1
|
Hu S, Togo J, Wang L, Wu Y, Yang D, Xu Y, Li L, Li B, Li M, Li J, Wang G, Zhang X, Niu C, Mazidi M, Douglas A, Speakman JR. Effects of dietary macronutrients and body composition on glucose homeostasis in mice. Natl Sci Rev 2020; 8:nwaa177. [PMID: 34691555 PMCID: PMC8288336 DOI: 10.1093/nsr/nwaa177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022] Open
Abstract
As a major health issue, obesity is linked with elevated risk of type 2 diabetes. However, whether disrupted glucose homeostasis is due to altered body composition alone, or whether dietary macronutrients play an additional role, independent of their impact on body composition, remains unclear. We investigated the associations between macronutrients, body composition, blood hormones and glucose homeostasis. We fed C57BL/6N mice 29 different diets with variable macronutrients for 12 weeks. After 10 weeks, intraperitoneal glucose tolerance tests were performed. Generalized linear models were generated to evaluate the impacts of macronutrients, body composition and blood hormones on glucose homeostasis. The area under the glucose curve (AUC) was strongly associated with body fat mass, but not dietary macronutrients. AUC was significantly associated with fasting insulin levels. Six genes from transcriptomic analysis of epididymal white adipose tissue and subcutaneous white adipose tissue were significantly associated with AUC. These genes may encode secreted proteins that play important previously unanticipated roles in glucose homeostasis.
Collapse
Affiliation(s)
- Sumei Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jacques Togo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingga Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanchao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianbo Li
- School of Basic Medical Sciences, University of Dali, Dali 671000, China
| | - Guanlin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueying Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaoqun Niu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mohsen Mazidi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
White MJ, Kodaman NM, Harder RH, Asselbergs FW, Vaughan DE, Brown NJ, Moore JH, Williams SM. Genetics of Plasminogen Activator Inhibitor-1 (PAI-1) in a Ghanaian Population. PLoS One 2015; 10:e0136379. [PMID: 26322636 PMCID: PMC4556460 DOI: 10.1371/journal.pone.0136379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022] Open
Abstract
Plasminogen activator inhibitor 1 (PAI-1), a major modulator of the fibrinolytic system, is an important factor in cardiovascular disease (CVD) susceptibility and severity. PAI-1 is highly heritable, but the few genes associated with it explain only a small portion of its variation. Studies of PAI-1 typically employ linear regression to estimate the effects of genetic variants on PAI-1 levels, but PAI-1 is not normally distributed, even after transformation. Therefore, alternative statistical methods may provide greater power to identify important genetic variants. Additionally, most genetic studies of PAI-1 have been performed on populations of European descent, limiting the generalizability of their results. We analyzed >30,000 variants for association with PAI-1 in a Ghanaian population, using median regression, a non-parametric alternative to linear regression. Three variants associated with median PAI-1, the most significant of which was in the gene arylsulfatase B (ARSB) (p = 1.09 x 10−7). We also analyzed the upper quartile of PAI-1, the most clinically relevant part of the distribution, and found 19 SNPs significantly associated in this quartile. Of note an association was found in period circadian clock 3 (PER3). Our results reveal novel associations with median and elevated PAI-1 in an understudied population. The lack of overlap between the two analyses indicates that the genetic effects on PAI-1 are not uniform across its distribution. They also provide evidence of the generalizability of the circadian pathway’s effect on PAI-1, as a recent meta-analysis performed in Caucasian populations identified another circadian clock gene (ARNTL).
Collapse
Affiliation(s)
- Marquitta J. White
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Nuri M. Kodaman
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Reed H. Harder
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Folkert W. Asselbergs
- Department Heart & Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
- Institute of Cardiovascular Science, University College London, 222 Euston Road, London, United Kingdom
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| | - Douglas E. Vaughan
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Nancy J. Brown
- Department of Medicine Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jason H. Moore
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Scott M. Williams
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
3
|
Zhang H, Ren Y, Pang D, Liu C. Clinical implications of AGBL2 expression and its inhibitor latexin in breast cancer. World J Surg Oncol 2014; 12:142. [PMID: 24884516 PMCID: PMC4069086 DOI: 10.1186/1477-7819-12-142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 04/20/2014] [Indexed: 11/29/2022] Open
Abstract
Background We investigated the expression status of AGBL2 and its inhibitor latexin in breast cancer stem cells and its clinical implications in order to lay a foundation for managing breast cancer. Methods CD44+/CD24- tumor cells (CSC) from clinical specimens were sorted using flow cytometry. AGBL2 expression status was detected in CSC and 126 breast cancer specimens by western blot and immunohistochemistry staining. The relationship between the AGBL2 protein and clinicopathological parameters and prognosis was subsequently determined. Result As a result, CSC are more likely to generate new tumors in mice and cell microspheres that are deficient in non-obese diabetic/severe combined immunodeficiency mice (NOD/SCID) compared to the control group. The AGBL2 protein was expressed higher in CSC induced to epithelial to mesenchymal transition (EMT) when compared to the control cells, and was found to be related to CSC chemotherapy resistance. After Spearman regression correlation analysis, AGBL2 was observed to be related to clinical stage, histological stage, and lymph node metastasis. In the Cox regression test, the AGBL2 protein was detected as an independent prognostic factor. Through immunoprecipitation, AGBL2 and latexin could form immune complexes. Conclusions These results demonstrate that AGBL2 is a latexin-interacting protein that regulates the tubulin tyrosination cycle and is a potential target for intervention.
