteoblasts and their formation and negative effect on osteoclasts and their resorption. The recent research studies carried out on genetically modified mice showed the inhibition of osteoclast activity by amylin, while astonishingly calcitonin plays its role by suppressing osteoblast and bone turnover. This article describes the review of the bone, the activity of the calcitonin family of peptides, and the link between them.
Collapse
Affiliation(s)
- Jingbo Xie
- Department of Orthopedics, Fengcheng People's Hospital, Fengcheng, Jiangxi 331100, China
| | - Jian Guo
- Department of the Second Orthopedics, Hongdu Hospital of Traditional Chinese Medicine Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang Hongdu Traditional Chinese Medicine Hospital, Nanchang, Jiangxi 330008, China
| | | | - Mingzheng Wu
- Department of Orthopaedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiangyang Lv
- Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | | | - Ping Li
- Department of Orthopaedics, Ya'an People's Hospital, Ya'an, Sichuan 625000, China
| | | | | | - Qingshan Sun
- Department of Orthopedics, The Third Hospital of Shandong Province, Jinan, Shandong 250031, China
| |
Collapse
|
49
|
Endogenous Calcitonin Gene–Related Peptide Deficiency Exacerbates Postoperative Lymphedema by Suppressing Lymphatic Capillary Formation and M2 Macrophage Accumulation. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2487-2502. [DOI: 10.1016/j.ajpath.2019.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
|
50
|
Trincot C, Caron KM. Lymphatic Function and Dysfunction in the Context of Sex Differences. ACS Pharmacol Transl Sci 2019; 2:311-324. [PMID: 32259065 PMCID: PMC7089000 DOI: 10.1021/acsptsci.9b00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Endothelial cells are the building blocks of the blood vascular system and exhibit well-characterized sexually dimorphic phenotypes with regard to chromosomal and hormonal sex, imparting innate genetic and physiological differences between male and female vascular systems and cardiovascular disease. However, even though females are predominantly affected by disorders of lymphatic vascular function, we lack a comprehensive understanding of the effects of sex and sex hormones on lymphatic growth, function, and dysfunction. Here, we attempt to comprehensively evaluate the current understanding of sex as a biological variable influencing lymphatic biology. We first focus on elucidating innate and fundamental differences between the sexes in lymphatic function and development. Next, we delve into lymphatic disease and explore the potential underpinnings toward bias prevalence in the female population. Lastly, we incorporate more broadly the role of the lymphatic system in sex-biased diseases such as cancer, cardiovascular disease, reproductive disorders, and autoimmune diseases to explore whether and how sex differences may influence lymphatic function in the context of these pathologies.
Collapse
Affiliation(s)
- Claire
E. Trincot
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| | - Kathleen M. Caron
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| |
Collapse
|