1
|
Stringer AM, Fitzgerald DM, Wade JT. Mapping the Escherichia coli DnaA-binding landscape reveals a preference for binding pairs of closely spaced DNA sites. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001474. [PMID: 39012340 PMCID: PMC11317965 DOI: 10.1099/mic.0.001474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
DnaA is a widely conserved DNA-binding protein that is essential for the initiation of DNA replication in many bacterial species, including Escherichia coli. Cooperative binding of ATP-bound DnaA to multiple 9mer sites ('DnaA boxes') at the origin of replication results in local unwinding of the DNA and recruitment of the replication machinery. DnaA also functions as a transcription regulator by binding to DNA sites upstream of target genes. Previous studies have identified many sites of direct positive and negative regulation by E. coli DnaA. Here, we use a ChIP-seq to map the E. coli DnaA-binding landscape. Our data reveal a compact regulon for DnaA that coordinates the initiation of DNA replication with expression of genes associated with nucleotide synthesis, replication, DNA repair and RNA metabolism. We also show that DnaA binds preferentially to pairs of DnaA boxes spaced 2 or 3 bp apart. Mutation of either the upstream or downstream site in a pair disrupts DnaA binding, as does altering the spacing between sites. We conclude that binding of DnaA at almost all target sites requires a dimer of DnaA, with each subunit making critical contacts with a DnaA box.
Collapse
Affiliation(s)
- Anne M. Stringer
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Devon M. Fitzgerald
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York, USA
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York, USA
- RNA Institute, University at Albany, SUNY, Albany, New York, USA
| |
Collapse
|
2
|
Dhembla C, Kumar A, Arya R, Kundu S, Sundd M. Mitochondrial Acyl Carrier Protein of Leishmania major Displays Features Distinct from the Canonical Type II ACP. Biochemistry 2023; 62:3347-3359. [PMID: 37967383 DOI: 10.1021/acs.biochem.3c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Prokaryotes synthesize fatty acids using a type II synthesis pathway (FAS). In this process, the central player, i.e., the acyl carrier protein (ACP), sequesters the growing acyl chain in its internal hydrophobic cavity. As the acyl chain length increases, the cavity expands in size, which is reflected in the NMR chemical shift perturbations and crystal structures of the acyl-ACP intermediates. A few eukaryotic organelles, such as plastids and mitochondria, also harbor type II fatty acid synthesis machinery. Plastid FAS from spinach and Plasmodium falciparum has been characterized at the molecular level, but the mitochondrial pathway remains unexplored. Here, we report NMR studies of the mitochondrial acyl-acyl carrier protein intermediates of Leishmania major (acyl-LmACP). Our studies show that LmACP experiences remarkably small conformational changes upon acylation, with perturbations confined to helices II and III only. CastP determined that the cavity size of apo-LmACP (PDB entry 5ZWT) is less than that of Escherichia coli ACP (PDB 1T8K). Thus, the small chemical shift perturbations observed in the LmACP intermediates, coupled with CastP results, suggest an unusually small cavity when fully expanded. The faster rate of C8-LmACP chain hydrolysis compared to E. coli ACP (EcACP) also supports these convictions. Structure comparison of LmACP with other type II ACP disclosed unique differences in the helix I and loop I conformations, as well as several residues present there. Numerous hydrophobic residues in helix I and loop I (conserved in all mitochondrial ACPs) are substituted with hydrophilic residues in the bacterial/plastid type II ACP. For instance, Phe and leucine at positions 14 and 34 in LmACP are substituted with a hydrophilic residue and Ala in bacterial/plastid type II ACP. Mutation of Leu 34 to Ala (corresponding residue in EcACP) resulted in a complete loss of structure, underscoring its importance in maintaining the ACP fold. Thus, our NMR studies, combined with insights from the crystal structure, highlight several unique features of LmACP, distinct from the prokaryote and plastid type II ACP. Given the high sequence identity, the features might be conserved in all mitochondrial ACPs.
Collapse
Affiliation(s)
- Chetna Dhembla
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Ambrish Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
3
|
Abstract
Antibiotic resistance is a serious public health concern, and new drugs are needed to ensure effective treatment of many bacterial infections. Bacterial type II fatty acid synthesis (FASII) is a vital aspect of bacterial physiology, not only for the formation of membranes but also to produce intermediates used in vitamin production. Nature has evolved a repertoire of antibiotics inhibiting different aspects of FASII, validating these enzymes as potential targets for new antibiotic discovery and development. However, significant obstacles have been encountered in the development of FASII antibiotics, and few FASII drugs have advanced beyond the discovery stage. Most bacteria are capable of assimilating exogenous fatty acids. In some cases they can dispense with FASII if fatty acids are present in the environment, making the prospects for identifying broad-spectrum drugs against FASII targets unlikely. Single-target, pathogen-specific FASII drugs appear the best option, but a major drawback to this approach is the rapid acquisition of resistance via target missense mutations. This complication can be mitigated during drug development by optimizing the compound design to reduce the potential impact of on-target missense mutations at an early stage in antibiotic discovery. The lessons learned from the difficulties in FASII drug discovery that have come to light over the last decade suggest that a refocused approach to designing FASII inhibitors has the potential to add to our arsenal of weapons to combat resistance to existing antibiotics.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| |
Collapse
|
4
|
Lipoate protein ligase B primarily recognizes the C 8-phosphopantetheine arm of its donor substrate and weakly binds the acyl carrier protein. J Biol Chem 2022; 298:102203. [PMID: 35764173 PMCID: PMC9307952 DOI: 10.1016/j.jbc.2022.102203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Lipoic acid is a sulfur containing cofactor indispensable for the function of several metabolic enzymes. In microorganisms, lipoic acid can be salvaged from the surroundings by Lipoate protein ligase A (LplA), an ATP-dependent enzyme. Alternatively, it can be synthesized by the sequential actions of Lipoate protein ligase B (LipB) and Lipoyl synthase (LipA). LipB takes up the octanoyl chain from C8-acyl carrier protein (C8-ACP), a byproduct of the type II fatty acid synthesis pathway, and transfers it to a conserved lysine of the lipoyl domain of a dehydrogenase. However, the molecular basis of its substrate recognition is still not fully understood. Using E. coli LipB as a model enzyme, we show here that the octanoyl-transferase mainly recognizes the 4'-phosphopantetheine-tethered acyl-chain of its donor substrate and weakly binds the apo-acyl carrier protein. We demonstrate LipB can accept octanoate from its own ACP and noncognate ACPs, as well as C8-CoA. Furthermore, our 1H STD and 31P NMR studies demonstrate the binding of adenosine, as well as the phosphopantetheine arm of CoA to LipB, akin to binding to LplA. Finally, we show a conserved 71RGG73 loop, analogous to the lipoate binding loop of LplA, is required for full LipB activity. Collectively, our studies highlight commonalities between LipB and LplA in their mechanism of substrate recognition. This knowledge could be of significance in the treatment of mitochondrial fatty acid synthesis related disorders.
Collapse
|
5
|
Chen YC, Hu Z, Zhang WB, Yin Y, Zhong CY, Mo WY, Yu YH, Ma JC, Wang HH. HetI-Like Phosphopantetheinyl Transferase Posttranslationally Modifies Acyl Carrier Proteins in Xanthomonas spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:323-335. [PMID: 35286156 DOI: 10.1094/mpmi-10-21-0249-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In Xanthomonas spp., the biosynthesis of the yellow pigment xanthomonadin and fatty acids originates in the type II polyketide synthase (PKS II) and fatty acid synthase (FAS) pathways, respectively. The acyl carrier protein (ACP) is the central component of PKS II and FAS and requires posttranslational phosphopantetheinylation to initiate these pathways. In this study, for the first time, we demonstrate that the posttranslational modification of ACPs in X. campestris pv. campestris is performed by an essential 4'-phosphopantetheinyl transferase (PPTase), XcHetI (encoded by Xc_4132). X. campestris pv. campestris strain XchetI could not be deleted from the X. campestris pv. campestris genome unless another PPTase-encoding gene such as Escherichia coli acpS or Pseudomonas aeruginosa pcpS was present. Compared with wild-type strain X. campestris pv. campestris 8004 and mutant XchetI::PapcpS, strain XchetI::EcacpS failed to generate xanthomonadin pigments and displayed reduced pathogenicity for the host plant, Brassica oleracea. Further experiments showed that the expression of XchetI restored the growth of E. coli acpS mutant HT253 and, when a plasmid bearing XchetI was introduced into P. aeruginosa, pcpS, which encodes the sole PPTase in P. aeruginosa, could be deleted. In in vitro enzymatic assays, XcHetI catalyzed the transformation of 4'-phosphopantetheine from coenzyme A to two X. campestris pv. campestris apo-acyl carrier proteins, XcAcpP and XcAcpC. All of these findings indicate that XcHetI is a surfactin PPTase-like PPTase with a broad substrate preference. Moreover, the HetI-like PPTase is ubiquitously conserved in Xanthomonas spp., making it a potential new drug target for the prevention of plant diseases caused by Xanthomonas.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Yi-Cai Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhe Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen-Bin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yu Yin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Can-Yao Zhong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wan-Ying Mo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yong-Hong Yu
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, China
| | - Jin-Cheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
6
|
Chen N, Wang C. Chemical Labeling of Protein 4'-Phosphopantetheinylation. Chembiochem 2021; 22:1357-1367. [PMID: 33289264 DOI: 10.1002/cbic.202000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Indexed: 11/11/2022]
Abstract
Nature uses a diverse array of protein post-translational modifications (PTMs) to regulate protein structure, activity, localization, and function. Among them, protein 4'-phosphopantetheinylation derived from coenzyme A (CoA) is an essential PTM for the biosynthesis of fatty acids, polyketides, and nonribosomal peptides in prokaryotes and eukaryotes. To explore its functions, various chemical probes mimicking the natural structure of 4'-phosphopantetheinylation have been developed. In this minireview, we summarize these chemical probes and describe their applications in direct and metabolic labeling of proteins in bacterial and mammalian cells.