Collapse
Affiliation(s)
| | | | | | - Caigang Liu
- Department of Breast Surgery, Second hospital of Dalian Medical University, Zhongshan Road, Dalian 116023, People's Republic of China.
| |
Collapse
|
4
|
Pereira HJV, Souza LL, Costa-Neto CM, Salgado MCO, Oliveira EB. Carboxypeptidases A1 and A2 from the perfusate of rat mesenteric arterial bed differentially process angiotensin peptides. Peptides 2012; 33:67-76. [PMID: 22178042 DOI: 10.1016/j.peptides.2011.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/01/2011] [Accepted: 12/01/2011] [Indexed: 01/24/2023]
Abstract
Here we report the isolation of carboxypeptidases A1 and A2 (CPA1 and CPA2) from the rat mesenteric arterial bed perfusate, which were found to be identical with their pancreatic counterparts. Angiotensin (Ang) I, Ang II, Ang-(1-9) and Ang-(1-12) were differentially processed by these enzymes, worthy mentioning the peculiar CPA1-catalyzed conversion of Ang II to Ang-(1-7) and the CPA2-mediated formation of Ang I from Ang-(1-12). We detected gene transcripts for CPA1 and CPA2 in mesentery and other extrapancreatic tissues, indicating that these CPAs might play a role in the renin-angiotensin system in addition to their functions as digestive enzymes.
Collapse
Affiliation(s)
- Hugo J V Pereira
- University of São Paulo, Faculty of Medicine of Ribeirão Preto, Department of Biochemistry and Immunology Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | | | |
Collapse
|
5
|
Sahab ZJ, Hall MD, Me Sung Y, Dakshanamurthy S, Ji Y, Kumar D, Byers SW. Tumor suppressor RARRES1 interacts with cytoplasmic carboxypeptidase AGBL2 to regulate the α-tubulin tyrosination cycle. Cancer Res 2011; 71:1219-28. [PMID: 21303978 DOI: 10.1158/0008-5472.can-10-2294] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Even though it is among the most commonly methylated loci in multiple cancers, the retinoic acid-induced tumor suppressor retinoic acid receptor responder 1 (RARRES1) has no known function. We now show that RARRES1 is lost in many cancer cells, particularly those with a mesenchymal phenotype, and is a transmembrane carboxypeptidase inhibitor that interacts with ATP/GTP binding protein-like 2 (AGBL2), a cytoplasmic carboxypeptidase. Knockdown of AGBL2 results in a failure of the cell to detyrosinate the C-terminal EEY region of α-tubulin and indicates that it is a candidate for the long sought-after tubulin tyrosine carboxypeptidase important in the regulation of microtubule dynamics. In contrast, knockdown of RARRES1 increases the level of detyrosinated α-tubulin consistent with a role as the cognate inhibitor of AGBL2. We conclude that RARRES1, its interacting partners AGBL2, Eg5/KIF11, another EEY-bearing protein (EB1), and the microtubule tyrosination cycle are important in tumorigenesis and identify a novel area for therapeutic intervention.
Collapse
Affiliation(s)
- Ziad J Sahab
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Canatan H. The effect of cardiac ischemic preconditioning on rat left ventricular gene expression profile. Cell Biochem Funct 2008; 26:179-84. [PMID: 17562528 DOI: 10.1002/cbf.1425] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ischemic preconditioning (IPC) is a phenomenon where heart is rendered more resistant to subsequent ischemia-reperfusion (I-R)-induced injury by one or more brief episodes of I-R. The mechanisms responsible for cardio-protective effects of IPC are not well characterized. The objective of the study was to characterize gene expression profiles in the left ventricle of male Wistar rat hearts exposed to I-R or IPC followed by I-R. Group 1 included hearts that were only perfused for 30 min. Group 2 included hearts that underwent 30 min perfusion followed by 40 min I and 30 min R. Group 3 comprised 30 min perfused hearts that were subjected to IPC (5 min I + 10 min R + 5 min I + 10 min R) followed by I-R. Total RNAs were isolated from left ventricular tissues. Codelink gene expression system (GE Healthcare) was used for cRNA target preparation, hybridization of microarrays (Rat UniSet 10 K CodeLink bioarrays, GE Healthcare) and detection. Microarrays were scanned with Affymetrix 428 Array scanner. Data analyses were carried out with GeneSifter microarray data analysis software. We determined a total of 140 transcripts (> or =2-fold change) whose expressions were changed (44 up-regulated and 96 down-regulated) accompanying to I-R injury compared to perfused only hearts. Twenty-three transcripts including Ryr3, Crk, Dio1, Npy1r, Ptpra, Cyp51 that were down-regulated by I-R injury, were up-regulated by cardiac IPC. IPC down-regulated the expression of several transcripts including Atf3 (activating transcription factor 3), carboxypeptidase A1 (Cpa1), Slc38a4, Blk which were up-regulated by I-R. In conclusion, evaluation of global gene expression profiling via microarray-based technologies provides a molecular portrait of cardiac IPC of the left ventricular tissue of rat heart.
