1
|
Hossain S, Dubielecka PM, Sikorski AF, Birge RB, Kotula L. Crk and ABI1: binary molecular switches that regulate abl tyrosine kinase and signaling to the cytoskeleton. Genes Cancer 2012; 3:402-13. [PMID: 23226578 DOI: 10.1177/1947601912460051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nonreceptor tyrosine kinases Abl and Arg are among the most well-characterized tyrosine kinases in the human genome. The activation of Abl by N-terminal fusions with Bcr (Bcr-Abl) or Gag (v-Abl) is responsible for chronic myeloid leukemia or Ph+ acute lymphoblastic leukemia and mouse leukemia virus, respectively. In addition, aberrant Abl and Arg activation downstream of several oncogenic growth factor receptors contributes to the development and progression of a variety of human cancers, often associated with poor clinical outcome, drug resistance, and tumor invasion and metastasis. Abl activation can occur by a variety of mechanisms that include domain interactions involving structural remodeling of autoinhibited conformations as well as direct phosphorylation by upstream kinases and phosphatases. Constitutive activation of Abl plays a significant role in regulating the actin cytoskeleton by modulating cell adhesion, motility, and invadopodia. This review addresses the role of Abl and Arg in tumor progression with particular emphasis on the roles of Crk and Abi1 adapter proteins as distinct molecular switches for Abl transactivation. These insights, combined with new insights into the structure of these kinases, provide the rationale to envision that Crk and Abi1 fine-tune Abl regulation to control signaling to the cytoskeleton.
Collapse
Affiliation(s)
- Sajjad Hossain
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA ; Current address: Stony Brook University, Stony Brook, NY, USA
| | | | | | | | | |
Collapse
|
2
|
Liao X, Su J, Mrksich M. An adaptor domain-mediated autocatalytic interfacial kinase reaction. Chemistry 2010; 15:12303-9. [PMID: 19821459 PMCID: PMC2856317 DOI: 10.1002/chem.200901345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper describes a model system for studying the autocatalytic phosphorylation of an immobilized substrate by a kinase enzyme. This work uses self-assembled monolayers (SAMs) of alkanethiolates on gold to present the peptide substrate on a planar surface. Treatment of the monolayer with Abl kinase results in phosphorylation of the substrate. The phosphorylated peptide then serves as a ligand for the SH2 adaptor domain of the kinase and thereby directs the kinase activity to nearby peptide substrates. This directed reaction is intramolecular and proceeds with a faster rate than does the initial, intermolecular reaction, making this an autocatalytic process. The kinetic non-linearity gives rise to properties that have no counterpart in the corresponding homogeneous phase reaction: in one example, the rate for phosphorylation of a mixture of two peptides is faster than the sum of the rates for phosphorylation of each peptide when presented alone. This work highlights the use of an adaptor domain in modulating the activity of a kinase enzyme for an immobilized substrate and offers a new approach for studying biochemical reactions in spatially inhomogeneous settings.
Collapse
Affiliation(s)
- Xiaoli Liao
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
3
|
Xiong X, Cui P, Hossain S, Xu R, Warner B, Guo X, An X, Debnath AK, Cowburn D, Kotula L. Allosteric inhibition of the nonMyristoylated c-Abl tyrosine kinase by phosphopeptides derived from Abi1/Hssh3bp1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:737-47. [PMID: 18328268 DOI: 10.1016/j.bbamcr.2008.01.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 01/09/2008] [Accepted: 01/28/2008] [Indexed: 11/25/2022]
Abstract
Here we report c-Abl kinase inhibition mediated by a phosphotyrosine located in trans in the c-Abl substrate, Abi1. The mechanism, which is pertinent to the nonmyristoylated c-Abl kinase, involves high affinity concurrent binding of the phosphotyrosine pY213 to the Abl SH2 domain and binding of a proximal PXXP motif to the Abl SH3 domain. Abi1 regulation of c-Abl in vivo appears to play a critical role, as demonstrated by inhibition of pY412 phosphorylation of the nonmyristoylated Abl by coexpression of Abi1. Pervanadate-induced c-Abl kinase activity was also reduced upon expression of the wild type Abi1 but not by expression of the Y213 to F213 mutant Abi1 in LNCaP cells, which are naturally deficient in the regulatory pY213. Our findings suggest a novel mechanism by which Abl kinase is regulated in cells.