Collapse
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Peking University, Beijing, 100871, P. R. China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
7
|
New insights on the function of plant acyl carrier proteins from comparative and evolutionary analysis. Genomics 2020; 113:1155-1165. [PMID: 33221517 DOI: 10.1016/j.ygeno.2020.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Acyl carrier proteins (ACPs) play a central role in both plastidial and mitochondrial Type II fatty acid synthesis in plant cells. However, a large proportion of plant ACPs remain functionally uncharacterized, and their evolutionary history remains elusive. In present study, 97 putative ACPs were identified from ten angiosperm species examined. Based on phylogenetic analysis, ACP genes were grouped into plastidial (cpACP: ACP1/2/3/4/5) and mitochondrial (mtACP: mtACP1/mtACP2/mtACP3) ACPs. Protein sequence (motifs and length), tertiary structure, and gene structure (exon number, average intron length, and intron phase) were highly conserved in different ACP subclades. The differentiation of ACPs into distinct types occurred 85-98 and 45-57 million years ago. A limited proportion of ACP genes experience tandem or segmental duplication, corresponding to two rounds of whole genome duplication. Ka/Ks ratios revealed that duplicated ACP genes underwent a purifying selection. Regarding expression patterns, most ACPs were expressed constitutively and tissue-specifically. Notably, the average expression levels of ACP1, mtACP3, and mtACP1 were positively correlated with those of ACP3, ACP4, and mtACP2, respectively. Analysis of cis-elements showed that seven motifs (CACTFTPPCA1, DOFCOREZM, GT1CONSENSUS, CAATBOX1, ARR1AT, POLLEN1LELAT52, and GATABOX) related to tissue-specific, ABA, and light-mediated gene regulation were ubiquitous in all ACPs investigated, which shed new light on the regulation patterns of these central enzymatic partners of the FAS system. This study presents a thorough overview of angiosperm ACP gene families and provides informative clues for the functional characterization of plant ACPs in the future.
Collapse
|
8
|
Brown AS, Sissons JA, Owen JG, Ackerley DF. Directed Evolution of the Nonribosomal Peptide Synthetase BpsA to Enable Recognition by the Human Phosphopantetheinyl Transferase for Counter-Screening Antibiotic Candidates. ACS Infect Dis 2020; 6:2879-2886. [PMID: 33118808 DOI: 10.1021/acsinfecdis.0c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial type II phosphopantetheinyl transferases (PPTases), required for the activation of many cellular mega-synthases, have been validated as promising drug targets in several pathogens. Activation of the blue-pigment-synthesizing nonribosomal peptide synthetase BpsA by a target PPTase can be used to screen in vitro for new antibiotic candidates from chemical libraries. For a complete screening platform, there is a need to also counter-screen inhibitors for cross-reactivity with the endogenous human Type II PPTase (hPPTase), as this is a likely source of toxicity. As hPPTase is unable to recognize the PCP-domain of native BpsA, we used a combination of directed evolution and rational engineering to generate a triple-substitution variant that is able to be efficiently activated by hPPTase. Our engineered BpsA variant was able to readily detect inhibition of both hPPTase and the equivalent rat PPTase by broad-spectrum PPTase inhibitors, demonstrating its potential for high-throughput counter-screening of novel antibiotic candidates.
Collapse
Affiliation(s)
- Alistair S. Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Jack A. Sissons
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G. Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
9
|
Abstract
Most secondary nonphotosynthetic eukaryotes have retained residual plastids whose physiological role is often still unknown. One such example is Euglena longa, a close nonphotosynthetic relative of Euglena gracilis harboring a plastid organelle of enigmatic function. By mining transcriptome data from E. longa, we finally provide an overview of metabolic processes localized to its elusive plastid. The organelle plays no role in the biosynthesis of isoprenoid precursors and fatty acids and has a very limited repertoire of pathways concerning nitrogen-containing metabolites. In contrast, the synthesis of phospholipids and glycolipids has been preserved, curiously with the last step of sulfoquinovosyldiacylglycerol synthesis being catalyzed by the SqdX form of an enzyme so far known only from bacteria. Notably, we show that the E. longa plastid synthesizes tocopherols and a phylloquinone derivative, the first such report for nonphotosynthetic plastids studied so far. The most striking attribute of the organelle could be the presence of a linearized Calvin-Benson (CB) pathway, including RuBisCO yet lacking the gluconeogenetic part of the standard cycle, together with ferredoxin-NADP+ reductase (FNR) and the ferredoxin/thioredoxin system. We hypothesize that the ferredoxin/thioredoxin system activates the linear CB pathway in response to the redox status of the E. longa cell and speculate on the role of the pathway in keeping the redox balance of the cell. Altogether, the E. longa plastid defines a new class of relic plastids that is drastically different from the best-studied organelle of this category, the apicoplast.IMPORTANCE Colorless plastids incapable of photosynthesis evolved in many plant and algal groups, but what functions they perform is still unknown in many cases. Here, we study the elusive plastid of Euglena longa, a nonphotosynthetic cousin of the familiar green flagellate Euglena gracilis We document an unprecedented combination of metabolic functions that the E. longa plastid exhibits in comparison with previously characterized nonphotosynthetic plastids. For example, and truly surprisingly, it has retained the synthesis of tocopherols (vitamin E) and a phylloquinone (vitamin K) derivative. In addition, we offer a possible solution of the long-standing conundrum of the presence of the CO2-fixing enzyme RuBisCO in E. longa Our work provides a detailed account on a unique variant of relic plastids, the first among nonphotosynthetic plastids that evolved by secondary endosymbiosis from a green algal ancestor, and suggests that it has persisted for reasons not previously considered in relation to nonphotosynthetic plastids.
Collapse
|
10
|
Martins-Noguerol R, DeAndrés-Gil C, Garcés R, Salas J, Martínez-Force E, Moreno-Pérez A. Characterization of the acyl-ACP thioesterases from Koelreuteria paniculata reveals a new type of FatB thioesterase. Heliyon 2020; 6:e05237. [PMID: 33102858 PMCID: PMC7569226 DOI: 10.1016/j.heliyon.2020.e05237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/03/2020] [Accepted: 10/08/2020] [Indexed: 11/04/2022] Open
Abstract
Koelreuteria paniculata is a deciduous tree, popular in temperate regions for its ornamental value, which accumulates unusual cyanolipids in its seeds. The seed oil of this plant is rich in the unusual cis-11-eicosenoic fatty acid (20:1, or gondoic acid), a monounsaturated oil of interest to the oleochemical industry. In higher plants, de novo fatty acid biosynthesis takes place in the plastids, a process that is terminated by hydrolysis of the thioester bond between the acyl moiety and the ACP by acyl-ACP thioesterases. The specificity of acyl-ACP thioesterases is fundamental in controlling the fatty acid composition of seed oil. To determine the mechanisms involved in fatty acid biosynthesis in K. paniculata seeds, we isolated, cloned and sequenced two cDNAs encoding acyl-ACP thioesterases in this plant, KpFatA and KpFatB. Both of them were expressed heterologously in Escherichia coli and characterized with different acyl-ACP substrates. The K. paniculata FatB2 displayed unusual substrate specificity, so that unlike most FatB2 type enzymes, it displayed preference for oleoyl-ACP instead of palmitoyl-ACP. This specificity was consistent with the changes in E. coli and N. benthamiana fatty acid composition following heterologous expression of this enzyme. KpFatB also showed certain genetic divergence relative to other FatB-type thioesterases and when modelled, its structure revealed differences at the active site. Together, these results suggest that this thioesterase could be a new class of FatB not described previously.
