1
|
Gao Z, Zhang W, Jiang S, Qiao H, Xiong Y, Jin S, Fu H. Genome-wide association and transcriptomic analysis and the identification of growth-related genes in Macrobrachium nipponense. BMC Genomics 2024; 25:1182. [PMID: 39639210 PMCID: PMC11619169 DOI: 10.1186/s12864-024-11105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Macrobrachium nipponense is a commercially important freshwater species of prawn that is widely distributed across Asian countries. In order to investigate the molecular mechanisms of growth in M. nipponense, and to provide a foundation for molecular breeding, we used genome-wide association analysis (GWAS) and transcriptomic analysis to screen polymorphisms and genes related to growth traits. We recorded the growth traits of 100 adult M. nipponense at the same growth stage, and each individual genotype was evaluated by whole genome resequencing. GWAS of growth traits detected 12 growth-related single-nucleotide polymorphisms (SNPs) and eight growth-related genes from 49 chromosomes. Of the 100 individuals, we sampled muscle tissue from a total of 18 female and male M. nipponense exhibiting large differences in growth rate for RNA-seq. Transcriptome analysis revealed a total of 27,996 unigenes; of these, 33 and 60 differentially expressed genes were identified from males and females, respectively. Of these, 12 genes associated with energy metabolism and cytoskeletal pathways were identified as growth-related genes. Notably, genes from the actin family and the ubiquitin C-terminal hydrolase 2 (UCH2) gene were identified by both GWAS and transcriptomic analysis. Two growth-related SNPs, S40_12327385 and S40_12327391, were found to be mapped to the ACTB gene. The ACTA1 gene, also from the actin family, was up-regulated in fast-growing males and females, while the ACT57B was down-regulated. In addition, the growth associated SNP S7_35313774 was located in the UCH2 gene; transcriptomics analysis revealed that the UCH2 gene was up-regulated in female individuals exhibiting high growth rates. Overall, our results provided a set of markers and candidate genes related to the growth of M. nipponense. These findings could facilitate the breeding management of this species and help us to further understand the genetic mechanisms of growth in crustaceans.
Collapse
Affiliation(s)
- Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
2
|
Zhang W, Zhang K. Understanding the Biological Basis of Polygenic Risk Scores and Disparities in Prostate Cancer: A Comprehensive Genomic Analysis. Cancer Inform 2024; 23:11769351241276319. [PMID: 39444678 PMCID: PMC11497523 DOI: 10.1177/11769351241276319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/14/2024] [Indexed: 10/25/2024] Open
Abstract
Objectives For prostate cancer (PCa), hundreds of risk variants have been identified. It remains unknown whether the polygenic risk score (PRS) that combines the effects of these variants is also a sufficiently informative metric with relevance to the molecular mechanisms of carcinogenesis in prostate. We aimed to understand the biological basis of PRS and racial disparities in the cancer. Methods We performed a comprehensive analysis of the data generated (deposited in) by several genomic and/or transcriptomic projects (databases), including the GTEx, TCGA, 1000 Genomes, GEO and dbGap. PRS was constructed from 260 PCa risk variants that were identified by a recent trans-ancestry meta-analysis and contained in the GTEx dataset. The dosages of risk variants and the multi-ancestry effects on PCa incidence estimated by the meta-analysis were used in calculating individual PRS values. Results The following novel results were obtained from our analyses. (1) In normal prostate samples from healthy European Americans (EAs), the expression levels of 540 genes (termed PRS genes) were associated with the PRS (P < .01). (2) Ubiquitin-proteasome system in high-PRS individuals' prostates was more active than that in low-PRS individuals' prostates. (3) Nine PRS genes play roles in the cancer progression-relevant parts, which are frequently hit by somatic mutations in PCa, of PI3K-Akt/RAS-MAPK/mTOR signaling pathways. (4) The expression profiles of the top significant PRS genes in tumor samples were capable of predicting malignant PCa relapse after prostatectomy. (5) The transcriptomic differences between African American and EA samples were incompatible with the patterns of the aforementioned associations between PRS and gene expression levels. Conclusions This study provided unique insights into the relationship between PRS and the molecular mechanisms of carcinogenesis in prostate. The new findings, alongside the moderate but significant heritability of PCa susceptibility contributed by the risk variants, suggest the aptness and inaptness of PRS for explaining PCa and disparities.
Collapse
Affiliation(s)
- Wensheng Zhang
- Bioinformatics Core of Xavier NIH RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | - Kun Zhang
- Bioinformatics Core of Xavier NIH RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
3
|
Niu J, Yang J, Feng J, Feng Z, Wang X, Yu B, Wang G. Ubiquitin-proteasome pathway plays an essential regulatory role during spermatangium formation in Neopyropia yezoensis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Brooks DS, Vishal K, Bawa S, Alder A, Geisbrecht ER. Integration of proteomic and genetic approaches to assess developmental muscle atrophy. J Exp Biol 2021; 224:272703. [PMID: 34647571 DOI: 10.1242/jeb.242698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023]
Abstract
Muscle atrophy, or a decline in muscle protein mass, is a significant problem in the aging population and in numerous disease states. Unraveling molecular signals that trigger and promote atrophy may lead to a better understanding of treatment options; however, there is no single cause of atrophy identified to date. To gain insight into this problem, we chose to investigate changes in protein profiles during muscle atrophy in Manduca sexta and Drosophila melanogaster. The use of insect models provides an interesting parallel to probe atrophic mechanisms as these organisms undergo a normal developmental atrophy process during the pupal transition stage. Leveraging the inherent advantages of each model organism, we first defined protein signature changes during M. sexta intersegmental muscle (ISM) atrophy and then used genetic approaches to confirm their functional importance in the D. melanogaster dorsal internal oblique muscles (DIOMs). Our data reveal an upregulation of proteasome and peptidase components and a general downregulation of proteins that regulate actin filament formation. Surprisingly, thick filament proteins that comprise the A-band are increased in abundance, providing support for the ordered destruction of myofibrillar components during developmental atrophy. We also uncovered the actin filament regulator ciboulot (Cib) as a novel regulator of muscle atrophy. These insights provide a framework towards a better understanding of global changes that occur during atrophy and may eventually lead to therapeutic targets.
Collapse
Affiliation(s)
- David S Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Kumar Vishal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Adrienne Alder
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
5
|
Matriano DM, Alegado RA, Conaco C. Detection of horizontal gene transfer in the genome of the choanoflagellate Salpingoeca rosetta. Sci Rep 2021; 11:5993. [PMID: 33727612 PMCID: PMC7971027 DOI: 10.1038/s41598-021-85259-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/28/2021] [Indexed: 01/31/2023] Open
Abstract
Horizontal gene transfer (HGT), the movement of heritable materials between distantly related organisms, is crucial in eukaryotic evolution. However, the scale of HGT in choanoflagellates, the closest unicellular relatives of metazoans, and its possible roles in the evolution of animal multicellularity remains unexplored. We identified at least 175 candidate HGTs in the genome of the colonial choanoflagellate Salpingoeca rosetta using sequence-based tests. The majority of these were orthologous to genes in bacterial and microalgal lineages, yet displayed genomic features consistent with the rest of the S. rosetta genome-evidence of ancient acquisition events. Putative functions include enzymes involved in amino acid and carbohydrate metabolism, cell signaling, and the synthesis of extracellular matrix components. Functions of candidate HGTs may have contributed to the ability of choanoflagellates to assimilate novel metabolites, thereby supporting adaptation, survival in diverse ecological niches, and response to external cues that are possibly critical in the evolution of multicellularity in choanoflagellates.
Collapse
Affiliation(s)
- Danielle M Matriano
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Rosanna A Alegado
- Department of Oceanography, Hawai'i Sea Grant, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Manoa, Honolulu, USA
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines.
| |
Collapse
|
6
|
Tsuji J, Thomson T, Chan E, Brown CK, Oppenheimer J, Bigelow C, Dong X, Theurkauf WE, Weng Z, Schwartz LM. High-resolution analysis of differential gene expression during skeletal muscle atrophy and programmed cell death. Physiol Genomics 2020; 52:492-511. [PMID: 32926651 DOI: 10.1152/physiolgenomics.00047.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Skeletal muscles can undergo atrophy and/or programmed cell death (PCD) during development or in response to a wide range of insults, including immobility, cachexia, and spinal cord injury. However, the protracted nature of atrophy and the presence of multiple cell types within the tissue complicate molecular analyses. One model that does not suffer from these limitations is the intersegmental muscle (ISM) of the tobacco hawkmoth Manduca sexta. Three days before the adult eclosion (emergence) at the end of metamorphosis, the ISMs initiate a nonpathological program of atrophy that results in a 40% loss of mass. The ISMs then generate the eclosion behavior and initiate a nonapoptotic PCD during the next 30 h. We have performed a comprehensive transcriptomics analysis of all mRNAs and microRNAs throughout ISM development to better understand the molecular mechanisms that mediate atrophy and death. Atrophy involves enhanced protein catabolism and reduced expression of the genes involved in respiration, adhesion, and the contractile apparatus. In contrast, PCD involves the induction of numerous proteases, DNA methylases, membrane transporters, ribosomes, and anaerobic metabolism. These changes in gene expression are largely repressed when insects are injected with the insect steroid hormone 20-hydroxyecdysone, which delays death. The expression of the death-associated proteins may be greatly enhanced by reductions in specific microRNAs that function to repress translation. This study not only provides fundamental new insights into basic developmental processes, it may also represent a powerful resource for identifying potential diagnostic markers and molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Junko Tsuji
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Travis Thomson
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Elizabeth Chan
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts
| | - Christine K Brown
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts
| | | | - Carol Bigelow
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Massachusetts
| | - Xianjun Dong
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Lawrence M Schwartz
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
7
|
Sheel A, Shao R, Brown C, Johnson J, Hamilton A, Sun D, Oppenheimer J, Smith W, Visconti PE, Markstein M, Bigelow C, Schwartz LM. Acheron/Larp6 Is a Survival Protein That Protects Skeletal Muscle From Programmed Cell Death During Development. Front Cell Dev Biol 2020; 8:622. [PMID: 32850788 PMCID: PMC7405549 DOI: 10.3389/fcell.2020.00622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
The term programmed cell death (PCD) was coined in 1965 to describe the loss of the intersegmental muscles (ISMs) of moths at the end of metamorphosis. While it was subsequently demonstrated that this hormonally controlled death requires de novo gene expression, the signal transduction pathway that couples hormone action to cell death is largely unknown. Using the ISMs from the tobacco hawkmoth Manduca sexta, we have found that Acheron/LARP6 mRNA is induced ∼1,000-fold on the day the muscles become committed to die. Acheron functions as a survival protein that protects cells until cell death is initiated at eclosion (emergence), at which point it becomes phosphorylated and degraded in response to the peptide Eclosion Hormone (EH). Acheron binds to a novel BH3-only protein that we have named BBH1 (BAD/BNIP3 homology 1). BBH1 accumulates on the day the ISMs become committed to die and is presumably liberated when Acheron is degraded. This is correlated with the release and rapid degradation of cytochrome c and the subsequent demise of the cell. RNAi experiments in the fruit fly Drosophila confirmed that loss of Acheron results in precocious ecdysial muscle death while targeting BBH1 prevents death altogether. Acheron is highly expressed in neurons and muscles in humans and drives metastatic processes in some cancers, suggesting that it may represent a novel survival protein that protects terminally differentiated cells and some cancers from death.
