1
|
Li Q, Sun X, Tang Y, Qu Y, Zhou Y, Zhang Y. EZH2 reduction is an essential mechanoresponse for the maintenance of super-enhancer polarization against compressive stress in human periodontal ligament stem cells. Cell Death Dis 2020; 11:757. [PMID: 32934212 PMCID: PMC7493952 DOI: 10.1038/s41419-020-02963-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Abstract
Despite the ubiquitous mechanical cues at both spatial and temporal dimensions, cell identities and functions are largely immune to the everchanging mechanical stimuli. To understand the molecular basis of this epigenetic stability, we interrogated compressive force-elicited transcriptomic changes in mesenchymal stem cells purified from human periodontal ligament (PDLSCs), and identified H3K27me3 and E2F signatures populated within upregulated and weakly downregulated genes, respectively. Consistently, expressions of several E2F family transcription factors and EZH2, as core methyltransferase for H3K27me3, decreased in response to mechanical stress, which were attributed to force-induced redistribution of RB from nucleoplasm to lamina. Importantly, although epigenomic analysis on H3K27me3 landscape only demonstrated correlating changes at one group of mechanoresponsive genes, we observed a genome-wide destabilization of super-enhancers along with aberrant EZH2 retention. These super-enhancers were tightly bounded by H3K27me3 domain on one side and exhibited attenuating H3K27ac deposition and flattening H3K27ac peaks along with compensated EZH2 expression after force exposure, analogous to increased H3K27ac entropy or decreased H3K27ac polarization. Interference of force-induced EZH2 reduction could drive actin filaments dependent spatial overlap between EZH2 and super-enhancers and functionally compromise the multipotency of PDLSC following mechanical stress. These findings together unveil a specific contribution of EZH2 reduction for the maintenance of super-enhancer stability and cell identity in mechanoresponse.
Collapse
Affiliation(s)
- Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiwen Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yunyi Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanan Qu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
2
|
Peres de Oliveira A, Kazuo Issayama L, Betim Pavan IC, Riback Silva F, Diniz Melo-Hanchuk T, Moreira Simabuco F, Kobarg J. Checking NEKs: Overcoming a Bottleneck in Human Diseases. Molecules 2020; 25:molecules25081778. [PMID: 32294979 PMCID: PMC7221840 DOI: 10.3390/molecules25081778] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
| | - Luidy Kazuo Issayama
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Isadora Carolina Betim Pavan
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Fernando Riback Silva
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Talita Diniz Melo-Hanchuk
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Fernando Moreira Simabuco
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Correspondence: ; Tel.: +55-19-3521-8143
| |
Collapse
|
3
|
|
4
|
Casado-Medrano V, Barrio-Real L, Gutiérrez-Miranda L, González-Sarmiento R, Velasco EA, Kazanietz MG, Caloca MJ. Identification of a truncated β1-chimaerin variant that inactivates nuclear Rac1. J Biol Chem 2019; 295:1300-1314. [PMID: 31871052 DOI: 10.1074/jbc.ra119.008688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/14/2019] [Indexed: 12/11/2022] Open
Abstract
β1-chimaerin belongs to the chimaerin family of GTPase-activating proteins (GAPs) and is encoded by the CHN2 gene, which also encodes the β2- and β3-chimaerin isoforms. All chimaerin isoforms have a C1 domain that binds diacylglycerol as well as tumor-promoting phorbol esters and a catalytic GAP domain that inactivates the small GTPase Rac. Nuclear Rac has emerged as a key regulator of various cell functions, including cell division, and has a pathological role by promoting tumorigenesis and metastasis. However, how nuclear Rac is regulated has not been fully addressed. Here, using several approaches, including siRNA-mediated gene silencing, confocal microscopy, and subcellular fractionation, we identified a nuclear variant of β1-chimaerin, β1-Δ7p-chimaerin, that participates in the regulation of nuclear Rac1. We show that β1-Δ7p-chimaerin is a truncated variant generated by alternative splicing at a cryptic splice site in exon 7. We found that, unlike other chimaerin isoforms, β1-Δ7p-chimaerin lacks a functional C1 domain and is not regulated by diacylglycerol. We found that β1-Δ7p-chimaerin localizes to the nucleus via a nuclear localization signal in its N terminus. We also identified a key nuclear export signal in β1-chimaerin that is absent in β1-Δ7p-chimaerin, causing nuclear retention of this truncated variant. Functionally analyses revealed that β1-Δ7p-chimaerin inactivates nuclear Rac and negatively regulates the cell cycle. Our results provide important insights into the diversity of chimaerin Rac-GAP regulation and function and highlight a potential mechanism of nuclear Rac inactivation that may play significant roles in pathologies such as cancer.
Collapse
Affiliation(s)
- Victoria Casado-Medrano
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Laura Barrio-Real
- Molecular Medicine Unit and Institute of Molecular and Cellular Biology of Cancer, Biomedical Research Institute of Salamanca, University of Salamanca, 37007 Salamanca, Spain
| | - Laura Gutiérrez-Miranda
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit and Institute of Molecular and Cellular Biology of Cancer, Biomedical Research Institute of Salamanca, University of Salamanca, 37007 Salamanca, Spain
| | - Eladio A Velasco
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - María J Caloca
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| |
Collapse
|
5
|
Okamura A, Masumoto A, Takenouchi A, Kudo T, Aizawa S, Ogoshi M, Takahashi S, Tsudzuki M, Takeuchi S. Changes in prolactin receptor homodimer availability may cause late feathering in chickens. Gen Comp Endocrinol 2019; 272:109-116. [PMID: 30594591 DOI: 10.1016/j.ygcen.2018.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 01/04/2023]
Abstract
Chicken early (EF) and late feathering (LF) are sex-linked phenotypes conferred by wild-type k+ and dominant K alleles on chromosome Z, respectively. Besides prolactin (PRL) receptor (PRLR) and sperm flagellar 2 (SPEF2) genes, the K allele contains a fusion gene in which partially duplicated PRLR (dPRLR) and SPEF2 (dSPEF2) genes are linked in a tail-to-tail manner. The causative dPRLR gene encodes a C-terminal truncated receptor. LF chickens have short or no primaries at hatching; however, their feather growth rate is higher than that of EF chickens. This study aimed to elucidate the molecular basis of the K allele's biphasic effect on feather development. By 3'RACE and RT-PCR analyses, we demonstrated that dSPEF2 gene transcription occurred beyond all coding exons of the dPRLR gene on the opposite strand and that dPRLR mRNA was less abundant than PRLR mRNA. In addition, a 5'UTR splice variant (SPV) of PRL receptor mRNAs was increased in LF chickens. In vitro expression analysis of 5'UTR linked to the luciferase reporter gene revealed higher translation efficiency of SPV. RT-qPCR showed that the dPRLR mRNA level was higher in embryos; conversely, SPV was higher in hatched chickens, as was dSPEF2 mRNA. These findings suggest that the K allele inhibits feather development at the fetal stage by expressing dPRLR to attenuate PRLR function and promotes feather growth after hatching by increasing PRLR through dSPEF2 mRNA expression. Increased SPV may cause greater feather growth than that in EF chickens by increasing the availability of PRLR homodimers and enhancing PRL signaling.
Collapse
Affiliation(s)
- Ayako Okamura
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan
| | - Ayane Masumoto
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan
| | - Atsushi Takenouchi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Toshiyuki Kudo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shujitsu University, 1-6-1 Nakaku, Nishikawara, Okayama 703-8516, Japan
| | - Sayaka Aizawa
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan
| | - Maho Ogoshi
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan
| | - Sumio Takahashi
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan
| | - Masaoki Tsudzuki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Sakae Takeuchi
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan.
| |
Collapse
|
6
|
Reevaluation of the proposed autocrine proliferative function of prolactin in breast cancer. Breast Cancer Res Treat 2013; 142:31-44. [PMID: 24146212 PMCID: PMC3825490 DOI: 10.1007/s10549-013-2731-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/08/2013] [Indexed: 11/08/2022]
Abstract
The pituitary hormone prolactin (PRL) has been implicated in tumourigenesis. Expression of PRL and its receptor (PRLR) was reported in human breast epithelium and breast cancer cells. It was suggested that PRL may act as an autocrine/paracrine growth factor. Here, we addressed the role of locally synthesised PRL in breast cancer. We analysed the expression of PRL in human breast cancer tumours using qPCR analysis and in situ hybridization (ISH). PRL mRNA expression was very low or undetectable in the majority of samples in three cDNA arrays representing samples from 144 breast cancer patients and in 13 of 14 breast cancer cell lines when analysed by qPCR. In accordance, PRL expression did not reach detectable levels in any of the 19 human breast carcinomas or 5 cell lines, which were analysed using a validated ISH protocol. Two T47D-derived breast cancer cell lines were stably transfected with PRL-expressing constructs. Conditioned medium from the T47D/PRL clones promoted proliferation of lactogen-dependent Nb2 cells and control T47D cells. Surprisingly, the PRL-producing clones themselves displayed a lower proliferation rate as compared to the control cells. Their PRLR protein level was reduced and the cells were no longer responsive to exogenous recombinant PRL. Taken together, these data strongly indicate that autocrine PRL signalling is unlikely to be a general mechanism promoting tumour growth in breast cancer patients.