Collapse
Affiliation(s)
- R. Martins-Noguerol
- Group of Genetics and Biochemistry of Seed Lipids, Department of Biochemistry and Molecular Biology of Plants Products, Instituto de la Grasa (CSIC), Ctra. de Utrera km 1, Building 46, 41013 Sevilla, Spain
| | - C. DeAndrés-Gil
- Group of Genetics and Biochemistry of Seed Lipids, Department of Biochemistry and Molecular Biology of Plants Products, Instituto de la Grasa (CSIC), Ctra. de Utrera km 1, Building 46, 41013 Sevilla, Spain
| | - R. Garcés
- Group of Genetics and Biochemistry of Seed Lipids, Department of Biochemistry and Molecular Biology of Plants Products, Instituto de la Grasa (CSIC), Ctra. de Utrera km 1, Building 46, 41013 Sevilla, Spain
| | - J.J. Salas
- Group of Genetics and Biochemistry of Seed Lipids, Department of Biochemistry and Molecular Biology of Plants Products, Instituto de la Grasa (CSIC), Ctra. de Utrera km 1, Building 46, 41013 Sevilla, Spain
| | - E. Martínez-Force
- Group of Genetics and Biochemistry of Seed Lipids, Department of Biochemistry and Molecular Biology of Plants Products, Instituto de la Grasa (CSIC), Ctra. de Utrera km 1, Building 46, 41013 Sevilla, Spain
| | - A.J. Moreno-Pérez
- Group of Genetics and Biochemistry of Seed Lipids, Department of Biochemistry and Molecular Biology of Plants Products, Instituto de la Grasa (CSIC), Ctra. de Utrera km 1, Building 46, 41013 Sevilla, Spain
| |
Collapse
|
11
|
Fidor A, Grabski M, Gawor J, Gromadka R, Węgrzyn G, Mazur-Marzec H. Nostoc edaphicum CCNP1411 from the Baltic Sea-A New Producer of Nostocyclopeptides. Mar Drugs 2020; 18:E442. [PMID: 32858999 PMCID: PMC7551626 DOI: 10.3390/md18090442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Nostocyclopeptides (Ncps) constitute a small class of nonribosomal peptides, exclusively produced by cyanobacteria of the genus Nostoc. The peptides inhibit the organic anion transporters, OATP1B3 and OATP1B1, and prevent the transport of the toxic microcystins and nodularin into hepatocytes. So far, only three structural analogues, Ncp-A1, Ncp-A2 and Ncp-M1, and their linear forms were identified in Nostoc strains as naturally produced cyanometabolites. In the current work, the whole genome sequence of the new Ncps producer, N. edaphicum CCNP1411 from the Baltic Sea, has been determined. The genome consists of the circular chromosome (7,733,505 bps) and five circular plasmids (from 44.5 kb to 264.8 kb). The nostocyclopeptide biosynthetic gene cluster (located between positions 7,609,981-7,643,289 bps of the chromosome) has been identified and characterized in silico. The LC-MS/MS analyzes of N. edaphicum CCNP1411 cell extracts prepared in aqueous methanol revealed several products of the genes. Besides the known peptides, Ncp-A1 and Ncp-A2, six other compounds putatively characterized as new noctocyclopeptide analogues were detected. This includes Ncp-E1 and E2 and their linear forms (Ncp-E1-L and E2-L), a cyclic Ncp-E3 and a linear Ncp-E4-L. Regardless of the extraction conditions, the cell contents of the linear nostocyclopeptides were found to be higher than the cyclic ones, suggesting a slow rate of the macrocyclization process.
Collapse
Affiliation(s)
- Anna Fidor
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Piłsudskiego 46, PL-81378 Gdynia, Poland;
| | - Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.G.); (G.W.)
| | - Jan Gawor
- DNA Sequencing and Oligonucleotide Synthesis Laboratory, Polish Academy of Sciences, Institute of Biochemistry and Biophysics, 02-106 Warsaw, Poland; (J.G.); (R.G.)
| | - Robert Gromadka
- DNA Sequencing and Oligonucleotide Synthesis Laboratory, Polish Academy of Sciences, Institute of Biochemistry and Biophysics, 02-106 Warsaw, Poland; (J.G.); (R.G.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.G.); (G.W.)
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Piłsudskiego 46, PL-81378 Gdynia, Poland;
| |
Collapse
|
12
|
Bräuer A, Zhou Q, Grammbitter GLC, Schmalhofer M, Rühl M, Kaila VRI, Bode HB, Groll M. Structural snapshots of the minimal PKS system responsible for octaketide biosynthesis. Nat Chem 2020; 12:755-763. [DOI: 10.1038/s41557-020-0491-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/15/2020] [Indexed: 11/09/2022]
|
13
|
Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 2020; 79:101047. [DOI: 10.1016/j.plipres.2020.101047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
14
|
McErlean M, Overbay J, Van Lanen S. Refining and expanding nonribosomal peptide synthetase function and mechanism. J Ind Microbiol Biotechnol 2019; 46:493-513. [PMID: 30673909 PMCID: PMC6460464 DOI: 10.1007/s10295-018-02130-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of numerous peptide and peptide-like natural products that have been exploited in medicine, agriculture, and biotechnology, among other fields. As a consequence, there have been considerable efforts aimed at understanding how NRPSs orchestrate the assembly of these natural products. This review highlights several recent examples that continue to expand upon the fundamental knowledge of NRPS mechanism and includes (1) the discovery of new NRPS substrates and the mechanism by which these sometimes structurally complex substrates are made, (2) the characterization of new NRPS activities and domains that function during the process of peptide assembly, and (3) the various catalytic strategies that are utilized to release the NRPS product. These findings continue to strengthen the predictive power for connecting genes to products, thereby facilitating natural product discovery and development in the Genomics Era.
Collapse
Affiliation(s)
- Matt McErlean
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Jonathan Overbay
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Steven Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
15
|
Marcella AM, Barb AW. Acyl-coenzyme A:(holo-acyl carrier protein) transacylase enzymes as templates for engineering. Appl Microbiol Biotechnol 2018; 102:6333-6341. [PMID: 29858956 DOI: 10.1007/s00253-018-9114-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/18/2023]
Abstract
This review will cover the structure, enzymology, and related aspects that are important for structure-based engineering of the transacylase enzymes from fatty acid biosynthesis and polyketide synthesis. Furthermore, this review will focus on in vitro characteristics and not cover engineering of the upstream or downstream reactions or strategies to manipulate metabolic flux in vivo. The malonyl-coenzyme A(CoA)-holo-acyl-carrier protein (holo-ACP) transacylase (FabD) from Escherichia coli serves as a model for this enzyme with thorough descriptions of structure, enzyme mechanism, and effects of mutation on substrate binding presented in the literature. Here, we discuss multiple practical and theoretical considerations regarding engineering transacylase enzymes to accept non-cognate substrates and form novel acyl-ACPs for downstream reactions.
Collapse
Affiliation(s)
- Aaron M Marcella
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, rm 4210, Ames, IA, 50011, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, rm 4210, Ames, IA, 50011, USA.
| |
Collapse
|
16
|
Liu T, Mazmouz R, Neilan BA. An In Vitro and In Vivo Study of Broad-Range Phosphopantetheinyl Transferases for Heterologous Expression of Cyanobacterial Natural Products. ACS Synth Biol 2018; 7:1143-1151. [PMID: 29562128 DOI: 10.1021/acssynbio.8b00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphopantetheinyl transferases catalyze the post-translational modification of carrier proteins involved in both primary and secondary metabolism. The functional expression of polyketide synthases and nonribosomal peptide synthetases requires the activation of all carrier protein domains by phosphopantetheinyl transferases. Here we describe the characterization of five bacterial phosphopantetheinyl transferases by their substrate specificity and catalytic efficiency of four cyanobacterial carrier proteins. Comparative in vitro phosphopantetheinylation analysis showed Sfp possesses the highest catalytic efficiency over various carrier proteins. In vivo coexpression of phosphopantetheinyl transferases with carrier proteins revealed a broad range substrate specificity of phosphopantetheinyl transferases; all studied phosphopantetheinyl transferases were capable of converting apo- carrier proteins, sourced from diverse biosynthetic enzymes, to their active holo form. Phosphopantetheinyl transferase coexpression with the hybrid nonribosomal peptide synthetases/polyketide synthases responsible for microcystin biosynthesis confirmed that the higher in vitro activity of Sfp translated in vivo to a higher yield of production.