Collapse
Affiliation(s)
- Ankur Sheel
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Rong Shao
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Pharmacology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Christine Brown
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Joanne Johnson
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Alexandra Hamilton
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Danhui Sun
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Julia Oppenheimer
- Department of Biology, Barnard College, Columbia University, New York, NY, United States
| | - Wendy Smith
- Department of Biology, College of Science, Northeastern University, Boston, MA, United States
| | - Pablo E Visconti
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Michele Markstein
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Carol Bigelow
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lawrence M Schwartz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
8
|
Tettamanti G, Casartelli M. Cell death during complete metamorphosis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190065. [PMID: 31438818 DOI: 10.1098/rstb.2019.0065] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In insects that undergo complete metamorphosis, cell death is essential for reshaping or removing larval tissues and organs, thus contributing to formation of the adult's body structure. In the last few decades, the study of metamorphosis in Lepidoptera and Diptera has provided broad information on the tissue remodelling processes that occur during larva-pupa-adult transition and made it possible to unravel the underlying regulatory pathways. This review summarizes recent knowledge on cell death mechanisms in Lepidoptera and other holometabolous insects, highlighting similarities and differences with Drosophila melanogaster, and discusses the role of apoptosis and autophagy in this developmental setting. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Morena Casartelli
- Department of Biosciences, University of Milano, 20133 Milano, Italy
| |
Collapse
|
9
|
Molt-dependent transcriptome analysis of claw muscles in Chinese mitten crab Eriocheir sinensis. Genes Genomics 2019; 41:515-528. [DOI: 10.1007/s13258-019-00787-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/17/2019] [Indexed: 01/16/2023]
|
10
|
Non-apoptotic cell death in animal development. Cell Death Differ 2017; 24:1326-1336. [PMID: 28211869 DOI: 10.1038/cdd.2017.20] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death (PCD) is an important process in the development of multicellular organisms. Apoptosis, a form of PCD characterized morphologically by chromatin condensation, membrane blebbing, and cytoplasm compaction, and molecularly by the activation of caspase proteases, has been extensively investigated. Studies in Caenorhabditis elegans, Drosophila, mice, and the developing chick have revealed, however, that developmental PCD also occurs through other mechanisms, morphologically and molecularly distinct from apoptosis. Some non-apoptotic PCD pathways, including those regulating germ cell death in Drosophila, still appear to employ caspases. However, another prominent cell death program, linker cell-type death (LCD), is morphologically conserved, and independent of the key genes that drive apoptosis, functioning, at least in part, through the ubiquitin proteasome system. These non-apoptotic processes may serve as backup programs when caspases are inactivated or unavailable, or, more likely, as freestanding cell culling programs. Non-apoptotic PCD has been documented extensively in the developing nervous system, and during the formation of germline and somatic gonadal structures, suggesting that preservation of these mechanisms is likely under strong selective pressure. Here, we discuss our current understanding of non-apoptotic PCD in animal development, and explore possible roles for LCD and other non-apoptotic developmental pathways in vertebrates. We raise the possibility that during vertebrate development, apoptosis may not be the major PCD mechanism.
Collapse
|
11
|
Liu H, Chen B, Hu S, Liang X, Lu X, Shao Y. Quantitative Proteomic Analysis of Germination of Nosema bombycis Spores under Extremely Alkaline Conditions. Front Microbiol 2016; 7:1459. [PMID: 27708628 PMCID: PMC5030232 DOI: 10.3389/fmicb.2016.01459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022] Open
Abstract
The microsporidian Nosema bombycis is an obligate intracellular pathogen of the silkworm Bombyx mori, causing the epidemic disease Pebrine and extensive economic losses in sericulture. Although N. bombycis forms spores with rigid spore walls that protect against various environmental pressures, ingested spores germinate immediately under the extremely alkaline host gut condition (Lepidoptera gut pH > 10.5), which is a key developmental turning point from dormant state to infected state. However, to date this process remains poorly understood due to the complexity of the animal digestive tract and the lack of genetic tools for microsporidia. Here we show, using an in vitro spore germination model, how the proteome of N. bombycis changes during germination, analyse specific metabolic pathways employed in detail, and validate key functional proteins in vivo in silkworms. By a label-free quantitative proteomics approach that is directly based on high-resolution mass spectrometry (MS) data, a total of 1136 proteins were identified with high confidence, with 127 proteins being significantly changed in comparison to non-germinated spores. Among them, structural proteins including polar tube protein 1 and 3 and spore wall protein (SWP) 4 and 30 were found to be significantly down-regulated, but SWP9 significantly up-regulated. Some nucleases like polynucleotide kinase/phosphatase and flap endonucleases 1, together with a panel of hydrolases involved in protein degradation and RNA cleavage were overrepresented too upon germination, which implied that they might play important roles during spore germination. The differentially regulated trends of these genes were validated, respectively, by quantitative RT-PCR and 3 proteins of interest were confirmed by Western blotting analyses in vitro and in vivo. Furthermore, the pathway analysis showed that abundant up- and down-regulations appear involved in the glycolysis, pentose phosphate pathway, purine, and pyrimidine metabolism, suggesting preparations of energy generation and substance synthesis for the following invasion and proliferation inside the host. This report, to our knowledge, provides the first proteomic landscape of N. bombycis spores, and also a stepping stone on the way to further study of the unique infection mode of this economically important pathogen and other microsporidia in general.
Collapse
Affiliation(s)
- Han Liu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Bosheng Chen
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Sirui Hu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Xili Liang
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Xingmeng Lu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Yongqi Shao
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
12
|
Kinet MJ, Malin JA, Abraham MC, Blum ES, Silverman MR, Lu Y, Shaham S. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans. eLife 2016; 5. [PMID: 26952214 PMCID: PMC4821803 DOI: 10.7554/elife.12821] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/07/2016] [Indexed: 01/18/2023] Open
Abstract
Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis
regulators cause only minor defects in vertebrate development, suggesting that
another developmental cell death mechanism exists. While some non-apoptotic programs
have been molecularly characterized, none appear to control developmental cell
culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic
cell death process operating in Caenorhabditis elegans and
vertebrate development, and is therefore a compelling candidate process complementing
apoptosis. However, the details of LCD execution are not known. Here we delineate a
molecular-genetic pathway governing LCD in C. elegans. Redundant
activities of antagonistic Wnt signals, a temporal control pathway, and
mitogen-activated protein kinase kinase signaling control heat shock factor 1
(HSF-1), a conserved stress-activated transcription factor. Rather than protecting
cells, HSF-1 promotes their demise by activating components of the ubiquitin
proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3
components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities
between LCD and developmental apoptosis, and provide testable predictions for
analyzing LCD in vertebrates. DOI:http://dx.doi.org/10.7554/eLife.12821.001 Embryos make numerous new cells as they develop, but also destroy many cells to
remove the faulty ones and to ensure that tissues grow to the right size and shape.
This deliberate form of cell death must be precisely regulated to prevent too many
cells or healthy cells, from being destroyed. Understanding the molecular mechanisms
that govern cell death is therefore important for understanding normal development
and also human disease. One well-studied process that leads to cell death is called apoptosis. This process
carefully dismantles and breaks down the components of a cell, but does not seem to
account for all cell death that occurs during animal development. Recently another
developmental cell-death pathway, called the linker-cell-type death, was discovered
in a small roundworm called Caenorhabditis elegans. This pathway
appears to work in mammalian cells as well, and may help to break down nerve fibers
that are not needed. However, many of this pathway’s component parts remained
unknown. Kinet, Malin et al. have now used a combination of genetics and cell biology in
C. elegans to uncover the components of linker-cell-type death
and to investigate how they interact. The results of these studies revealed a
hierarchy of genetic interactions that governs this pathway in C.
elegans. One protein called HSF-1 plays a particularly important role.