Collapse
Affiliation(s)
- Xiaoling Xiong
- Laboratory of Cell Signaling, New York Blood Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Klosi E, Saro D, Spaller MR. Bivalent peptides as PDZ domain ligands. Bioorg Med Chem Lett 2007; 17:6147-50. [PMID: 17890086 PMCID: PMC2169291 DOI: 10.1016/j.bmcl.2007.09.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 11/28/2022]
Abstract
A series of multivalent peptides, with the ability to simultaneously bind two separate PDZ domain proteins, has been designed, synthesized, and tested by isothermal titration calorimetry (ITC). The monomer sequences, linked with succinate, varied in length from five to nine residues. The thermodynamic binding parameters, in conjunction with results from mass spectrometry, indicate that a ternary complex is formed in which each peptide arm binds two equivalents of the third PDZ domain (PDZ3) of the neuronal protein PSD-95.
Collapse
Affiliation(s)
- Edvin Klosi
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
5
|
Zhou HX. Quantitative relation between intermolecular and intramolecular binding of pro-rich peptides to SH3 domains. Biophys J 2006; 91:3170-81. [PMID: 16891373 PMCID: PMC1614496 DOI: 10.1529/biophysj.106.090258] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Flexible linkers are often found to tether binding sequence motifs or connect protein domains. Here we analyze three usages of flexible linkers: 1), intramolecular binding of proline-rich peptides (PRPs) to SH3 domains for kinase regulation; 2), intramolecular binding of PRP for increasing the folding stability of SH3 domains; and 3), covalent linking of PRPs and other ligands for high-affinity bivalent binding. The basis of these analyses is a quantitative relation between intermolecular and intramolecular binding constants. This relation has the form K(i) = K(e0)p for intramolecular binding and K(e) = K(e01)K(e02)p for bivalent binding. The effective concentration p depends on the length of the linker and the distance between the linker attachment points in the bound state. Several applications illustrate the usefulness of the quantitative relation. These include intramolecular binding to the Itk SH3 domain by an internal PRP and to a circular permutant of the alpha-spectrin SH3 domain by a designed PRP, and bivalent binding to the two SH3 domains of Grb2 by two linked PRPs. These and other examples suggest that flexible linkers and sequence motifs tethered to them, like folded protein domains, are also subject to tight control during evolution.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics and School of Computational Science, Florida State University, Tallahassee, USA.
| |
Collapse
|
6
|
Machida K, Mayer BJ. The SH2 domain: versatile signaling module and pharmaceutical target. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1747:1-25. [PMID: 15680235 DOI: 10.1016/j.bbapap.2004.10.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/29/2004] [Accepted: 10/11/2004] [Indexed: 10/26/2022]
Abstract
The Src homology 2 (SH2) domain is the most prevalent protein binding module that recognizes phosphotyrosine. This approximately 100-amino-acid domain is highly conserved structurally despite being found in a wide variety proteins. Depending on the nature of neighboring protein module(s), such as catalytic domains and other protein binding domains, SH2-containing proteins play many different roles in cellular protein tyrosine kinase (PTK) signaling pathways. Accumulating evidence indicates SH2 domains are highly versatile and exhibit considerable flexibility in how they bind to their ligands. To illustrate this functional versatility, we present three specific examples: the SAP, Cbl and SOCS families of SH2-containing proteins, which play key roles in immune responses, termination of PTK signaling, and cytokine responses. In addition, we highlight current progress in the development of SH2 domain inhibitors designed to antagonize or modulate PTK signaling in human disease. Inhibitors of the Grb2 and Src SH2 domains have been extensively studied, with the aim of targeting the Ras pathway and osteoclastic bone resorption, respectively. Despite formidable difficulties in drug design due to the lability and poor cell permeability of negatively charged phosphorylated SH2 ligands, a variety of structure-based strategies have been used to reduce the size, charge and peptide character of such ligands, leading to the development of high-affinity lead compounds with potent cellular activities. These studies have also led to new insights into molecular recognition by the SH2 domain.
