1
|
Flores Cortes E, Saddoris SM, Owens AK, Gibeault R, Depledge DP, Schang LM. Histone H2A variant H2A.B is enriched in transcriptionally active and replicating HSV-1 lytic chromatin. J Virol 2024; 98:e0201523. [PMID: 38451083 PMCID: PMC11019955 DOI: 10.1128/jvi.02015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections but the precise mechanisms are not fully defined. Nucleosomes are dynamic: they slide, breathe, assemble, and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent, whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X, and macroH2A were enhanced in infected cells, whereas those of H2A.B were uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, as well as ectopic and endogenous H2B were assembled into HSV-1 chromatin evenly throughout the genome but canonical H2A was relatively depleted whereas H2A.B was enriched, particularly in the most dynamic viral chromatin. When viral transcription and DNA replication were restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. IMPORTANCE Herpes simplex virus 1 (HSV-1) transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed epigenetic mechanisms of regulation of HSV-1 transcription have not been fully characterized and may differ from those regulating cellular transcription. Whereas lytic HSV-1 chromatin is unusually dynamic, latent silenced HSV-1 chromatin is not. The mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment of the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding of its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.
Collapse
Affiliation(s)
- Esteban Flores Cortes
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Sarah M. Saddoris
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Arryn K. Owens
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Rebecca Gibeault
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel P. Depledge
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
| | - Luis M. Schang
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Flores E, Saddoris SM, Owens AK, Gibeault R, Depledge DP, Schang LM. Histone H2A variant H2A.B is enriched in transcriptionally active HSV-1 lytic chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573075. [PMID: 38187672 PMCID: PMC10769327 DOI: 10.1101/2023.12.22.573075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections, but the precise mechanisms are not fully defined. Nucleosomes are dynamic; they slide, breathe, assemble and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X and macroH2A were enhanced in infected cells, whereas those of H2A.B uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, ectopic, and endogenous H2B, were assembled into HSV-1 chromatin evenly throughout the genome, but canonical H2A was relatively depleted from the viral chromatin whereas H2A.B was enriched in the most dynamic viral chromatin. When viral transcription was restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency, and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. Importance HSV-1 transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed mechanisms of regulation of HSV-1 transcription by epigenetics have not been fully characterized and may differ from those regulating cellular transcription. In particular, the lytic HSV-1 chromatin is unusually dynamic, whereas the latent silenced one is not, but the mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment on the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding for its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.
Collapse
|
3
|
Das Mahapatra A, Patra C, Sepay N, Sinha C, Chattopadhyay D. Anti-HSV nucleoside and non-nucleoside analogues: spectroscopic characterisation of naphthyl and coumarinyl amides and their mode and mechanism of antiviral action. 3 Biotech 2023; 13:245. [PMID: 37361241 PMCID: PMC10284772 DOI: 10.1007/s13205-023-03658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023] Open
Abstract
Nucleoside analogues acyclovir, valaciclovir, and famciclovir are the preferred drugs against human Herpes Simplex Viruses (HSVs). However, the viruses rapidly develop resistance against these analogues which demand safer, more efficient, and nontoxic antiviral agents. We have synthesized two non-nucleoside amide analogues, 2-Oxo-2H-chromene-3-carboxylic acid [2-(pyridin-2-yl methoxy)-phenyl]-amide (HL1) and 2-hydroxy-1-naphthaldehyde-(4-pyridine carboxylic) hydrazone (HL2). The compounds were characterized by different physiochemical methods including elementary analysis, FT-IR, Mass spectra, 1H-NMR; and evaluated for their antiviral efficacy against HSV-1F by Plaque reduction assay. The 50% cytotoxicity (CC50), determined by MTT test, revealed that HL1 (270.4 μg/ml) and HL2 (362.6 μg/ml) are safer, while their antiviral activity (EC50) against HSV-1F was 37.20 μg/ml and 63.4 μg/ml against HL1 and HL2 respectively, compared to the standard antiviral drug Acyclovir (CC50 128.8 ± 3.4; EC50 2.8 ± 0.1). The Selectivity Index (SI) of these two compounds are also promising (4.3 for HL1 and 9.7 for HL2), compared to Acyclovir (49.3). Further study showed that these amide derivatives block the early stage of the HSV-1F life cycle. Additionally, both these amides make the virus inactive, and reduce the number of plaques, when infected Vero cells were exposed to HL1 and HL2 for a short period of time. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03658-0.
Collapse
Affiliation(s)
- Ananya Das Mahapatra
- ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, 700010 India
- Department of Biotechnology, Brainware University, Kolkata, 7000125 India
| | - Chiranjit Patra
- ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, 700010 India
| | - Nayim Sepay
- Department of Chemistry, Jadavpur University, Kolkata, 700032 India
| | | | - Debprasad Chattopadhyay
- ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, 700010 India
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010 India
- School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, 700102 India
| |
Collapse
|
4
|
Liu X, Acharya D, Krawczyk E, Kangas C, Gack MU, He B. Herpesvirus-mediated stabilization of ICP0 expression neutralizes restriction by TRIM23. Proc Natl Acad Sci U S A 2021; 118:e2113060118. [PMID: 34903664 PMCID: PMC8713807 DOI: 10.1073/pnas.2113060118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus (HSV) infection relies on immediate early proteins that initiate viral replication. Among them, ICP0 is known, for many years, to facilitate the onset of viral gene expression and reactivation from latency. However, how ICP0 itself is regulated remains elusive. Through genetic analyses, we identify that the viral γ134.5 protein, an HSV virulence factor, interacts with and prevents ICP0 from proteasomal degradation. Furthermore, we show that the host E3 ligase TRIM23, recently shown to restrict the replication of HSV-1 (and certain other viruses) by inducing autophagy, triggers the proteasomal degradation of ICP0 via K11- and K48-linked ubiquitination. Functional analyses reveal that the γ134.5 protein binds to and inactivates TRIM23 through blockade of K27-linked TRIM23 autoubiquitination. Deletion of γ134.5 or ICP0 in a recombinant HSV-1 impairs viral replication, whereas ablation of TRIM23 markedly rescues viral growth. Herein, we show that TRIM23, apart from its role in autophagy-mediated HSV-1 restriction, down-regulates ICP0, whereas viral γ134.5 functions to disable TRIM23. Together, these results demonstrate that posttranslational regulation of ICP0 by virus and host factors determines the outcome of HSV-1 infection.
Collapse
Affiliation(s)
- Xing Liu
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987
| | - Eric Krawczyk
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Chase Kangas
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987
| | - Bin He
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612;
| |
Collapse
|
5
|
Tognini P, Murakami M, Sassone-Corsi P. Interplay between Microbes and the Circadian Clock. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028365. [PMID: 29038112 DOI: 10.1101/cshperspect.a028365] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Circadian rhythms influence virtually all life forms on our planet, a notion that opens the question on how the circadian cycles of individual organisms may interplay with each other. In mammals, a potentially dangerous environmental stress is represented by encounters with infectious agents. Microbial attack is a major risk for organismal homeostasis and therefore needs to be efficiently counteracted by mechanisms implemented by the host immune system. Accumulating evidence shows that the immune system may anticipate an emerging pathogenic exposure through an enhanced inflammatory state. Notably, the circadian clock orchestrates these anticipatory responses to fluctuating conditions in the external world. In this article, we review the current knowledge about the relationship between the circadian clock and pathogenic infections. We discuss the role of the circadian clock against infection and specific pathogens, the core clock proteins involved in the defense mechanisms, and the specific tissue or cell type in which they function to counteract the infection. Finally, circadian oscillations in the gut microbiome composition and its possible role in protecting against foodborne pathogen colonization are presented.