This protein is a transcription factor and it binds to, and regulates, the activities
of various genes. HSF-1 usually works in cells to protect them from stress, but
Kinet, Malin et al. showed that it instead promotes linker-cell-type death by
activating a molecular machine, called the proteasome, that breaks down proteins. The
experiments also revealed two proteins (called BTBD-2 and SIAH-1) that may be
important for shuttling specific proteins for degradation by the proteasome. Three signalling pathways that regulate important developmental processes also
regulate the activation of linker-cell-type death. Kinet, Malin et al. propose that
these signalling pathways do so by working together to activate HSF-1, which in turn
activates the genes that lead to the destruction of cells by the proteasome. A future challenge is to understand in more detail how the more recently discovered
cell death pathway actually kills cells. Further work could also explore how HSF-1, a
protein that normally protects cells, is transformed into a cell-killing protein. DOI:http://dx.doi.org/10.7554/eLife.12821.002
Collapse
Affiliation(s)
- Maxime J Kinet
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Jennifer A Malin
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Mary C Abraham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Elyse S Blum
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Melanie R Silverman
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| |
Collapse
|
13
|
Polge C, Attaix D, Taillandier D. Role of E2-Ub-conjugating enzymes during skeletal muscle atrophy. Front Physiol 2015; 6:59. [PMID: 25805999 PMCID: PMC4354305 DOI: 10.3389/fphys.2015.00059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/14/2015] [Indexed: 01/05/2023] Open
Abstract
The Ubiquitin Proteasome System (UPS) is a major actor of muscle wasting during various physio-pathological situations. In the past 15 years, increasing amounts of data have depicted a picture, although incomplete, of the mechanisms implicated in myofibrillar protein degradation, from the discovery of muscle-specific E3 ligases to the identification of the signaling pathways involved. The targeting specificity of the UPS relies on the capacity of the system to first recognize and then label the proteins to be degraded with a poly-ubiquitin (Ub) chain. It is fairly assumed that the recognition of the substrate is accomplished by the numerous E3 ligases present in mammalian cells. However, most E3s do not possess any catalytic activity and E2 enzymes may be more than simple Ub-providers for E3s since they are probably important actors in the ubiquitination machinery. Surprisingly, most authors have tried to characterize E3 substrates, but the exact role of E2s in muscle protein degradation is largely unknown. A very limited number of the 35 E2s described in humans have been studied in muscle protein breakdown experiments and the vast majority of studies were only descriptive. We review here the role of E2 enzymes in skeletal muscle and the difficulties linked to their study and provide future directions for the identification of muscle E2s responsible for the ubiquitination of contractile proteins.
Collapse
Affiliation(s)
- Cecile Polge
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| | - Didier Attaix
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| | - Daniel Taillandier
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| |
Collapse
|
14
|
A molecular view of autophagy in Lepidoptera. BIOMED RESEARCH INTERNATIONAL 2014; 2014:902315. [PMID: 25143951 PMCID: PMC4124216 DOI: 10.1155/2014/902315] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/06/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
Abstract
Metamorphosis represents a critical phase in the development of holometabolous insects, during which the larval body is completely reorganized: in fact, most of the larval organs undergo remodeling or completely degenerate before the final structure of the adult insect is rebuilt. In the past, increasing evidence emerged concerning the intervention of autophagy and apoptosis in the cell death processes that occur in larval organs of Lepidoptera during metamorphosis, but a molecular characterization of these pathways was undertaken only in recent years. In addition to developmentally programmed autophagy, there is growing interest in starvation-induced autophagy. Therefore we are now entering a new era of research on autophagy that foreshadows clarification of the role and regulatory mechanisms underlying this self-digesting process in Lepidoptera. Given that some of the most important lepidopteran species of high economic importance, such as the silkworm, Bombyx mori, belong to this insect order, we expect that this information on autophagy will be fully exploited not only in basic research but also for practical applications.
Collapse
|
15
|
Piccirillo R, Demontis F, Perrimon N, Goldberg AL. Mechanisms of muscle growth and atrophy in mammals and Drosophila. Dev Dyn 2014; 243:201-15. [PMID: 24038488 PMCID: PMC3980484 DOI: 10.1002/dvdy.24036] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The loss of skeletal muscle mass (atrophy) that accompanies disuse and systemic diseases is highly debilitating. Although the pathogenesis of this condition has been primarily studied in mammals, Drosophila is emerging as an attractive system to investigate some of the mechanisms involved in muscle growth and atrophy. RESULTS In this review, we highlight the outstanding unsolved questions that may benefit from a combination of studies in both flies and mammals. In particular, we discuss how different environmental stimuli and signaling pathways influence muscle mass and strength and how a variety of disease states can cause muscle wasting. CONCLUSIONS Studies in Drosophila and mammals should help identify molecular targets for the treatment of muscle wasting in humans.
Collapse
Affiliation(s)
- Rosanna Piccirillo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Department of Oncology, IRCCS - Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Fabio Demontis
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Department of Developmental Neurobiology, Division of Developmental Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
16
|
Kumar B, Lecompte KG, Klein JM, Haas AL. Ser(120) of Ubc2/Rad6 regulates ubiquitin-dependent N-end rule targeting by E3{alpha}/Ubr1. J Biol Chem 2010; 285:41300-9. [PMID: 21041297 DOI: 10.1074/jbc.m110.169136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In CHO cells, CDK1/2-dependent phosphorylation of Ubc2/Rad6 at Ser(120) stimulates its ubiquitin conjugating activity and can be replicated by a S120D point mutant (Sarcevic, B., Mawson, A., Baker, R. T., and Sutherland, R. L. (2002) EMBO J. 21, 2009-2018). In contrast, we find that ectopic expression of wild type Ubc2b but not Ubc2bS120D or Ubc2bS120A in T47D human breast cancer cells specifically stimulates N-end rule-dependent degradation but not the Ubc2-independent unfolded protein response pathway, indicating that the former is E2 limiting in vivo and likely down-regulated by Ser(120) phosphorylation, as modeled by the S120D point mutation. In vitro kinetic analysis shows the in vivo phenotype of Ubc2bS120D and Ubc2bS120A is not due to differences in activating enzyme-catalyzed E2 transthiolation. However, the Ser(120) mutants possess marked differences in their abilities to support in vitro conjugation by the N-end rule-specific E3α/Ubr1 ligase that presumably accounts for their in vivo effects. Initial rate kinetics of human E3α-catalyzed conjugation of the human α-lactalbumin N-end rule substrate shows Ubc2bS120D is 20-fold less active than wild type E2, resulting from an 8-fold increase in K(m) and a 2.5-fold decrease in V(max), the latter reflecting a decreased ability to support the initial step in target protein conjugation; Ubc2bS120A is 8-fold less active than wild type E2 due almost exclusively to a decrease in V(max), reflecting a defect in polyubiquitin chain elongation. These studies suggest a mechanism for the integrated regulation of diverse ubiquitin-dependent signaling pathways through E2 phosphorylation that yields differential effects on its cognate ligases.
Collapse
Affiliation(s)
- Brajesh Kumar
- Department of Biochemistry and Molecular Biology and the Stanley S Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
17
|
Hoehenwarter W, Chen Y, Recuenco-Munoz L, Wienkoop S, Weckwerth W. Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics. Amino Acids 2010; 41:329-41. [PMID: 20602127 DOI: 10.1007/s00726-010-0669-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 06/16/2010] [Indexed: 12/16/2022]
Abstract
Covalent post-translational modification of proteins is the primary modulator of protein function in the cell. It greatly expands the functional potential of the proteome compared to the genome. In the past few years shotgun proteomics-based research, where the proteome is digested into peptides prior to mass spectrometric analysis has been prolific in this area. It has determined the kinetics of tens of thousands of sites of covalent modification on an equally large number of proteins under various biological conditions and uncovered a transiently active regulatory network that extends into diverse branches of cellular physiology. In this review, we discuss this work in light of the concept of protein speciation, which emphasizes the entire post-translationally modified molecule and its interactions and not just the modification site as the functional entity. Sometimes, particularly when considering complex multisite modification, all of the modified molecular species involved in the investigated condition, the protein species must be completely resolved for full understanding. We present a mathematical technique that delivers a good approximation for shotgun proteomics data.
Collapse
Affiliation(s)
- Wolfgang Hoehenwarter
- Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | | | | | | | | |
Collapse
|
18
|
Zheng B, Ohkawa S, Li H, Roberts-Wilson TK, Price SR. FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/MAFbx expression during glucocorticoid-induced skeletal muscle atrophy. FASEB J 2010; 24:2660-9. [PMID: 20371624 DOI: 10.1096/fj.09-151480] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Muscle atrophy is a consequence of chronic diseases (e.g., diabetes) and glucocorticoid-induced insulin resistance that results from enhanced activity of the ubiquitin-proteasome pathway. The PI3K/Akt pathway inhibits the FOXO-mediated transcription of the muscle-specific E3 ligase atrogin-1/MAFbx (AT-1), whereas the MEK/ERK pathway increases Sp1 activity and ubiquitin (UbC) expression. The observations raise a question about how the transcription of these atrogenes is synchronized in atrophic muscle. We tested a signaling model in which FOXO3a mediates crosstalk between the PI3K/Akt and MEK/ERK pathways to coordinate AT-1 and UbC expression. In rat L6 myotubes, dexamethasone (> or = 24 h) reduced insulin receptor substrate (IRS)-1 protein and PI3K/Akt signaling and increased AT-1 mRNA. IRS-2 protein, MEK/ERK signaling, Sp1 phosphorylation, and UbC transcription were simultaneously increased. Knockdown of IRS-1 using small interfering RNA or adenovirus-mediated expression of constitutively activated FOXO3a increased IRS-2 protein, MEK/ERK signaling, and UbC expression. Changes in PI3K/Akt and MEK/ERK signaling were recapitulated in rat muscles undergoing atrophy due to streptozotocin-induced insulin deficiency and concurrently elevated glucocorticoid production. IRS-1 and Akt phosphorylation were decreased, whereas MEK/ERK signaling and expression of IRS-2, UbC and AT-1 were increased. We conclude that FOXO3a mediates a reciprocal communication between the IRS-1/PI3K/Akt and IRS-2/MEK/ERK pathways that coordinates AT-1 and ubiquitin expression during muscle atrophy.