Collapse
Affiliation(s)
- Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA.
| | | |
Collapse
|
7
|
Fluorescence Detection of Protein/Z-DNA Interactions. B KOREAN CHEM SOC 2004. [DOI: 10.5012/bkcs.2004.25.9.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Ferguson MR, Fan X, Mukherjee M, Luo J, Khan R, Ferreon JC, Hilser VJ, Shope RE, Fox RO. Directed discovery of bivalent peptide ligands to an SH3 domain. Protein Sci 2004; 13:626-32. [PMID: 14978303 PMCID: PMC2286729 DOI: 10.1110/ps.03470504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Revised: 12/05/2003] [Accepted: 12/05/2003] [Indexed: 10/26/2022]
Abstract
The Caenorhabditis elegans SEM-5 SH3 domains recognize proline-rich peptide segments with modest affinity. We developed a bivalent peptide ligand that contains a naturally occurring proline-rich binding sequence, tethered by a glycine linker to a disulfide-closed loop segment containing six variable residues. The glycine linker allows the loop segment to explore regions of greatest diversity in sequence and structure of the SH3 domain: the RT and n-Src loops. The bivalent ligand was optimized using phage display, leading to a peptide (PP-G(4)-L) with 1000-fold increased affinity for the SEM-5 C-terminal SH3 domain over that of a natural ligand. NMR analysis of the complex confirms that the peptide loop segment is targeted to the RT and n-Src loops and parts of the beta-sheet scaffold of this SH3 domain. This binding region is comparable to that targeted by a natural non-PXXP peptide to the p67(phox) SH3 domain, a region not known to be targeted in the Grb2 SH3 domain family. PP-G(4)-L may aid in the discovery of additional binding partners of Grb2 family SH3 domains.
Collapse
Affiliation(s)
- Monique R Ferguson
- Department of Human Biological Chemistry and Genetics, and Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bachhawat-Sikder K, Kodadek T. Mixed-element capture agents: a simple strategy for the construction of synthetic, high-affinity protein capture ligands. J Am Chem Soc 2003; 125:9550-1. [PMID: 12903996 DOI: 10.1021/ja034912n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Demonstration of a simple strategy to generate synthetic high-affinity protein capture agents of practical utility for protein-detecting microarrays. The model study highlights capture of the MBP-Mdm2 fusion protein on a solid support by a linear sequence of peptides that bind to the two individual polypeptide chains.
Collapse
Affiliation(s)
- Kiran Bachhawat-Sikder
- Center for Biomedical Inventions and the Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8573, USA
| | | |
Collapse
|
10
|
Abstract
In this chapter, we have described the biophysical investigations which have dissected the mechanisms of SH2 domain function. Due to nearly a decade and a half of investigation on SH2 domains, much about their binding mechanism has been characterized. SH2 domains have been found to have a positively charged binding cavity, largely conserved between different SH2 domains, which coordinates binding of the pTyr in the target. The ionic interactions between this pocket and the pTyr, in particular, between Arg beta B5 and the phosphate, provide the majority of the binding energy stabilizing SH2 domain-target interactions. The specificity in SH2 domain-target interactions emanates most often from the interactions between the residues C-terminal to the pTyr in the target and the specificity determining residues in the C-terminal half of the SH2 domain. However, the interactions in the specificity determining region of SH2 domains are weak, and hence single SH2 domains show only a modest level of specificity for tyrosine phosphorylated targets. Greater specificity in SH2 domain-containing protein-tyrosine phosphorylated target interactions can be achieved by placing SH2 domains in tandem (as is often found) or possibly through specific localization of SH2 domain-containing proteins within the cell. Although a relatively good understanding of how SH2 domains function in isolation has been obtained, the ways in which SH2 domain binding is coupled to allosteric transmission of signals in larger SH2 domain-containing proteins are still not clear. Hence, the future should bring further investigations of the mechanisms by which SH2 domain ligation alters the enzymatic activity and cellular localization of SH2 domain-containing proteins.