Collapse
|
7
|
Ksionda O, Saveliev A, Köchl R, Rapley J, Faroudi M, Smith-Garvin JE, Wülfing C, Rittinger K, Carter T, Tybulewicz VLJ. Mechanism and function of Vav1 localisation in TCR signalling. J Cell Sci 2012; 125:5302-14. [PMID: 22956543 PMCID: PMC3561853 DOI: 10.1242/jcs.105148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The antigen-specific binding of T cells to antigen presenting cells results in recruitment of signalling proteins to microclusters at the cell-cell interface known as the immunological synapse (IS). The Vav1 guanine nucleotide exchange factor plays a critical role in T cell antigen receptor (TCR) signalling, leading to the activation of multiple pathways. We now show that it is recruited to microclusters and to the IS in primary CD4+ and CD8+ T cells. Furthermore, we show that this recruitment depends on the SH2 and C-terminal SH3 (SH3B) domains of Vav1, and on phosphotyrosines 112 and 128 of the SLP76 adaptor protein. Biophysical measurements show that Vav1 binds directly to these residues on SLP76 and that efficient binding depends on the SH2 and SH3B domains of Vav1. Finally, we show that the same two domains are critical for the phosphorylation of Vav1 and its signalling function in TCR-induced calcium flux. We propose that Vav1 is recruited to the IS by binding to SLP76 and that this interaction is critical for the transduction of signals leading to calcium flux.
Collapse
Affiliation(s)
- Olga Ksionda
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Prolactin and the prolactin receptors are members of a family of hormone/receptor pairs which include GH, erythropoietin, and other ligand/receptor pairs. The mechanisms of these ligand/receptor pairs have broad similarities, including general structures, ligand/receptor stoichiometries, and activation of several common signaling pathways. But significant variations in the structural and mechanistic details are present among these hormones and their type 1 receptors. The prolactin receptor is particularly interesting because it can be activated by three sequence-diverse human hormones: prolactin, GH, and placental lactogen. This system offers a unique opportunity to compare the detailed molecular mechanisms of these related hormone/receptor pairs. This review critically evaluates selected literature that informs these mechanisms, compares the mechanisms of the three lactogenic hormones, compares the mechanism with those of other class 1 ligand/receptor pairs, and identifies information that will be required to resolve mechanistic ambiguities. The literature describes distinct mechanistic differences between the three lactogenic hormones and their interaction with the prolactin receptor and describes more significant differences between the mechanisms by which other related ligands interact with and activate their receptors.
Collapse
Affiliation(s)
- Charles L Brooks
- Departments of Veterinary Biosciences and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
9
|
Shen M, Yen A. c-Cbl tyrosine kinase-binding domain mutant G306E abolishes the interaction of c-Cbl with CD38 and fails to promote retinoic acid-induced cell differentiation and G0 arrest. J Biol Chem 2009; 284:25664-77. [PMID: 19635790 DOI: 10.1074/jbc.m109.014241] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Retinoic acid (RA) causes HL-60 human myeloblastic leukemia cell myeloid differentiation that is dependent on MAPK signaling. The process is propelled by c-Cbl, which binds the CD38 receptor as part of a signaling complex generating MAPK signaling. Here we report that the capability of c-Cbl to do this is lost in the G306E tyrosine kinase-binding domain mutant. Unlike wild-type (WT) c-Cbl, the G306E mutant c-Cbl fails to propel RA-induced differentiation, and disrupts the normal association with CD38. The G306E mutant does, like WT c-Cbl, co-immunoprecipitate with Vav, Slp-76, and p38. But unlike WT c-Cbl, does not cause MAPK signaling. In contrast, the C381A Ring finger domain mutant functions like WT c-Cbl. It binds CD38 and is part of the same apparent c-Cbl/Slp-76/Vav/p38 signaling complex. The C381A mutant causes MAPK signaling and propels RA-induced differentiation. In addition to HL-60 cells and their WT or mutant c-Cbl stable transfectants, the c-Cbl/Vav/Slp-76 complex is also found in NB4 cells where c-Cbl was previously also found to bind CD38. The data are consistent with a model in which the G306E mutant c-Cbl forms a signaling complex that includes Slp-76, Vav, and p38; but does not drive MAPK signaling because it fails to bind the CD38 receptor. Without the G306E mutation the c-Cbl unites CD38 with the signaling complex and delivers a MAPK signal that drives RA-induced differentiation. The results demonstrate the importance of the Gly306 residue in the ability of c-Cbl to propel RA-induced differentiation.
Collapse
Affiliation(s)
- Miaoqing Shen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
10
|
Chen Y, Huang K, Chen KE, Walker AM. Prolactin and estradiol utilize distinct mechanisms to increase serine-118 phosphorylation and decrease levels of estrogen receptor alpha in T47D breast cancer cells. Breast Cancer Res Treat 2009; 120:369-77. [PMID: 19377875 DOI: 10.1007/s10549-009-0400-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/06/2009] [Indexed: 02/06/2023]
Abstract
Potential interactions between prolactin (PRL) and estradiol (E2) in breast cancer cells were explored by examining the effect of PRL on estrogen receptor (ER) serine-118 phosphorylation, ER down-regulation, and E2-stimulated cell proliferation. Both E2 and PRL resulted in prolonged ERalpha serine-118 phosphorylation, but used different signaling pathways to achieve this end. Both hormones also decreased the amount of ERalpha, but the mechanisms were different: for E2, the decrease was rapid and resulted from proteasomic degradation, whereas for PRL the decrease was slow and resulted from an effect on levels of ERalpha mRNA. PRL alone had no effect on cell number, but enhanced the increase in number in response to E2. These results are the first to demonstrate similar effects of PRL and E2 on parameters considered key to E2's effects. This suggests heretofore unrecognized and potentially important interactions between these two hormones in the natural history of breast cancer.
Collapse
Affiliation(s)
- Yenhao Chen
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
11
|
Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ. Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13:13-28. [PMID: 18219564 DOI: 10.1007/s10911-008-9069-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022] Open
Abstract
Mammary morphogenesis is orchestrated with other reproductive events by pituitary-driven changes to the systemic hormone environment, initiating the formation of a mammary ductal network during puberty and the addition of secretory alveoli during pregnancy. Prolactin is the major driver of development during pregnancy via regulation of ovarian progesterone production (in many species) and direct effects on mammary epithelial cells (in all species). Together these hormones regulate two aspects of development that are the subject of intense interest: (1) a genomic regulatory network that integrates many additional spatial and temporal cues to control gene expression and (2), the activity of a stem and progenitor cell hierarchy. Amalgamation of these two aspects will increase our understanding of cell proliferation and differentiation within the mammary gland, with clear application to our attempts to control breast cancer. Here we focus on providing an over-view of prolactin action during development of the model murine mammary gland.
Collapse
Affiliation(s)
- Samantha R Oakes
- Development group, Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | | | | | | |
Collapse
|
12
|
Lazer G, Pe'er L, Schapira V, Richard S, Katzav S. The association of Sam68 with Vav1 contributes to tumorigenesis. Cell Signal 2007; 19:2479-86. [PMID: 17855053 DOI: 10.1016/j.cellsig.2007.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Vav1 functions in the hematopoietic system as a specific GDP/GTP nucleotide exchange factor regulated by tyrosine phosphorylation. An intact C-terminal SH3 domain of Vav1 (Vav1SH3C) was shown to be necessary for Vav1-induced transformation, yet the associating protein(s) necessary for this activity have not yet been identified. Using a proteomics approach, we identified Sam68 as a Vav1SH3C-associating protein. Sam68 (Src-associated in mitosis of 68 kD) belongs to the heteronuclear ribonucleoprotein particle K (hnRNP-K) homology (KH) domain family of RNA-binding proteins. The Vav1/Sam68 interaction was observed in vitro and in vivo. Mutants of Vav1SH3C previously shown to lose their transforming potential did not associate with Sam68. Co-expression of Vav1 and Sam68 in Jurkat T cells led to increased localization of Vav1 in the nucleus and changes in cell morphology. We then tested the contribution of Sam68 to known functions of Vav1, such as focus-forming in NIH3T3 fibroblasts and NFAT stimulation in T cells. Co-expression of oncogenic Vav1 with Sam68 in NIH3T3 fibroblasts resulted in a dose-dependent increase in foci, yet no further enhancement of NFAT activity was observed in Jurkat T cells, as compared to cells overexpressing only Vav1 or Sam68. Our results strongly suggest that Sam68 contributes to transformation by oncogenic Vav1.
Collapse
Affiliation(s)
- Galit Lazer
- The Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
13
|
Abstract
The biological actions of prolactin (PRL), a polypeptide hormone, are mostly related to lactation and reproduction. These actions have been clarified by studies of PRL and PRL-deficient receptor mice, which have a clear phenotype of reproductive failure at multiple sites. This review aims to summarize current knowledge about PRL and its receptor, role in reproductive axis and presents information of hyperprolactinemia in reproductive medicine. Our understanding of the physiology and transduction pathway of PRL has largely increased in the past 20 years with the cloning of PRL and its receptor gene.