Collapse
Affiliation(s)
- Halit Canatan
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| |
Collapse
|
8
|
Hirano M, Rakwal R, Shibato J, Sawa H, Nagashima K, Ogawa Y, Yoshida Y, Iwahashi H, Niki E, Masuo Y. Proteomics- and transcriptomics-based screening of differentially expressed proteins and genes in brain of Wig rat: a model for attention deficit hyperactivity disorder (ADHD) research. J Proteome Res 2008; 7:2471-89. [PMID: 18457438 DOI: 10.1021/pr800025t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two global omics approaches were applied to develop an inventory of differentially expressed proteins and genes in Wig rat, a promising animal model of attention-deficit hyperactivity disorder (ADHD). The frontal cortex, striatum, and midbrain of Wig rat at 4 weeks of age were dissected for proteomics and transcriptomics analyses. Two-dimensional gel electrophoresis detected 13, 1, and 16 differentially expressed silver nitrate-stained spots in the frontal cortex, striatum, and midbrain, respectively. Peptide mass fingerprinting/tandem mass spectrometry identified 19 nonredundant proteins, belonging to 7 functional categories, namely, signal transduction, energy metabolism, cellular transport, protein with binding function, protein synthesis, cytoskeleton, and cell rescue. Interestingly, 10 proteins that were indentified in the present study were also previously reported in studies involving neurodegenerative diseases and psychiatric disorders, such as Alzheimer's disease (AD), Parkinson's disease, and Schizophrenia. Moreover, some of the proteins identified in the midbrain were involved in synaptic vesicular transport, suggesting abnormality in neurotransmitter release in this region. On the other hand, transcriptomics analysis of combined frontal cortex, striatum, and midbrain by rat whole genome 44K DNA oligo microarray revealed highly up-regulated (28) and down-regulated (33) genes. Functional categorization of these genes showed cellular transport, metabolism, protein fate, signal transduction, and transcription as the major categories, with 26% genes of unknown function. Some of the identified genes were related to AD, fragile X syndrome, and ADHD. This is a first comprehensive study providing insight into molecular components in Wig rat brain, and will help to elucidate the roles of identified proteins and genes in Wig rat brain, hopefully leading to uncovering the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Misato Hirano
- Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jin M, Ishida M, Katoh-Fukui Y, Tsuchiya R, Higashinakagawa T, Ikegami S, Arimatsu Y. Reduced pain sensitivity in mice lacking latexin, an inhibitor of metallocarboxypeptidases. Brain Res 2006; 1075:117-21. [PMID: 16469302 DOI: 10.1016/j.brainres.2005.12.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/23/2005] [Accepted: 12/27/2005] [Indexed: 11/18/2022]
Abstract
Latexin, the endogenous protein inhibitor of the A/B subfamily of metallocarboxypeptidases, is expressed in small nociceptive neurons in sensory ganglia and in a subset of neurons in the telencephalon. In this study, we generated latexin-deficient mice that exhibited increased tail-flick latency compared to wild-type animals upon noxious heat stimulation. The reduced pain sensitivity in the mutants was rescued by the systemic administration of a plant carboxypeptidase inhibitor that inhibits the A/B subfamily of metallocarboxypeptidases. These findings suggest that latexin is involved in the transmission of pain.
Collapse
Affiliation(s)
- Minghao Jin
- Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo 194-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Fontenele-Neto JD, Kalinina E, Feng Y, Fricker LD. Identification and distribution of mouse carboxypeptidase A-6. ACTA ACUST UNITED AC 2005; 137:132-42. [PMID: 15950771 DOI: 10.1016/j.molbrainres.2005.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/16/2005] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
Carboxypeptidase A-6 (CPA6) was recently discovered in the human genome. To gain information regarding the potential function of this novel protein, the mouse homolog of CPA6 was identified using a combination of bioinformatics and reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, homologs in rat, chicken, and frog were identified using a bioinformatics approach. The distribution of CPA6 mRNA in mouse tissues was examined using RT-PCR and in situ hybridization. A strong RT-PCR signal is detectable in olfactory bulb, and much lower levels are present in other regions such as the cerebral cortex, hippocampus, hypothalamus, striatum, and medulla. In peripheral tissues, a moderate RT-PCR signal is present in epididymis, and low levels are detectable in colon and spleen. The high level of CPA6 in adult mouse brain olfactory bulb was confirmed by in situ hybridization. Lower levels of CPA6 mRNA were found to be present in the cingulate cortex, lateral septum, pontine nucleus, and inferior olivary nucleus of the hindbrain. Within the olfactory bulb, CPA6 mRNA is enriched in the mitral and granular layer. A lower level of CPA6 mRNA is present in the internal and external plexiform layers, and no signal is detectable in the olfactory nerve layer. The distribution was also examined in whole embryos at embryonic day 14.5 and CPA6 mRNA was found to be enriched in eye, ear, osteoblasts, stomach, skin, dorsal root ganglia, and throughout the CNS. The presence of CPA6 mRNA in the rectus muscle layer of the eye at embryonic day 14.5 is consistent with the observation that the CPA6 gene is disrupted in a patient with Duane syndrome, a congenital eye defect. Taken together, the distribution of CPA6 suggests a specific role in a limited number of tissues, and it is possible that this role involves an aspect of cell migration.