Collapse
Affiliation(s)
- J Michael Bradshaw
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
11
|
Abstract
Protein kinases play critical roles in signal transduction pathways by transmitting extracellular signals across the cell membrane to distant locations in the cytoplasm and the nucleus. The development of protein kinase inhibitors has been hindered by the broad overlapping substrate specificities exhibited by these enzymes. The design of bisubstrate analog inhibitors could provide for the enhancement of specificity and potency in protein kinase inhibition. Bisubstrate analog inhibitors form a special group of protein kinase inhibitors that mimic two natural substrates/ligands and that simultaneously associate with two regions of given kinases. Most bisubstrate analogs have been designed to mimic the phosphate donor (ATP) and the acceptor components (Ser-, Thr-, or Tyr-containing peptides). Recent studies have emphasized the importance of maintaining a specific distance between these two components to achieve potent inhibition. In this review, we present a discussion of the methods for designing protein kinase inhibitors by mechanism-based approaches. Emphasis is given to bivalent approaches, with an interpretation of what has been learned from more and less successful examples. Future challenges in this area are also highlighted.
Collapse
Affiliation(s)
- Keykavous Parang
- Department of Biomedical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA.
| | | |
Collapse
|
12
|
Ringstad N, Nemoto Y, De Camilli P. Differential expression of endophilin 1 and 2 dimers at central nervous system synapses. J Biol Chem 2001; 276:40424-30. [PMID: 11518713 DOI: 10.1074/jbc.m106338200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endophilin 1 is proposed to participate in synaptic vesicle biogenesis through SH3 domain-mediated interactions with the polyphosphoinositide phosphatase synaptojanin and the GTPase dynamin. Endophilin family members have also been identified as binding partners for a number of diverse cellular proteins. We define here the endophilin 1-binding site within synaptojanin 1 and show that this sequence independently and selectively purifies from brain extracts endophilin 1 and a closely related protein, endophilin 2. Endophilin 2, like endophilin 1, is highly expressed in brain, concentrated in nerve terminals, and found in complexes with synaptojanin and dynamin. Although a fraction of endophilins 1 and 2 coexist in the same complex, the distribution of these endophilin isoforms among central synapses only partially overlaps. Endophilins 1 and 2 are found predominantly as stable dimers through a predicted coiled-coil domain in their conserved NH2-terminal moiety. Dimerization may allow endophilins to link a number of different cellular targets to the endocytic machinery.
Collapse
Affiliation(s)
- N Ringstad
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
13
|
Kardinal C, Konkol B, Lin H, Eulitz M, Schmidt EK, Estrov Z, Talpaz M, Arlinghaus RB, Feller SM. Chronic myelogenous leukemia blast cell proliferation is inhibited by peptides that disrupt Grb2-SoS complexes. Blood 2001; 98:1773-81. [PMID: 11535511 DOI: 10.1182/blood.v98.6.1773] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is commonly characterized by the presence of the p210(Bcr-Abl) oncoprotein. Many downstream effectors of Bcr-Abl have been described, including activation of the Grb2-SoS-Ras-MAP kinase (Erk) pathway. The precise contributions of these signal-transduction proteins in CML blast cells in human patients are not yet well defined. To gain further insight into the importance of Grb2 for CML, peptides that disrupt Grb2-SoS complexes were tested. These high-affinity Grb2-binding peptides (HAGBPs) can autonomously shuttle into cells and function by binding to the N-terminal SH3 domain of Grb2. The HAGBPs were analyzed for their effects on Bcr-Abl-expressing cell lines and freshly isolated CML blast cells from patients. They induced a dramatic decrease in the proliferation of CML cell lines. This was not observed with point-mutated control peptides with abolished Grb2SH3(N) binding. As expected, Grb2-SoS complexes were greatly diminished in the HAGBP-treated cells, and MAP kinase activity was significantly reduced as determined by an activation-specific phospho-MAPK antibody. Furthermore, cell fractions that are enriched for blast cells from CML patients with active disease were also incubated with the Grb2 blocker peptides. The HAGBPs led to a significant proliferation reduction of these cells in the majority of the isolates, but not in all patients' cells. These results show that, in addition to the direct targeting of Bcr-Abl, selective inhibition of Grb2 protein complexes may be a therapeutic option for a significant number of CML patients.