Collapse
Affiliation(s)
- Bin Zheng
- Renal Division, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
19
|
Shi C, Rui Q, Xu LL. Enzymatic properties of the 20S proteasome in wheat endosperm and its biochemical characteristics after seed imbibition. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:849-858. [PMID: 19796362 DOI: 10.1111/j.1438-8677.2009.00193.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The 20S proteasome from wheat (Triticum aestivum L., Yangmai 158) endosperm was purified to apparent homogeneity by three sequential centrifugations and gradient PAGE (GPAGE). The purified 20S proteasome clearly cleaved peptidyl-arylamide bonds in the model synthetic substrates Z-GGL-AMC and Z-GGR-AMC, which are used to reflect chymotrypsin-like and trypsin-like activity, respectively. For both substrates, the optimum pH was 8.0, but the optimum temperatures for chymotrypsin-like and trypsin-like activity were 55 degrees C and 37 degrees C, respectively. Both enzyme activities were clearly inhibited by MG115 and PMSF. Polyubiquitinated proteins remained constant from 0 to 7 days after seed imbibition, but caseinolytic activity and the amount of the 20S proteasome associated with the aleurone layer decreased from 1 to 2 days after imbibition (DAI), then increased from 2 to 4 DAI, and reached a maximum at 4 DAI that was retained until 7 DAI. An increase was seen in the mRNA level of the beta5 subunit of the 20S proteasome from 2 DAI, and caseinolytic activity and the amount of the 20S proteasome increased from 3 DAI onwards. In addition, the main storage proteins of the wheat endosperm could not be hydrolyzed by the 20S proteasome. The evidence suggests that the main role of the 20S proteasome may not be to degrade massive proteins of the wheat endosperm after seed imbibition.
Collapse
Affiliation(s)
- C Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | | |
Collapse
|
20
|
Myer A, Mason HA, Smith W, Brown C, Schwartz LM. Differential control of cell death and gene expression during two distinct phases of hormonally-regulated muscle death in the tobacco hawkmoth Manduca sexta. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:314-320. [PMID: 19135059 DOI: 10.1016/j.jinsphys.2008.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/05/2008] [Accepted: 12/09/2008] [Indexed: 05/27/2023]
Abstract
In larvae of the tobacco hawkmoth Manduca sexta, the intersegmental muscles (ISMs) span eight abdominal segments and represent the major muscle group. Following pupation, the ISMs in the first two and last two segments undergo programmed cell death (PCD), while the remaining four segments persist until the time of adult eclosion, when they too undergo PCD. ISM death at adult eclosion is initiated by a decline in the circulating ecdysteroid titer and requires de novo gene expression. In this study we have investigated the hormonal regulation and the patterns of gene expression that accompany both early and late ISM death. We find that distinct endocrine cues regulate these two periods of muscle death. Even though the middle segments of ISMs are exposed to the same endocrine environment as the adjacent cells that die following pupation, they do not express death-associated transcripts until they are specifically signaled to die following adult eclosion. These data indicate that subsets of homologous muscles appear to make segment-specific decisions to couple their endogenous cell death programs to distinctly different developmental cues. Nevertheless, once cell death is initiated, they utilize many of the same molecular components.
Collapse
Affiliation(s)
- Anita Myer
- Program of Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States
| | | | | | | | | |
Collapse
|
21
|
Abstract
Striated skeletal is subject to nonlethal cycles of atrophy in response to a variety of physiological and pathological stimuli, including: starvation, disuse, denervation and inflammation. These cells can also undergo cell death in response to appropriate developmental signals or specific pathological insults. Most of the insights gained into the control of vertebrate skeletal muscle atrophy and death have resulted from experimental interventions rather than natural processes. In contrast, the intersegmental muscles (ISMs) of moths are giant cells that initiate sequential and distinct programs of atrophy and death at the end of metamorphosis as a normal component of development. This model has provided fundamental information about the control, biochemistry, molecular biology and anatomy of naturally occurring atrophy and death in vivo. The ISMs have provided a good complement to studies in vertebrates and may provide insights into clinically relevant disorders.
Collapse
|
22
|
Bernick EP, Moffett SB, Moffett DF. Ultrastructure and morphology of midgut visceral muscle in early pupal Aedes aegypti mosquitoes. Tissue Cell 2007; 40:127-41. [PMID: 18160088 DOI: 10.1016/j.tice.2007.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/23/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
Abstract
These studies focus on the pupal Aedes aegypti midgut muscularis for the first 26 h following larval-pupal transition. The midgut muscularis of Ae. aegypti pupae during this first half of the pupal stadium is a grid of both circularly and longitudinally oriented muscle bands, arranged in a manner resembling that of the larvae. While many muscle bands exhibit signs of degeneration during the time period studied, not all bands degrade, nor is this degradation simultaneous. Band deterioration involves destruction of internal elements while the muscle fiber plasma membrane remains intact. Deterioration of contractile elements may involve proteosome-like structures and associated enzymes. Many features of the larval muscularis including cruciform cells, bifurcating circular bands, and bifurcating longitudinal bands of muscle are retained during the time period investigated. Neuromuscular junctions along some muscle bands are retained through at least 16 h into the pupal stadium. The selective nature of muscle fiber degradation, coupled with the retention of larval features and neural input, may allow for limited functionality of the muscularis during metamorphosis. Evidence of sexual dimorphism in the midgut muscularis of male and female Ae. aegypti pupae was not observed during the time period studied.
Collapse
Affiliation(s)
- E P Bernick
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States.
| | | | | |
Collapse
|
23
|
Cesar JRO, Yang J. Expression patterns of ubiquitin, heat shock protein 70, alpha-actin and beta-actin over the molt cycle in the abdominal muscle of marine shrimp Litopenaeus vannamei. Mol Reprod Dev 2007; 74:554-9. [PMID: 17036305 DOI: 10.1002/mrd.20605] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Crustacean muscle growth is discontinuous due to molt cycle. To characterize molt-related gene expression patterns, we studied the mRNA levels of molecular chaperone-ubiquitin and heat shock protein 70 (Hsp 70) in comparison with muscle protein alpha-actin and beta-actin in marine shrimp Litopenaeus vannamei. Total RNA from abdominal muscle was isolated from 3-month-old animals in six different molt stages. The mRNA levels of target genes were detected by reverse-transcriptase-multiplex PCR and expressed as the ratio to elongation factor-1alpha. Ubiquitin mRNA levels were relatively steady over all stages of the molt cycle. Hsp70 levels were not detectable in early postmolt and late premolt stages, but showed a progressive increase from late postmolt to intermolt stages. Expression levels of alpha-actin gene were lower during postmolt, reached a plateau in intermolt and remained relatively high in premolt stage. Levels of beta-actin increased progressively from postmolt to intermolt, reaching a maximum value in premolt. Therefore, the mRNAs encoding for ubiquitin and Hsp 70 in abdominal muscle did not increase significantly in premolt stages, which is typically associated with claw muscle degradation. Muscle structural alpha-actin and cytoskeletal beta-actin were increased during intermolt and premolt stages, suggesting high muscle growth during these stages in the abdominal muscle of the L. vannamei.
Collapse
Affiliation(s)
- Jose Renato O Cesar
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii
| | | |
Collapse
|
24
|
Penaloza C, Lin L, Lockshin RA, Zakeri Z. Cell death in development: shaping the embryo. Histochem Cell Biol 2006; 126:149-58. [PMID: 16816938 DOI: 10.1007/s00418-006-0214-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2006] [Indexed: 01/13/2023]
Abstract
Cell death in animals is normally classified as type I (apoptotic), type II (autophagic) or necrotic. Of the biologically controlled types of death, in most embryos apoptosis is the most common, although in metamorphosis and in cells with massive cytoplasm type II is often seen, and intermediate forms are seen. For vertebrate embryos other than mammals, apoptosis is not seen prior to gastrulation but thereafter is used to sculpt the organs of the embryo, while overproduction of cells with subsequent death of excess cells is a common means of generating high specificity with low information cost. In zebrafish at least, the inability of embryos prior to the maternal-zygotic transition to undergo apoptosis appears to derive from the inability of the cells to resist lysis once apoptosis begins, rather than any inhibition of apoptosis. In mammalian embryos, apoptosis is seen during cavitation. Thereafter, as in other embryos, cell death plays a major role in shaping and sculpting the embryo. In those situations that have been carefully studied, cell death is under tight genetic control (including regulation of gene products whose function in cell death is not yet known, such as cdk5), with activation of apoptosis sometimes regulated by local environmental variables.
Collapse
Affiliation(s)
- Carlos Penaloza
- Department of Biology, Queens College and Graduate Center of CUNY, Flushing, NY 11367, USA
| | | | | | | |
Collapse
|
25
|
Melner MH, Haas AL, Klein JM, Brash AR, Boeglin WE, Nagdas SK, Winfrey VP, Olson GE. Demonstration of ubiquitin thiolester formation of UBE2Q2 (UBCi), a novel ubiquitin-conjugating enzyme with implantation site-specific expression. Biol Reprod 2006; 75:395-406. [PMID: 16760379 DOI: 10.1095/biolreprod.106.051458] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We recently identified a differentially expressed gene in implantation stage rabbit endometrium encoding a new member of the ubiquitin-conjugating enzyme family designated UBE2Q2 (also known as UBCi). Its unusually high molecular mass, novel N-terminus extension, and highly selective pattern of mRNA expression suggest a specific function in implantation. This study analyzes its relationship to the E2 ubiquitin-conjugating enzyme superfamily, investigates its enzymatic activity, and examines its localization in implantation site endometrium. Construction of a dendrogram indicated that UBE2Q2 is homologous to the UBC2 family of enzymes, and isoforms are present in a broad range of species. In vitro enzymatic assays of ubiquitin thiolester formation demonstrated that UBE2Q2 is a functional ubiquitin-conjugating enzyme. The Km for transfer of ubiquitin thiolester from E1 to UBE2Q2 is 817 nM compared to 100 nM for other E2 paralogs; this suggests that the unique amino terminal domain of UBE2Q2 confers specific functional differences. Affinity-purified antibodies prepared with purified recombinant UBE2Q2 showed that the protein was undetectable by immunoblot analysis in endometrial lysates from estrous and Day 6(3/4) pregnant (blastocyst attachment stage) rabbits but was expressed in both mesometrial and antimesometrial implantation site endometrium of Day 8 pregnant animals. No expression was detected in adjacent interimplantion sites. Immunohistochemistry demonstrated UBE2Q2 expression exclusively in mesometrial and antimesometrial endometrial luminal epithelial cells of the Day 8 implantation chamber. Immunohistochemical localization of ubiquitin mirrored UBE2Q2 expression, with low-to-undetectable levels in implantation sites of Day 6(3/4) pregnant endometrium but high levels in luminal epithelial cells of Day 8 pregnant endometrium. This implantation site-specific expression of UBE2Q2 in luminal epithelial cells could play major roles in orchestrating differentiation events through the modification of specific protein substrates.