Collapse
Affiliation(s)
- Anne Bachelot
- Inserm, Unit 809, Paris, France, Faculty of Medicine René Descartes, University Paris-Descartes, Paris 5-Necker site, Paris, France
| | | |
Collapse
|
14
|
Stephenson LM, Miletic AV, Kloeppel T, Kusin S, Swat W. Vav Proteins Regulate the Plasma Cell Program and Secretory Ig Production. THE JOURNAL OF IMMUNOLOGY 2006; 177:8620-5. [PMID: 17142761 DOI: 10.4049/jimmunol.177.12.8620] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plasma cell (PC) development is initiated following B cell activation and controlled by a B lymphocyte-induced maturation protein (Blimp)-1-dependent program involving the concerted action of several proplasma transcriptional regulators. However, the factors that control Blimp-1 expression remain largely unknown. In this context, mice deficient for all three of the Vav family of proteins (Vav(null)) develop substantial B cell populations, including marginal zone B cells, yet have a virtual absence of serum Igs, indicating that Vav may be specifically required in PC development and Ig production. We show in this study that mature marginal zone B cells from Vav(null) mice proliferate following stimulation with TLR ligands but exhibit severe defects in PC differentiation and Ig secretion. Under conditions inducing PC differentiation, Vav(null) B cells fail to efficiently induce Blimp-1, X box-binding protein-1, J chain, or secretory Ig mu transcripts but express IFN-regulatory factor-4 at levels similar to wild-type cells. These data indicate a previously unknown role for Vav as an upstream regulator of Blimp-1.
Collapse
Affiliation(s)
- Linda M Stephenson
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
15
|
Gadd SL, Clevenger CV. Ligand-Independent Dimerization of the Human Prolactin Receptor Isoforms: Functional Implications. Mol Endocrinol 2006; 20:2734-46. [PMID: 16840534 DOI: 10.1210/me.2006-0114] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prolactin (PRL) contributes to the growth of normal and malignant breast tissues. PRL initiates signaling by engaging the PRL receptor (PRLr), a transmembrane (TM) receptor belonging to the cytokine receptor family. The accepted view has been that PRL activates the PRLr by inducing dimerization of the receptor, but recent reports show ligand-independent dimerization of other cytokine receptors. Using coimmunoprecipitation assays, we have confirmed ligand-independent dimerization of the PRLr in T47D breast cancer and HepG2 liver carcinoma cells. In addition, mammalian cells transfected with differentially epitope-tagged isoforms of the PRLr indicated that long, intermediate, and DeltaS1 PRLrs dimerized in a ligand-independent manner. To determine the domain(s) involved in PRLr ligand-independent dimerization, we generated PRLr constructs as follows: (1) the TM-ICD, which consisted of the TM domain and the intracellular domain (ICD) but lacked the extracellular domain (ECD), and (2) the ECD-TM, which consisted of the TM domain and the ECD but lacked the ICD. These constructs dimerized in a ligand-independent manner in mammalian cells, implicating a significant role for the TM domain in this process. These truncated PRLrs were functionally inert alone or in combination in cells lacking the PRLr. However, when introduced into cells containing endogenous PRLr, the ECD-TM inhibited human PRLr signaling, whereas the TM-ICD potentiated human PRLr signaling. These studies indicate that the ECD-TM and the TM-ICD are capable of modulating PRLr function. We also demonstrated an endogenous TM-ICD in T47D cells, suggesting that these findings are relevant to PRL-signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Samantha L Gadd
- Department of Pathology, Northwestern University, Lurie 4-107, 303 East Superior Street, Chicago, Illinois 60611, USA
| | | |
Collapse
|
16
|
Opalinska JB, Machalinski B, Ratajczak J, Ratajczak MZ, Gewirtz AM. Multigene targeting with antisense oligodeoxynucleotides: an exploratory study using primary human leukemia cells. Clin Cancer Res 2005; 11:4948-54. [PMID: 16000594 DOI: 10.1158/1078-0432.ccr-05-0106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously reported that the c-myb and Vav proto-oncogenes are amenable to silencing with antisense oligodeoxynucleotides and that inhibition of either impairs leukemic cell growth. Because the expression of these genes is not known to be linked, we sought to determine the therapeutic value of silencing both genes simultaneously in K562 and primary patient (n = 9) chronic myelogenous leukemia cells. EXPERIMENTAL DESIGN K562 and primary chronic myelogenous leukemia cells were exposed to antisense oligodeoxynucleotides (alone or in combination) for 24 or 72 hours and then cloned in methylcellulose cultures. Effects on K562 cluster, and blast-forming unit-erythroid colonies and granulocyte-macrophage colony-forming units were determined and correlated with the ability to down-regulate the targeted mRNA. RESULTS After 24-hour exposure, K562 cell growth was inhibited in a sequence specific, dose-responsive manner with either c-myb or Vav antisense oligodeoxynucleotides. Exposure to both oligodeoxynucleotides simultaneously considerably enhanced growth inhibition and accelerated apoptosis. Primary cell results were more complex. After 24- and 72-hour exposures to either anti-vav or anti-myb antisense oligodeoxynucleotides, equivalent colony-forming unit inhibition was observed. Exposing cells to both antisense oligodeoxynucleotides simultaneously for 24 hours did not result in additional inhibition of colony formation. However, after 72-hour incubation with both oligodeoxynucleotides, colony formation was diminished significantly when compared with either oligodeoxynucleotides alone (from approximately 30% to approximately 78% for granulocyte-macrophage colony-forming unit; approximately 50% to approximately 80% for blast-forming unit-erythroid). CONCLUSIONS We hypothesize that exposing primary leukemic cells to antisense oligodeoxynucleotides targeted to two, or possibly more, genes might significantly augment the therapeutic utility of these molecules.
Collapse
MESH Headings
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Synergism
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/drug effects
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Proto-Oncogene Proteins c-myc/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Tumor Cells, Cultured
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Joanna B Opalinska
- Authors' Affiliations: Hematology and Pathology, Pommeranian Medical University, Szczecin, Poland
| | | | | | | | | |
Collapse
|
17
|
Tabellini G, Billi AM, Falà F, Cappellini A, Evagelisti C, Manzoli L, Cocco L, Martelli AM. Nuclear diacylglycerol kinase-theta is activated in response to nerve growth factor stimulation of PC12 cells. Cell Signal 2005; 16:1263-71. [PMID: 15337525 DOI: 10.1016/j.cellsig.2004.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 03/17/2004] [Indexed: 11/28/2022]
Abstract
Previous evidence from independent laboratories has shown that the nucleus contains diacylglycerol kinase (DGK) isoforms, i.e., the enzymes, which yield phosphatidic acid from diacylglycerol, thus terminating protein kinase C-mediated signaling events. A DGK isoform, which resides in the nucleus of PC12 cells, is DGK-theta. Here, we show that nerve growth factor (NGF) treatment of serum-starved PC12 cells results in the stimulation of both a cytoplasmic and a nuclear DGK activity. However, time course analysis shows that cytoplasmic DGK activity peaked earlier than its nuclear counterpart. While nuclear DGK activity was dramatically down-regulated by a monoclonal antibody known for selectively inhibiting DGK-theta, cytoplasmic DGK activity was not. Moreover, nuclear DGK activity was stimulated by phosphatidylserine, an anionic phospholipid that had no effect on cytoplasmic DGK activity. Upon NGF stimulation, the amount and the activity of DGK-theta, which was bound to the insoluble nuclear matrix fraction, substantially increased. Epidermal growth factor up-regulated a nuclear DGK activity insensitive to anti-DGK-theta monoclonal antibody. Overall, our findings identify nuclear DGK-theta as a down-stream target of NGF signaling in PC12 cells.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Cell Signalling Laboratory, Università degli Studi di Bologna, via Irnerio 48, 40126, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The corpus luteum is a transient endocrine gland that produces essentially progesterone, a required product for the establishment and maintenance of early pregnancy. In the absence of pregnancy, the corpus luteum will cease to produce progesterone, and the structure itself will regress in size over time. The life span and function of the corpus luteum is regulated by complex interactions between stimulatory (luteotrophic) and inhibitory (luteolytic) mediators. Although the process of luteal formation and regression has been studied for several decades, many of the regulatory mechanisms involved in loss of function and involution of the structure are incompletely understood. In rodents, prolactin is the major luteotrophic hormone by maintaining the structural and functional integrity of the corpus luteum for several days after mating. Other factors involved in steroidogenesis, control of cell cycle, apoptosis, and tissue remodeling have been shown to play a role in corpus luteum development and maintenance. Especially, PGF2alpha seems to be the most potent luteolytic hormone. One of the most important advances in the study of mammalian genes has been the development of techniques to obtain defined mutations in mice. These tools enable us to target specific genes and to analyze the impact of their loss on cell fate and function. With these approaches, several receptors, transcription factors, enzymes, and other factors have been linked to corpus luteum development and maintenance. These models are helping to define mechanisms of reproductive function and to identify potential new contraceptive targets and genes involved in the pathophysiology of reproductive disorders.