Collapse
Affiliation(s)
- C Kardinal
- Laboratory of Molecular Oncology, Institut für Medizinishe Strahleukunde und Zellforschung, Universität Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- D Cowburn
- Laboratory of Physical Biochemistry, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
15
|
Profit AA, Lee TR, Niu J, Lawrence DS. Molecular rulers: an assessment of distance and spatial relationships of Src tyrosine kinase Sh2 and active site regions. J Biol Chem 2001; 276:9446-51. [PMID: 11118446 DOI: 10.1074/jbc.m009262200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structures of the inactive conformations of Hck and Src, members of the Src protein-tyrosine kinase family, have recently been described. In both cases, the catalytic domain lies on the opposite face of the enzyme from the SH2 and SH3 domains. The active conformation of these enzymes has not yet been described. Given the known role of the SH2 and SH3 domains in promoting substrate binding, enzyme activation likely reorients the relative spatial arrangement between the SH2/SH3 domains and the active site region. We describe herein a series of "molecular rulers" and their use in assessing the topological and spatial relationships of the SH2 and active site regions of the Src protein-tyrosine kinase. These synthetic compounds contain sequences that are active site-directed (-Glu-Glu-Ile-Ile-(F(5))Phe-, where (F(5))Phe is pentafluorophenylalanine) and SH2-directed (-Tyr(P)-Glu-Glu-Ile-Glu-), separated by a sequence of variable length. The most potent bivalent compound, acetyl-Glu-Glu-Leu-Leu-(F(5))Phe-(GABA)(3)-Tyr(P)-Glu-Glu-Ile-Glu-amide (where GABA is gamma-aminobutyric acid), displays a >120-fold enhancement in inhibitory potency relative to the simple monovalent active site-directed species, acetyl-Glu-Glu-Leu-Leu-(F(5))Phe-amide. The short linker length (3 GABA residues) between the active site- and SH2-directed peptide fragments suggests that the corresponding domains on the Src kinase can assume a nearly contiguous spatial arrangement in the active form of the enzyme.
Collapse
Affiliation(s)
- A A Profit
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
16
|
Lewitzky M, Kardinal C, Gehring NH, Schmidt EK, Konkol B, Eulitz M, Birchmeier W, Schaeper U, Feller SM. The C-terminal SH3 domain of the adapter protein Grb2 binds with high affinity to sequences in Gab1 and SLP-76 which lack the SH3-typical P-x-x-P core motif. Oncogene 2001; 20:1052-62. [PMID: 11314042 DOI: 10.1038/sj.onc.1204202] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Revised: 12/14/2000] [Accepted: 12/19/2000] [Indexed: 11/08/2022]
Abstract
The adapter Grb2 is an important mediator of normal cell proliferation and oncogenic signal transduction events. It consists of a central SH2 domain flanked by two SH3 domains. While the binding specificities of the Grb2 SH2 and N-terminal SH3 domain [Grb2 SH3(N)] have been studied in detail, binding properties of the Grb2 SH3(C) domain remained poorly defined. Gab1, a receptor tyrosine kinase substrate which associates with Grb2 and the c-Met receptor, was previously shown to bind Grb2 via a region which lacks a Grb2 SH3(N)-typical motif (P-x-x-P-x-R). Precipitation experiments with the domains of Grb2 show now that Gab1 can bind stably to the Grb2 SH3(C) domain. For further analyses, Gab1 mutants were generated by PCR to test in vivo residues thought to be crucial for Grb2 SH3(C) binding. The Grb2 SH3(C) binding region of Gab1 has significant homology to a region of the adapter protein SLP-76. Peptides corresponding to epitopes SLP-76, Gab1, SoS and other proteins with related sequences, as well as mutant peptides were synthesized and analysed by tryptophan-fluorescence spectrometry and by in vitro competition experiments. These experiments define a 13 amino acid sequence with the unusual consensus motif P-x-x-x-R-x-x-K-P as required for a stable binding to the SH3(C) domain of Grb2. Additional analyses point to a distinct binding specificity of the Grb2-homologous adapter protein Mona (Gads), indicating that the proteins of the Grb2 adapter family may have partially overlapping, yet distinct protein binding properties.