Collapse
Affiliation(s)
- Michael H Melner
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Löw P, Talián GC, Sass M. Up- and downregulated genes in muscles that undergo developmentally programmed cell death in the insectManduca sexta. FEBS Lett 2005; 579:4943-8. [PMID: 16122740 DOI: 10.1016/j.febslet.2005.07.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 07/19/2005] [Accepted: 07/21/2005] [Indexed: 12/20/2022]
Abstract
This study was designed to investigate changes in gene expression associated with stage-specific programmed cell death (PCD) in intersegmental muscles (ISMs) of the moth, Manduca sexta. The technique of differential display reverse transcription PCR was applied to compare mRNA levels before and after the onset of PCD in ISMs. Expression of E75B transcription factor was repressed while another factor, betaFTZ-F1, stayed at a very low level. However, gene coding for a translation-initiation factor (eIF1A) was upregulated. Expression of these genes had not been previously reported to be altered in dying ISMs. An ecdysteroid agonist, RH-5849, that prevented PCD in ISMs also blocked these changes.
Collapse
Affiliation(s)
- Péter Löw
- Department of Anatomy, Cell and Developmental Biology, Loránd Eötvös University, Budapest, Pázmány Péter sétány 1/C., H-1117, Hungary.
| | | | | |
Collapse
|
27
|
Abstract
Cell death has been subdivided into the categories apoptosis (Type I), autophagic cell death (Type II), and necrosis (Type III). The boundary between Type I and II has never been completely clear and perhaps does not exist due to intrinsic factors among different cell types and the crosstalk among organelles within each type. Apoptosis can begin with autophagy, autophagy can end with apoptosis, and blockage of caspase activity can cause a cell to default to Type II cell death from Type I. Furthermore, autophagy is a normal physiological process active in both homeostasis (organelle turnover) and atrophy. "Autophagic cell death" may be interpreted as the process of autophagy that, unlike other situations, does not terminate before the cell collapses. Since switching among the alternative pathways to death is relatively common, interpretations based on knockouts or inhibitors, and therapies directed at controlling apoptosis must include these considerations.
Collapse
Affiliation(s)
- Richard A Lockshin
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA.
| | | |
Collapse
|
28
|
Bayline RJ, Dean DM, Booker R. Inhibitors of ubiquitin-dependent proteolysis can delay programmed cell death of adult intersegmental muscles in the mothManduca sexta. Dev Dyn 2005; 233:445-55. [PMID: 15778985 DOI: 10.1002/dvdy.20351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the moth Manduca sexta, intersegmental muscles (ISMs) undergo rapid programmed cell death (PCD) within 48 hr of adult emergence. ISM PCD involves ubiquitin-dependent proteasomal degradation accompanied by the down-regulation of expression of actin genes and the up-regulation of degradative gene expression such as ubiquitin. Hemin chloride and N-acetyl-leu-leu-norleucinal (ALLN), both inhibitors of proteasomal activity, administered before adult emergence delayed PCD for up to 5 days in ISMs maintained from the larval stage, such as the dorsal internal medial muscle in abdominal segment 4 (DIM-A4). ISMs that developed during metamorphosis from respecified larval muscles such as the DIM-A2 were less dramatically affected. The increase in polyubiquitinated proteins and the decrease in actin mRNA expression accompanying maintained ISM PCD were delayed after inhibitor application. No changes were detected in respecified ISMs. These results reveal a regulatory role for proteasomal activity in an early stage of maintained ISM cell death.
Collapse
Affiliation(s)
- Ronald J Bayline
- Department of Biology, Washington and Jefferson College, Washington, Pennsylvania 15301, USA.
| | | | | |
Collapse
|
29
|
Wing SS. Control of ubiquitination in skeletal muscle wasting. Int J Biochem Cell Biol 2004; 37:2075-87. [PMID: 16125111 DOI: 10.1016/j.biocel.2004.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 11/15/2004] [Accepted: 11/18/2004] [Indexed: 11/23/2022]
Abstract
The ubiquitin proteasome system is now well recognized to play a role in mediating skeletal muscle protein wasting. Ubiquitin exerts its effects by covalent attachment to other proteins. Increased ubiquitination of muscle proteins has been observed in a number of conditions of atrophy suggesting that flux through the pathway may be regulated by controlling availability of ubiquitinated substrates for the proteasome. Therefore the enzymes that control ubiquitination of proteins likely play critical roles in regulating flux through the pathway, are sites of activation by catabolic stimuli and potentially good drug targets in the search for therapies for wasting disorders. In this article, the enzymes that can modulate ubiquitination are briefly reviewed and the current data regarding regulation of these enzymes in skeletal muscle are described. Physiological regulators of muscle size appear to modulate many of these enzymes and several of these regulators appear to do so via signaling pathways that involve Akt or NFkappaB. Further work needs to be done to identify all the enzymes that are involved in controlling ubiquitination in muscle, to characterize their regulation by non-transcriptional mechanisms also, and most importantly to identify their target substrates and to determine how these various pathways of ubiquitination work together to mediate the catabolic stimulus.
Collapse
Affiliation(s)
- Simon S Wing
- Polypeptide Laboratory, Department of Medicine, McGill University, Strathcona Anatomy and Dentistry Bldg, Room W315, 3640 University St., Montreal, Que., Canada H3A 2B2.
| |
Collapse
|
30
|
Kwak KS, Zhou X, Solomon V, Baracos VE, Davis J, Bannon AW, Boyle WJ, Lacey DL, Han HQ. Regulation of Protein Catabolism by Muscle-Specific and Cytokine-Inducible Ubiquitin Ligase E3α-II during Cancer Cachexia. Cancer Res 2004; 64:8193-8. [PMID: 15548684 DOI: 10.1158/0008-5472.can-04-2102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The progressive depletion of skeletal muscle is a hallmark of many types of advanced cancer and frequently is associated with debility, morbidity, and mortality. Muscle wasting is primarily mediated by the activation of the ubiquitin-proteasome system, which is responsible for degrading the bulk of intracellular proteins. E3 ubiquitin ligases control polyubiquitination, a rate-limiting step in the ubiquitin-proteasome system, but their direct involvement in muscle protein catabolism in cancer remains obscure. Here, we report the full-length cloning of E3alpha-II, a novel "N-end rule" ubiquitin ligase, and its functional involvement in cancer cachexia. E3alpha-II is highly enriched in skeletal muscle, and its expression is regulated by proinflammatory cytokines. In two different animal models of cancer cachexia, E3alpha-II was significantly induced at the onset and during the progression of muscle wasting. The E3alpha-II activation in skeletal muscle was accompanied by a sharp increase in protein ubiquitination, which could be blocked by arginine methylester, an E3alpha-selective inhibitor. Treatment of myotubes with tumor necrosis factor alpha or interleukin 6 elicited marked increases in E3alpha-II but not E3alpha-I expression and ubiquitin conjugation activity in parallel. E3alpha-II transfection markedly accelerated ubiquitin conjugation to endogenous cellular proteins in muscle cultures. These findings show that E3alpha-II plays an important role in muscle protein catabolism during cancer cachexia and suggest that E3alpha-II is a potential therapeutic target for muscle wasting.
Collapse
Affiliation(s)
- Keith S Kwak
- Department of Metabolic Disorders, Oncology & Discovery Research, Amgen Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Many cells die with apoptotic morphology and with documented activation of an effector caspase, but there are also many exceptions. Cells frequently display activation of other proteases, including granzymes, lysosomal cathepsins, matrix metalloproteinases, and proteasomal proteases, and others display morphologies that are not fully consistent with classical apoptosis. In some experimental situations, evidence of caspase-dependent death is indirect, demonstrating that the cell can activate caspases rather than that it does. In other situations, such as involution of mammary or prostate tissue, many cells display autophagic or other morphology different from apoptosis, and there is considerable evidence for the activation of a lysosomal system. Prior to total collapse and necrosis, cells that are in trouble can activate numerous physiological pathways toward self-destruction. Intrinsic or extrinsic routes to effector caspase activation are frequently the most rapid and efficient. If neither of these routes is immediately available, owing to mutation, genetic manipulation, inhibitor, or the biology of the cell, other routes may be followed, leading to variant forms of cell death that may display one or more characteristics of apoptosis. Experimental and therapeutic procedures must account for this possibility.