Collapse
Affiliation(s)
- Tianzhe Liu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rabia Mazmouz
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
17
|
Rath CM, Benton BM, de Vicente J, Drumm JE, Geng M, Li C, Moreau RJ, Shen X, Skepper CK, Steffek M, Takeoka K, Wang L, Wei JR, Xu W, Zhang Q, Feng BY. Optimization of CoaD Inhibitors against Gram-Negative Organisms through Targeted Metabolomics. ACS Infect Dis 2018; 4:391-402. [PMID: 29243909 DOI: 10.1021/acsinfecdis.7b00214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Drug-resistant Gram-negative bacteria are of increasing concern worldwide. Novel antibiotics are needed, but their development is complicated by the requirement to simultaneously optimize molecules for target affinity and cellular potency, which can result in divergent structure-activity relationships (SARs). These challenges were exemplified during our attempts to optimize inhibitors of the bacterial enzyme CoaD originally identified through a biochemical screen. To facilitate lead optimization, we developed mass spectroscopy assays based on the hypothesis that levels of CoA metabolites would reflect the cellular enzymatic activity of CoaD. Using these methods, we were able to monitor the effects of cellular enzyme inhibition at compound concentrations up to 100-fold below the minimum inhibitory concentration (MIC), a common metric of growth inhibition. Furthermore, we generated a panel of efflux pump mutants to dissect the susceptibility of a representative CoaD inhibitor to efflux. These approaches allowed for a nuanced understanding of the permeability and efflux liabilities of the series and helped guide optimization efforts to achieve measurable MICs against wild-type E. coli.
Collapse
Affiliation(s)
- Christopher M. Rath
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Bret M. Benton
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Javier de Vicente
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Joseph E. Drumm
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Mei Geng
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Cindy Li
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Robert J. Moreau
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Xiaoyu Shen
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Colin K. Skepper
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Micah Steffek
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Kenneth Takeoka
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Lisha Wang
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Jun-Rong Wei
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Wenjian Xu
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Qiong Zhang
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Brian Y. Feng
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
18
|
Ishikawa F, Tanabe G, Kakeya H. Activity-Based Protein Profiling of Non-ribosomal Peptide Synthetases. Curr Top Microbiol Immunol 2018; 420:321-349. [PMID: 30178264 DOI: 10.1007/82_2018_133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-ribosomal peptide (NRP) natural products are one of the most promising resources for drug discovery and development because of their wide-ranging of therapeutic potential, and their behavior as virulence factors and signaling molecules. The NRPs are biosynthesized independently of the ribosome by enzyme assembly lines known as the non-ribosomal peptide synthetase (NRPS) machinery. Genetic, biochemical, and bioinformatics analyses have provided a detailed understanding of the mechanism of NRPS catalysis. However, proteomic techniques for natural product biosynthesis remain a developing field. New strategies are needed to investigate the proteomes of diverse producer organisms and directly analyze the endogenous NRPS machinery. Advanced platforms should verify protein expression, protein folding, and activities and also enable the profiling of the NRPS machinery in biological samples from wild-type, heterologous, and engineered bacterial systems. Here, we focus on activity-based protein profiling strategies that have been recently developed for studies aimed at visualizing and monitoring the NRPS machinery and also for rapid labeling, identification, and biochemical analysis of NRPS enzyme family members as required for proteomic chemistry in natural product sciences.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
19
|
Marcella AM, Culbertson SJ, Shogren-Knaak MA, Barb AW. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex. J Mol Biol 2017; 429:3763-3775. [DOI: 10.1016/j.jmb.2017.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023]
|
20
|
Konno S, Ishikawa F, Suzuki T, Dohmae N, Kakeya H, Tanabe G. A Chemoproteomics Approach to Investigate Phosphopantetheine Transferase Activity at the Cellular Level. Chembiochem 2017; 18:1855-1862. [PMID: 28722191 DOI: 10.1002/cbic.201700301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 01/29/2023]
Abstract
Phosphopantetheinylation is an essential post-translational protein modification to primary and secondary metabolic pathways that ensures bacterial cell viability and virulence, and it is used in the production of many pharmaceuticals. Traditional methods have not provided a comprehensive understanding of these modifications. By using chemical proteomic probes for adenylation and thiolation domains in nonribosomal peptide synthetases (NRPSs), chemoproteomics has been applied to survey and validate the cellular activity of 4-[3-chloro-5-(trifluoromethyl)pyridin-2-yl]-N-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide (ML267), which is a potent and selective small-molecule 4'-phosphopantetheinyl transferase (PPTase) inhibitor that attenuates secondary metabolism and viability of bacterial cells. ML267 inhibited Sfp-type PPTase and antagonized phosphopantetheinylation in cells, which resulted in a decrease in phosphopantetheinylated NRPSs and the attenuation of Sfp-PPTase-dependent metabolite production. These results indicate that this chemoproteomics platform should enable a precise interpretation of the cellular activities of Sfp-type PPTase inhibitors.
Collapse
Affiliation(s)
- Sho Konno
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Fumihiro Ishikawa
- Present address: Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.,Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirokawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirokawa, Wako, Saitama, 351-0198, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Genzoh Tanabe
- Present address: Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| |
Collapse
|
21
|
Volk K, Breunig SD, Rid R, Herzog J, Bräuer M, Hundsberger H, Klein C, Müller N, Önder K. Structural analysis and interaction studies of acyl-carrier protein (acpP) of Staphylococcus aureus, an extraordinarily thermally stable protein. Biol Chem 2017; 398:125-133. [PMID: 27467752 DOI: 10.1515/hsz-2016-0185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/22/2016] [Indexed: 11/15/2022]
Abstract
Acyl-carrier-protein (acpP) is an essential protein in fatty acid biosynthesis of Staphylococcus aureus [Cronan, J.E. and Thomas, J. (2009). Complex enzymes in microbial natural product biosynthesis, part B: polyketides, aminocoumarins and carbohydrates. METHOD Enzymol. 459, 395-433; Halavaty, A.S., Kim, Y., Minasov, G., Shuvalova, L., Dubrovska, I., Winsor, J., Zhou, M., Onopriyenko, O., Skarina, T., Papazisi, L., et al. (2012). Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria. Acta Crystallogr. Sect. D Biol. Crystallogr. 68, 1359-1370]. The inactive apo-form is converted to the active holo-enzyme by acyl-carrier protein synthase (acpS) through addition of a 4'-phosphopantetheine group from coenzyme A to a conserved serine residue of acpP [Flugel, R.S., Hwangbo, Y., Lambalot, R.H., Cronan, J.E., and Walsh, C.T. (2000). Holo-(acyl-carrier protein) synthase and phosphopantetheinyl transfer in Escherichia coli. J. Biol. Chem. 275, 959-968; Lambalot, R.H. and Walsh, C.T. (1995). Cloning, overproduction, and characterization of the Escherichia coli holo-acyl-carrier protein synthase. J. Biol. Chem. 270, 24658-24661]. Once activated, acpP acts as an anchor for the growing fatty acid chain. Structural data from X-ray crystallographic analysis reveals that, despite its small size (8 kDa), acpP adopts a distinct, mostly α-helical structure when complexed with acpS [Halavaty, A.S., Kim, Y., Minasov, G., Shuvalova, L., Dubrovska, I., Winsor, J., Zhou, M., Onopriyenko, O., Skarina, T., Papazisi, L., et al. (2012). Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria. Acta Crystallogr. Sect. D Biol. Crystallogr. 68, 1359-1370; Byers, D.M. and Gong, H. (2007). Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Biochem. Cell Biol. 85, 649-662]. We expressed and purified recombinant, active S. aureus acpP from Escherichia coli and mimicked the beginning of fatty acid biosynthesis by employing an [14C]-acp loading assay. Surprisingly, acpP remained functional even after heat treatment at 95°C for up to 10 min. NMR data from 2D-HSQC experiments as well as interaction studies with acpS confirmed that acpP is structured and active both before and after heat treatment, with no significant differences between the two. Thus, our data suggest that S. aureus acpP is a highly stable protein capable of maintaining its structure at high temperatures.
Collapse
|
22
|
Abstract
After an undergraduate degree in biology at Harvard, I started graduate school at The Rockefeller Institute for Medical Research in New York City in July 1965. I was attracted to the chemical side of biochemistry and joined Fritz Lipmann's large, hierarchical laboratory to study enzyme mechanisms. That work led to postdoctoral research with Robert Abeles at Brandeis, then a center of what, 30 years later, would be called chemical biology. I spent 15 years on the Massachusetts Institute of Technology faculty, in both the Chemistry and Biology Departments, and then 26 years on the Harvard Medical School Faculty. My research interests have been at the intersection of chemistry, biology, and medicine. One unanticipated major focus has been investigating the chemical logic and enzymatic machinery of natural product biosynthesis, including antibiotics and antitumor agents. In this postgenomic era it is now recognized that there may be from 105 to 106 biosynthetic gene clusters as yet uncharacterized for potential new therapeutic agents.
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Chemistry and Institute for Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, California;
| |
Collapse
|
23
|
Aznar-Moreno JA, Venegas-Calerón M, Martínez-Force E, Garcés R, Salas JJ. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities. PLANTA 2016; 244:479-90. [PMID: 27095109 DOI: 10.1007/s00425-016-2521-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/04/2016] [Indexed: 05/13/2023]
Abstract
The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.