Collapse
Affiliation(s)
- M Lewitzky
- Laboratory of Molecular Oncology, MSZ, Universität Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yuzawa S, Yokochi M, Hatanaka H, Ogura K, Kataoka M, Miura K, Mandiyan V, Schlessinger J, Inagaki F. Solution structure of Grb2 reveals extensive flexibility necessary for target recognition. J Mol Biol 2001; 306:527-37. [PMID: 11178911 DOI: 10.1006/jmbi.2000.4396] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Grb2 is an adaptor protein composed of a single SH2 domain flanked by two SH3 domains. Grb2 functions as an important evolutionary conserved link between a variety of cell membrane receptors and the Ras/MAP kinase-signaling cascade. Here, we describe the solution structure of Grb2 as revealed by NMR and small angle X-ray scattering measurements. We demonstrate that Grb2 is a flexible protein in which the C-terminal SH3 domain is connected to the SH2 domain via a flexible linker. This is in contrast to the previously described Grb2 crystal structure, which showed a compact structure with intramolecular contact between two SH3 domains. Binding experiments on Grb2 and peptides containing two different proline-rich sequences indicate that Grb2 adapts the relative position and orientation of the two SH3 domains to bind bivalently to the target peptide sequences.
Collapse
Affiliation(s)
- S Yuzawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sinha S, Corey SJ. Implications for Src kinases in hematopoiesis: signal transduction therapeutics. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 1999; 8:465-80. [PMID: 10791898 DOI: 10.1089/152581699319920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Signal transduction therapeutics is now the dominant theme of drug discovery, and its most immediate impact will be in cancer therapeutics. Blood cell proliferation, differentiation, and activation are controlled by cytokines, whose receptors contain tyrosine kinase catalytic domains or recruit cytosolic tyrosine kinases. Among the most important cytosolic protein tyrosine kinases are the Src and Jak families. Receptor or cytosolic protein tyrosine kinases activate a similar set of intracellular signaling molecules. In blood cells, excessive tyrosine kinase activity is associated with either cancer or autoreactive diseases. Therefore, tyrosine kinases and their substrates serve as excellent candidates for drug intervention. Herceptin has been approved for use in breast cancer. Other agents, such as SU101 and CGP 57418B, are well into phase I-III trials. Newer, more selective tyrosine kinase inhibitors are being evaluated for future use in the treatment of hematologic and solid tumors as well as a wide range of inflammatory or autoimmune diseases.
Collapse
Affiliation(s)
- S Sinha
- Department of Pediatrics (Hematology-Oncology), Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, PA 15213, USA
| | | |
Collapse
|
19
|
Aghazadeh B, Rosen MK. Ligand recognition by SH3 and WW domains: the role of N-alkylation in PPII helices. CHEMISTRY & BIOLOGY 1999; 6:R241-6. [PMID: 10467125 DOI: 10.1016/s1074-5521(99)80108-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SH3 and WW domains are involved in a variety of intracellular signaling pathways. Recent work has shed light on the mechanism whereby these signaling modules recognize prolines in polyproline ligands, which has implications in the design of ligands selectively targeting these interactions.
Collapse
Affiliation(s)
- B Aghazadeh
- Cellular Biochemistry & Biophysics Program, Memorial Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
20
|
Fushman D, Xu R, Cowburn D. Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15N NMR relaxation in Abl SH(32). Biochemistry 1999; 38:10225-30. [PMID: 10441115 DOI: 10.1021/bi990897g] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relative orientation and motions of domains within many proteins are key to the control of multivalent recognition, or the assembly of protein-based cellular machines. Current methods of structure determination have limited applicability to macromolecular assemblies, characterized by weak interactions between the constituents. Crystal structures of such complexes might be biased by packing forces comparable to the interdomain interactions, while the precision and accuracy of the conventional NMR structural approaches are necessarily limited by the restricted number of NOE contacts and by interdomain flexibility rendering the available NOE information uninterpretable. NMR relaxation studies are capable of providing "long-range" structural information on macromolecules in their native milieu. Here we determine directly the change in domain orientation between unligated and dual ligated subdomains of the SH(32) segment of Abelson kinase in solution, using the orientational dependence of nuclear spin relaxation. These results demonstrate that the change in domain orientation between unligated and ligated forms can be measured directly in solution.