Collapse
Affiliation(s)
- Anne Bachelot
- Inserm U 584 Hormone Targets, Faculty of Medicine René Descartes, 75730 Paris Cedex 15, France
| | | |
Collapse
|
19
|
Miller SL, DeMaria JE, Freier DO, Riegel AM, Clevenger CV. Novel association of Vav2 and Nek3 modulates signaling through the human prolactin receptor. Mol Endocrinol 2004; 19:939-49. [PMID: 15618286 DOI: 10.1210/me.2004-0443] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Prolactin (PRL) receptor activation contributes to the progression and motility of human breast cancer. This event activates multimeric signaling pathways, including the activation of the Vav family of guanine nucleotide exchange factors. To detect novel proteins interacting with Vav, yeast two-hybrid analysis was performed and demonstrated an interaction between the serine/threonine NIMA (never in mitosis A)-related family kinase p56Nek3 and Vav1. The PRL-dependent interaction of Nek3 with Vav1 and Vav2 was confirmed by coimmunoprecipitation analysis. PRL stimulation of T47D cells induced Nek3 kinase activity and the interaction of Vav2/Nek3 with the PRL receptor. Increased Nek3 levels up-regulated Vav2 serine and tyrosine phosphorylation, whereas knockdown of Nek3 resulted in a reduction of Vav2 phosphorylation. Activation of guanosine triphosphatase Rac-1 in Chinese hamster ovary transfectants required both Nek3 and Vav2 and was inhibited by the overexpression of a kinase inactivating Nek3 mutant. However, overexpression of either Nek3 or kinase-inactive Nek3 had no effect on Vav2-potentiated signal transducer and activator of transcription 5-mediated gene expression. Overexpression of kinase inactive Nek3 in T47D cells led to a 50% increase in apoptosis vs. controls. These data suggest that the PRL-mediated activation of Nek3 contributes differentially to Vav2 signaling pathways involving Rac1 and signal transducer and activator of transcription 5 and implicates Nek3 during PRL-mediated actions in breast cancer.
Collapse
Affiliation(s)
- Sommer L Miller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
20
|
Houlard M, Romero-Portillo F, Germani A, Depaux A, Regnier-Ricard F, Gisselbrecht S, Varin-Blank N. Characterization of VIK-1: a new Vav-interacting Kruppel-like protein. Oncogene 2004; 24:28-38. [PMID: 15558030 DOI: 10.1038/sj.onc.1208043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Binding partners of the Src homology domains of Vav-1 were characterized by a two-hybrid screening of a Jurkat cell cDNA library. One of the isolated clones encoded a new protein named VIK that belongs to the Kruppel-like zinc-finger gene family. Genome mapping showed that a single gene positioned at chromosome 7q22.1 generated three possible isoforms containing alternative domains such as proline-rich and Kruppel-associated box A or B repressor domains. The isolated isoform, VIK-1, did not contain such motifs but presented six tandemly arranged zinc-fingers and consensus Kruppel H-C links. VIK-1 interacted both with Vav-1 and cyclin-dependent kinase 4 through two independent domains and corresponded to a Vav C-Src homology domain (SH)3 partner able to shuttle between the nucleus and the cytoplasm exhibiting functional nuclear addressing and export sequences. The results indicated a restricted expression of the protein during the G1 phase and its overexpression resulted in an inhibition of the cell-cycle progression that was reversed in the presence of Vav 1. Thus, this ubiquitous factor provides a first link between Vav-1 and the cell-cycle machinery.
Collapse
Affiliation(s)
- Martin Houlard
- Département d'Hématologie, Institut Cochin, Hôpital Cochin 27, rue du Faubourg Saint Jacques, Paris 75014, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
AbstractThe nuclear factor of activated T cells (NFAT) proteins are a family of transcription factors whose activation is controlled by calcineurin, a Ca2+-dependent phosphatase. Once dephosphorylated, these proteins move to the nucleus where they interact with cofactors to form transcription factor complexes. Inhibition of NFAT proteins by immunosuppressants, such as cyclosporin A (CsA) and FK506, is used clinically to prevent transplant rejection. Although these drugs have revolutionized organ transplantation, their use is associated with severe side effects in other organs in which NFAT proteins are important. One of the signal transducers that controls NFAT activity is Vav1, which is exclusively expressed in the hematopoietic system. Vav1 contains numerous modular domains that enable its function as a guanine exchange factor (GEF) toward RhoGTPases as well as participate in protein-protein interactions. This review focuses on the mechanisms by which Vav1 regulates NFAT through GEF-dependent and -independent cascades, emphasizing the newly assigned role of Vav1 in the regulation of Ca2+ release. Because of its restriction to hematopoietic cell lineages and its importance in the regulation of NFAT, targeting Vav1 and, in particular, its association with other proteins may offer a highly selective means of modifying T-cell behavior, thus allowing the development of more specific immunosuppressive therapies.
Collapse
Affiliation(s)
- Shulamit Katzav
- Hubert H Humphrey Center for Experimental Medicine & Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
22
|
Bertagnolo V, Brugnoli F, Marchisio M, Celeghini C, Carini C, Capitani S. Association of PI 3-K with tyrosine phosphorylated Vav is essential for its activity in neutrophil-like maturation of myeloid cells. Cell Signal 2004; 16:423-33. [PMID: 14709332 DOI: 10.1016/j.cellsig.2003.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The importance of the Vav family of signal transduction molecules in hematopoietic cells has long been acknowledged, even though its role and its regulatory mechanism are not completely understood. We have previously demonstrated that tyrosine-phosphorylated Vav, also located inside the nucleus of myeloid cells, is up-regulated during maturation of promyelocytic precursors induced by all-trans-retinoic acid (ATRA). Here, we report that the tyrosine phosphorylation of Vav during granulocytic maturation is dependent on the tyrosine kinase Syk and is essential for the morphological changes of the cell nucleus. These ATRA-induced events are independent on the guanine nucleotide exchange activity of Vav. We also found that, in differentiating cells, and in both cytoplasmic and nuclear compartments, tyrosine phosphorylated Vav associates with the regulatory subunit of phosphoinositide 3-kinase (PI 3-K). The Vav/p85 interaction is essential for the ATRA-induced PI 3-K activity and for association of PI 3-K with actin, particularly in the nucleus. Our data indicate an unprecedented crucial function for Vav in modulating the morphological maturation process of myeloid cells in a GDP-GTP exchange factor (GEF)-independent manner and suggest a role of Vav as an adaptor protein responsible of targeting PI 3-K to its intranuclear substrates.
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Signal Transduction Unit, Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Williams CL. The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cell Signal 2003; 15:1071-80. [PMID: 14575862 DOI: 10.1016/s0898-6568(03)00098-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many small GTPases in the Ras and Rho families have a C-terminal polybasic region (PBR) comprised of multiple lysines or arginines. The PBR controls diverse functions of these small GTPases, including their ability to associate with membranes, interact with specific proteins, and localize in subcellular compartments. Different signaling pathways mediated by Ras and Rho family members may converge when the small GTPases are directed by their PBRs to shared binding sites in specific proteins or at cell membranes. The PBR promotes the interactions of small GTPases with SmgGDS, which is a nucleocytoplasmic shuttling protein that stimulates guanine nucleotide exchange by small GTPases. The PBR of Rac1 was recently found to have a functional nuclear localization signal (NLS) sequence, which enhances the nuclear accumulation of protein complexes containing SmgGDS and Rac1. Sequence analysis demonstrates that canonical NLS sequences (K-K/R-x-K/R) are present in the PBRs of additional Ras and Rho family members, and are evolutionarily conserved across several phyla. These findings suggest that the PBR regulates the nucleocytoplasmic shuttling of some Ras and Rho family members when they are in protein complexes that are too large to diffuse through nuclear pores. These diverse functions of the PBR indicate its critical role in signaling by Ras and Rho family GTPases.
Collapse
Affiliation(s)
- Carol L Williams
- Molecular Pharmacology Laboratory, Guthrie Research Institute, One Guthrie Square, Sayre, PA 18840, USA.
| |
Collapse
|
24
|
Acosta JJ, Muñoz RM, González L, Subtil-Rodríguez A, Dominguez-Caceres MA, García-Martínez JM, Calcabrini A, Lazaro-Trueba I, Martín-Pérez J. Src mediates prolactin-dependent proliferation of T47D and MCF7 cells via the activation of focal adhesion kinase/Erk1/2 and phosphatidylinositol 3-kinase pathways. Mol Endocrinol 2003; 17:2268-82. [PMID: 12907754 DOI: 10.1210/me.2002-0422] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prolactin (PRL) stimulates breast cancer cell proliferation; however, the involvement of PRL-activated signaling molecules in cell proliferation is not fully established. Here we studied the role of c-Src on PRL-stimulated proliferation of T47D and MCF7 breast cancer cells. We initially observed that PRL-dependent activation of focal adhesion kinase (Fak), Erk1/2, and cell proliferation was mediated by c-Src in T47D cells, because expression of a dominant-negative form of c-Src (SrcDM, K295A/Y527F) blocked the PRL-dependent effects. The Src inhibitor PP1 abrogated PRL-dependent in vivo activation of Fak, Erk1/2, p70S6K, and Akt and the proliferation of T47D and MCF7 cells; Janus kinase 2 (Jak2) activation was not affected. However, in vitro, Fak and Jak2 kinases were not directly inhibited by PP1, demonstrating the effect of PP1 on c-Src kinase as an upstream activator of Fak. Expression of Fak mutant Y397F abrogated PRL-dependent activation of Fak, Erk1/2, and thymidine incorporation, but had no effect on p70S6K and Akt kinases. MAPK kinase 1/2 (Mek1/2) inhibitor PD184352 blocked PRL-induced stimulation of Erk1/2 and cell proliferation; however, p70S6K and Akt activation were unaffected. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 abolished cell proliferation and activation of p70S6K and Akt; however, PRL-dependent activation of Erk1/2 was not modified. Moreover, we show that both c-Src/PI3K and c-Src/Fak/Erk1/2 pathways are involved in the up-regulation of c-myc and cyclin d1 expression mediated by PRL. The previous findings suggest the existence of two PRL-dependent signaling cascades, initiated by the c-Src-mediated activation of Fak/Erk1/2 and PI3K pathways that, subsequently, control the expression of c-Myc and cyclin D1 and the proliferation of T47D and MCF7 breast cancer cells.