Collapse
Affiliation(s)
- Paola Tognini
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, University of California, Irvine California 92617
| | - Mari Murakami
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, University of California, Irvine California 92617
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, University of California, Irvine California 92617
| |
Collapse
|
6
|
Edgar RS, Stangherlin A, Nagy AD, Nicoll MP, Efstathiou S, O'Neill JS, Reddy AB. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci U S A 2016; 113:10085-90. [PMID: 27528682 PMCID: PMC5018795 DOI: 10.1073/pnas.1601895113] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Viruses are intracellular pathogens that hijack host cell machinery and resources to replicate. Rather than being constant, host physiology is rhythmic, undergoing circadian (∼24 h) oscillations in many virus-relevant pathways, but whether daily rhythms impact on viral replication is unknown. We find that the time of day of host infection regulates virus progression in live mice and individual cells. Furthermore, we demonstrate that herpes and influenza A virus infections are enhanced when host circadian rhythms are abolished by disrupting the key clock gene transcription factor Bmal1. Intracellular trafficking, biosynthetic processes, protein synthesis, and chromatin assembly all contribute to circadian regulation of virus infection. Moreover, herpesviruses differentially target components of the molecular circadian clockwork. Our work demonstrates that viruses exploit the clockwork for their own gain and that the clock represents a novel target for modulating viral replication that extends beyond any single family of these ubiquitous pathogens.
Collapse
Affiliation(s)
- Rachel S Edgar
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Alessandra Stangherlin
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Andras D Nagy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Anatomy, University of Pecs Medical School, H-7624 Pecs, Hungary
| | - Michael P Nicoll
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - John S O'Neill
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Akhilesh B Reddy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom;
| |
Collapse
|
7
|
Cellular Transcriptional Coactivator RanBP10 and Herpes Simplex Virus 1 ICP0 Interact and Synergistically Promote Viral Gene Expression and Replication. J Virol 2016; 90:3173-86. [PMID: 26739050 DOI: 10.1128/jvi.03043-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED To investigate the molecular mechanism(s) by which herpes simplex virus 1 (HSV-1) regulatory protein ICP0 promotes viral gene expression and replication, we screened cells overexpressing ICP0 for ICP0-binding host cell proteins. Tandem affinity purification of transiently expressed ICP0 coupled with mass spectrometry-based proteomics technology and subsequent analyses showed that ICP0 interacted with cell protein RanBP10, a known transcriptional coactivator, in HSV-1-infected cells. Knockdown of RanBP10 in infected HEp-2 cells resulted in a phenotype similar to that observed with the ICP0-null mutation, including reduction in viral replication and in the accumulation of viral immediate early (ICP27), early (ICP8), and late (VP16) mRNAs and proteins. In addition, RanBP10 knockdown or the ICP0-null mutation increased the level of histone H3 association with the promoters of these viral genes, which is known to repress transcription. These effects observed in wild-type HSV-1-infected HEp-2 RanBP10 knockdown cells or those observed in ICP0-null mutant virus-infected control HEp-2 cells were remarkably increased in ICP0-null mutant virus-infected HEp-2 RanBP10 knockdown cells. Our results suggested that ICP0 and RanBP10 redundantly and synergistically promoted viral gene expression by regulating chromatin remodeling of the HSV-1 genome for efficient viral replication. IMPORTANCE Upon entry of herpesviruses into a cell, viral gene expression is restricted by heterochromatinization of the viral genome. Therefore, HSV-1 has evolved multiple mechanisms to counteract this epigenetic silencing for efficient viral gene expression and replication. HSV-1 ICP0 is one of the viral proteins involved in counteracting epigenetic silencing. Here, we identified RanBP10 as a novel cellular ICP0-binding protein and showed that RanBP10 and ICP0 appeared to act synergistically to promote viral gene expression and replication by modulating viral chromatin remodeling. Our results provide insight into the mechanisms by which HSV-1 regulates viral chromatin remodeling for efficient viral gene expression and replication.
Collapse
|
8
|
HSV-1 degrades, stabilizes, requires, or is stung by STING depending on ICP0, the US3 protein kinase, and cell derivation. Proc Natl Acad Sci U S A 2014; 111:E611-7. [PMID: 24449861 DOI: 10.1073/pnas.1323414111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
STING (stimulator of IFN genes) activates the IFN pathway in response to cytosolic DNA. Knockout of STING in mice was reported to exacerbate the pathogenicity of herpes simplex virus 1 (HSV-1). Here we report the following: (i) STING is stable in cancer-derived HEp-2 or HeLa cells infected with wild-type HSV-1 but is degraded in cells infected with mutants lacking the genes encoding functional infected cell protein 0 (ICP0), ICP4, or the US3 protein kinase (US3-PK). In HEp-2 cells, depletion of STING by shRNA results in a decrease in the yields of wild-type or ΔICP0 viruses. (ii) STING is stable throughout infection with either wild-type or ICP0 mutant viruses in human embryonic lung cells (HEL) or HEK293T cells derived from normal tissues. In these cells, depletion of STING results in higher yields of both wild-type and ΔICP0 viruses. (iii) The US3-PK is also required for stabilization of IFI16, a nuclear DNA sensor. However, the stability of IFI16 does not correlate positively or negatively with that of STING. IFI16 is stable in STING-depleted HEL cells infected with wild-type virus. In contrast to HEL cells, IFI16 was undetectable in STING-depleted HEp-2 cells, and hence the role of HSV-1 in maintaining IFI16 could not be ascertained. The results indicate that in HSV-1-infected cells the stability of IFI16 and the function and stability of STING are dependent on cell derivation, the functional integrity of ICP0, and US3-PK, an indication that in wild-type virus-infected cells both proteins are actively stabilized. In HEp-2 cells, the stability of IFI16 requires STING.
Collapse
|
9
|
The histone acetyltransferase CLOCK is an essential component of the herpes simplex virus 1 transcriptome that includes TFIID, ICP4, ICP27, and ICP22. J Virol 2011; 85:9472-7. [PMID: 21734043 DOI: 10.1128/jvi.00876-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Studies published elsewhere have shown that the herpes simplex virus regulatory protein ICP0 interacts with BMAL1, a partner and regulator of circadian histone acetyltransferase CLOCK, that both proteins localize at ND10 bodies and are stabilized by viral proteins, that enzymatically active CLOCK partially complements ΔICP0 mutants, and that silencing of CLOCK suppresses the expression of viral genes. Here we report that CLOCK is a component of the transcriptional complex that includes TFIID, ICP4, ICP27, and ICP22. The results suggest that the CLOCK histone acetyltransferase is a component of the viral transcriptional machinery throughout the replicative cycle of the virus and that ICP27 and ICP22 initiate their involvement in viral gene expression as components of viral transcriptome.