Collapse
Affiliation(s)
- Richard A Lockshin
- Department of Biology, Queens College and Graduate Center of the City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA.
| | | |
Collapse
|
32
|
Zhang HG, Wang J, Yang X, Hsu HC, Mountz JD. Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 2004; 23:2009-15. [PMID: 15021888 DOI: 10.1038/sj.onc.1207373] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ubiquitin inhibitors act at many levels to enhance apoptosis signaling. For TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis signaling, there are at least five mechanisms by which apoptosis are regulated by the ubiquitin-proteasome pathway. First, proteasome inhibitors can decrease Fas-like inhibitor protein (FLIP) protein levels in tumors, resulting in increased apoptosis signaling due to increased caspase-8 activation. This appears to involve the ubiquitin ligase TNF receptor activation factor-2 (TRAF2) and acts indirectly by causing cell-cycle arrest at a stage where there is high degradation of the FLIP-TRAF2 complex. Second, the regulation of the proapoptotic Bcl-2 family member BAX occurs indirectly. Apoptosis signaling and caspase activation results in a confirmation change in the normally monomeric BAX, which exposes the BH3 domain of BAX, leading to dimerization and resistance to ubiquitin degradation. BAX then translocates into the mitochondria, resulting in the release of proapoptotic mitochondrial factors such as cytochrome c and second mitochondria-derived activator of caspase (SMAC). This results in the activation of caspase-9 and formation of the apoptosome and efficient apoptosis signaling. A third mechanism of the regulation of TRAIL signaling in the ubiquitin-proteasome pathway is mediated by the inhibitor of apoptosis proteins (IAP) E3 ligases. These IAPs can directly bind to caspases but also can act as ubiquitin ligases for caspases, resulting in the degradation of these caspases. IAP binding to caspases can be inhibited by SMAC, which exhibits a caspase-9 homology domain. The fourth mechanism for apoptosis activation by proteasome inhibitors is through the stabilization of the inhibitor of the kappaB (IkappaB)/NF-kappaB complex and prevention of nuclear translocation of the antiapoptosis transcription factor NF-kappaB. During TRAIL-DR4, DR5 signaling, this pathway is activated by interactions of activated Fas-associated death domain with activated receptor-interacting protein (RIP), which in turn activates NF-kappaB-inducing kinase and phosphorylates IkappaB. Therefore, the inhibition of IkappaB degradation blocks this RIP-mediated antiapoptosis signaling event. Last, p53 protein levels, and susceptibility to apoptosis, can be deregulated by the human homolog Hdm2 (Mdm2) E3 ligase. This process is inhibited by p53 phosphorylation and by sequestration of Mdm2 by ARF. Better mechanisms to inhibit the ubiquitin-proteasome pathway targeted at the ubiquitin-proteasome degradation process itself, or more specifically at the E3 ligases known to modulate and downregulate proapoptosis pathways will lead to the enhancement of TRAIL apoptosis signaling and better cancer therapeutic outcomes act through this pathway.
Collapse
Affiliation(s)
- Huang-Ge Zhang
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
33
|
Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. THE JOURNAL OF IMMUNOLOGY 2004; 171:3655-67. [PMID: 14500663 DOI: 10.4049/jimmunol.171.7.3655] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T helper 1 responses are typically proinflammatory, while Th2 responses have been considered regulatory. Interestingly, Th2 responses characterize a number of pulmonary diseases, many of which terminate in tissue remodeling and fibrosis. We developed a mouse model using Schistosoma mansoni eggs and cytokine-deficient mice to induce highly polarized Th1- or Th2-type inflammation in the lung. In this study, we examined the pathology and cytokine profiles in Th1- and Th2-polarized environments and used oligonucleotide microarray analysis to decipher the genes responsible for these effects. We further elaborated on the results using IL-10- and IL-13-deficient mice because these cytokines are believed to be the central regulators of Th2-associated pathology. We found that the Th1-polarized mice developed small granulomas with less fibrosis while expressing genes characteristic of tissue damage. Th2-polarized mice, in contrast, formed large granulomas with massive collagen deposition and up-regulated genes associated with wound healing, specifically, arginase, collagens, matrix metalloproteinases (MMPs), and tissue inhibitors of MMP. In addition, several members of the chitinase-like family were up-regulated in the lung following egg challenge. We also developed a method of defining the net collagen deposition using the expression profiles of several collagen, MMP, and tissue inhibitors of MMP genes. We found that Th1-polarized mice did not elaborate collagens or MMPs and therefore did not have a significant capacity for repair in this model. Thus, Th1-mediated inflammation is characterized by tissue damage, while Th2 directs wound healing and fibrosis.
Collapse
Affiliation(s)
- Netanya G Sandler
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
34
|
Kostin S, Pool L, Elsässer A, Hein S, Drexler HCA, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klövekorn WP, Schaper J. Myocytes die by multiple mechanisms in failing human hearts. Circ Res 2003; 92:715-24. [PMID: 12649263 DOI: 10.1161/01.res.0000067471.95890.5c] [Citation(s) in RCA: 433] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We tested the hypothesis that myocyte loss in failing human hearts occurs by different mechanisms: apoptosis, oncosis, and autophagic cell death. Explanted hearts from 19 patients with idiopathic dilated cardiomyopathy (EF< or =20%) and 7 control hearts were analyzed. Myocyte apoptosis revealed by caspase-3 activation and TUNEL staining occurred at a rate of 0.002+/-0.0005% (P<0.05 versus control) and oncosis assessed by complement 9 labeling at 0.06+/-0.001% (P<0.05). Cellular degeneration including appearance of ubiquitin containing autophagic vacuoles and nuclear disintegration was present at the ultrastructural level. Nuclear and cytosolic ubiquitin/protein accumulations occurred at 0.08+/-0.004% (P<0.05). The ubiquitin-activating enzyme E1 and the ligase E3 were not different from control. In contrast, ubiquitin mRNA levels were 1.8-fold (P<0.02) elevated, and the conjugating enzyme E2 was 2.3-fold upregulated (P<0.005). The most important finding, however, is the 2.3-fold downregulation of the deubiquitination enzyme isopeptidase-T and the 1.5-fold reduction of the ubiquitin-fusion degradation system-1, which in conjunction with unchanged proteasomal subunit levels and proteasomal activity results in massive storage of ubiquitin/protein complexes and in autophagic cell death. A 2-fold decrease of cathepsin D might be an additional factor responsible for the accumulation of ubiquitin/protein conjugates. It is concluded that in human failing hearts apoptosis, oncosis, and autophagy act in parallel to varying degrees. A disturbed balance between a high rate of ubiquitination and inadequate degradation of ubiquitin/protein conjugates may contribute to autophagic cell death. Together, these different types of cell death play a significant role for myocyte disappearance and the development of contractile dysfunction in failing hearts.
Collapse
Affiliation(s)
- Sawa Kostin
- Max-Planck-Institute, Department of Experimental Cardiology, Benekestr 2D-61231 Bad Nauheim, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Siepmann TJ, Bohnsack RN, Tokgöz Z, Baboshina OV, Haas AL. Protein interactions within the N-end rule ubiquitin ligation pathway. J Biol Chem 2003; 278:9448-57. [PMID: 12524449 DOI: 10.1074/jbc.m211240200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rate studies have been employed as a reporter function to probe protein-protein interactions within a biochemically defined reconstituted N-end rule ubiquitin ligation pathway. The concentration dependence for E1-catalyzed HsUbc2b/E2(14kb) transthiolation is hyperbolic and yields K(m) values of 102 +/- 13 nm and 123 +/- 19 nm for high affinity binding to rabbit and human E1/Uba1 orthologs. Competitive inhibition by the inactive substrate and product analogs HsUbc2bC88A (K(i) = 104 +/- 15 nm) and HsUbc2bC88S-ubiquitin oxyester (K(i) = 169 +/- 17 nm), respectively, indicates that the ubiquitin moiety contributes little to E1 binding. Under conditions of rate-limiting E3alpha-catalyzed conjugation to human alpha-lactalbumin, HsUbc2b-ubiquitin thiolester exhibits a K(i) of 54 +/- 18 nm and is competitively inhibited by the substrate analog HsUbc2bC88S-ubiquitin oxyester (K(i) = 66 +/- 29 nm). In contrast, the ligase product analog HsUbc2bC88A exhibits a K(i) of 440 +/- 55 nm with respect to the wild type HsUbc2b-ubiquitin thiolester, demonstrating that ubiquitin binding contributes to the ability of E3alpha to discriminate between substrate and product E2. A survey of E1 and E2 isoform distribution in selected cell lines demonstrates that Ubc2 isoforms are the predominant intracellular ubiquitin carrier protein. Intracellular levels of E1 and Ubc2 are micromolar and approximately equal based on in vitro quantitation by stoichiometric (125)I-ubiquitin thiolester formation. Comparison of intracellular E1 and Ubc2 pools with the corresponding ubiquitin pools reveals that most of the free ubiquitin in cells is present as thiolesters to the components of the conjugation pathways. The present data represent the first comprehensive analysis of protein interactions within a ubiquitin ligation pathway.
Collapse
Affiliation(s)
- Thomas J Siepmann
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
There are many ways to measure apoptosis and other forms of programmed cell death in development. Once nonmammalian embryos have passed the midblastula transition, or much earlier in mammalian embryos, apoptosis is similar to that seen in adult organisms, and is used to sculpt the animal, fuse bilateral tissues, and establish the structure of the nervous system and the immune system. Embryos present unique problems in that, in naturally occurring cell deaths, few cells are involved and they are frequently in very restricted regions. Thus, identification of apoptotic or other dying cells is more effectively achieved by microscopy-based techniques than by electrophoretic or cell-sorting techniques. Since embryos have many mitotic cells and are frequently more difficult to fix than adult tissues, it is best to confirm interpretations by the use of two or more independent techniques. Although natural embryonic deaths are frequently programmed and require protein synthesis, activation of a cell death pathway is often post-translational and assays for transcriptional or translational changes-as opposed to changes in aggregation of death-related molecules or proteolytic activation of enzymes-is likely to be uninformative. Also, embryos can frequently exploit partially redundant pathways, such that the phenotype of a knockout or upregulated death-related gene is often rather modest, even though the adult may develop response or regulation problems. For these reasons, the study of cell death in embryos is fascinating but researchers should be cautious in their analyses.
Collapse
Affiliation(s)
- Zahra Zakeri
- Department of Biology, Queens College and Graduate Center of CUNY, 65-30 Kissena Boulevard, Flushing, NY 11367, USA.
| | | |
Collapse
|
37
|
Schwartz LM, Ruff RL. Changes in contractile properties of skeletal muscle during developmentally programmed atrophy and death. Am J Physiol Cell Physiol 2002; 282:C1270-7. [PMID: 11997241 DOI: 10.1152/ajpcell.01275.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Skeletal muscle atrophy and death are protracted processes that accompany aging and pathological insults in mammals. The intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta are composed of giant fibers that undergo distinct hormonally-regulated programs of atrophy and death at the end of metamorphosis. Atrophy occurs during the 3 days preceding adult emergence and results in a 40% reduction of mass, whereas death takes place during the subsequent 30 h and results in the complete loss of the fibers. There are no significant changes in tetanic force or calcium sensitivity in skinned fiber preparations during atrophy. However, the size of caffeine-induced contractions fell by about 50%. With the onset of the death phase, dramatic reductions occur in ISM: tetanic force, twitch amplitude, resting potential, caffeine-induced contractions, calcium sensitivity, and Hill coefficients. Several lines of evidence suggest that ISM atrophy is caused by an increase in protein turnover without significant modification of fiber organization. In contrast, ISM death is accompanied by disorganization of the contractile apparatus and concomitant loss of contractile function.