Collapse
Affiliation(s)
- Juan J Acosta
- Instituto de Investigaciones Biomédicas A Sols, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lanning CC, Ruiz-Velasco R, Williams CL. Novel mechanism of the co-regulation of nuclear transport of SmgGDS and Rac1. J Biol Chem 2003; 278:12495-506. [PMID: 12551911 DOI: 10.1074/jbc.m211286200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The armadillo protein SmgGDS promotes guanine nucleotide exchange by small GTPases containing a C-terminal polybasic region (PBR), such as Rac1 and RhoA. Because the PBR resembles a nuclear localization signal (NLS) sequence, we investigated the nuclear transport of SmgGDS with Rac1 or RhoA. We show that the Rac1 PBR has significant NLS activity when it is fused to green fluorescent protein (GFP) or in the context of full-length Rac1. In contrast, the RhoA PBR has very poor NLS activity when it is fused to GFP or in the context of full-length RhoA. The nuclear accumulation of both Rac1 and SmgGDS is enhanced by Rac1 activation and diminished by mutation of the Rac1 PBR. Conversely, SmgGDS nuclear accumulation is diminished by interactions with RhoA. An SmgGDS nuclear export signal sequence that we identified promotes SmgGDS nuclear export. These results suggest that SmgGDS. Rac1 complexes accumulate in the nucleus because the Rac1 PBR has NLS activity and because Rac1 supplies the appropriate GTP-dependent signal. In contrast, SmgGDS.RhoA complexes accumulate in the cytoplasm because the RhoA PBR does not have NLS activity. This model may be applicable to other armadillo proteins in addition to SmgGDS, because we demonstrate that activated Rac1 and RhoA also provide stimulatory and inhibitory signals, respectively, for the nuclear accumulation of p120 catenin. These results indicate that small GTPases with a PBR can regulate the nuclear transport of armadillo proteins.
Collapse
Affiliation(s)
- Cathy Cole Lanning
- Molecular Pharmacology Laboratory, Guthrie Research Institute, Sayre, Pennsylvania 18840, USA
| | | | | |
Collapse
|
26
|
Abstract
The contribution of prolactin (PRL) to the pathogenesis and progression of human breast cancer at the cellular, transgenic, and epidemiological levels is increasingly appreciated. Acting at the endocrine and autocrine/paracrine levels, PRL functions to stimulate the growth and motility of human breast cancer cells. The actions of this ligand are mediated by at least six recognized PRL receptor isoforms found on, or secreted by, human breast epithelium. The PRL/PRL receptor complex associates with and activates several signaling networks that are shared with other members of the cytokine receptor superfamily. Coupled with the recently identified intranuclear function of PRL, these networks are integrated into the in vitro and in vivo actions induced by ligand. These findings indicate that antagonists of PRL/PRL receptor interaction or PRL receptor-associated signal transduction may be of considerable utility in the treatment of human breast cancer.
Collapse
Key Words
- cis, cytokine-inducible inhibitor of signaling
- cypb, cyclophilin b
- ecd, extracellular domain
- egf, epidermal growth factor
- ghr, gh receptor
- hprlr, human prlr
- icd, intracellular domain
- jak, janus kinase 2
- jnk, c-jun n-terminal kinase
- pias, peptide inhibitor of activated stat
- pi3k, phosphatidylinositol 3′-kinase
- prl, prolactin
- ptdins, phosphatidylinositol
- prlbp, prl binding protein
- prlr, prl receptor
- shp-2, sh2-containing protein tyrosine phosphatase
- socs, suppressor of cytokine signaling
- stat, signal transducer and activator of transcription
Collapse
Affiliation(s)
- Charles V Clevenger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
27
|
Rycyzyn MA, Clevenger CV. The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer. Proc Natl Acad Sci U S A 2002; 99:6790-5. [PMID: 11997457 PMCID: PMC124481 DOI: 10.1073/pnas.092160699] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2001] [Accepted: 03/19/2002] [Indexed: 01/13/2023] Open
Abstract
The nuclear translocation of peptide hormones, such as the somatolactogenic hormone prolactin, after receptor internalization has been widely reported. Prolactin has been demonstrated to interact with cyclophilin B, a member of the immunophilin family of proteins. Cyclophilin B interaction with prolactin potentiated prolactin-induced proliferation, cell growth, and the nuclear retrotransport of prolactin. These effects could be abrogated by the removal of the peptidyl-prolyl isomerase activity of cyclophilin B. Our findings indicate that the intranuclear prolactin/cyclophilin B complex acts as a transcriptional inducer by interacting directly with Stat5, resulting in the removal of the Stat-repressor protein inhibitor of activated Stat 3 (PIAS3), thereby enhancing Stat5 DNA-binding activity and prolactin-induced, Stat5-mediated gene expression.
Collapse
Affiliation(s)
- Michael A Rycyzyn
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
28
|
Houlard M, Arudchandran R, Regnier-Ricard F, Germani A, Gisselbrecht S, Blank U, Rivera J, Varin-Blank N. Vav1 is a component of transcriptionally active complexes. J Exp Med 2002; 195:1115-27. [PMID: 11994417 PMCID: PMC2193716 DOI: 10.1084/jem.20011701] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The importance of the hematopoietic protooncogene Vav1 in immune cell function is widely recognized, although its regulatory mechanisms are not completely understood. Here, we examined whether Vav1 has a nuclear function, as past studies have reported its nuclear localization. Our findings provide a definitive demonstration of Vav1 nuclear localization in a receptor stimulation-dependent manner and reveal a critical role for the COOH-terminal Src homology 3 (SH3) domain and a nuclear localization sequence within the pleckstrin homology domain. Analysis of DNA-bound transcription factor complexes revealed nuclear Vav1 as an integral component of transcriptionally active nuclear factor of activated T cells (NFAT)- and nuclear factor (NF)kappaB-like complexes, and the COOH-terminal SH3 domain as being critical in their formation. Thus, we describe a novel nuclear role for Vav1 as a component and facilitator of NFAT and NFkappaB-like transcriptional activity.
Collapse
Affiliation(s)
- Martin Houlard
- Unité Inserm 363, Oncologie Cellulaire et Moléculaire, Institut Cochin de Génétique Moléculaire, Hopital Cochin, Paris 75014, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Within the immune system, multiple isoforms of the human prolactin receptor (PRLr) serve to mediate the effects of its ligand (PRL). Now numbering four, these isoforms are structurally and functionally distinct, demonstrating significant differences in ligand affinities, kinetics of transduction and the transduction proteins activated. The proximal transduction pathways activated during PRLr-associated signaling include the tyrosine kinases Jak2, Fyn and Tec, the phosphatase SHP-2, the guanine nucleotide exchange factor Vav, and the signaling suppressor SOCS. Differential activation of these pathways may contribute to the pleiotropism of PRL action in tissues of the immune system.
Collapse
Affiliation(s)
- C V Clevenger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia 19066, USA.
| | | |
Collapse
|
30
|
Luger SM, O'Brien SG, Ratajczak J, Ratajczak MZ, Mick R, Stadtmauer EA, Nowell PC, Goldman JM, Gewirtz AM. Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 2002; 99:1150-8. [PMID: 11830460 DOI: 10.1182/blood.v99.4.1150] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antisense oligodeoxynucleotide (ODN) drugs might be more effective if their delivery was optimized and they were targeted to short-lived proteins encoded by messenger RNA (mRNA) species with equally short half-lives. To test this hypothesis, an ODN targeted to the c-myb proto-oncogene was developed and used to purge marrow autografts administered to allograft-ineligible chronic myelogenous leukemia patients. CD34(+) marrow cells were purged with ODN for either 24 (n = 19) or 72 (n = 5) hours. After purging, Myb mRNA levels declined substantially in approximately 50% of patients. Analysis of bcr/abl expression in long-term culture-initiating cells suggested that purging had been accomplished at a primitive cell level in more than 50% of patients and was ODN dependent. Day-100 cytogenetics were evaluated in surviving patients who engrafted without infusion of unmanipulated "backup" marrow (n = 14). Whereas all patients were approximately 100% Philadelphia chromosome-positive (Ph(+)) before transplantation, 2 patients had complete cytogenetic remissions; 3 patients had fewer than 33% Ph(+) metaphases; and 8 remained 100% Ph(+). One patient's marrow yielded no metaphases, but fluorescent in situ hybridization evaluation approximately 18 months after transplantation revealed approximately 45% bcr/abl(+) cells, suggesting that 6 of 14 patients had originally obtained a major cytogenetic response. Conclusions regarding clinical efficacy of ODN marrow purging cannot be drawn from this small pilot study. Nevertheless, these results lead to the speculation that enhanced delivery of ODN, targeted to critical proteins of short half-life, might lead to the development of more effective nucleic acid drugs and the enhanced clinical utility of these compounds in the future.