Collapse
Affiliation(s)
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain.
| |
Collapse
|
24
|
Walsh CT. Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Nat Prod Rep 2016; 33:127-35. [PMID: 26175103 DOI: 10.1039/c5np00035a] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Appreciation that some cyclic peptide antibiotics such as gramicidin S and tyrocidine were nonribosomally synthesized has been known for 50 years. The past two decades of research including advances in bacterial genetics, genomics, protein biochemistry and mass spectrometry have codified the principles of assembly line enzymology for hundreds of nonribosomal peptides and in parallel for thousands of polyketides. The advances in understanding the strategies used for chain initiation, elongation and termination from these assembly lines have revitalized natural product biosynthetic communities.
Collapse
|
25
|
Park YG, Jung MC, Song H, Jeong KW, Bang E, Hwang GS, Kim Y. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis. J Biol Chem 2015; 291:1692-1702. [PMID: 26631734 DOI: 10.1074/jbc.m115.674408] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3-17), helix II (residues 39-53), helix III (residues 60-64), and helix IV (residues 68-78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe(45) in helix II and Phe(18) in the α1α2 loop and a hydrogen bonding between Ser(15) in helix I and Ile(20) in the α1α2 loop, resulting in its high thermal stability. Phe(45)-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser(58) in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains.
Collapse
Affiliation(s)
- Young-Guen Park
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and
| | - Min-Cheol Jung
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and
| | - Heesang Song
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and
| | - Ki-Woong Jeong
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and
| | - Eunjung Bang
- the Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea
| | - Geum-Sook Hwang
- the Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea
| | - Yangmee Kim
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and.
| |
Collapse
|
26
|
Guan X, Chen H, Abramson A, Man H, Wu J, Yu O, Nikolau BJ. A phosphopantetheinyl transferase that is essential for mitochondrial fatty acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:718-32. [PMID: 26402847 DOI: 10.1111/tpj.13034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 05/23/2023]
Abstract
In this study we report the molecular genetic characterization of the Arabidopsis mitochondrial phosphopantetheinyl transferase (mtPPT), which catalyzes the phosphopantetheinylation and thus activation of mitochondrial acyl carrier protein (mtACP) of mitochondrial fatty acid synthase (mtFAS). This catalytic capability of the purified mtPPT protein (encoded by AT3G11470) was directly demonstrated in an in vitro assay that phosphopantetheinylated mature Arabidopsis apo-mtACP isoforms. The mitochondrial localization of the AT3G11470-encoded proteins was validated by the ability of their N-terminal 80-residue leader sequence to guide a chimeric GFP protein to this organelle. A T-DNA-tagged null mutant mtppt-1 allele shows an embryo-lethal phenotype, illustrating a crucial role of mtPPT for embryogenesis. Arabidopsis RNAi transgenic lines with reduced mtPPT expression display typical phenotypes associated with a deficiency in the mtFAS system, namely miniaturized plant morphology, slow growth, reduced lipoylation of mitochondrial proteins, and the hyperaccumulation of photorespiratory intermediates, glycine and glycolate. These morphological and metabolic alterations are reversed when these plants are grown in a non-photorespiratory condition (i.e. 1% CO2 atmosphere), demonstrating that they are a consequence of a deficiency in photorespiration due to the reduced lipoylation of the photorespiratory glycine decarboxylase.
Collapse
Affiliation(s)
- Xin Guan
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
- The NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, 50011, USA
| | - Hui Chen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
- Conagen Inc., Bedford, MA, 01730, USA
| | - Alex Abramson
- The NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Huimin Man
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
- Conagen Inc., Bedford, MA, 01730, USA
| | - Jinxia Wu
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Oliver Yu
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
- Wuxi NewWay Biotech Co., Ltd., Wuxi, Jiangsu, 214043, China
| | - Basil J Nikolau
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
- The NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
27
|
Abstract
Pantothenate is vitamin B5 and is the key precursor for the biosynthesis of coenzyme A (CoA), a universal and essential cofactor involved in a myriad of metabolic reactions, including the synthesis of phospholipids, the synthesis and degradation of fatty acids, and the operation of the tricarboxylic acid cycle. CoA is also the only source of the phosphopantetheine prosthetic group for enzymes that shuttle intermediates between the active sites of enzymes involved in fatty acid, nonribosomal peptide, and polyketide synthesis. Pantothenate can be synthesized de novo and/or transported into the cell through a pantothenatepermease. Pantothenate uptake is essential for those organisms that lack the genes to synthesize this vitamin. The intracellular levels of CoA are controlled by the balance between synthesis and degradation. In particular, CoA is assembled in five enzymatic steps, starting from the phosphorylation of pantothenate to phosphopantothenatecatalyzed by pantothenate kinase, the product of the coaA gene. In some bacteria, the production of phosphopantothenate by pantothenate kinase is the rate limiting and most regulated step in the biosynthetic pathway. CoA synthesis additionally networks with other vitamin-associated pathways, such as thiamine and folic acid.
Collapse
|
28
|
Kumar A, Arya R, Makwana PK, Dangi RS, Yadav U, Surolia A, Kundu S, Sundd M. The Structure of the Holo-Acyl Carrier Protein of Leishmania major Displays a Remarkably Different Phosphopantetheinyl Transferase Binding Interface. Biochemistry 2015; 54:5632-45. [DOI: 10.1021/acs.biochem.5b00394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ambrish Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Richa Arya
- Department
of Biochemistry, University of Delhi South Campus, Benito Juarez
Road, New Delhi 110 021, India
| | - Pinakin K. Makwana
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Rohit Singh Dangi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Usha Yadav
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Avadhesha Surolia
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Suman Kundu
- Department
of Biochemistry, University of Delhi South Campus, Benito Juarez
Road, New Delhi 110 021, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
29
|
Abstract
Acyl carrier proteins (ACPs) are promiscuous small proteins that play essential roles in the biosynthesis of many natural products, but our understanding of how they interact with various enzymes within larger protein complexes is lacking. In this issue of Chemistry and Biology, Beld and coworkers describe an enzymatic labeling method that will allow tracking of ACPs as they interact with their partners both in vitro and vivo.
Collapse
Affiliation(s)
- Dominic J Campopiano
- EaStChem School of Chemistry, Joseph Black Building, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh EH9 3FJ, Scotland.
| |
Collapse
|
30
|
Al-Mestarihi AH, Garzan A, Kim JM, Garneau-Tsodikova S. Enzymatic Evidence for a Revised Congocidine Biosynthetic Pathway. Chembiochem 2015; 16:1307-13. [DOI: 10.1002/cbic.201402711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 12/25/2022]
|
31
|
Vickery CR, Kosa NM, Casavant EP, Duan S, Noel JP, Burkart MD. Structure, biochemistry, and inhibition of essential 4'-phosphopantetheinyl transferases from two species of Mycobacteria. ACS Chem Biol 2014; 9:1939-44. [PMID: 24963544 PMCID: PMC4168790 DOI: 10.1021/cb500263p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
4′-Phosphopantetheinyl
transferases (PPTase) post-translationally
modify carrier proteins with a phosphopantetheine moiety, an essential
reaction in all three domains of life. In the bacterial genus Mycobacteria, the Sfp-type PPTase activates pathways necessary
for the biosynthesis of cell wall components and small molecule virulence
factors. We solved the X-ray crystal structures and biochemically
characterized the Sfp-type PPTases from two of the most prevalent
Mycobacterial pathogens, PptT of M. tuberculosis and
MuPPT of M. ulcerans. Structural analyses reveal
significant differences in cofactor binding and active site composition
when compared to previously characterized Sfp-type PPTases. Functional
analyses including the efficacy of Sfp-type PPTase-specific inhibitors
also suggest that the Mycobacterial Sfp-type PPTases can serve as
therapeutic targets against Mycobacterial infections.
Collapse
Affiliation(s)
- Christopher R. Vickery
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
- Jack
Skirball Center for Chemical Biology and Proteomics, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicolas M. Kosa
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Ellen P. Casavant
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Shiteng Duan
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Joseph P. Noel
- Howard Hughes Medical Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
- Jack
Skirball Center for Chemical Biology and Proteomics, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael D. Burkart
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
32
|
Wang YY, Li YD, Liu JB, Ran XX, Guo YY, Ren NN, Chen X, Jiang H, Li YQ. Characterization and evolutionary implications of the triad Asp-Xxx-Glu in group II phosphopantetheinyl transferases. PLoS One 2014; 9:e103031. [PMID: 25036863 PMCID: PMC4103896 DOI: 10.1371/journal.pone.0103031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023] Open
Abstract
Phosphopantetheinyl transferases (PPTases), which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two subgroups, two-magnesium-binding-residue-PPTases containing the triad Asp-Xxx-Glu and three-magnesium-binding-residue-PPTases containing the triad Asp-Glu-Glu. Mutations of two three-magnesium-binding-residue-PPTases and one two-magnesium-binding-residue-PPTase indicate that the first and the third residues in the triads are essential to activities; the second residues in the triads are non-essential. Although variations of the second residues in the triad Asp-Xxx-Glu exist throughout the whole phylogenetic tree, the second residues are conserved in animals, plants, algae, and most prokaryotes, respectively. Evolutionary analysis suggests that: the animal group II PPTases may originate from one common ancestor; the plant two-magnesium-binding-residue-PPTases may originate from one common ancestor; the plant three-magnesium-binding-residue-PPTases may derive from horizontal gene transfer from prokaryotes.