Collapse
Affiliation(s)
- Jose D Fontenele-Neto
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
11
|
Pallarès I, Bonet R, García-Castellanos R, Ventura S, Avilés FX, Vendrell J, Gomis-Rüth FX. Structure of human carboxypeptidase A4 with its endogenous protein inhibitor, latexin. Proc Natl Acad Sci U S A 2005; 102:3978-83. [PMID: 15738388 PMCID: PMC554826 DOI: 10.1073/pnas.0500678102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Indexed: 11/18/2022] Open
Abstract
The only endogenous protein inhibitor known for metallocarboxypeptidases (MCPs) is latexin, a 25-kDa protein discovered in the rat brain. Latexin, alias endogenous carboxypeptidase inhibitor, inhibits human CPA4 (hCPA4), whose expression is induced in prostate cancer cells after treatment with histone deacetylase inhibitors. hCPA4 is a member of the A/B subfamily of MCPs and displays the characteristic alpha/beta-hydrolase fold. Human latexin consists of two topologically equivalent subdomains, reminiscent of cystatins, consisting of an alpha-helix enveloped by a curved beta-sheet. These subdomains are packed against each other through the helices and linked by a connecting segment encompassing a third alpha-helix. The enzyme is bound at the interface of these subdomains. The complex occludes a large contact surface but makes rather few contacts, despite a nanomolar inhibition constant. This low specificity explains the flexibility of latexin in inhibiting all vertebrate A/B MCPs tested, even across species barriers. In contrast, modeling studies reveal why the N/E subfamily of MCPs and invertebrate A/B MCPs are not inhibited. Major differences in the loop segments shaping the border of the funnel-like access to the protease active site impede complex formation with latexin. Several sequences ascribable to diverse tissues and organs have been identified in vertebrate genomes as being highly similar to latexin. They are proposed to constitute the latexin family of potential inhibitors. Because they are ubiquitous, latexins could represent for vertebrate A/B MCPs the counterparts of tissue inhibitors of metalloproteases for matrix metalloproteinases.
Collapse
Affiliation(s)
- Irantzu Pallarès
- Institut de Biologia Molecular de Barcelona, Centro de Investigación y Desarrollo-Consejo Superior de Investigaciones Científicas, C/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Bai WZ, Ishida M, Arimatsu Y. Chemically defined feedback connections from infragranular layers of sensory association cortices in the rat. Neuroscience 2004; 123:257-67. [PMID: 14667460 DOI: 10.1016/j.neuroscience.2003.08.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The primary visual (V1), auditory (AI), and somatosensory (SI) cortices are reciprocally connected with their respective sensory association cortices. In the rat, we have previously demonstrated that some of the connections arising from the secondary somatosensory (SII) and parietal insular (PA) cortices and terminating in the SI, are characterized by the expression of latexin, a candidate protein of carboxypeptidase A inhibitor. Here, by using retrograde tracing and latexin-immunohistochemistry, we show that latexin-expressing neurons in other association cortices of different sensory modalities also contribute to the feedback projections to the corresponding primary sensory cortices. These are the lateral part of the secondary visual cortex (V2L), temporal association cortex, and the dorsal and ventral (AIIv) parts of the secondary auditory belt cortex. Within sublayer VIa of the V2L, AIIv and SII, the majority of the V1-, AI- and SI-projecting neurons respectively, are latexin-immunopositive. In contrast to feedback connections, far fewer latexin-expressing neurons participate in callosal or intrahemispheric feedforward connections. The latexin-expressing neurons constitute a virtually completely different population from corticothalamic neurons within the infragranular layers. Given that latexin might participate in the modulation of neuronal activity by controlling the protease activity, latexin-expressing feedback pathways would play a unique role in the modulation of sensory perception.