Collapse
Affiliation(s)
- Lawrence M Schwartz
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
38
|
Wing JP, Schreader BA, Yokokura T, Wang Y, Andrews PS, Huseinovic N, Dong CK, Ogdahl JL, Schwartz LM, White K, Nambu JR. Drosophila Morgue is an F box/ubiquitin conjugase domain protein important for grim-reaper mediated apoptosis. Nat Cell Biol 2002; 4:451-6. [PMID: 12021772 DOI: 10.1038/ncb800] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In Drosophila melanogaster, apoptosis is controlled by the integrated actions of the Grim-Reaper (Grim-Rpr) and Drosophila Inhibitor of Apoptosis (DIAP) proteins (reviewed in refs 1 4). The anti-apoptotic DIAPs bind to caspases and inhibit their proteolytic activities. DIAPs also bind to Grim-Rpr proteins, an interaction that promotes caspase activity and the initiation of apoptosis. Using a genetic modifier screen, we identified four enhancers of grim-reaper-induced apoptosis that all regulate ubiquitination processes: uba-1, skpA, fat facets (faf), and morgue. Strikingly, morgue encodes a unique protein that contains both an F box and a ubiquitin E2 conjugase domain that lacks the active site Cys required for ubiquitin linkage. A reduction of morgue activity suppressed grim-reaper-induced cell death in Drosophila. In cultured cells, Morgue induced apoptosis that was suppressed by DIAP1. Targeted morgue expression downregulated DIAP1 levels in Drosophila tissue, and Morgue and Rpr together downregulated DIAP1 levels in cultured cells. Consistent with potential substrate binding functions in an SCF ubiquitin E3 ligase complex, Morgue exhibited F box-dependent association with SkpA and F box-independent association with DIAP1. Morgue may thus have a key function in apoptosis by targeting DIAP1 for ubiquitination and turnover.
Collapse
Affiliation(s)
- John P Wing
- Biology Department, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Koenders A, Yu X, Chang ES, Mykles DL. Ubiquitin and actin expression in claw muscles of land crab, Gecarcinus lateralis, and American lobster, Homarus americanus: differential expression of ubiquitin in two slow muscle fiber types during molt-induced atrophy. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 292:618-32. [PMID: 12115927 DOI: 10.1002/jez.10081] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The closer muscle of large-clawed decapod crustaceans undergoes a proecdysial (premolt) atrophy to facilitate withdrawal of the appendage at ecdysis. This atrophy involves the activation of both calcium-dependent (calpains) and ubiquitin (Ub)/proteasome-dependent proteolytic systems that break down proteins to reduce muscle mass. Moreover, the large slow-twitch (S(1)) fibers undergo a greater atrophy than the small slow-tonic (S(2)) fibers. Both polyUb mRNA and Ub-protein conjugates increase during claw muscle atrophy. In this study in situ hybridization and RT-PCR were used to determine the temporal and spatial expression of polyUb and alpha-actin. A cDNA encoding the complete sequence of lobster muscle alpha-actin was characterized; a probe synthesized from the cDNA provided a positive control for optimizing RT-PCR and in situ hybridization. PolyUb was expressed at low levels in claw closer muscle from anecdysial (intermolt) land crab. By early proecdysis (premolt; stage D(0)), polyUb mRNA levels increased in medial fibers that insert along the midline of the apodeme, with greater expression in S(1) than S(2), while levels remained low in peripheral fibers. By late proecdysis, polyUb mRNA decreased in central fibers, while mRNA increased in peripheral S(1) fibers. In contrast, alpha-actin was expressed in lobster claw muscles at relatively constant levels during the intermolt cycle. These results suggest that Ub/proteasome-dependent proteolysis contributes to enhanced turnover of myofibrillar proteins during claw closer muscle atrophy. Furthermore, atrophy is not synchronous within the muscle; it begins in medial fibers and then progresses peripherally.
Collapse
Affiliation(s)
- Annette Koenders
- School of Natural Sciences, Edith Cowan University, Joondalup WA 6027, Australia
| | | | | | | |
Collapse
|
40
|
Löw P, Reynolds SE, Sass M. Proteolytic activity of 26s proteasomes isolated from muscles of the tobacco hornworm, Manduca sexta: differences between surviving muscles and those undergoing developmentally programmed cell death. ACTA BIOLOGICA HUNGARICA 2002; 52:435-42. [PMID: 11693993 DOI: 10.1556/abiol.52.2001.4.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The intersegmental muscles (ISMs) of tobacco hornworm,Manduca sexta are a well-characterised model system for examining the biochemical changes that accompany programmed cell death during development. When the ISMs become committed to die, there are dramatic increases in both the ubiquitin-expression, and ubiquitin-dependent proteolysis. Since the 26S proteasome is responsible for ATP/ubiquitin-dependent proteolysis in cells, we examined its enzymatic properties. Specific chymotrypsin-like proteolytic activity of 26S proteasomes isolated from ISM is four times higher than that of surviving flight muscle (FM). However, specific activity does not change between developmental stages within ISM or FM. The difference between proteolytic capacity of the two kinds of muscles is even higher when the ISM become committed to die because 26S proteasome content of ISM increases just before cell death. These observations underline the role of 26S proteasome in programmed cell death.
Collapse
Affiliation(s)
- P Löw
- Department of General Zoology, Eötvös Lorand University, Budapest, Hungary.
| | | | | |
Collapse
|
41
|
Shang F, Deng G, Obin M, Wu CC, Gong X, Smith D, Laursen RA, Andley UP, Reddan JR, Taylor A. Ubiquitin-activating enzyme (E1) isoforms in lens epithelial cells: origin of translation, E2 specificity and cellular localization determined with novel site-specific antibodies. Exp Eye Res 2001; 73:827-36. [PMID: 11846513 DOI: 10.1006/exer.2001.1091] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lens development and response to peroxide stress are associated with dramatic changes in protein ubiquitination, reflecting dynamic changes in activity of the ubiquitin-activating enzyme (E1). Two isoforms of E1 (E1A and E1B) have been identified in lens cells although only one E1 mRNA, containing three potential translational start sites, has been detected. Novel, site-specific antibodies to E1 were generated and the hypothesis that the two isoforms of E1 are translated from alternative initiation codons of a single mRNA was tested. Antibodies raised against E1A-N peptide (Met(1)to Cys(23)of E1A) reacted only with E1A by immunoblot and immunoprecipitation. Antibodies raised against E1B-N peptide (Met(1)to Glu(25)of E1B or Met(41)to Glu(65)of E1A) and E1AB-C peptide (His(1030)to Arg(1058)of E1A or His(990)to Arg(1018)of E1B) reacted with both E1A and E1B. These results indicate that (1) E1A and E1B contain the same C-terminal residues; (2) E1A contains the N terminal sequence of E1B; and (3) E1B does not contain the N terminal sequence of E1A. The two isoforms of lens E1 are therefore translated from a single mRNA. Specifically, E1A is translated from the first initiation codon, and E1B translated from the second initiation codon. E1A and E1B were affinity-purified, and their ability to 'charge' ubiquitin carrier proteins (E2s) with activated ubiquitin was compared in a cell-free system. E1A and E1B were indistinguishable with respect to charging different E2s. However, E1 immunolocalization studies with human lens epithelial cells indicate that E1A and E1B are preferentially localized to the nucleus and cytosol, respectively. This observation suggests that E1A and E1B ubiquitinate different proteins and serve different functions in intact cells.
Collapse
Affiliation(s)
- F Shang
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Using cDNA from a CRFK cell line as a template, PCR amplification was performed with the Ub1S and poly(dT) primers to isolate feline ubiquitin genes. Sequencing of the 495 bp PCR fragment revealed that the putative amino acids induced by this fragment gave a fusion protein consisting of a ubiquitin polypeptide (76 amino acids) and an extension protein of ribosomal proteins L40 (52 amino acids). The putative amino acid sequence of ubiquitin was identical to those of humans, rats and pigs. The recombinant glutathione S-transferase (GST)-feline ubiquitin fusion proteins were produced in Escherichia coli and purified. The fusion proteins had a molecular weight of about 42 kDa and were detected by immunoblot assay with rabbit anti-ubiquitin antiserum. The mRNAs from heat-shocked and non-heat-shocked cells were subjected to RT-PCR (Ub1S and poly(dT) primers) analysis. The molecular weights of the ubiquitinated proteins in heat-shocked CFRK cells were between 18 kDa and 24 kDa by immunoblot assay. These results suggested that there were more ubiquinated proteins in the heat-shocked CRFK cells than in the pre-heat-shocked cells.
Collapse
Affiliation(s)
- R Kano
- Department of Pathobiology, Nihon University School of Veterinary Medicine, Fujisawa, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
43
|
Baboshina OV, Crinelli R, Siepmann TJ, Haas AL. N-end rule specificity within the ubiquitin/proteasome pathway is not an affinity effect. J Biol Chem 2001; 276:39428-37. [PMID: 11493606 DOI: 10.1074/jbc.m106967200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-end rule relates the amino terminus to the rate of degradation through the ubiquitin/26 S proteasome pathway. Proteins bearing basic (type 1) or large hydrophobic (type 2) amino termini are assumed to be targeted through this pathway by their higher affinity for binding to the responsible E3 ligase compared with proteins bearing other residues (type 3). Paradoxically, a significant fraction of eukaryotic protein degradation occurs through the N-end rule pathway, although the majority of cellular proteins are type 3 substrates. We have exploited specific interactions between ubiquitin carrier proteins (E2/Ubc) and their cognate E3 ligases to purify for the first time the mammalian N-end rule ligase E3alpha/Ubr1 to near homogeneity. In vitro studies show that E3alpha forms lysine 48-linked polyubiquitin degradation signals on type 1-3 substrates and is absolutely dependent on Ubc2/Rad6 orthologs. Biochemically defined kinetic studies show that the basis of N-end rule specificity is a k(cat) rather than the K(m) effect originally proposed, since all three substrate classes show similar binding affinities (K(m) approximately 5 microm) but V(max) values that are 100- and 50-fold greater for type 1 and 2 versus type 3 model substrates, respectively. In addition, the N-end rule dipeptides lysylalanine and phenylalanylalanine are general noncompetitive inhibitors for E3alpha-catalyzed ubiquitination of type 1-3 substrates rather than type-specific competitive inhibitors as predicted. These observations are consistent with a model in which the N-end rule effect reflects substrate binding-induced transitions in E3alpha to a catalytically competent conformer, the equilibrium for which depends on the identity of the amino terminus or the presence of basic or hydrophobic surface features. The model reconciles conflicts between specific predictions and empirical observations relating N-end rule targeting in addition to explicating the efficacy of selected dipeptides as potent in vivo inhibitors of this pathway.