Collapse
|
10
|
Herpes simplex virus immediate-early protein ICP0 is targeted by SIAH-1 for proteasomal degradation. J Virol 2011; 85:7644-57. [PMID: 21632771 DOI: 10.1128/jvi.02207-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus (HSV) immediate-early protein ICP0 is a transcriptional activator with E3 ubiquitin ligase activity that induces the degradation of ND10 proteins, including the promyelocytic leukemia protein (PML) and Sp100. Moreover, ICP0 has a role in the derepression of viral genomes and in the modulation of the host interferon response to virus infection. Here, we report that ICP0 interacts with SIAH-1, a cellular E3 ubiquitin ligase that is involved in multiple cellular pathways and is itself capable of mediating PML degradation. This novel virus-host interaction profoundly stabilized SIAH-1 and recruited this cellular E3 ligase into ICP0-containing nuclear bodies. Moreover, SIAH-1 mediated the polyubiquitination of HSV ICP0 in vitro and in vivo. After infection of SIAH-1 knockdown cells with HSV, higher levels of ICP0 were produced, ICP0 was less ubiquitinated, and the half-life of this multifunctional viral regulatory protein was increased. These results indicate an inhibitory role of SIAH-1 during lytic infection by targeting ICP0 for proteasomal degradation.
Collapse
|
11
|
The checkpoints of viral gene expression in productive and latent infection: the role of the HDAC/CoREST/LSD1/REST repressor complex. J Virol 2011; 85:7474-82. [PMID: 21450817 DOI: 10.1128/jvi.00180-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
At the portal of entry into the body, herpes simplex viruses (HSV) vigorously multiply and spread until curtailed by the adaptive immune response. At the same time, HSV invades nerve ending-abutting infected cells and is transported in a retrograde manner to the neuronal nucleus, where it establishes a latent (silent) infection. At intervals, as a consequence of physical or metabolic stress, the virus is activated and transported in an anterograde manner to the body surface. The progression of infection is regulated at four checkpoints. In cell culture or at the portal of entry into the body, HSV uses components of the HDAC1- or HDAC2/CoREST/LSD1/REST repressor complex to activate α genes (checkpoint 1) and then uses an α protein, ICP0, to suppress the same repressor complex from silencing post-α gene expression (checkpoint 2). In neurons destined to harbor latent virus (checkpoint 3), HSV hijacks the same repressor complex to silence itself as a first step in the establishment of the latent state. Suppression of histone deacetylases (HDACs) plays a key role in the reactivation from latency (checkpoint 4). HSV has evolved a strategy of using the same host repressor complex to meet its diverse lifestyle needs.
Collapse
|
12
|
Activities of ICP0 involved in the reversal of silencing of quiescent herpes simplex virus 1. J Virol 2011; 85:4993-5002. [PMID: 21411540 DOI: 10.1128/jvi.02265-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ICP0 is a transcriptional activating protein required for the efficient replication and reactivation of latent herpes simplex virus 1 (HSV-1). Multiple regions of ICP0 contribute its activity, the most prominent of which appears to be the RING finger, which confers E3 ubiquitin ligase activity. A region in the C terminus of ICP0 has also been implicated in several activities, including the disruption of a cellular repressor complex, REST/CoREST/HDAC1/2/LSD1. We used quiescent infection of MRC-5 cells with a virus that does not express immediate-early proteins, followed by superinfection with various viral mutants to quantify the ability of ICP0 variants to reactivate gene expression and alter chromatin structure. Superinfection with wild-type virus resulted in a 400-fold increase in expression from the previously quiescent d109 genome, the removal of heterochromatin and histones from the viral genome, and an increase in histone marks associated with activated transcription. RING finger mutants were unable to reactivate transcription or remove heterochromatin from d109, while mutants that are unable to bind CoREST activate gene expression from quiescent d109, albeit to a lesser degree than the wild-type virus. One such mutant, R8507, resulted in the partial removal of heterochromatin. Infection with R8507 did not result in the hyperacetylation of H3 and H4. The results demonstrate that (i) consistent with previous findings, the RING finger domain of ICP0 is required for the activation of quiescent genomes, (ii) the RF domain is also crucial for the ultimate removal of repressive chromatin, (iii) activities or interactions specified by the carboxy-terminal region of ICP0 significantly contribute to activation, and (iv) while the effects of the R8507 on chromatin are consistent with a role for REST/CoREST/HDAC1/2/LSD1 in the repression of quiescent genomes, the mutation may also affect other activities involved in derepression.
Collapse
|
13
|
Kalamvoki M, Roizman B. Circadian CLOCK histone acetyl transferase localizes at ND10 nuclear bodies and enables herpes simplex virus gene expression. Proc Natl Acad Sci U S A 2010; 107:17721-6. [PMID: 20876123 PMCID: PMC2955081 DOI: 10.1073/pnas.1012991107] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Expression of herpes simplex virus genes at the initiation of replication involves two steps that take place at ND10 nuclear bodies. These are suppression of cellular repressors that attempt to silence viral DNA and remodeling of the viral chromatin to make it accessible for transcription. In earlier studies we reported on the mechanism by which viral proteins ICP0 and U(S)3 protein kinase modify and disrupt the HDAC1/CoREST/REST/LSD1 repressor complex. The remodeling step requires in addition acetylation of histones bound to DNA. In an attempt to identify the enzyme, we took note of the observation that ICP0 physically and functionally interacts with Bmal1, a partner of the CLOCK histone acetyl transferase, and key members of the bHLH-PAS family of transcriptional factors. The Bmal11 and CLOCK heterodimer is best known as a regulator of the circadian oscillation in the mammalian CLOCK system. In this article we report the following: (i) in infected cells both Bmal1 and CLOCK localize at ND10 bodies; (ii) wild-type virus stabilizes the CLOCK protein; (iii) overexpression of CLOCK partially compensates for the absence of ICP0 and enables higher yields in cells infected with a ΔICP0 mutant and this activity is not expressed by CLOCK mutants lacking histone acetyl transferase activity; and (iv) depletion of CLOCK in cells infected with wild-type virus results in significant decrease in the expression of all viral proteins tested. We conclude that ICP0 interacts with Bmal1 and by extension with CLOCK histone acetyl transferase to remodel viral chromatin.
Collapse
Affiliation(s)
- Maria Kalamvoki
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Chicago, IL 60637
| | - Bernard Roizman
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Chicago, IL 60637
| |
Collapse
|
14
|
Regulation of the ORF61 promoter and ORF61 functions in varicella-zoster virus replication and pathogenesis. J Virol 2009; 83:7560-72. [PMID: 19457996 DOI: 10.1128/jvi.00118-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 61 (ORF61) encodes a protein that transactivates viral and cellular promoters in transient-transfection assays and is the ortholog of herpes simplex virus ICP0. In this report, we mapped the ORF61 promoter and investigated its regulation by viral and cellular proteins in transient-expression experiments and by mutagenesis of the VZV genome (parent Oka strain). The 5' boundary of the minimal ORF61 promoter required for IE62 transactivation was mapped to position -95 relative to the mRNA start site, and three noncanonical GT-rich Sp1-binding sites were documented to occur within the region comprising positions -95 to -45. Contributions of the three Sp1-binding-site motifs, designated Sp1a, Sp1b, and Sp1c, to ORF61 expression and viral replication were varied despite their similar sequences. Two sites, Sp1a and Sp1c, functioned synergistically. When both sites were mutated in the pOka genome to produce pOka-61proDeltaSp1ac, the mutant virus expressed significantly less ORF61 protein. Using this mutant to investigate ORF61 functions resulted in reductions in the expression levels of IE proteins, viral kinases ORF47 and ORF66, and the major glycoprotein gE, with the most impact on gE. Virion morphogenesis appeared to be intact despite minimal ORF61 expression. Pretreating melanoma cells with sodium butyrate enhanced titers of pOka-61proDeltaSp1ac but not pOka, suggesting that ORF61 has a role in histone deacetylase inhibition. Growth of pOka-61proDeltaSp1ac was impaired in SCIDhu skin xenografts, indicating that the regulation of the ORF61 promoter by Sp1 family proteins is important for ORF61 expression in vivo and that ORF61 contributes to VZV virulence at skin sites of replication.