Collapse
Affiliation(s)
- W-Z Bai
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida-shi, 194-8511, Tokyo, Japan
| | | | | |
Collapse
|
13
|
Yamada T, Mitsuya K, Kayashima T, Yamasaki K, Ohta T, Yoshiura KI, Matsumoto N, Yamada H, Minakami H, Oshimura M, Niikawa N, Kishino T. Imprinting analysis of 10 genes and/or transcripts in a 1.5-Mb MEST-flanking region at human chromosome 7q32. Genomics 2004; 83:402-12. [PMID: 14962666 DOI: 10.1016/j.ygeno.2003.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 08/14/2003] [Indexed: 12/21/2022]
Abstract
MEST is one of the imprinted genes in human. With the assistance of our integration map and the complete sequence in the registry, we mapped a total of 16 genes/transcripts at the 1.5-Mb MEST-flanking region at 7q32. This region has been suggested to form an imprinted gene cluster, because MEST and its three flanking genes/transcripts (MESTIT1, CPA4, and COPG2IT1) were reported to be imprinted, although two (TSGA14 and COPG2) were shown to escape imprinting. In this study, 10 other genes/transcripts were examined for their imprinting status in human fetal tissues. The results indicated that 8 genes/transcripts (NRF1, UBE2H, HSPC216, KIAA0265, FLJ14803, CPA2, CPA1, and DKFZp667F0312) were expressed biallelically. The imprinting status of two (TSGA13 and CPA5) was not conclusive, because of their weak and/or tissue-specific expression and inconstant results. These findings provided evidence that only 4 of the 16 genes/transcripts located to the region show monoallelic expression, while others are not involved in imprinting. Therefore, it is less likely that the MEST-flanking 7q32 region forms a large imprinted domain.
Collapse
Affiliation(s)
- Takahiro Yamada
- Reproductive and Developmental Medicine, Division of Pathophysiological Science, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In this study we demonstrate that carboxypeptidase A (CPA)-like enzyme is expressed in rat kidney. The major metabolites of angiotensin (Ang) I by the rat renal mesangial cell extract at 37 degrees C, pH 7.4, were Ang 1-9 and Ang II. Quinaprilat did not influence the formation of Ang 1-9, but it inhibited formation of Ang II. The formation of Ang 1-9 was inhibited by potato carboxypeptidase inhibitor, 1,10-phenanthroline or EDTA. Lowering the pH from 7.4 to 4.0 also inhibited the formation of this nonapeptide. These findings suggest that a metallocarboxypeptidase is responsible for Ang 1-9 production. Using monoclonal antibodies to CPA, Western blot showed the presence of CPA-like enzyme in the extracts prepared from the mesangial cells or kidney cortex of the rat. Immunohistochemistry showed that CPA-like enzyme is localized in the mesangial glomerular cells and adventitia of kidney blood vessels, whereas it was absent in the renal tubules. Our data suggest that a CPA-like enzyme could be added to a repertoire of enzymes present in the rat mesangial cells and adventitia of renal blood vessels.
Collapse
Affiliation(s)
- Rajko Igić
- Department of Anesthesiology and Pain Management, Room 427DX, 637 S. Wood Street, Chicago, IL 60612 , USA.
| | | | | | | | | |
Collapse
|
15
|
Bentley L, Nakabayashi K, Monk D, Beechey C, Peters J, Birjandi Z, Khayat FE, Patel M, Preece MA, Stanier P, Scherer SW, Moore GE. The imprinted region on human chromosome 7q32 extends to the carboxypeptidase A gene cluster: an imprinted candidate for Silver-Russell syndrome. J Med Genet 2003; 40:249-56. [PMID: 12676894 PMCID: PMC1735416 DOI: 10.1136/jmg.40.4.249] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Imprinted gene(s) on human chromosome 7q32-qter have been postulated to be involved in intrauterine growth restriction associated with Silver-Russell syndrome (SRS) as 7-10% of patients have mUPD(7). Three imprinted genes, MEST, MESTIT1, and COPG2IT1 on chromosome 7q32, are unlikely to cause SRS since epigenetic and sequence mutation analyses have not shown any changes. One hundred kilobases proximal to MEST lies a group of four carboxypeptidase A (CPA) genes. Since most imprinted genes are found in clusters, this study focuses on analysing these CPAs for imprinting effects based on their proximity to an established imprinted domain. Firstly, a replication timing study across 7q32 showed that an extensive genomic region including the CPAs, MEST, MESTIT1, and COPG2IT1 replicates asynchronously. Subsequently, SNP analysis by sequencing RT-PCR products of CPA1, CPA2, CPA4, and CPA5 indicated preferential expression of CPA4. Pyrosequencing was used as a quantitative approach, which confirmed predominantly preferential expression of the maternal allele and biallelic expression in brain. CPA5 expression levels were too low to allow reliable evaluation of allelic expression, while CPA1 and CPA2 both showed biallelic expression. CPA4 was the only gene from this family in which an imprinting effect was shown despite the location of this family of genes next to an imprinted cluster. As CPA4 has a potential role in cell proliferation and differentiation, two preferentially expressed copies in mUPD patients with SRS syndrome would result in excess expression and could alter the growth profiles of these subjects and give rise to intrauterine growth restriction.