Collapse
Affiliation(s)
- O V Baboshina
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
44
|
Ordway G. Molecular regulation of the training response: New techniques to study old questions. Eur J Sport Sci 2001. [DOI: 10.1080/17461390100071205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Abstract
The role of apoptosis in cardiac disease remains controversial. Much of the apoptosis detected, by chemical or molecular means, reflects inflammatory reaction and responding blood cells rather than myocytes, though their apoptosis in situ may exacerbate a bad situation, and their direct action against myocytes has not been excluded definitely. Myocyte apoptosis may reflect end-stage cardiac failure rather than causing it. If this is the case, then preventing apoptosis so that the cells can undergo necrosis does not accomplish much. Apoptosis is a consistent and important finding in many forms of cardiovascular disease. As determined by ultra-structure, apoptosis is common in cardiomyocytes, fibroblasts, vascular endothelial cells, and smooth muscle cells in cardiovascular disease of many origins. (62) Even though smooth muscle cells in atheromatous plaques appear to be necrotic,l it is likely that this is an evolved situation of apoptotic cells that were not removed. Given the prevalence of apoptotic processes in diseased heart and the very limited capacity of this organ to repair itself, (56) it is appropriate and justified to continue to explore the significance of apoptosis in cardiac disease and, above all, to explore the use of antiapoptotic agents in acute situations. Researchers must pay explicit attention to how they document cell death and in what tissues or cells it occurs. Otherwise, clinicians risk being deluded by preservation of morphology in nonfunctional cells and by confusion of what happened and where death occurred in the sequence of causality. Cell death in the heart is a matter of substantial theoretical and practical concern. A major problem in analyzing it is that, although apoptosis may be demonstrated easily in myocytes, particularly embryonic myocytes, under conditions of culture, interpretation is much more complex in an intact organ. The first issue is one of timing. In situations of severe, acute loss of cells, such as in an infarct, apoptotic cells may not be cleared rapidly and may progress to a more oncotic or necrotic morphology. Second, in situations of inflammation, biochemical or molecular techniques may confound apoptosis of inflammatory cells with apoptosis of myocytes. Third, priorities in the sequence of apoptosis differ between large, generally nonmitotic cells with massive cytoplasm (as differentiated myocytes) and small mitotic cells in culture, which usually are studied. The appearance and many markers of physiological cell death may differ from the most widely recognized forms of apoptosis, including late collapse of the nucleus and primacy of lysosomal or other proteases as opposed to caspases. Investigators should always strive to establish multiple criteria for apoptosis, with good documentation of timing and cell type. When these factors are taken into consideration, it seems that aggressive action against apoptosis may be of value in acute situations, such as infarct, in which buying short increments of time may reduce damage. In more chronic situations, much of the apoptosis detected derives from invading lymphocytes, mast cells, or other cells relating to inflammation. The apoptosis of these cells may exacerbate an already difficult situation, and intervention may prove of value. Otherwise, apoptosis of myocytes is more typically an end-stage situation, and it is more fruitful to alleviate the problem before this stage is reached.
Collapse
Affiliation(s)
- R A Lockshin
- Department of Biological Sciences, St. John's University, Jamaica, New York 11439, USA.
| | | | | |
Collapse
|
46
|
Löw P, Hastings RA, Dawson SP, Sass M, Billett MA, Mayer RJ, Reynolds SE. Localisation of 26S proteasomes with different subunit composition in insect muscles undergoing programmed cell death. Cell Death Differ 2000; 7:1210-7. [PMID: 11175258 DOI: 10.1038/sj.cdd.4400743] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The 26S proteasome is a large multisubunit complex involved in degrading both cytoplasmic and nuclear proteins. We have investigated the subcellular distribution of four regulatory ATPase subunits (S6 (TBP7/MS73), S6' (TBP1), S7 (MSS1), and S10b (SUG2)) together with components of 20S proteasomes in the intersegmental muscles (ISM) of Manduca sexta during developmentally programmed cell death (PCD). Immunogold electron microscopy shows that S6 is located in the heterochromatic part of nuclei of ISM fibres. S6' is present in degraded material only outside intact fibres. S7 can be detected in nuclei, cytoplasm and also in degraded material. S10b, on the other hand, is initially found in nuclei and subsequently in degraded cytoplasmic locations during PCD. 20S proteasomes are present in all areas where ATPase subunits are detected, consistent with the presence of intact 26S proteasomes. These results are discussed in terms of heterogeneity of 26S proteasomes, 26S proteasome disassembly and the possible role of ATPases in non-proteasome complexes in the process of PCD. Cell Death and Differentiation (2000) 7, 1210 - 1217.
Collapse
Affiliation(s)
- P Löw
- Department of General Zoology, Eötvös University, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
In order to fly, insects require flight muscles that constitute at least 12 to 16% of their total mass, and flight performance increases as this percentage increases. However, flight muscles are energetically and materially expensive to build and maintain, and investment in flight muscles constrains other aspects of function, particularly female fecundity. This review examines ways in which insects vary the size of their flight muscles, and how variation in the relative size and composition of flight muscles affects flight performance. Sources of variability in flight muscle size and composition include genetic differences within and between species, individual phenotypic responses to environmental stimuli, and maturational changes that occur before and during the adult stage. Insects have evolved a wide variety of ways to adjust flight muscle size and contractile performance in order to meet demands imposed by variation in life history and ecology.
Collapse
Affiliation(s)
- J H Marden
- Department of Biology, Pennsylvania State University, University Park 16802, USA.
| |
Collapse
|
48
|
Abstract
The ubiquitin proteolytic system plays an important role in a broad array of basic cellular processes. Among these are regulation of cell cycle, modulation of the immune and inflammatory responses, control of signal transduction pathways, development and differentiation. These complex processes are controlled via specific degradation of a single or a subset of proteins. Degradation of a protein by the ubiquitin system involves two successive steps, conjugation of multiple moieties of ubiquitin and degradation of the tagged protein by the 26S proteasome. An important question concerns the identity of the mechanisms that underlie the high degree of specificity of the system. Substrate recognition is governed by a large family ubiquitin ligases that recognize the substrates, bind them and catalyze/facilitate their interaction with ubiquitin.
Collapse
Affiliation(s)
- A Ciechanover
- Department of Biochemistry, The Bruce Rappaport Faculty of Medicine and the Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Israel.
| | | | | |
Collapse
|
49
|
Ding L, Candido EP. HSP25, a small heat shock protein associated with dense bodies and M-lines of body wall muscle in Caenorhabditis elegans. J Biol Chem 2000; 275:9510-7. [PMID: 10734099 DOI: 10.1074/jbc.275.13.9510] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HSP25, a previously uncharacterized member of the alpha-crystallin family of small heat shock proteins in Caenorhabditis elegans, has been examined using biochemical and immunological techniques. HSP25 is the second largest of 16 identifiable small heat shock proteins in the nematode and is expressed at all developmental stages under normal growth conditions. Recombinant HSP25 produced in Escherichia coli exists predominantly as small oligomers (dimers to tetramers) and possesses chaperone activity against citrate synthase in vitro. In C. elegans, HSP25 is localized to dense bodies and M-lines in body wall muscle, to the lining of the pharynx, and to the junctions between cells of the spermathecal wall. Affinity chromatography of nematode extracts on a column of immobilized HSP25 resulted in specific binding of vinculin and alpha-actinin but not actin, as revealed by Western blotting. These results suggest a role for HSP25 in the organization or maintenance of the myofilament lattice and adherens junctions in C. elegans.
Collapse
Affiliation(s)
- L Ding
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
50
|
Nemeth E, Millar LK, Bryant-Greenwood G. Fetal membrane distention: II. Differentially expressed genes regulated by acute distention in vitro. Am J Obstet Gynecol 2000; 182:60-7. [PMID: 10649157 DOI: 10.1016/s0002-9378(00)70491-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study was undertaken to identify genes with expression up-regulated by acute distention in the human fetal membranes. STUDY DESIGN Fetal membrane explants were distended reproducibly in a novel device in vitro for 4 hours, and suppression subtractive hybridization was used to identify the candidate genes for up-regulation of expression in response to this stimulus. The up-regulation in response to distention was confirmed by quantitative Northern blot analysis both after a 4-hour in vitro distention and after labor in vivo. RESULTS Suppression subtractive hybridization identified 3 genes with expression up-regulated by acute distention: an interferon-stimulated gene encoding a 54-kd protein, the gene for huntingtin-interacting protein 2 (a ubiquitin-conjugating enzyme), and a novel transcript. Expression of each of the distention-responsive genes found to be up-regulated in vitro was also up-regulated in fetal membranes in association with labor. CONCLUSIONS Suppression subtractive hybridization was successfully applied to a complex tissue, the human fetal membranes, and 3 novel distention-responsive genes were identified. Both acute in vitro distention and labor in vivo up-regulate expression of at least 3 genes in the human fetal membranes.
Collapse
Affiliation(s)
- E Nemeth
- Pacific Biomedical Research Center, University of Hawaii, Honolulu 96822, USA
| | | | | |
Collapse
|