Collapse
MESH Headings
- Adult
- Bone Marrow/drug effects
- Bone Marrow/metabolism
- Bone Marrow Purging/methods
- Bone Marrow Transplantation/methods
- Cytogenetic Analysis
- Female
- Fusion Proteins, bcr-abl/analysis
- Gene Expression/drug effects
- Genes, myb/drug effects
- Genes, myb/genetics
- Graft Survival
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Male
- Middle Aged
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Oligodeoxyribonucleotides, Antisense/therapeutic use
- Pilot Projects
- Proto-Oncogene Mas
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/metabolism
- Transplantation, Autologous/methods
- Treatment Outcome
Collapse
Affiliation(s)
- Selina M Luger
- Division of Hematology/Oncology and the Stem Cell Biology/Therapeutics Program, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cocco L, Martelli AM, Barnabei O, Manzoli FA. Nuclear inositol lipid signaling. ADVANCES IN ENZYME REGULATION 2001; 41:361-84. [PMID: 11384755 DOI: 10.1016/s0065-2571(00)00017-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- L Cocco
- Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna, Via Irnerio, 48, I-40126, Bologna, Italy
| | | | | | | |
Collapse
|
32
|
Fleenor DE, Freemark M. Prolactin induction of insulin gene transcription: roles of glucose and signal transducer and activator of transcription 5. Endocrinology 2001; 142:2805-10. [PMID: 11415999 DOI: 10.1210/endo.142.7.8267] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GH and PRL stimulate insulin production in pancreatic beta-cells through induction of insulin gene transcription. The transcriptional effects of GH are mediated through the binding of signal transducer and activator of transcription-5 (STAT5) to a consensus recognition sequence (TTCnnnGAA) in the rat insulin-1 promoter. In this study we demonstrate that PRL also induces the binding of STAT5 proteins to the rat insulin-1 STAT5 motif. However, the magnitude of binding of STAT5 nuclear proteins, as assessed by electrophoretic mobility shift assays, was only 1/30th that of the binding of the same STAT5 proteins to the beta-casein STAT5 site. The differences in the affinities of the rat insulin-1 and beta-casein STAT5 motifs are explained in part by differences in promoter sequences flanking the STAT5 sites. To assess the importance of the STAT motif in PRL induction of insulin gene transcription, we deleted the STAT5 consensus sequence in the rat insulin 1 promoter, cloned the truncated promoter upstream of the luciferase reporter gene, and transfected the construct into rat insulinoma (INS-1) cells. The transcriptional activity of this construct was compared with that of the wild-type promoter. Although deletion of the STAT5 site in the promoter reduced the basal luciferase activity, the response to PRL was unaffected. PRL also induced transcription of constructs containing the wild-type human insulin promoter or the rat insulin-2 promoter, which contain no classic STAT5 sequences. The transcriptional effect of PRL was manifest even when cells were incubated in glucose-free medium, indicating that the action of the hormone is not mediated solely through changes in glucose uptake or glucose metabolism. To identify PRL-responsive regions of the rat and human insulin promoters, we constructed a series of promoter truncations and assessed their responsiveness to PRL. A PRL-responsive region of the rat insulin-1 promoter was localized between nucleotides -165 and -109. A PRL-responsive region of the human insulin promoter was localized between nucleotides -346 and -250. Additional regions of the human and rat insulin-1 promoters were required for PRL induction of a heterologous, minimal thymidine kinase promoter, suggesting that there are multiple PRL-responsive elements in the insulin genes. These observations suggest a glucose- and STAT5-independent pathway by which PRL may induce insulin gene transcription.
Collapse
Affiliation(s)
- D E Fleenor
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
33
|
Abstract
Evidence accumulated over the last two decades indicates important actions for prolactin (PRL) in regulation of several functions of the immune system. That PRL can serve to facilitate immune cell proliferation is well established. In addition, PRL appears to play a salient role in the genesis and/or potentiation of certain autoimmune diseases. Recent evidence from several laboratories has extended the spectrum of PRL actions in immunological systems to include regulation of lymphocyte pool size through the process of apoptosis. Experimental results obtained using lactogen-dependent rat pre-T cell lines, the Nb2 lymphoma, have demonstrated that PRL suppresses cell death mechanisms activated by cytokine/hormone deprivation and cytotoxic drugs such as glucocorticoids. In this paper, we review results from studies conducted to investigate the mechanism(s) underlying PRL-regulated apoptosis suppression. Effects of the hormone on expression of apoptosis-associated genes of the Bcl-2 family as well as the protooncogene pim-1 in proliferating Nb2 sublines and in cells exposed to apoptotic stimuli are presented. It is concluded that PRL-mediated apoptosis suppression in immune cells reflects a complex interaction among several gene products.
Collapse
Affiliation(s)
- A R Buckley
- College of Pharmacy, Department of Molecular and Cellular Physiology, University of Cincinnati Medical Center, 3223 Eden Avenue, P.O. Box 670004, Cincinnati, OH 45267-0004, USA.
| | | |
Collapse
|
34
|
Abstract
Prolactin (PRL) and growth hormone (GH) are members of the somatolactogenic hormone family, the pleiotropic actions of which are necessary for vertebrate growth and mammary differentiation. The basis for the specific function of these hormones has remained uncertain; however, their action is associated with internalization and translocation into the nucleus. A yeast two-hybrid screen identified an interaction between PRL and cyclophilin B (CypB), a peptidyl prolyl isomerase (PPI) found in the endoplasmic reticulum (ER), extracellular space, and nucleus. The interaction between CypB and PRL/GH was confirmed in vitro and in vivo through the use of recombinant proteins and coimmunoprecipitation studies. The exogenous addition of CypB potentiated the proliferation of PRL- and GH-dependent cell lines 18- and 40-fold, respectively. The potentiation of PRL action by CypB was accompanied by a dramatic increase in the nuclear retrotranslocation of PRL. Immunogold electron microscopy has revealed this retrotransport to occur via a vesicular pathway. A CypB mutant, termed CypB-NT, was generated that lacked the putative wild-type N-terminal nuclear localization sequence. Although CypB-NT demonstrated levels of PRL binding and PPI activity equivalent to wild-type CypB, it was incapable of mediating the nuclear retrotranslocation of PRL or enhancing PRL-driven proliferation. These studies reveal CypB as an important chaperone facilitating the nuclear retrotransport and action of the somatolactogenic hormone family.
Collapse
Affiliation(s)
- M A Rycyzyn
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, 510 Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
35
|
Visser HP, Gunster MJ, Kluin-Nelemans HC, Manders EM, Raaphorst FM, Meijer CJ, Willemze R, Otte AP. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br J Haematol 2001; 112:950-8. [PMID: 11298590 DOI: 10.1046/j.1365-2141.2001.02641.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycomb group (PcG) proteins are involved in the stable transmittance of the repressive state of their gene targets throughout the cell cycle. Mis-expression of PcG proteins can lead to proliferative defects and tumorigenesis. There are two separate multimeric PcG protein complexes: an EED-EZH2-containing complex and a BMI1-RING1-containing complex. In the normal human follicle mantle, both PcG complexes have mutually exclusive expression patterns. BMI1-RING1 is expressed, but EZH2-EED is not. Here, we studied the expression of both complexes in six cases of mantle cell lymphoma (MCL), which is derived from the follicle mantle. MCL cells can be cultured in vitro and stimulated to proliferation. We found that resting MCL cells expressed BMI1-RING1, but not EZH2-EED, like normal mantle cells. Proliferating MCL cells, however, showed strongly enhanced expression of EZH2. Also, BMI1 and RING1 continued to be expressed in proliferating MCL. This is the first demonstration that EZH2 expression can be upregulated in fresh lymphoma cells. To test whether the enhanced EZH2 expression was causal for the increased proliferation in MCL, we overexpressed EZH2 in two different cell lines. In the B cell-derived Ramos cell line, EZH2 overexpression caused an increase in the proliferation rate. This suggests a possible causal effect between EZH2 upregulation and increased proliferation in haematopoietic cells.
Collapse
Affiliation(s)
- H P Visser
- Department of Haematology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Clevenger CV, Rycyzyn MA. Translocation and action of polypeptide hormones within the nucleus. Relevance to lactogenic transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 480:77-84. [PMID: 10959412 DOI: 10.1007/0-306-46832-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The action of polypeptide hormones at the cell surface as mediated by transmembrane receptors is well recognised. However, a growing body of evidence also indicates that such hormones are also translocated and act directly within the cell nucleus. This chapter will overview what is known of the action of one such example, namely prolactin (PRL), from its classic action at the cell surface, to its novel function within the nucleus.