Collapse
Affiliation(s)
- L Bentley
- Department of Fetal and Maternal Medicine, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bonora E, Bacchelli E, Levy ER, Blasi F, Marlow A, Monaco AP, Maestrini E. Mutation screening and imprinting analysis of four candidate genes for autism in the 7q32 region. Mol Psychiatry 2002; 7:289-301. [PMID: 11920156 DOI: 10.1038/sj.mp.4001004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2001] [Revised: 09/28/2001] [Accepted: 10/04/2001] [Indexed: 01/09/2023]
Abstract
Genetic studies indicate that chromosome 7q is likely to contain an autism susceptibility locus (AUTS1). We have followed a positional candidate gene approach to identify the relevant gene and report the analysis of four adjacent genes localised to a 800 kb region in 7q32 that contains an imprinted domain: PEG1/MEST, COPG2, CPA1 and CPA5-a previously uncharacterised member of the carboxypeptidase gene family. Screening these genes for DNA changes and association analysis using intragenic single nucleotide polymorphisms (SNPs) provided no evidence for an etiological role in IMGSAC families. We also searched for imprinting mutations potentially implicated in autism: analysis of both DNA methylation and replication timing indicated a normal imprinting regulation of the PEG1/COPG2 domain in blood lymphocytes of all patients tested. The analysis of these four genes strongly suggests that they do not play a major role in autism aetiology, and delineates our strategy to screen additional candidate genes in the AUTS1 locus.
Collapse
Affiliation(s)
- E Bonora
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Ouimet T, Facchinetti P, Rose C, Bonhomme MC, Gros C, Schwartz JC, Tanja O. Neprilysin II: A putative novel metalloprotease and its isoforms in CNS and testis. Biochem Biophys Res Commun 2000; 271:565-70. [PMID: 10814502 DOI: 10.1006/bbrc.2000.2664] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metalloproteases of the M13 subfamily, comprising namely neprylisin (NEP) and endothelin-converting enzyme (ECE), are involved in the metabolism of various neuronal and hormonal peptides, and inhibitors thereof have already led to therapeutically useful agents. Using homology cloning, we have identified a new member of this family in rat tissues. It is a glycosylated, type II integral membrane protein of 774 amino acids, containing a zinc-binding consensus motif, highly homologous to NEP and, therefore, designated NEPII. We have characterized multiple splice variants of NEPII mRNA with distinct expression patterns in brain regions, pituitary and testis. In situ hybridization of testis, where levels of the NEPII gene transcript are the highest, reveals a localization within round spermatids. In brain, NEPII is expressed heterogeneously among several neuronal populations and according to a pattern grossly complementary to that of NEP.
Collapse
Affiliation(s)
- T Ouimet
- Unité de Neurobiologie et Pharmacologie Moléculaire (U109) de L'INSERM, Centre Paul Broca, 2ter rue d'Alésia, Paris, 75014, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Vendrell J, Querol E, Avilés FX. Metallocarboxypeptidases and their protein inhibitors. Structure, function and biomedical properties. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:284-98. [PMID: 10708864 DOI: 10.1016/s0167-4838(99)00280-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Among the different aspects of recent progress in the field of metallocarboxypeptidases has been the elucidation of the three dimensional structures of the pro-segments (in monomeric or oligomeric species) and their role in the expression, folding and inhibition/activation of the pancreatic and pancreatic-like forms. Also of great significance has been the cloning and characterization of several new regulatory carboxypeptidases, enzymes that are related with important functions in protein and peptide processing and that show significant structural differences among them and also with the digestive ones. Many regulatory carboxypeptidases lack a pro-region, unlike the digestive forms or others in between from the evolutionary point of view. Finally, important advances have been made on the finding and characterization of new protein inhibitors of metallocarboxypeptidases, some of them with interesting potential applications in the biotechnological/biomedical fields. These advances are analyzed here and compared with the earlier observations in this field, which was first explored by Hans Neurath and collaborators.
Collapse
Affiliation(s)
- J Vendrell
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències, and Institut de Biologia Fonamental. Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | | | | |
Collapse
|
19
|
Arimatsu Y, Kojima M, Ishida M. Area- and lamina-specific organization of a neuronal subpopulation defined by expression of latexin in the rat cerebral cortex. Neuroscience 1999; 88:93-105. [PMID: 10051192 DOI: 10.1016/s0306-4522(98)00185-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to investigate the density, laminar distribution, size, morphology, and neurotransmitter phenotype of rat cortical neurons expressing latexin, an inhibitor of carboxypeptidase A. Immunohistochemical analyses established that latexin-immunoreactive neurons are restricted essentially to the infragranular layers of lateral cortical areas in the rat. The overall density, laminar or sublaminar localization, and cell size distribution of latexin-positive neurons differed substantially across cytoarchitectonic areas within lateral cortex. Numerous latexin-positive neurons had the morphology of modified pyramidal cells especially of layer VI. The vast majority of latexin-positive neurons were glutamate-immunoreactive in the six lateral neocortical areas examined, while neurons immunoreactive for both latexin and GABA were virtually absent. Thus the majority of latexin-positive neurons are likely to be excitatory projection neurons. The area- and lamina-specific distribution of the latexin-expressing subpopulation of glutamate-immunoreactive neurons is a distinctive feature that may contribute to the functional specialization of the lateral cortical areas.