Collapse
Affiliation(s)
- Yue-Yue Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu-Dong Li
- Department of Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jian-Bo Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Xin Ran
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan-Yang Guo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ni-Ni Ren
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
- * E-mail: (HJ); (YQL)
| | - Yong-Quan Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
- * E-mail: (HJ); (YQL)
| |
Collapse
|
33
|
Gerc AJ, Stanley-Wall NR, Coulthurst SJ. Role of the phosphopantetheinyltransferase enzyme, PswP, in the biosynthesis of antimicrobial secondary metabolites by Serratia marcescens Db10. MICROBIOLOGY-SGM 2014; 160:1609-1617. [PMID: 24847000 PMCID: PMC4117218 DOI: 10.1099/mic.0.078576-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphopantetheinyltransferase (PPTase) enzymes fulfil essential roles in primary and secondary metabolism in prokaryotes, archaea and eukaryotes. PPTase enzymes catalyse the essential modification of the carrier protein domain of fatty acid synthases, polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs). In bacteria and fungi, NRPS and PKS enzymes are often responsible for the biosynthesis of secondary metabolites with clinically relevant properties; these secondary metabolites include a variety of antimicrobial peptides. We have previously shown that in the Gram-negative bacterium Serratia marcescens Db10, the PPTase enzyme PswP is essential for the biosynthesis of an NRPS-PKS dependent antibiotic called althiomycin. In this work we utilize bioinformatic analyses to classify PswP as belonging to the F/KES subfamily of Sfp type PPTases and to putatively identify additional NRPS substrates of PswP, in addition to the althiomycin NRPS-PKS, in Ser. marcescens Db10. We show that PswP is required for the production of three diffusible metabolites by this organism, each possessing antimicrobial activity against Staphylococcus aureus. Genetic analyses identify the three metabolites as althiomycin, serrawettin W2 and an as-yet-uncharacterized siderophore, which may be related to enterobactin. Our results highlight the use of an individual PPTase enzyme in multiple biosynthetic pathways, each contributing to the ability of Ser. marcescens to inhibit competitor bacteria by the production of antimicrobial secondary metabolites.
Collapse
Affiliation(s)
- Amy J Gerc
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sarah J Coulthurst
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
34
|
van Vught R, Pieters RJ, Breukink E. Site-specific functionalization of proteins and their applications to therapeutic antibodies. Comput Struct Biotechnol J 2014; 9:e201402001. [PMID: 24757499 PMCID: PMC3995230 DOI: 10.5936/csbj.201402001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/28/2014] [Accepted: 02/04/2014] [Indexed: 12/19/2022] Open
Abstract
Protein modifications are often required to study structure and function relationships. Instead of the random labeling of lysine residues, methods have been developed to (sequence) specific label proteins. Next to chemical modifications, tools to integrate new chemical groups for bioorthogonal reactions have been applied. Alternatively, proteins can also be selectively modified by enzymes. Herein we review the methods available for site-specific modification of proteins and their applications for therapeutic antibodies.
Collapse
Affiliation(s)
- Remko van Vught
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Roland J Pieters
- Department of Medicinal Chemistry and Chemical Biology. Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Eefjan Breukink
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| |
Collapse
|
35
|
Bunet R, Riclea R, Laureti L, Hôtel L, Paris C, Girardet JM, Spiteller D, Dickschat JS, Leblond P, Aigle B. A single Sfp-type phosphopantetheinyl transferase plays a major role in the biosynthesis of PKS and NRPS derived metabolites in Streptomyces ambofaciens ATCC23877. PLoS One 2014; 9:e87607. [PMID: 24498152 PMCID: PMC3909215 DOI: 10.1371/journal.pone.0087607] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/20/2013] [Indexed: 01/31/2023] Open
Abstract
The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is likely involved in fatty acid biosynthesis. Two other PPTase genes, samT0172 (alpN) and samL0372, are located within a type II PKS gene cluster responsible for the kinamycin production and an hybrid NRPS-PKS cluster involved in antimycin production, respectively, and their products were shown to be specifically involved in the biosynthesis of these secondary metabolites. Surprisingly, the fourth PPTase gene, which is not located within a secondary metabolite gene cluster, appears to play a pleiotropic role. Its product is likely involved in the activation of the acyl- and peptidyl-carrier protein domains within all the other PKS and NRPS complexes encoded by S. ambofaciens. Indeed, the deletion of this gene affects the production of the spiramycin and stambomycin macrolide antibiotics and of the grey spore pigment, all three being PKS-derived metabolites, as well as the production of the nonribosomally produced compounds, the hydroxamate siderophore coelichelin and the pyrrolamide antibiotic congocidine. In addition, this PPTase seems to act in concert with the product of samL0372 to activate the ACP and/or PCP domains of the antimycin biosynthesis cluster which is also responsible for the production of volatile lactones.
Collapse
Affiliation(s)
- Robert Bunet
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
- INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
| | - Ramona Riclea
- Institute of Organic Chemistry, TU Braunschweig, Braunschweig, Germany
| | - Luisa Laureti
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
- INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
| | - Laurence Hôtel
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
- INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
| | - Cédric Paris
- Université de Lorraine, Laboratoire d’Ingénierie des Biomolécules, Ecole Nationale Supérieure d’Agronomie et des Industries Alimentaires, Vandœuvre-lès-Nancy, France
| | - Jean-Michel Girardet
- Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (URAFPA), Vandœuvre-lès-Nancy Cedex, France
- INRA,URAFPA, USC 340, Vandœuvre-lès-Nancy, France
| | - Dieter Spiteller
- Department of Biology, Chemical Ecology/Biological Chemistry, University of Konstanz, Konstanz, Germany
| | | | - Pierre Leblond
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
- INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
| | - Bertrand Aigle
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
- INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
36
|
Foley TL, Rai G, Yasgar A, Daniel T, Baker HL, Attene-Ramos M, Kosa NM, Leister W, Burkart MD, Jadhav A, Simeonov A, Maloney DJ. 4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth. J Med Chem 2014; 57:1063-78. [PMID: 24450337 PMCID: PMC3983359 DOI: 10.1021/jm401752p] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
4′-Phosphopantetheinyl
transferases (PPTases) catalyze a post-translational modification
essential to bacterial cell viability and virulence. We present the
discovery and medicinal chemistry optimization of 2-pyridinyl-N-(4-aryl)piperazine-1-carbothioamides, which exhibit submicromolar
inhibition of bacterial Sfp-PPTase with no activity toward the human
orthologue. Moreover, compounds within this class possess antibacterial
activity in the absence of a rapid cytotoxic response in human cells.
An advanced analogue of this series, ML267 (55), was
found to attenuate production of an Sfp-PPTase-dependent metabolite
when applied to Bacillus subtilis at
sublethal doses. Additional testing revealed antibacterial activity
against methicillin-resistant Staphylococcus aureus, and chemical genetic studies implicated efflux as a mechanism for
resistance in Escherichia coli. Additionally,
we highlight the in vitro absorption, distribution, metabolism, and
excretion and in vivo pharmacokinetic profiles of compound 55 to further demonstrate the potential utility of this small-molecule
inhibitor.
Collapse
Affiliation(s)
- Timothy L Foley
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rothmann M, Kosa NM, Burkart MD. Resin supported acyl carrier protein labeling strategies. RSC Adv 2014; 4:9092-9097. [PMID: 24818001 DOI: 10.1039/c3ra47847e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The post-translational modifying enzymes phophopantetheinyl transferase and acyl carrier protein hydrolase have shown utility in the functional modification of acyl carrier proteins. Here we develop these tools as immobilized biocatalysts on agarose supports. New utility is imparted through these methods, enabling rapid and label-independent protein purification. Immobilization of acyl carrier protein is also demonstrated for rapid activity assays of these 4'-phosophopantetheine modifying enzymes, displaying a particular advantage in the case of phosphopantetheine removal, where few orthogonal techniques have been demonstrated. These tools further enrich the suite of functional utility of 4'-phosophopantetheine chemistry, with applications to protein functionalization, materials, and natural product biosynthetic studies.