Collapse
Affiliation(s)
- C V Clevenger
- Department of Pathology, University of Pennsylvania Medical Center, Philadelphia, USA
| | | |
Collapse
|
37
|
Krumenacker JS, Narang VS, Buckley DJ, Buckley AR. Prolactin signaling to pim-1 expression: a role for phosphatidylinositol 3-kinase. J Neuroimmunol 2001; 113:249-59. [PMID: 11164909 DOI: 10.1016/s0165-5728(00)00430-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sublines of the lactogen-dependent, rat pre-T Nb2 lymphoma are useful as a model for the investigation of prolactin (PRL) signaling mechanisms, regulation of transcription of target genes, and the immunomodulatory and anti-apoptotic actions of the hormone in T lymphocytes. In the present study, coupling of various tyrosine, serine/threonine, and phospholipid kinase signaling mechanisms to PRL-stimulated Nb2-11 cell proliferation and expression of the protooncogene, pim-1, was investigated utilizing pharmacologic antagonists of a broad spectrum of tyrosine kinases (tyrphostin A25), and the specific enzymes, Jak2 (tyrphostin B42) and ZAP-70 (piceatannol), as well as mitogen-activated protein kinase (MAPK, PD98059), protein kinase C (PKC, calphostin C), and phosphatidylinositol 3-kinase (PI3-kinase, LY294002). Inhibition of each pathway attenuated PRL-stimulated Nb2-11 cell proliferation in a concentration-dependent manner. Blockade of MAPK was the least efficacious; it inhibited proliferation maximally by 60%. Northern blot analysis of pim-1 expression in antagonist-treated cells revealed that MAPK, Jak2 and PI3-kinase appeared to signal to initiation of pim-1 transcription; its expression was attenuated by each of the antagonists. In other experiments, PRL was shown to rapidly activate a downstream effector of PI3-kinase, Akt, and this effect was also blocked by LY294002. It is concluded that PRL-stimulated Nb2 cell proliferation requires participation of each of the signaling pathways investigated. Moreover, hormone-mediated expression of pim-1 appears to reflect signaling by MAPK, Jak2, and PI3-kinase.
Collapse
Affiliation(s)
- J S Krumenacker
- College of Pharmacy and Department of Molecular and Cellular Physiology, University of Cincinnati Medical Center, 3223 Eden Avenue, P.O. Box 670004, Cincinnati, OH 45267-0004, USA
| | | | | | | |
Collapse
|
38
|
Gulli MP, Peter M. Temporal and spatial regulation of Rho-type guanine-nucleotide exchange factors: the yeast perspective. Genes Dev 2001; 15:365-79. [PMID: 11230144 DOI: 10.1101/gad.876901] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M P Gulli
- Swiss Institute for Experimental Cancer Research (ISREC), 1066 Epalinges/VD, Switzerland
| | | |
Collapse
|
39
|
Cocco L, Martelli AM, Gilmour RS, Rhee SG, Manzoli FA. Nuclear phospholipase C and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1530:1-14. [PMID: 11341954 DOI: 10.1016/s1388-1981(00)00169-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- L Cocco
- Cellular Signaling Laboratory, Department of Anatomical Sciences and Skeletal Muscle Pathophysiology, University of Bologna, Italy.
| | | | | | | | | |
Collapse
|
40
|
Clevenger CV, Rycyzyn MA, Syed F, Kline JB. Prolactin Receptor Signal Transduction. PROLACTIN 2001. [DOI: 10.1007/978-1-4615-1683-5_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Olazabal I, Muñoz J, Ogueta S, Obregón E, García-Ruiz JP. Prolactin (PRL)-PRL receptor system increases cell proliferation involving JNK (c-Jun amino terminal kinase) and AP-1 activation: inhibition by glucocorticoids. Mol Endocrinol 2000; 14:564-75. [PMID: 10770493 DOI: 10.1210/mend.14.4.0442] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PRL receptor (PRLR) signal transduction supports PRL-induced growth/differentiation processes. While PRL is known to activate Jak2-Stat5 (signal transducer and activator of transcription 5) signaling pathway, the mechanism by which cell proliferation is stimulated is less known. We show that PRL induces proliferation of bovine mammary gland epithelial cells and AP-1 site activation. Using PRLR mutants and the PRLR short form, we have found that both homodimerization of PRLR wild type and the integrity of box-1 and C-distal tyrosine of PRLR intracellular domain are needed in PRL-induced proliferation and AP-1 activation. The effect of PRL has been assayed in the presence of dexamethasone (Dex), insulin, and alone. We found that Dex negatively regulates PRL-induced proliferation and AP-1 site activation. We demonstrate that PRL exerts activation of AP-1 transcriptional complex, and the mechanism by which this activation is produced is also studied. We show that PRL induces an increase in the c-Jun content of AP-1 transcriptional complexes. The PRL-induced c-Jun of AP-1 transcriptional complex diminishes in the presence of Dex in a dose-dependent manner. Dex inhibition was reversed by the higher concentration of PRL added to cells. Despite the fact that the regulation of the AP-1 site is complex, we found that PRL activates the c-Jun amino terminal kinase (JNK), while glucocorticoid prevents this JNK activation. These data support a regulation of cellular growth by PRL-PRLR system by increasing AP-1 transcriptional complex activity via JNK activation. JNK activation can be repressed by glucocorticoid in a DNA-binding-independent manner.
Collapse
Affiliation(s)
- I Olazabal
- Departamento de Biología Molecular-Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- X R Bustelo
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| |
Collapse
|
43
|
McAveney KM, Book ML, Ling P, Chebath J, Yu-Lee L. Association of 2',5'-oligoadenylate synthetase with the prolactin (PRL) receptor: alteration in PRL-inducible stat1 (signal transducer and activator of transcription 1) signaling to the IRF-1 (interferon-regulatory factor 1) promoter. Mol Endocrinol 2000; 14:295-306. [PMID: 10674401 DOI: 10.1210/mend.14.2.0421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The PRL receptor (PRL-R) signals through the Janus tyrosine kinases (JAK) and other non-JAK tyrosine kinases, some of which are preassociated with the PRL-R. To clone PRL-R interacting proteins, the intracellular domain (ICD) of the long form of the PRL-R was used in a yeast two-hybrid screen of a human B cell cDNA library. One PRL-R interacting protein was identified as the 42-kDa form of the enzyme 2',5'-oligoadenylate synthetase (OAS). The in vivo interactions in yeast were further confirmed by an in vitro interaction assay and by coimmunoprecipitation in transfected mammalian cells. Functionally, OAS reduced the basal activity of two types of promoters in transiently transfected COS-1 cells. In the presence of PRL, OAS inhibited PRL induction of the immediate early IRF-1 (interferon-regulatory factor 1) promoter, but not PRL induction of the differentiation-specific beta-casein promoter, suggesting that OAS exerts specific effects on immediate early gene promoters. The inhibitory effects of OAS were accompanied by a reduction in PRL-inducible Stat1 (signal transducer and activator of transcription 1) DNA binding activity at the IRF-1 GAS (interferon-gamma-activated sequence) element. These results demonstrate a novel interaction of OAS with the PRL-R and suggest a role for OAS in modulating Stat1-mediated signaling to an immediate early gene promoter. Although previously characterized as a regulator of ribonuclease (RNase) L antiviral responses, OAS may have additional effects on cytokine receptor signal transduction pathways.
Collapse
Affiliation(s)
- K M McAveney
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3411, USA
| | | | | | | | | |
Collapse
|
44
|
Goupille O, Barnier JV, Guibert B, Paly J, Djiane J. Effect of PRL on MAPK activation: negative regulatory role of the C-terminal part of the PRL receptor. Mol Cell Endocrinol 2000; 159:133-46. [PMID: 10687859 DOI: 10.1016/s0303-7207(99)00197-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Prolactin induces cell proliferation and cell differentiation through well-known MAPK Erk, and JAK2/STAT5 pathways depending on the cell line. The aim of the present study was to delineate the functional domains of the PRL receptor involved in PRL induced MAPK regulation. Using various PRL-R mutants of the cytoplasmic domain we found, that the membrane proximal domain is necessary for PRL induced MAPK activation and that the C-terminal part of the receptor exerts a negative regulatory role. A pharmacological approach, using different types of inhibitors, provided evidence that PRL induced MAPK activation requires both a MEK dependent pathway and a PI3K dependent pathway. The negative regulation induced by the carboxy-terminal part of the receptor involves a combination of tyrosine phosphatases and serine/threonine phosphatases as concluded from the actions of the phosphatase inhibitors: pervanadate, PAO and okadaic acid. The mechanism by which these phosphatases are recruited or are induced by the last 141 cytoplasmic residues of the receptor remains to be determined. Finally the negative regulatory role of the carboxy-terminal part of the receptor, first demonstrated in the present study, is discussed in terms of the regulation of different effects of PRL on growth and differentiation.