Collapse
Affiliation(s)
- D Fushman
- The Rockefeller University, New York 10021, USA
| | | | | |
Collapse
|
21
|
Xu Q, Zheng J, Xu R, Barany G, Cowburn D. Flexibility of interdomain contacts revealed by topological isomers of bivalent consolidated ligands to the dual Src homology domain SH(32) of abelson. Biochemistry 1999; 38:3491-7. [PMID: 10090735 DOI: 10.1021/bi982744j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Src homology (SH)2 and SH3 domains are found in a variety of proteins involved in the control of cellular signaling and architecture. The possible interrelationships between domains are not easily investigated, even though several cases of multiple domain-containing constructs have been studied structurally. As a complement to direct structural methods, we have developed consolidated ligands and tested their binding to the Abl SH(32) complex. Consolidated ligands combine in the same molecule peptide sequences recognized by SH2 and SH3 domains, i.e., Pro-Val-pTyr-Glu-Asn-Val and Pro-Pro-Ala-Tyr-Pro-Pro-Pro-Pro-Val-Pro, respectively; these are joined by oligoglycyl linkers. Four types of ligands were chemically synthesized, representing all the possible relative orientations of ligands. Their affinities were found to vary with binding portion topologies and linker lengths. Two of these types were shown to bind to both SH2 and SH3 dual domains with high affinities and specificities, showing increases of one order of magnitude, as compared to the most strongly bound monovalent equivalent. These results suggest that the relative orientation of SH2 and SH3 in Abl SH(32) is not fixed, and this synthetic approach may be generally useful for determining the structures of ligated complexes and for developing reagents with high affinities and specificities.
Collapse
Affiliation(s)
- Q Xu
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, and Department of Chemistry, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
22
|
Xu R, Ayers B, Cowburn D, Muir TW. Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A 1999; 96:388-93. [PMID: 9892643 PMCID: PMC15146 DOI: 10.1073/pnas.96.2.388] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/1998] [Accepted: 11/09/1998] [Indexed: 01/11/2023] Open
Abstract
A convenient in vitro chemical ligation strategy has been developed that allows folded recombinant proteins to be joined together. This strategy permits segmental, selective isotopic labeling of the product. The src homology type 3 and 2 domains (SH3 and SH2) of Abelson protein tyrosine kinase, which constitute the regulatory apparatus of the protein, were individually prepared in reactive forms that can be ligated together under normal protein-folding conditions to form a normal peptide bond at the ligation junction. This strategy was used to prepare NMR sample quantities of the Abelson protein tyrosine kinase-SH(32) domain pair, in which only one of the domains was labeled with 15N. Mass spectrometry and NMR analyses were used to confirm the structure of the ligated protein, which was also shown to have appropriate ligand-binding properties. The ability to prepare recombinant proteins with selectively labeled segments having a single-site mutation, by using a combination of expression of fusion proteins and chemical ligation in vitro, will increase the size limits for protein structural determination in solution with NMR methods. In vitro chemical ligation of expressed protein domains will also provide a combinatorial approach to the synthesis of linked protein domains.
Collapse
Affiliation(s)
- R Xu
- Laboratory of Physical Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Adam A. Profit
- Contribution from the Department of Biochemistry, The Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Ave, Bronx, New York 10461
| | - Tae Ryong Lee
- Contribution from the Department of Biochemistry, The Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Ave, Bronx, New York 10461
| | - David S. Lawrence
- Contribution from the Department of Biochemistry, The Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Ave, Bronx, New York 10461
| |
Collapse
|
24
|
Kuriyan J, Cowburn D. Modular peptide recognition domains in eukaryotic signaling. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:259-88. [PMID: 9241420 DOI: 10.1146/annurev.biophys.26.1.259] [Citation(s) in RCA: 430] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A characteristic feature of cellular signal transduction pathways in eukaryotes is the separation of catalysis from target recognition. Several modular domains that recognize short peptide sequences and target signaling proteins to these sequences have been identified. The structural bases of the specificities of recognition by SH2, SH3, and PTB domains have been elucidated by X-ray crystallography and NMR, and these results are reviewed here. In addition, the mechanism of cooperative interactions between these domains is discussed.
Collapse
Affiliation(s)
- J Kuriyan
- Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|