Collapse
|
15
|
The UL14 tegument protein of herpes simplex virus type 1 is required for efficient nuclear transport of the alpha transinducing factor VP16 and viral capsids. J Virol 2007; 82:1094-106. [PMID: 18032514 DOI: 10.1128/jvi.01226-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein encoded by the UL14 gene of herpes simplex virus type 1 (HSV-1) and HSV-2 is expressed late in infection and is a minor component of the virion tegument. An UL14-deficient HSV-1 mutant (UL14D) forms small plaques and exhibits an extended growth cycle at low multiplicities of infection (MOI) compared to wild-type virus. Although UL14 is likely to be involved in the process of viral maturation and egress, its precise role in viral replication is still enigmatic. In this study, we found that immediate-early viral mRNA expression was decreased in UL14D-infected cells. Transient coexpression of UL14 and VP16 in the absence of infection stimulated the nuclear accumulation of both proteins. We intended to visualize the fate of VP16 released from the infected virion and constructed UL14-null (14D-VP16G) and rescued (14R-VP16G) viruses that expressed a VP16-green fluorescent protein (GFP) fusion protein. Synchronous high-multiplicity infection of the viruses was performed at 4 degrees C in the absence of de novo protein synthesis. We found that the presence of UL14 in the virion had an enhancing effect on the nuclear accumulation of VP16-GFP. The lack of UL14 did not significantly alter virus internalization but affected incoming capsid transport to the nuclear pore. These observations suggested that UL14 (i) enhanced VP16 nuclear localization at the immediately early phase, thus indirectly regulating the expression of immediate-early genes, and (ii) was associated with efficient nuclear targeting of capsids. The tegument protein UL14 could be part of the machinery that regulates HSV-1 replication.
Collapse
|
16
|
Terry-Allison T, Smith CA, DeLuca NA. Relaxed repression of herpes simplex virus type 1 genomes in Murine trigeminal neurons. J Virol 2007; 81:12394-405. [PMID: 17855552 PMCID: PMC2168976 DOI: 10.1128/jvi.01068-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The expression of herpes simplex virus (HSV) genomes in the absence of viral regulatory proteins in sensory neurons is poorly understood. Previously, our group reported an HSV immediate early (IE) mutant (d109) unable to express any of the five IE genes and encoding a model human cytomegalovirus immediate early promoter-green fluorescent protein (GFP) transgene. In cultured cells, GFP expressed from this mutant was observed in only a subset of infected cells. The subset exhibited cell type dependence, as the fractions of GFP-expressing cells varied widely among the cell types examined. Herein, we characterize this mutant in murine embryonic trigeminal ganglion (TG) cultures. We found that d109 was nontoxic to neural cultures and persisted in the cultures throughout their life spans. Unlike with some of the cultured cell lines and strains, expression of the GFP transgene was observed in a surprisingly large subset of neurons. However, very few nonneuronal cells expressed GFP. The abilities of ICP0 and an inhibitor of histone deacetylase, trichostatin A (TSA), to activate GFP expression from nonexpressing cells were also compared. The provision of ICP0 by infection with d105 reactivated quiescent genomes in nearly every cell, whereas reactivation by TSA was much more limited and restricted to the previously nonexpressing neurons. Moreover, we found that d109, which does not express ICP0, consistently reactivated HSV type 1 (KOS) in latently infected adult TG cultures. These results suggest that the state of persisting HSV genomes in some TG neurons may be more dynamic and more easily activated than has been observed with nonneuronal cells.
Collapse
Affiliation(s)
- Tracy Terry-Allison
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
17
|
Davido DJ, von Zagorski WF, Lane WS, Schaffer PA. Phosphorylation site mutations affect herpes simplex virus type 1 ICP0 function. J Virol 2005; 79:1232-43. [PMID: 15613350 PMCID: PMC538545 DOI: 10.1128/jvi.79.2.1232-1243.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) immediate-early (IE) regulatory protein infected-cell protein 0 (ICP0) is a strong and global transactivator of both viral and cellular genes. In a previous study, we reported that ICP0 is highly phosphorylated and contains at least seven distinct phosphorylation signals as determined by phosphotryptic peptide mapping (D. J. Davido et al., J. Virol. 76:1077-1088, 2002). Since phosphorylation affects the activities of many viral regulatory proteins, we sought to determine whether the phosphorylation of ICP0 affects its functions. To address this question, it was first necessary to identify the regions of ICP0 that are phosphorylated. For this purpose, ICP0 was partially purified, and phosphorylation sites were mapped by microcapillary high-pressure liquid chromatography tandem mass spectrometry. Three phosphorylated regions containing 11 putative phosphorylation sites, all within or adjacent to domains important for the transactivating activity of ICP0, were identified. The 11 sites were mutated to alanine as clusters in each of the three regions by site-directed mutagenesis, generating plasmids expressing mutant forms of ICP0: Phos 1 (four mutated sites), Phos 2 (three mutated sites), and Phos 3 (four mutated sites). One-dimensional phosphotryptic peptide analysis confirmed that the phosphorylation state of each Phos mutant form of ICP0 is altered relative to that of wild-type ICP0. In functional assays, the ICP0 phosphorylation site mutations affected the subcellular and subnuclear localization of ICP0, its ability to alter the staining pattern of the nuclear domain 10 (ND10)-associated protein PML, and/or its transactivating activity in Vero cells. Only mutations in Phos 1, however, impaired the ability of ICP0 to complement the replication of an ICP0 null mutant in Vero cells. This study thus suggests that phosphorylation is an important regulator of ICP0 function.