Collapse
Affiliation(s)
- Y Arimatsu
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | |
Collapse
|
20
|
Takiguchi-Hayashi K, Sato M, Sugo N, Ishida M, Sato K, Uratani Y, Arimatsu Y. Latexin expression in smaller diameter primary sensory neurons in the rat. Brain Res 1998; 801:9-20. [PMID: 9729242 DOI: 10.1016/s0006-8993(98)00496-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most of the smaller diameter neurons of dorsal root and trigeminal ganglia in adult rats expressed latexin, which has the inhibitor activity of carboxypeptidase A. Most of the dorsal root ganglion (DRG) neurons containing either calcitonin gene-related peptide (CGRP), substance P (SP) or somatostatin (SST) coexpressed latexin. Latexin was widely distributed in the cytoplasm of the cell body and in axonal fibers of cultured DRG neurons which were sensitive to capsaicin. In addition, latexin-immunoreactivity was observed throughout lamina II of the spinal cord in normal animals, but was lost following sciatic nerve-axotomy, suggesting the presence of latexin-immunoreactive axonal fibers and/or terminals from DRG neurons. Immunoelectron microscopy indeed revealed latexin-immunoreactive axonal terminals and thinly myelinated and unmyelinated axonal fibers within the dorsal horn. These observations suggest that latexin may be involved in nociceptive information transmission or its modulation.
Collapse
MESH Headings
- Animals
- Antigens/analysis
- Antigens/biosynthesis
- Blotting, Western
- Capsaicin/pharmacology
- Cells, Cultured
- Ganglia, Spinal/chemistry
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Microscopy, Immunoelectron
- Nerve Tissue Proteins
- Neurons, Afferent/chemistry
- Neurons, Afferent/cytology
- Neurons, Afferent/ultrastructure
- Nociceptors/chemistry
- Nociceptors/cytology
- Rats
- Rats, Wistar
- Spinal Cord/cytology
- Spinal Cord/ultrastructure
Collapse
Affiliation(s)
- K Takiguchi-Hayashi
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Reverter D, Ventura S, Villegas V, Vendrell J, Avilés FX. Overexpression of human procarboxypeptidase A2 in Pichia pastoris and detailed characterization of its activation pathway. J Biol Chem 1998; 273:3535-41. [PMID: 9452479 DOI: 10.1074/jbc.273.6.3535] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cDNA of human procarboxypeptidase A2 has been overexpressed in the methylotrophic yeast Pichia pastoris and secreted into the culture medium by means of the alpha-mating factor signal sequence, yielding a major protein of identical size and N-terminal sequence as the wild-type form. Two other forms containing the proenzyme have also been overexpressed: one of them resulted from an incomplete processing of the signal peptide, whereas the other was a glycosylated derivative. Recombinant procarboxypeptidase A2 was purified to homogeneity, and it was shown that its mature active form displays functional properties similar to those of the enzyme directly isolated from human pancreas. The overall yield was approximately 250 mg of proenzyme or 180 mg of mature enzyme/liter of cell culture. The proteolysis-promoted activation process of the recombinant proenzyme has been studied in detail. During maturation by trypsin, the increase in activity of the enzyme is a rapid and monotonic event, which reflects the rate of the proteolytic release of the inhibitory pro-segment and the weaker nature of its interactions with the enzyme moiety compared with procarboxypeptidases of the A1 type. Three main forms of the pro-segment (96, 94, and 92 amino acids), with no inhibitory capability in the severed state, and a single mature carboxypeptidase A2 are produced during this process. No further proteolysis of these pro-segments by the generated carboxypeptidase A2 occurs, in contrast with observations made in other procarboxypeptidases (A1 and B). This differential behavior is a result of the extreme specificity of carboxypeptidase A2.
Collapse
Affiliation(s)
- D Reverter
- Departament de Bioquímica i Biologia Molecular, Unitat de Ciències and the Institut de Biologia Fonamental, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | |
Collapse
|
22
|
Michel A, Nortier J, Humblet A, Paradis C, De Prez E, Deschodt-Lanckman M. Cleavage of atrial natriuretic peptide by a kidney membrane-bound carboxypeptidase A. Peptides 1998; 19:907-12. [PMID: 9663457 DOI: 10.1016/s0196-9781(98)00030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An enzymatic activity that cleaved the C-terminal Tyr of ANP (1-28) was characterized in human kidney microvillar membranes by using 125I-labeled rat ANP as substrate. This activity was inhibited by potato carboxypeptidase inhibitor (PCI) and 1.10 phenanthroline, suggesting that it corresponded to a metallo-carboxypeptidase. Solubilization experiments indicated that the carboxypeptidase activity could be recovered in the supernatant after 1% Triton X-100 extraction. As separation by ion exchange chromatography revealed several peaks of enzyme activity, PCI coupled to Sepharose was used for purification. This step resulted in a single protein band at 30 kDa, as analyzed by SDS-PAGE.