Collapse
Affiliation(s)
- O Goupille
- Unité d'Endocrinologie Moléculaire, I.N.R.A., Jouy en Josas, France
| | | | | | | | | |
Collapse
|
45
|
Micouin A, Wietzerbin J, Steunou V, Martyré MC. p95(vav) associates with the type I interferon (IFN) receptor and contributes to the antiproliferative effect of IFN-alpha in megakaryocytic cell lines. Oncogene 2000; 19:387-94. [PMID: 10656686 DOI: 10.1038/sj.onc.1203314] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The vav proto-oncogene product is a 95 kDa protein predominantly expressed in hematopoietic cells. Vav presents a wide range of functional domains, including structural domains known to be involved in signal transduction. Triggering of various cytokine receptors among which type I interferon receptor induces a rapid and transient tyrosine phosphorylation of p95(vav). Nevertheless, the biological functions of p95(vav) are still unclear. This report is the first documentation on the physical association of p95(vav) with both alpha and beta type I interferon receptor chains, as demonstrated by co-immunoprecipitation and Western blot analysis in megakaryocytic cells (Dami and UT7). This interaction is increased by interferon-alpha/beta stimulation. Moreover, p95(vav) phosphorylated subsequently to type I interferon treatment, is translocated in the nucleus; a concomitant increase of its association with the regulatory subunit of the nuclear DNA-dependent protein kinase, KU-70 is observed in the nucleus. To determine whether p95(vav) participates in the biological response to type I interferons, we studied the effects of non modified Vav oligodeoxynucleotides on the antiproliferative effect of interferon-alpha on megakaryocytic cells. By this oligodeoxynucleotide strategy, we show that p95(vav) contributes greatly to the cell proliferation inhibition induced by type I IFN.
Collapse
Affiliation(s)
- A Micouin
- Unité 365 INSERM, Institut Curie, Section Recherche, Paris, France
| | | | | | | |
Collapse
|
46
|
Fresno Vara JA, Carretero MV, Gerónimo H, Ballmer-Hofer K, Martín-Pérez J. Stimulation of c-Src by prolactin is independent of Jak2. Biochem J 2000; 345 Pt 1:17-24. [PMID: 10600634 PMCID: PMC1220725 DOI: 10.1042/0264-6021:3450017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interaction of prolactin (PRL) with its receptor (PRLR) leads to activation of Jak and Src family tyrosine kinases. The PRL/growth hormone/cytokine receptor family conserves a proline-rich sequence in the cytoplasmic juxtamembrane region (Box 1) required for association and subsequent activation of Jaks. In the present work, we studied the mechanisms underlying c-Src kinase activation by PRL and the role that Jak2 plays in this process. PRL addition to chicken embryo fibroblasts (CEF) expressing the rat PRLR long form resulted in activation of c-Src and Jak2 and in tyrosine phosphorylation of the receptor. Receptor phosphorylation was due to associated Jak2, since in cells expressing either a Box 1 mutated PRLR (PRLR(4P-A)), which is unable to interact with Jak2, or a kinase-domain-deleted Jak2 (Jak2Deltak), PRL did not stimulate receptor phosphorylation. Interestingly, addition of PRL to cells expressing PRLR(4P-A) resulted in an activation of c-Src equivalent to that observed with the wild-type receptor. These findings indicate that PRL-mediated stimulation of c-Src was independent of Jak2 activation and of receptor phosphorylation. Our results suggest that PRL-activated Src could send signals to downstream cellular targets independently of Jak2.
Collapse
Affiliation(s)
- J A Fresno Vara
- Instituto de Investigaciones Biomédicas, C.S.I.C., Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
47
|
Goffin V, Binart N, Clément-Lacroix P, Bouchard B, Bole-Feysot C, Edery M, Lucas BK, Touraine P, Pezet A, Maaskant R, Pichard C, Helloco C, Baran N, Favre H, Bernichtein S, Allamando A, Ormandy C, Kelly PA. From the molecular biology of prolactin and its receptor to the lessons learned from knockout mice models. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1999; 15:189-201. [PMID: 10596761 DOI: 10.1016/s1050-3862(99)00025-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Prolactin (PRL), a polypeptide hormone secreted mainly by the pituitary and, to a lesser extent, by peripheral tissues, affects more physiological processes than all other pituitary hormones combined since it is involved in > 300 separate functions in vertebrates. Its main actions are related to lactation and reproduction. The initial step of PRL action is the binding to a specific membrane receptor, the PRLR, which belongs to the class 1 cytokine receptor superfamily. PRL-binding sites have been identified in a number of tissues and cell types in adult animals. Signal transduction by this receptor is mediated, at least in part, by two families of signaling molecules: Janus tyrosine kinases and signal transducers and activators of transcription (STATs). Disruption of the PRLR gene has provided a new mouse model with which to identify actions directly associated with PRL or any other PRLR ligands, such as placental lactogens. To date, several different phenotypes have been analyzed and are briefly described in this review. Coupled with the SAGE technique, this PRLR knockout model is being used to qualitatively and quantitatively evaluate the expression pattern of hepatic genes in two physiological situations: transcriptomes corresponding to livers from both wild type and PRLR KO mice are being compared, and following statistical analyses, candidate genes presenting a differential profile will be further characterized. Such a new approach will undoubtedly open future avenues of research for PRL targets. To date, no pathology linked to any mutation in the genes encoding PRL or its receptor have been identified. The development of genetic models provides new opportunities to understand how PRL can participate to the development of pathologies throughout life, as for example the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- V Goffin
- INSERM Unité 344-Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gold MR. Intermediary signaling effectors coupling the B-cell receptor to the nucleus. Curr Top Microbiol Immunol 1999; 245:77-134. [PMID: 10533311 DOI: 10.1007/978-3-642-57066-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
49
|
Kranewitter WJ, Gimona M. N-terminally truncated Vav induces the formation of depolymerization-resistant actin filaments in NIH 3T3 cells. FEBS Lett 1999; 455:123-9. [PMID: 10428485 DOI: 10.1016/s0014-5793(99)00857-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Dbl family proto-oncogene vav is a guanine nucleotide exchange factor (GEF) for Rho family GTPases. Deletion of the N-terminus of Vav, harboring the single calponin homology (CH) domain, activates Vav's transforming potential, suggesting an important role of the CH domain in influencing Vav function. Since calponin binds actin, it has been suggested that the CH domain may mediate association with the actin cytoskeleton. In this study we have analyzed the subcellular localization and investigated the putative actin association of the Vav protein using enhanced green fluorescent protein (EGFP) fusion constructs. Our data show that both EGFP-tagged full length Vav and the CH domain-depleted EGFPvav 143-845 construct localize throughout the cytoplasm but fail to colocalize with F-actin. However, the latter construct of Vav was more strongly retained in the Triton-insoluble cytoskeleton fraction than full length Vav. Whereas removal of the CH domain had no apparent influence on the subcellular localization of Vav, deletion of the SH domains caused nuclear localization, indicating that Vav contains a functional nuclear localization signal. Expression of N-terminally truncated Vav constructs caused depolarization of fibroblasts and triggered the bundling of actin stress fibers into parallel arrays in NIH 3T3 cells. Notably, the parallel actin bundles showed prolonged resistance to the actin polymerization antagonists cytochalasin B and latrunculin B. These data point towards a regulatory role for the CH domain in Vav and suggest an actin cross-linking or bundling protein as a downstream effector molecule of vav-mediated signalling pathways.
Collapse
Affiliation(s)
- W J Kranewitter
- Institute of Molecular Biology, Department of Cell Biology, Austrian Academy of Sciences, Salzburg
| | | |
Collapse
|
50
|
Salojin KV, Zhang J, Delovitch TL. TCR and CD28 Are Coupled Via ZAP-70 to the Activation of the Vav/Rac-1-/PAK-1/p38 MAPK Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
CD28 costimulation amplifies TCR-dependent signaling in activated T cells, however, the biochemical mechanism(s) by which this occurs is not precisely understood. The small GTPase Rac-1 controls the catalytic activity of the mitogen-activated protein kinases (MAPKs) and cell cycle progression through G1. Rac-1 activation requires the phospho-tyrosine (p-Tyr)-dependent recruitment of the Vav GDP releasing factor (GRF) to the plasma membrane and assembly of GTPase/GRF complexes, an event critical for Ag receptor-triggered T cell activation. Here, we show that TCR/CD28 costimulation synergistically induces Rac-1 GDP/GTP exchange. Our findings, obtained by using ZAP-70-negative Jurkat T cells, indicate that CD28 costimulation augments TCR-mediated T cell activation by increasing the ZAP-70-mediated Tyr phosphorylation of Vav. This event regulates the Rac-1-associated GTP/GDP exchange activity of Vav and downstream pathway(s) leading to PAK-1 and p38 MAPK activation. CD28 amplifies TCR-induced ZAP-70 activity and association of Vav with ZAP-70 and linker for activation of T cells (LAT). These results favor a model in which ZAP-70 regulates the intersection of the TCR and CD28 signaling pathways, which elicits the coupling of TCR and CD28 to the Rac-1, PAK-1, and p38 MAPK effector molecules.
Collapse
Affiliation(s)
| | - Jian Zhang
- *Autoimmunity/Diabetes Group, The John P. Robarts Research Institute, and
| | - Terry L. Delovitch
- *Autoimmunity/Diabetes Group, The John P. Robarts Research Institute, and
- †Departments of Microbiology, Immunology, and Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|