Collapse
Affiliation(s)
- David J Davido
- Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 123, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
18
|
Kim SK, Albrecht RA, O'Callaghan DJ. A negative regulatory element (base pairs -204 to -177) of the EICP0 promoter of equine herpesvirus 1 abolishes the EICP0 protein's trans-activation of its own promoter. J Virol 2004; 78:11696-706. [PMID: 15479811 PMCID: PMC523287 DOI: 10.1128/jvi.78.21.11696-11706.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The early EICP0 protein is a powerful trans-activator that activates all classes of equine herpesvirus 1 (EHV-1) promoters but, unexpectedly, trans-activates its own promoter very weakly. Transient transfection assays that employed constructs harboring deletions within the EICP0 promoter indicated that EICP0 cis-acting sequences within bp -224 to -158 relative to the first ATG abolished the EICP0 protein's trans-activation of its own promoter. When inserted into the promoters of other EHV-1 genes, this sequence also downregulated activation of the immediate-early IE(-169/+73), early thymidine kinase TK(-215/+97), and late glycoprotein K gK(-83/+14) promoters, indicating that the cis-acting sequence (-224 to -158) downregulated expression of representative promoters of all classes of EHV-1 genes and contains a negative regulatory element (NRE). To define the cis-acting element(s), three synthetic oligonucleotides (Na [bp -224 to -195], Nb [bp -204 to -177], and Nc [bp -185 to -156]) were synthesized and cloned upstream of the EICP0(-157/-21) promoter. Of the three synthetic sequences, only the Nb oligonucleotide caused the downregulation of the EICP0 promoter. The NRE was identified as a 28-bp element to lie at -204 to -177 that encompassed the sequence of ([-204]AGATACAGATGTTCGATAAATTGGAACC[-177]). Gel shift assays performed with mouse L-M, rabbit RK-13, and human HeLa cell nuclear extracts and gamma-(32)P-labeled wild-type and mutant NREs demonstrated that a ubiquitous nuclear protein(s) (NRE-binding protein, NREBP) binds specifically to a sequence (bp -193 to -183) in the NRE. The NREBP is also present in the nucleus of EHV-1-infected cells; however, the amount of NREBP in EHV-1-infected L-M cells that bound to the Nb oligonucleotide was reduced compared to that in uninfected L-M cells. Transient transfection assays showed that deletions or mutations within the NREBP-binding site abolished the NRE activity of the EICP0 promoter. These results suggested that the NREBP may mediate the NRE activity of the EICP0 promoter and may function in the coordinate expression of EHV-1 genes.
Collapse
Affiliation(s)
- Seong K Kim
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|
19
|
Geoffroy MC, Epstein AL, Toublanc E, Moullier P, Salvetti A. Herpes simplex virus type 1 ICP0 protein mediates activation of adeno-associated virus type 2 rep gene expression from a latent integrated form. J Virol 2004; 78:10977-86. [PMID: 15452218 PMCID: PMC521801 DOI: 10.1128/jvi.78.20.10977-10986.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus type 2 (AAV-2) is a human parvovirus that requires the presence of a helper virus, such as the herpes simplex virus type 1 (HSV-1) to accomplish a complete productive cycle. In the absence of helper virus, AAV-2 can establish a latent infection that is characterized by the absence of expression of viral genes. So far, four HSV-1 early genes, UL5/8/52 (helicase primase complex) and UL29 (single-stranded DNA-binding protein), were defined as sufficient for AAV replication when cells were transfected with a plasmid carrying the wild-type AAV-2 genome. However, none of these viral products was shown to behave as a transcriptional factor able to activate AAV gene expression. Our study provides the first evidence that the immediate-early HSV-1 protein ICP0 can promote rep gene expression in cells latently infected with wild-type AAV-2. This ICP0-mediated effect occurs at the transcriptional level and involves the ubiquitin-proteasome pathway. Furthermore, using deletion mutants, we demonstrate that the localization of ICP0 to ND10 and their disruption is not required for the activation of the rep promoter, whereas binding of ICP0 to the ubiquitin-specific protease HAUSP makes a significant contribution to this effect.
Collapse
Affiliation(s)
- Marie-Claude Geoffroy
- INSERM U649, Laboratoire de Thérapie Génique, CHU Hôtel-Dieu, Bât. Jean Monnet, 30 Bd Jean Monnet, 1, 44035 Nantes Cedex 01, France
| | | | | | | | | |
Collapse
|
20
|
Everett RD, Boutell C, Orr A. Phenotype of a herpes simplex virus type 1 mutant that fails to express immediate-early regulatory protein ICP0. J Virol 2004; 78:1763-74. [PMID: 14747541 PMCID: PMC369471 DOI: 10.1128/jvi.78.4.1763-1774.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) immediate-early (IE) regulatory protein ICP0 is required for efficient progression of infected cells into productive lytic infection, especially in low-multiplicity infections of limited-passage human fibroblasts. We have used single-cell-based assays that allow detailed analysis of the ICP0-null phenotype in low-multiplicity infections of restrictive cell types. The major conclusions are as follows: (i) there is a threshold input multiplicity above which the mutant virus replicates normally; (ii) individual cells infected below the threshold multiplicity have a high probability of establishing a nonproductive infection; (iii) such nonproductively infected cells have a high probability of expressing IE products at 6 h postinfection; (iv) even at 24 h postinfection, IE protein-positive nonproductively infected human fibroblast cells exceed the number of cells that lead to plaque formation by up to 2 orders of magnitude; (v) expression of individual IE proteins in a proportion of the nonproductively infected cells is incompletely coordinated; (vi) the nonproductive cells can also express early gene products at low frequencies and in a stochastic manner; and (vii) significant numbers of human fibroblast cells infected at low multiplicity by an ICP0-deficient virus are lost through cell death. We propose that in the absence of ICP0 expression, HSV-1 infected human fibroblasts can undergo a great variety of fates, including quiescence, stalled infection at a variety of different stages, cell death, and, for a minor population, initiation of formation of a plaque.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Institute of Virology, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | |
Collapse
|
21
|
Hagglund R, Roizman B. Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol 2004; 78:2169-78. [PMID: 14963113 PMCID: PMC369245 DOI: 10.1128/jvi.78.5.2169-2178.2004] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ryan Hagglund
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
22
|
Poon APW, Liang Y, Roizman B. Herpes simplex virus 1 gene expression is accelerated by inhibitors of histone deacetylases in rabbit skin cells infected with a mutant carrying a cDNA copy of the infected-cell protein no. 0. J Virol 2004; 77:12671-8. [PMID: 14610189 PMCID: PMC262575 DOI: 10.1128/jvi.77.23.12671-12678.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An earlier report showed that the expression of viral genes by a herpes simplex virus 1 mutant [HSV-1(vCPc0)] in which the wild-type, spliced gene encoding infected-cell protein no. 0 (ICP0) was replaced by a cDNA copy is dependent on both the cell type and multiplicity of infection. At low multiplicities of infection, viral gene expression in rabbit skin cells was delayed by many hours, although ultimately virus yield was comparable to that of the wild-type virus. This defect was rescued by replacement of the cDNA copy with the wild-type gene. To test the hypothesis that the delay reflected a dysfunction of ICP0 in altering the structure of host protein-viral DNA complexes, we examined the state of histone deacetylases (HDACs) (HDAC1, HDAC2, and HDAC3). We report the following. (i) HDAC1 and HDAC2, but not HDAC3, were modified in infected cells. The modification was mediated by the viral protein kinase U(S)3 and occurred between 3 and 6 h after infection with wild-type virus but was delayed in rabbit skin cells infected with HSV-1(vCPc0) mutant, concordant with a delay in the expression of viral genes. (ii) Pretreatment of rabbit skin cells with inhibitors of HDAC activity (e.g., sodium butyrate, Helminthosporium carbonum toxin, or trichostatin A) accelerated the expression of HSV-1(vCPc0) but not that of wild-type virus. We conclude the following. (i) In the interval in which HSV-1(vCPc0) DNA is silent, its DNA is in chromatin-like structures amenable to modification by inhibitors of histone deacetylases. (ii) Expression of wild-type virus genes in these cells precluded the formation of DNA-protein structures that would be affected by either the HDACs or their inhibitors. (iii) Since the defect in HSV-1(vCPc0) maps to ICP0, the results suggest that this protein initiates the process of divestiture of viral DNA from tight chromatin structures but could be replaced by other viral proteins in cells infected with a large number of virions.