Collapse
Affiliation(s)
- Michael Rothmann
- University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, San Diego, USA
| | - Nicolas M Kosa
- University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, San Diego, USA
| | - Michael D Burkart
- University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, San Diego, USA
| |
Collapse
|
38
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
39
|
Posttranslational maturation of the invasion acyl carrier protein of Salmonella enterica serovar Typhimurium requires an essential phosphopantetheinyl transferase of the fatty acid biosynthesis pathway. J Bacteriol 2013; 195:4399-405. [PMID: 23893113 DOI: 10.1128/jb.00472-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Salmonella pathogenicity island 1 (SPI-1) carries genes required for the formation of a type 3 secretion system, which is necessary for the invasion process of Salmonella. Among the proteins encoded by SPI-1 is IacP, a homolog of acyl carrier proteins. Acyl carrier proteins are mainly involved in fatty acid biosynthesis, and they require posttranslational maturation by addition of a 4'-phosphopantetheine prosthetic group to be functional. In this study, we analyzed IacP maturation in vivo. By performing matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry analysis of intact purified proteins, we showed that IacP from Salmonella enterica serovar Typhimurium was matured by addition of 4'-phosphopantetheine to the conserved serine 38 residue. Therefore, we searched for the phosphopantetheinyl transferases in charge of IacP maturation. A bacterial two-hybrid approach revealed that IacP interacted with AcpS, an enzyme normally required for the maturation of the canonical acyl carrier protein (ACP), which is involved in fatty acid biosynthesis. The creation of a conditional acpS mutant then demonstrated that AcpS was necessary for the maturation of IacP. However, although IacP was similar to ACP and matured by using the same enzyme, IacP could not replace the essential function of ACP in fatty acid synthesis. Hence, the demonstration that IacP is matured by AcpS establishes a cross-connection between virulence and fatty acid biosynthesis pathways.
Collapse
|
40
|
Inhibitors of fatty acid synthesis in prokaryotes and eukaryotes as anti-infective, anticancer and anti-obesity drugs. Future Med Chem 2012; 4:1113-51. [PMID: 22709254 DOI: 10.4155/fmc.12.62] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is a large range of diseases, such diabetes and cancer, which are connected to abnormal fatty acid metabolism in human cells. Therefore, inhibitors of human fatty acid synthase have great potential to manage or treat these diseases. In prokaryotes, fatty acid synthesis is important for signaling, as well as providing starting materials for the synthesis of phospholipids, which are required for the formation of the cell membrane. Recently, there has been renewed interest in the development of new molecules that target bacterial fatty acid synthases for the treatment of bacterial diseases. In this review, we look at the differences and similarities between fatty acid synthesis in humans and bacteria and highlight various small molecules that have been shown to inhibit either the mammalian or bacterial fatty acid synthase or both.
Collapse
|
41
|
Halavaty AS, Kim Y, Minasov G, Shuvalova L, Dubrovska I, Winsor J, Zhou M, Onopriyenko O, Skarina T, Papazisi L, Kwon K, Peterson SN, Joachimiak A, Savchenko A, Anderson WF. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1359-70. [PMID: 22993090 PMCID: PMC3447402 DOI: 10.1107/s0907444912029101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/26/2012] [Indexed: 05/13/2024]
Abstract
Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS(SA)), Vibrio cholerae (AcpS(VC)) and Bacillus anthracis (AcpS(BA)) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS(BA) is emphasized because of the two 3',5'-adenosine diphosphate (3',5'-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3',5'-ADP is bound as the 3',5'-ADP part of CoA in the known structures of the CoA-AcpS and 3',5'-ADP-AcpS binary complexes. The position of the second 3',5'-ADP has never been described before. It is in close proximity to the first 3',5'-ADP and the ACP-binding site. The coordination of two ADPs in AcpS(BA) may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.
Collapse
Affiliation(s)
- Andrei S. Halavaty
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
- Computational Institute, University of Chicago, Chicago, IL 60637, USA
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ievgeniia Dubrovska
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - James Winsor
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Min Zhou
- Center for Structural Genomics of Infectious Diseases, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
- Computational Institute, University of Chicago, Chicago, IL 60637, USA
| | - Olena Onopriyenko
- Center for Structural Genomics of Infectious Diseases, USA
- University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Tatiana Skarina
- Center for Structural Genomics of Infectious Diseases, USA
- University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Leka Papazisi
- Center for Structural Genomics of Infectious Diseases, USA
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Keehwan Kwon
- Center for Structural Genomics of Infectious Diseases, USA
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Scott N. Peterson
- Center for Structural Genomics of Infectious Diseases, USA
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
- Computational Institute, University of Chicago, Chicago, IL 60637, USA
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases, USA
- University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
42
|
Kosa NM, Haushalter RW, Smith AR, Burkart MD. Reversible labeling of native and fusion-protein motifs. Nat Methods 2012; 9:981-4. [PMID: 22983458 PMCID: PMC4128096 DOI: 10.1038/nmeth.2175] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/23/2012] [Indexed: 11/09/2022]
Abstract
The reversible covalent attachment of chemical probes to proteins has long been sought as a means to visualize and manipulate proteins. Here we demonstrate the full reversibility of post-translational custom pantetheine modification of Escherichia coli acyl carrier protein for visualization and functional studies. We use this iterative enzymatic methodology in vitro to reversibly label acyl carrier protein variants and apply these tools to NMR structural studies of protein-substrate interactions.
Collapse
Affiliation(s)
- Nicolas M. Kosa
- University of California San Diego, La Jolla, California, USA
| | | | - Andrew R. Smith
- University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
43
|
Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E. Current view on phytoplasma genomes and encoded metabolism. ScientificWorldJournal 2011; 2012:185942. [PMID: 22550465 PMCID: PMC3322544 DOI: 10.1100/2012/185942] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/20/2011] [Indexed: 11/21/2022] Open
Abstract
Phytoplasmas are specialised bacteria that are obligate parasites of plant phloem tissue and insects. These bacteria have resisted all attempts of cell-free cultivation. Genome research is of particular importance to analyse the genetic endowment of such bacteria. Here we review the gene content of the four completely sequenced ‘Candidatus Phytoplasma' genomes that include those of ‘Ca. P. asteris' strains OY-M and AY-WB, ‘Ca. P. australiense,' and ‘Ca. P. mali'. These genomes are characterized by chromosome condensation resulting in sizes below 900 kb and a G + C content of less than 28%. Evolutionary adaption of the phytoplasmas to nutrient-rich environments resulted in losses of genetic modules and increased host dependency highlighted by the transport systems and limited metabolic repertoire. On the other hand, duplication and integration events enlarged the chromosomes and contribute to genome instability. Present differences in the content of membrane and secreted proteins reflect the host adaptation in the phytoplasma strains. General differences are obvious between different phylogenetic subgroups. ‘Ca. P. mali' is separated from the other strains by its deviating chromosome organization, the genetic repertoire for recombination and excision repair of nucleotides or the loss of the complete energy-yielding part of the glycolysis. Apart from these differences, comparative analysis exemplified that all four phytoplasmas are likely to encode an alternative pathway to generate pyruvate and ATP.
Collapse
Affiliation(s)
- Michael Kube
- Department of Crop and Animal Sciences, Humboldt-University of Berlin, Lentzeallee 55/57, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
44
|
Borgaro JG, Chang A, Machutta CA, Zhang X, Tonge PJ. Substrate recognition by β-ketoacyl-ACP synthases. Biochemistry 2011; 50:10678-86. [PMID: 22017312 DOI: 10.1021/bi201199x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Ketoacyl-ACP synthase (KAS) enzymes catalyze Claisen condensation reactions in the fatty acid biosynthesis pathway. These reactions follow a ping-pong mechanism in which a donor substrate acylates the active site cysteine residue after which the acyl group is condensed with the malonyl-ACP acceptor substrate to form a β-ketoacyl-ACP. In the priming KASIII enzymes the donor substrate is an acyl-CoA while in the elongating KASI and KASII enzymes the donor is an acyl-ACP. Although the KASIII enzyme in Escherichia coli (ecFabH) is essential, the corresponding enzyme in Mycobacterium tuberculosis (mtFabH) is not, suggesting that the KASI or II enzyme in M. tuberculosis (KasA or KasB, respectively) must be able to accept a CoA donor substrate. Since KasA is essential, the substrate specificity of this KASI enzyme has been explored using substrates based on phosphopantetheine, CoA, ACP, and AcpM peptide mimics. This analysis has been extended to the KASI and KASII enzymes from E. coli (ecFabB and ecFabF) where we show that a 14-residue malonyl-phosphopantetheine peptide can efficiently replace malonyl-ecACP as the acceptor substrate in the ecFabF reaction. While ecFabF is able to catalyze the condensation reaction when CoA is the carrier for both substrates, the KASI enzymes ecFabB and KasA have an absolute requirement for an ACP substrate as the acyl donor. Provided that this requirement is met, variation in the acceptor carrier substrate has little impact on the k(cat)/K(m) for the KASI reaction. For the KASI enzymes we propose that the binding of ecACP (AcpM) results in a conformational change that leads to an open form of the enzyme to which the malonyl acceptor substrate binds. Finally, the substrate inhibition observed when palmitoyl-CoA is the donor substrate for the KasA reaction has implications for the importance of mtFabH in the mycobacterial FASII pathway.