Collapse
Affiliation(s)
- A Michel
- Laboratoire de Chimie Biologique, Université de Mons-Hainaut, Mons, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Weizetfel JC, Smania AM, Barra HS, Argaraña CE. A brain protein (P30) that immunoreacts with a polyclonal anti-pancreatic carboxypeptidase A antibody shows properties that are shared with tubulin carboxypeptidase. Mol Cell Biochem 1997; 170:139-46. [PMID: 9144328 DOI: 10.1023/a:1006801402375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A preparation of tubulin carboxypeptidase partially purified from bovine brain was found to contain a protein of molecular mass 30 kDa (P30) as determined by SDS-PAGE, that is recognized by a polyclonal anti-bovine pancreatic carboxypeptidase A. However, this protein is different from pancreatic carboxypeptidase A as judged by the isoelectric point and the pattern of peptides produced by trypsin digestion. The isoelectric point of P30 was similar to that found for tubulin carboxypeptidase (9 +/- 0.2). When the tubulin carboxypeptidase preparation was subjected to gel filtration chromatography under low salt concentration, P30 behaved as a protein of molecular mass 38 kDa whereas tubulin carboxypeptidase eluted at a position of 75 kDa molecular mass. However, when the chromatography was performed at relatively high salt concentration they behaved as proteins of 49 and 56 kDa, respectively. We considered that P30 may be an inactive monomeric form of the dimeric tubulin carboxypeptidase. However we can not rule out the possibility that it represents another carboxypeptidase not yet described.
Collapse
Affiliation(s)
- J C Weizetfel
- Departmento Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | |
Collapse
|
24
|
Phillips MA, Rutter WJ. Role of the prodomain in folding and secretion of rat pancreatic carboxypeptidase A1. Biochemistry 1996; 35:6771-6. [PMID: 8639628 DOI: 10.1021/bi960113o] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pancreatic carboxypeptidase A1 (CPA1) is synthesized as an inactive precursor, proCPA1, which is processed to the active enzyme by the proteolytic removal of the 95-amino acid N-terminal prodomain. Purified rat proCPA1 is renatured in vitro after denaturation in guanidine or in guanidine plus reducing agents. In contrast, purified CPA1 is not renatured under any of the conditions tested. While proCPA1 is secreted in yeast when fused to the alpha-factor signal sequence in place of its endogenous signal sequence, mature CPA1 is not secreted and is trapped and degraded intracellularly. Thus, in addition to maintaining CPA1 in the inactive state, the prodomain promotes folding and secretion of the proenzyme. Neither of these functions can be restored by supplying the prodomain to CPA1 in trans. The three-dimensional structure of porcine proCPA reveals a number of extensive contacts made between the prodomain and the enzyme active site which account for its inhibitory properties [Guasch et al. (1992) J. Mol. Biol. 224, 141-157]. Among these contacts are salt bridges formed between Arg-71 and Asp-A36 and between Arg-124 and Asp-A89. Mutation of any of these four residues inhibits secretion of proCPA1 from yeast and results in its intracellular degradation. The effect of the mutations on secretion suggests that interactions which stabilize the binding of prodomain to the native enzyme active site may also be important for the successful folding of proCPA1.
Collapse
Affiliation(s)
- M A Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center 75235-9041, USA
| | | |
Collapse
|
25
|
Normant E, Martres MP, Schwartz JC, Gros C. Purification, cDNA cloning, functional expression, and characterization of a 26-kDa endogenous mammalian carboxypeptidase inhibitor. Proc Natl Acad Sci U S A 1995; 92:12225-9. [PMID: 8618874 PMCID: PMC40329 DOI: 10.1073/pnas.92.26.12225] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The recent demonstration of the occurrence in rat brain and other nonpancreatic tissues of carboxypeptidase A (CPA) gene transcripts without associated catalytic activity could be ascribed to the presence of a soluble endogenous protein inhibitor. This tissue carboxypeptidase inhibitor (TCI), detected by the inhibition of added bovine pancreatic CPA, was purified from rat brain. Peptides were obtained by partial proteolysis of purified TCI, a protein of approximately 30 kDa, and starting from their sequences, a full-length cDNA encoding a 223-amino acid protein containing three potential phosphorylation sites was cloned from a cDNA library. Its identity with TCI was shown by expression in Escherichia coli of a recombinant protein recognized by antibodies raised against native TCI and display characteristic CPA-inhibiting activity. TCI appears as a hardly reversible, non-competitive, and potent inhibitor of CPA1 and CPA2 (Ki approximately 3 nM) and mast-cell CPA (Ki = 16 nM) and inactive on various other proteases. This pattern of selectivity might be attributable to a limited homology of a 11-amino acid sequence with sequences within the activation segments of CPA and CPB known to interact with residues within their active sites. The widespread expression of TCI in a number of tissues (e.g., brain, lung, or digestive tract) and its apparently cytosolic localization point to a rather general functional role, e.g., in the control of cytosolic protein degradation.
Collapse
Affiliation(s)
- E Normant
- Unité de Neurobiologie et Pharmacologie (U. 109) de l'Institut National de la Santé et de la Recherche Médicale, Centre Paul Broca, Paris, France
| | | | | | | |
Collapse
|