Collapse
Affiliation(s)
- Alice P W Poon
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
23
|
Hagglund R, Roizman B. Herpes simplex virus 1 mutant in which the ICP0 HUL-1 E3 ubiquitin ligase site is disrupted stabilizes cdc34 but degrades D-type cyclins and exhibits diminished neurotoxicity. J Virol 2003; 77:13194-202. [PMID: 14645576 PMCID: PMC296091 DOI: 10.1128/jvi.77.24.13194-13202.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 09/04/2003] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0) is a multifunctional protein that functions as a promiscuous transactivator and promotes the degradation of multiple cellular proteins. In vitro studies indicated that it encodes two physically separated functional E3 ubiquitin ligase domains. One, designated herpesvirus ubiquitin ligase 1 (HUL-1), maps to a region encoded by exon 3 and is contained between residues 543 and 680. Deletion of amino acids 621 to 625 abolishes this activity. The second, designated HUL-2, maps to the RING finger domain present in ICP0 encoded by exon 2. Earlier studies have shown that ICP0 stabilizes cyclins D1 and D3, and several lines of investigation led to the hypothesis that this function of ICP0 is the consequence of degradation of the E2 enzyme cdc34, known to be involved in the proteasome-dependent degradation of D-type cyclins. Consistent with this hypothesis, we have previously shown that cdc34 physically interacts with ICP0 at or near aspartate 199 and at amino acids 621 to 625 and that the former site is required for effective ubiquitylation and degradation of cdc34. Furthermore, the ICP0 HUL-1 domain promotes the polyubiquitination of cdc34 in vitro. If the mechanism by which D-type cyclins are salvaged in wild-type-infected cells is dependent on polyubiquitination and consequent destruction of cdc34, than the mutant virus R6701, which was constructed for these studies and lacks ICP0 residues 621 to 625, should destabilize the D cyclins and preclude the degradation of cdc34. We report that ICP0 residues 621 to 625 are essential for degradation of cdc34 in infected cells and for the ICP0-mediated stabilization of D-type cyclins, that a mutation that specifically disrupted the ring finger domain of the HUL-2 site had no effect on the degradation of cdc34 in infected cells, and that deletion of ICP0 residues 621 to 625 decreased the replicative capacity of the virus in growth-arrested but not in dividing cells and resulted in diminished pathogenicity on intracerebral inoculation of mice. We conclude that the ICP0 HUL-1 domain acts in infected cells to degrade cdc34 and that this function requires the interaction of cdc34 with sequences in exons 2 and 3 but does not involve the HUL-2 RING finger E3 domain.
Collapse
Affiliation(s)
- Ryan Hagglund
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
24
|
Kim SK, Jang HK, Albrecht RA, Derbigny WA, Zhang Y, O'Callaghan DJ. Interaction of the equine herpesvirus 1 EICP0 protein with the immediate-early (IE) protein, TFIIB, and TBP may mediate the antagonism between the IE and EICP0 proteins. J Virol 2003; 77:2675-85. [PMID: 12552007 PMCID: PMC141080 DOI: 10.1128/jvi.77.4.2675-2685.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The equine herpesvirus 1 (EHV-1) immediate-early (IE) and EICP0 proteins are potent trans-activators of EHV-1 promoters; however, in transient-transfection assays, the IE protein inhibits the trans-activation function of the EICP0 protein. Assays with IE mutant proteins revealed that its DNA-binding domain, TFIIB-binding domain, and nuclear localization signal may be important for the antagonism between the IE and EICP0 proteins. In vitro interaction assays with the purified IE and EICP0 proteins indicated that these proteins interact directly. At late times postinfection, the IE and EICP0 proteins colocalized in the nuclei of infected equine cells. Transient-transfection assays showed that the EICP0 protein trans-activated EHV-1 promoters harboring only a minimal promoter region (TATA box and cap site), suggesting that the EICP0 protein trans-activates EHV-1 promoters by interactions with general transcription factor(s). In vitro interaction assays revealed that the EICP0 protein interacted directly with the basal transcription factors TFIIB and TBP and that the EICP0 protein (amino acids [aa] 143 to 278) mediated the interaction with aa 125 to 174 of TFIIB. Our unpublished data showed that the IE protein interacts with the same domain (aa 125 to 174) of TFIIB and with TBP. Taken together, these results suggested that interaction of the EICP0 protein with the IE protein, TFIIB, and TBP may mediate the antagonism between the IE and EICP0 proteins.
Collapse
Affiliation(s)
- Seong K Kim
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kawaguchi Y, Kato K, Tanaka M, Kanamori M, Nishiyama Y, Yamanashi Y. Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1delta. J Virol 2003; 77:2359-68. [PMID: 12551973 PMCID: PMC141098 DOI: 10.1128/jvi.77.4.2359-2368.2003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier studies have shown that translation elongation factor 1delta (EF-1delta) is hyperphosphorylated in various mammalian cells infected with representative alpha-, beta-, and gammaherpesviruses and that the modification is mediated by conserved viral protein kinases encoded by herpesviruses, including UL13 of herpes simplex virus type 1 (HSV-1), UL97 of human cytomegalovirus, and BGLF4 of Epstein-Barr virus (EBV). In the present study, we attempted to identify the site in EF-1delta associated with the hyperphosphorylation by the herpesvirus protein kinases. Our results are as follows: (i) not only in infected cells but also in uninfected cells, replacement of the serine residue at position 133 (Ser-133) of EF-1delta by alanine precluded the posttranslational processing of EF-1delta, which corresponds to the hyperphosphorylation. (ii) A purified chimeric protein consisting of maltose binding protein (MBP) fused to a domain of EF-1delta containing Ser-133 (MBP-EFWt) is specifically phosphorylated in in vitro kinase assays by purified recombinant UL13 fused to glutathione S-transferase (GST) expressed in the baculovirus system. In contrast, the level of phosphorylation by the recombinant UL13 of MBP-EFWt carrying an alanine replacement of Ser-133 (MBP-EFS133A) was greatly impaired. (iii) MBP-EFWt is also specifically phosphorylated in vitro by purified recombinant BGLF4 fused to GST expressed in the baculovirus system, and the level of phosphorylation of MBP-EFS133A by the recombinant BGLF4 was greatly reduced. (iv) The sequence flanking Ser-133 of EF-1delta completely matches the consensus phosphorylation site for a cellular protein kinase, cdc2, and in vitro kinase assays revealed that purified cdc2 phosphorylates Ser-133 of EF-1delta. (v) As observed with EF-1delta, the casein kinase II beta subunit (CKIIbeta) was specifically phosphorylated by UL13 in vitro, while the level of phosphorylation of CKIIbeta by UL13 was greatly diminished when a serine residue at position 209, which has been reported to be phosphorylated by cdc2, was replaced with alanine. These results indicate that the conserved protein kinases encoded by herpesviruses and a cellular protein kinase, cdc2, have the ability to target the same amino acid residues for phosphorylation. Our results raise the possibility that the viral protein kinases mimic cdc2 in infected cells.