Collapse
Affiliation(s)
- Janine G Borgaro
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | | | | | | | | |
Collapse
|
45
|
Rothmann M, Niessen S, Haushalter RW, Cravatt BF, Burkart MD. Resin-based investigation of acyl carrier protein interaction networks in Escherichia coli. Bioorg Med Chem 2011; 20:667-71. [PMID: 22104437 DOI: 10.1016/j.bmc.2011.10.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/06/2011] [Accepted: 10/17/2011] [Indexed: 11/25/2022]
Abstract
Protein-protein interactions play an integral role in metabolic regulation. Elucidation of these networks is complicated by the changing identity of the proteins themselves. Here we demonstrate a resin-based technique that leverages the unique tools for acyl carrier protein (ACP) modification with non-hydrolyzable linkages. ACPs from Escherichia coli and Shewanella oneidensis MR-1 are bound to Affigel-15 with varying acyl groups attached and introduced to proteomic samples. Isolation of these binding partners is followed by MudPIT analysis to identify each interactome with the variable of ACP-tethered substrates. These techniques allow for investigation of protein interaction networks with the changing identity of a given protein target.
Collapse
Affiliation(s)
- Michael Rothmann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | | | | | | | | |
Collapse
|
46
|
Gokulan K, Aggarwal A, Shipman L, Besra GS, Sacchettini JC. Mycobacterium tuberculosis acyl carrier protein synthase adopts two different pH-dependent structural conformations. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:657-69. [PMID: 21697604 PMCID: PMC3270384 DOI: 10.1107/s0907444911020221] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/26/2011] [Indexed: 12/19/2022]
Abstract
The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS-ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the α2 helix and in the conformation of the α3-α4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4-6.0). In contrast, at a higher pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS-ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS-ADP adopt different conformations depending upon the pH conditions of the crystallization solution.
Collapse
Affiliation(s)
- Kuppan Gokulan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3474, USA
| | - Anup Aggarwal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3474, USA
| | - Lance Shipman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3474, USA
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
47
|
Rapid and flexible biochemical assays for evaluating 4′-phosphopantetheinyl transferase activity. Biochem J 2011; 436:709-17. [DOI: 10.1042/bj20110321] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PPTases (phosphopantetheinyl transferases) are of great interest owing to their essential roles in activating fatty acid, polyketide and non-ribosomal peptide synthetase enzymes for both primary and secondary metabolism, as well as an increasing number of biotechnological applications. However, existing techniques for PPTase characterization and development are cumbersome and technically challenging. To address this, we have developed the indigoidine-synthesizing non-ribosomal peptide synthetase BpsA as a reporter for PPTase activity. Simple co-transformation allows rapid assessment of the ability of a PPTase candidate to activate BpsA in vivo. Kinetic parameters with respect to either CoA or BpsA as variable substrate can then be derived in vitro by continuously measuring the rate of indigoidine synthesis as the PPTase progressively converts BpsA from its apo into holo form. Subsequently, a competition assay, in which BpsA and purified carrier proteins compete for a limited pool of CoA, enables elucidation of kinetic parameters for a PPTase with those carrier proteins. We used this system to conduct a rapid characterization of three different PPTase enzymes: Sfp of Bacillus subtilis A.T.C.C.6633, PcpS of Pseudomonas aeruginosa PAO1, and the putative PPTase PP1183 of Ps. putida KT2440. We also demonstrate the utility of this system for discovery and characterization of PPTase inhibitors.
Collapse
|
48
|
Ramelot TA, Smola MJ, Lee HW, Ciccosanti C, Hamilton K, Acton TB, Xiao R, Everett JK, Prestegard JH, Montelione GT, Kennedy MA. Solution structure of 4'-phosphopantetheine - GmACP3 from Geobacter metallireducens: a specialized acyl carrier protein with atypical structural features and a putative role in lipopolysaccharide biosynthesis. Biochemistry 2011; 50:1442-53. [PMID: 21235239 PMCID: PMC3063093 DOI: 10.1021/bi101932s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GmACP3 from Geobacter metallireducens is a specialized acyl carrier protein (ACP) whose gene, gmet_2339, is located near genes encoding many proteins involved in lipopolysaccharide (LPS) biosynthesis, indicating a likely function for GmACP3 in LPS production. By overexpression in Escherichia coli, about 50% holo-GmACP3 and 50% apo-GmACP3 were obtained. Apo-GmACP3 exhibited slow precipitation and non-monomeric behavior by (15)N NMR relaxation measurements. Addition of 4'-phosphopantetheine (4'-PP) via enzymatic conversion by E. coli holo-ACP synthase resulted in stable >95% holo-GmACP3 that was characterized as monomeric by (15)N relaxation measurements and had no indication of conformational exchange. We have determined a high-resolution solution structure of holo-GmACP3 by standard NMR methods, including refinement with two sets of NH residual dipolar couplings, allowing for a detailed structural analysis of the interactions between 4'-PP and GmACP3. Whereas the overall four helix bundle topology is similar to previously solved ACP structures, this structure has unique characteristics, including an ordered 4'-PP conformation that places the thiol at the entrance to a central hydrophobic cavity near a conserved hydrogen-bonded Trp-His pair. These residues are part of a conserved WDSLxH/N motif found in GmACP3 and its orthologs. The helix locations and the large hydrophobic cavity are more similar to medium- and long-chain acyl-ACPs than to other apo- and holo-ACP structures. Taken together, structural characterization along with bioinformatic analysis of nearby genes suggests that GmACP3 is involved in lipid A acylation, possibly by atypical long-chain hydroxy fatty acids, and potentially is involved in synthesis of secondary metabolites.
Collapse
Affiliation(s)
- Theresa A. Ramelot
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States and the Northeast Structural Genomics Consortium
| | - Matthew J. Smola
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States and the Northeast Structural Genomics Consortium
| | - Hsiau-Wei Lee
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States and the Northeast Structural Genomics Consortium
| | - Colleen Ciccosanti
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States and the Northeast Structural Genomics Consortium
| | - Keith Hamilton
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States and the Northeast Structural Genomics Consortium
| | - Thomas B. Acton
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States and the Northeast Structural Genomics Consortium
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States and the Northeast Structural Genomics Consortium
| | - John K. Everett
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States and the Northeast Structural Genomics Consortium
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States and the Northeast Structural Genomics Consortium
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States and the Northeast Structural Genomics Consortium
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, 08854, United States
| | - Michael A. Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States and the Northeast Structural Genomics Consortium
| |
Collapse
|
49
|
Asghar AH, Shastri S, Dave E, Wowk I, Agnoli K, Cook AM, Thomas MS. The pobA gene of Burkholderia cenocepacia encodes a Group I Sfp-type phosphopantetheinyltransferase required for biosynthesis of the siderophores ornibactin and pyochelin. Microbiology (Reading) 2011; 157:349-361. [DOI: 10.1099/mic.0.045559-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The opportunistic pathogen Burkholderia cenocepacia produces the siderophores ornibactin and pyochelin under iron-restricted conditions. Biosynthesis of both siderophores requires the involvement of non-ribosomal peptide synthetases (NRPSs). Using a transposon containing the lacZ reporter gene, two B. cenocepacia mutants were isolated which were deficient in siderophore production. Mutant IW10 was shown to produce normal amounts of ornibactin but only trace amounts of pyochelin, whereas synthesis of both siderophores was abolished in AHA27. Growth of AHA27, but not IW10, was inhibited under iron-restricted conditions. In both mutants, the transposon had integrated into the pobA gene, which encodes a polypeptide exhibiting similarity to the Sfp-type phosphopantetheinyltransferases (PPTases). These enzymes are responsible for activation of NRPSs by the covalent attachment of the 4′-phosphopantetheine (P-pant) moiety of coenzyme A. Previously characterized PPTase genes from other bacteria were shown to efficiently complement both mutants for siderophore production when provided in trans. The B. cenocepacia pobA gene was also able to efficiently complement an Escherichia coli entD mutant for production of the siderophore enterobactin. Using mutant IW10, in which the lacZ gene carried by the transposon is inserted in the same orientation as pobA, it was shown that pobA is not appreciably iron-regulated. Finally, we confirmed that Sfp-type bacterial PPTases can be subdivided into two distinct groups, and we present the amino acid signature sequences which characterize each of these groups.
Collapse
Affiliation(s)
- Atif H. Asghar
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Sravanthi Shastri
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Emma Dave
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Irena Wowk
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Kirsty Agnoli
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anne M. Cook
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Mark S. Thomas
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
50
|
Walsh CT. Catalysis at the intersection of biology, chemistry, and medicine. J Biol Chem 2010; 285:29681-9. [PMID: 20595393 DOI: 10.1074/jbc.x110.160309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115-5718, USA.
| |
Collapse
|