Collapse
Affiliation(s)
- Yasushi Kawaguchi
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Tanaka M, Kagawa H, Yamanashi Y, Sata T, Kawaguchi Y. Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol 2003; 77:1382-91. [PMID: 12502854 PMCID: PMC140785 DOI: 10.1128/jvi.77.2.1382-1391.2003] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, several laboratories have reported on the cloning of herpes simplex virus type 1 (HSV-1) genomes as bacterial artificial chromosomes (BACs) in Escherichia coli and on procedures to manipulate these genomes by using the bacterial recombination machinery. However, the HSV-BACs reported so far are either replication incompetent or infectious, with a deletion of one or more viral genes due to the BAC vector insertion. For use as a multipurpose clone in research on HSV-1, we attempted to generate infectious HSV-BACs containing the full genome of HSV-1 without any loss of viral genes. Our results were as follows. (i) E. coli (YEbac102) harboring the full-length HSV-1 genome (pYEbac102) in which a BAC flanked by loxP sites was inserted into the intergenic region between U(L)3 and U(L)4 was constructed. (ii) pYEbac102 was an infectious molecular clone, given that its transfection into rabbit skin cells resulted in production of infectious virus (YK304). (iii) The BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus YK304 by coinfection of Vero cells with YK304 and a recombinant adenovirus, AxCANCre, expressing Cre recombinase. (iv) As far as was examined, the reconstituted viruses from pYEbac102 could not be phenotypically differentiated from wild-type viruses in vitro and in vivo. Thus, the viruses grew as well in Vero cells as did the wild-type virus and exhibited wild-type virulence in mice on intracerebral inoculation. (v) The infectious molecular clone pYEbac102 is in fact useful for mutagenesis of the HSV-1 genome by bacterial genetics, and a recombinant virus carrying amino acid substitutions in both copies of the alpha0 gene was generated. pYEbac102 will have multiple applications to the rapid generation of genetically engineered HSV-1 recombinants in basic research into HSV-1 and in the development of HSV vectors in human therapy.
Collapse
Affiliation(s)
- Michiko Tanaka
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | |
Collapse
|
27
|
Poon APW, Silverstein SJ, Roizman B. An early regulatory function required in a cell type-dependent manner is expressed by the genomic but not the cDNA copy of the herpes simplex virus 1 gene encoding infected cell protein 0. J Virol 2002; 76:9744-55. [PMID: 12208953 PMCID: PMC136486 DOI: 10.1128/jvi.76.19.9744-9755.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The alpha 0 genes of herpes simplex virus 1 (HSV-1) contain three exons. Earlier studies have shown that the substitution of genomic sequences with a cDNA copy does not alter the capacity of the virus to replicate or establish latent infection. Other studies have demonstrated that HSV-1 may express alternatively spliced forms of alpha 0 transcripts. The studies reported here centered on a mutant HSV-1(vCPc0) strain in which the genomic copies of the alpha 0 gene were replaced with cDNA copies. From our research, we report the following observations. (i) In contrast to events transpiring in cells infected with wild-type virus, the expression of HSV-1(vCPc0) genes was delayed or restricted to alpha genes for many hours in rabbit skin cells and to a lesser extent in HEp-2 cells but not in Vero cells. This delay in the expression of HSV-1(vCPc0) beta or gamma genes was also multiplicity of infection dependent. (ii) Exposure to MG132, a proteasomal inhibitor, before infection with wild-type virus had no significant effect on the accumulation of viral proteins in Vero cells and caused an only slight delay in viral gene expression in rabbit skin cells in a multiplicity of infection-dependent fashion. The drug had no effect when it was added to the medium 3 h after infection. (iii) Rabbit skin or HEp-2 cells exposed to MG132 3 h after infection with the HSV-1(vCPc0) mutant accumulated only alpha proteins. This restriction was cell type dependent but not multiplicity of infection dependent. (iv) Both the delay in the expression of beta and gamma genes and the effect of MG132 added to the medium 3 h after infection were rescued by restoration of the intron 1 sequences in the HSV-1(vCPc0) mutant. However, cells transduced by baculoviruses expressing intron 1 RNA did not complement the HSV-1(vCPc0) mutant, suggesting that the function of intron 1 is in cis rather than in trans. We came to the following conclusions as a result. (i) Post-alpha gene expression requires the involvement of the proteasomal pathway in a cell type-dependent manner. Consistent with this requirement, the proapoptotic functions of MG132 are blocked in cells infected before exposure to the drug but not after exposure. (ii) A function encoded by the alpha 0 gene that is absent from the cDNA copy is required for viral gene expression in a cell type- and multiplicity of infection-dependent fashion. The absence of this master function delays but does not ultimately block viral gene expression in the cell lines tested here.
Collapse
Affiliation(s)
- Alice P W Poon
- Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
28
|
Melchjorsen J, Pedersen FS, Mogensen SC, Paludan SR. Herpes simplex virus selectively induces expression of the CC chemokine RANTES/CCL5 in macrophages through a mechanism dependent on PKR and ICP0. J Virol 2002; 76:2780-8. [PMID: 11861845 PMCID: PMC135968 DOI: 10.1128/jvi.76.6.2780-2788.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recruitment of leukocytes is essential for eventual control of virus infections. Macrophages represent a leukocyte population involved in the first line of defense against many infections, including herpes simplex virus (HSV) infection. Through presentation of antigens to T cells and production of cytokines and chemokines, macrophages also constitute an important link between the innate and adaptive immune systems. Here, we have investigated the chemokine expression profile of macrophages after HSV infection and the virus-cell interactions involved. By reverse transcription-PCR and cDNA arrays, we found that HSV type 1 (HSV-1) and HSV-2 induced expression of the CC chemokine RANTES/CCL5 in murine macrophage cell lines and peritoneal cells. The CXC chemokine BCA-1/CXCL13 was also induced in peritoneal cells. Twenty-six other chemokines tested were not affected. Accumulation of RANTES mRNA was detectable after 5 h of infection, was sensitive to UV irradiation of the virus, and was preceded by accumulation of viral immediate-early mRNA and proteins. The viral components responsible for initiation of RANTES expression were examined with virus mutants and RAW 264.7 macrophage-like cells expressing a dominant negative mutant of the double-stranded-RNA-activated protein kinase (PKR). The PKR mutant cell line displayed reduced constitutive and HSV-inducible RANTES expression compared to the control cell line. HSV-1 mutants deficient in genes encoding the immediate-early proteins ICP4, ICP22, and ICP27 remained fully capable of inducing RANTES expression in macrophages. By contrast, the ability of an ICP0-deficient HSV-1 mutant to induce RANTES expression was compromised. Thus, HSV selectively induces expression of RANTES in macrophages through a mechanism dependent on cellular PKR and viral ICP0.
Collapse
Affiliation(s)
- Jesper Melchjorsen
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|
29
|
Hagglund R, Van Sant C, Lopez P, Roizman B. Herpes simplex virus 1-infected cell protein 0 contains two E3 ubiquitin ligase sites specific for different E2 ubiquitin-conjugating enzymes. Proc Natl Acad Sci U S A 2002; 99:631-6. [PMID: 11805320 PMCID: PMC117357 DOI: 10.1073/pnas.022531599] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infected cell protein 0 (ICP0) of herpes simplex virus 1, a multifunctional ring finger protein, enhances the expression of genes introduced into cells by infection or transfection, interacts with numerous cellular and viral proteins, and is associated with the degradation of several cellular proteins. Sequences encoded by exon 2 of ICP0 (residues 20-241) bind the UbcH3 (cdc34) ubiquitin-conjugating enzyme, and its carboxy terminus expresses a ubiquitin ligase activity demonstrable by polyubiquitylation of cdc34 in vitro. We report that: (i) The physical interaction of cdc34 and ICP0 leads to its degradation. Thus, substitution of ICP0 aspartate 199 with alanine attenuates the degradation of cdc34 and its binding to the ICP0 ring finger domain. (ii) Substitution of residue 620 reported to abolish the interaction with a ubiquitin-specific protease has no effect on the function of ubiquitin ligase. (iii) ICP0 contains an additional distinct E3 ligase activity specific for the UbcH5a- and UbcH6 E2-conjugating enzymes mapping to the ring finger domain. This is, to our knowledge, the first identification of a viral protein with at least two physically separated E3 ligase activities with different E2 specificities. The results suggest that each activity may target different proteins.
Collapse
Affiliation(s)
- Ryan Hagglund
- The Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, 910 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
30
|
Boutell C, Sadis S, Everett RD. Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 2002; 76:841-50. [PMID: 11752173 PMCID: PMC136846 DOI: 10.1128/jvi.76.2.841-850.2002] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteasome-dependent degradation of ubiquitinated proteins plays a key role in many important cellular processes. Ubiquitination requires the E1 ubiquitin activating enzyme, an E2 ubiquitin conjugating enzyme, and frequently a substrate-specific ubiquitin protein ligase (E3). One class of E3 ubiquitin ligases has been shown to contain a common zinc-binding RING finger motif. We have previously shown that herpes simplex virus type 1 ICP0, itself a RING finger protein, induces the proteasome-dependent degradation of several cellular proteins and induces the accumulation of colocalizing conjugated ubiquitin in vivo. We now report that both full-length ICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains in vitro in the presence of E1 and the E2 enzymes UbcH5a and UbcH6. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in ICP0 activity in other assays. We conclude that ICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and to target specific cellular proteins for destruction by the 26S proteasome.
Collapse
Affiliation(s)
- Chris Boutell
- Medical Research Council Virology Unit, Glasgow G11 5JR, Scotland, United Kingdom
| | | | | |
Collapse
|
31
|
Advani SJ, Hagglund R, Weichselbaum RR, Roizman B. Posttranslational processing of infected cell proteins 0 and 4 of herpes simplex virus 1 is sequential and reflects the subcellular compartment in which the proteins localize. J Virol 2001; 75:7904-12. [PMID: 11483735 PMCID: PMC115034 DOI: 10.1128/jvi.75.17.7904-7912.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The herpes simplex virus 1 (HSV-1) infected cell proteins 0 and 4 (ICP0 and ICP4) are multifunctional proteins extensively posttranscriptionally processed by both cellular and viral enzymes. We examined by two-dimensional separations the posttranslational forms of ICP0 and ICP4 in HEp-2 cells and in human embryonic lung (HEL) fibroblasts infected with wild-type virus, mutant R325, lacking the sequences encoding the U(S)1.5 protein and the overlapping carboxyl-terminal domain of ICP22, or R7914, in which the aspartic acid 199 of ICP0 was replaced by alanine. We report the following (i) Both ICP0 and ICP4 were sequentially posttranslationally modified at least until 12 h after infection. In HEL fibroblasts, the processing of ICP0 shifted from A+B forms at 4 h to D+G forms at 8 h and finally to G, E, and F forms at 12 h. The ICP4 progression was from the A' form noted at 2 h to B' and C' forms noted at 4 h to the additional D' and E' forms noted at 12 h. The progression tended to be toward more highly charged forms of the proteins. (ii) Although the overall patterns were similar, the mobility of proteins made in HEp-2 cells differed from those made in HEL fibroblasts. (iii) The processing of ICP0 forms E and F was blocked in HEL fibroblasts infected with R325 or with wild-type virus and treated with roscovitine, a specific inhibitor of cell cycle-dependent kinases cdc2, cdk2, and cdk5. R325-infected HEp-2 cells lacked the D' form of ICP4, and roscovitine blocked the appearance of the most highly charged E' form of ICP4. (iv) A characteristic of ICP0 is that it is translocated into the cytoplasm of HEL fibroblasts between 5 and 9 h after infection. Addition of MG132 to the cultures late in infection resulted in rapid relocation of cytoplasmic ICP0 back into the nucleus. Exposure of HEL fibroblasts to MG132 late in infection resulted in the disappearance of the highly charged ICP0 G isoform. The G form of ICP0 was also absent in cells infected with R7914 mutant. In cells infected with this mutant, ICP0 is not translocated to the cytoplasm. (v) Last, cdc2 was active in infected cells, and this activity was inhibited by roscovitine. In contrast, the activity of cdk2 exhibited by immunoprecipitated protein was reduced and resistant to roscovitine and may represent a contaminating kinase activity. We conclude from these results that the ICP0 G isoform is the cytoplasmic form, that it may be phosphorylated by cdc2, consistent with evidence published earlier (S. J., Advani, R. R. Weichselbaum, and B. Roizman, Proc. Natl. Acad. Sci. USA 96:10996-11001, 2000), and that the processing is reversed upon relocation of the G isoform from the cytoplasm into the nucleus. The processing of ICP4 is also affected by R325 and roscovitine. The latter result suggests that ICP4 may also be a substrate of cdc2 late in infection. Last, additional modifications are superimposed by cell-type-specific enzymes.
Collapse
Affiliation(s)
- S J Advani
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
32
|
Van Sant C, Hagglund R, Lopez P, Roizman B. The infected cell protein 0 of herpes simplex virus 1 dynamically interacts with proteasomes, binds and activates the cdc34 E2 ubiquitin-conjugating enzyme, and possesses in vitro E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A 2001; 98:8815-20. [PMID: 11447293 PMCID: PMC37518 DOI: 10.1073/pnas.161283098] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The infected cell protein 0 (ICP0) of herpes simplex virus 1, a promiscuous transactivator shown to enhance the expression of genes introduced into cells by infection or transfection, interacts with numerous cellular proteins and has been linked to the disruption of ND10 and degradation of several proteins. ICP0 contains a RING finger domain characteristic of a class of E3 ubiquitin ligases. We report that: (i) in infected cells, ICP0 interacts dynamically with proteasomes and is bound to proteasomes in the presence of the proteasome inhibitor MG132. Also in infected cells, cdc34, a polyubiquitinated E2 ubiquitin-conjugating enzyme, exhibits increased ICP0-dependent dynamic interaction with proteasomes. (ii) In an in vitro substrate-independent ubiquitination system, the RING finger domain encoded by exon 2 of ICP0 binds cdc34, whereas the carboxyl-terminal domain of ICP0 functions as an E3 ligase independent of the RING finger domain. The results indicate that ICP0 can act as a unimolecular E3 ubiquitin ligase and that it promotes ubiquitin-protein ligation and binds the E2 cdc34. It differs from other unimolecular E3 ligases in that the domain containing the RING finger binds E2, whereas the ligase activity maps to a different domain of the protein. The results also suggest that ICP0 shuttles between nucleus and cytoplasm as a function of its dynamic interactions with proteasomes.
Collapse
Affiliation(s)
- C Van Sant
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, 910 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|