1
|
Gradtke AC, Mentrup T, Lehmann CHK, Cabrera-Cabrera F, Desel C, Okakpu D, Assmann M, Dalpke A, Schaible UE, Dudziak D, Schröder B. Deficiency of the Intramembrane Protease SPPL2a Alters Antimycobacterial Cytokine Responses of Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:164-180. [PMID: 33239420 DOI: 10.4049/jimmunol.2000151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022]
Abstract
Signal peptide peptidase-like 2a (SPPL2a) is an aspartyl intramembrane protease essential for degradation of the invariant chain CD74. In humans, absence of SPPL2a leads to Mendelian susceptibility to mycobacterial disease, which is attributed to a loss of the dendritic cell (DC) subset conventional DC2. In this study, we confirm depletion of conventional DC2 in lymphatic tissues of SPPL2a-/- mice and demonstrate dependence on CD74 using SPPL2a-/- CD74-/- mice. Upon contact with mycobacteria, SPPL2a-/- bone marrow-derived DCs show enhanced secretion of IL-1β, whereas production of IL-10 and IFN-β is reduced. These effects correlated with modulated responses upon selective stimulation of the pattern recognition receptors TLR4 and Dectin-1. In SPPL2a-/- bone marrow-derived DCs, Dectin-1 is redistributed to endosomal compartments. Thus, SPPL2a deficiency alters pattern recognition receptor pathways in a CD74-dependent way, shifting the balance from anti- to proinflammatory cytokines in antimycobacterial responses. We propose that in addition to the DC reduction, this altered DC functionality contributes to Mendelian susceptibility to mycobacterial disease upon SPPL2a deficiency.
Collapse
Affiliation(s)
- Ann-Christine Gradtke
- Institute of Physiological Chemistry, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital Erlangen, D-91052 Erlangen, Germany.,Medical Immunology Campus Erlangen, D-91054 Erlangen, Germany.,Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg, D-91054 Erlangen, Germany
| | - Florencia Cabrera-Cabrera
- Institute of Physiological Chemistry, Technische Universität Dresden, D-01307 Dresden, Germany.,Biochemical Institute, Christian-Albrechts-University Kiel, D-24118 Kiel, Germany
| | - Christine Desel
- Biochemical Institute, Christian-Albrechts-University Kiel, D-24118 Kiel, Germany
| | - Darian Okakpu
- Institute of Physiological Chemistry, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Maike Assmann
- Priority Program Infections, Division of Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, and German Center for Infection Research, partner site Borstel, D-23845 Borstel, Germany; and
| | - Alexander Dalpke
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Ulrich E Schaible
- Priority Program Infections, Division of Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, and German Center for Infection Research, partner site Borstel, D-23845 Borstel, Germany; and
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital Erlangen, D-91052 Erlangen, Germany.,Medical Immunology Campus Erlangen, D-91054 Erlangen, Germany.,Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg, D-91054 Erlangen, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, D-01307 Dresden, Germany;
| |
Collapse
|
2
|
Margiotta A, Frei DM, Sendstad IH, Janssen L, Neefjes J, Bakke O. Invariant chain regulates endosomal fusion and maturation through an interaction with the SNARE Vti1b. J Cell Sci 2020; 133:jcs244624. [PMID: 32907852 DOI: 10.1242/jcs.244624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023] Open
Abstract
The invariant chain (Ii, also known as CD74) is a multifunctional regulator of adaptive immune responses and is responsible for sorting major histocompatibility complex class I and class II (MHCI and MHCII, respectively) molecules, as well as other Ii-associated molecules, to a specific endosomal pathway. When Ii is expressed, endosomal maturation and proteolytic degradation of proteins are delayed and, in non-antigen presenting cells, the endosomal size increases, but the molecular mechanisms underlying this are not known. We identified that a SNARE, Vti1b, is essential for regulating these Ii-induced effects. Vti1b binds to Ii and is localized at the contact sites of fusing Ii-positive endosomes. Furthermore, truncated Ii lacking the cytoplasmic tail, which is not internalized from the plasma membrane, relocates Vti1b to the plasma membrane. Knockout of Ii in an antigen-presenting cell line was found to speed up endosomal maturation, whereas silencing of Vti1b inhibits the Ii-induced maturation delay. Our results suggest that Ii, by interacting with the SNARE Vti1b in antigen-presenting cells, directs specific Ii-associated SNARE-mediated fusion in the early part of the endosomal pathway that leads to a slower endosomal maturation for efficient antigen processing and MHC antigen loading.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| | - Dominik M Frei
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| | | | - Lennert Janssen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Oddmund Bakke
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| |
Collapse
|
3
|
Thibodeau J, Moulefera MA, Balthazard R. On the structure–function of MHC class II molecules and how single amino acid polymorphisms could alter intracellular trafficking. Hum Immunol 2019; 80:15-31. [DOI: 10.1016/j.humimm.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/01/2022]
|
4
|
Endosomal binding kinetics of Eps15 and Hrs specifically regulate the degradation of RTKs. Sci Rep 2017; 7:17962. [PMID: 29269784 PMCID: PMC5740074 DOI: 10.1038/s41598-017-17320-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/25/2017] [Indexed: 01/25/2023] Open
Abstract
Activation of EGF-R and PDGF-R triggers autophosphorylation and the recruitment of Eps15 and Hrs. These two endosomal proteins are important for specific receptor sorting. Hrs is recruiting ubiquitinated receptors to early endosomes to further facilitate degradation through the ESCRT complex. Upon receptor activation Hrs becomes phosphorylated and is relocated to the cytosol, important for receptor degradation. In this work we have studied the endosomal binding dynamics of Eps15 and Hrs upon EGF-R and PDGF-R stimulation. By analysing the fluorescence intensity on single endosomes after ligand stimulation we measured a time-specific decrease in the endosomal fluorescence level of Eps15-GFP and Hrs-YFP. Through FRAP experiments we could further register a specific change in the endosomal-membrane to cytosol binding properties of Eps15-GFP and Hrs-YFP. This specific change in membrane fractions proved to be a redistribution of the immobile fraction, which was not shown for the phosphorylation deficient mutants. We here describe a mechanism that can explain the previously observed relocation of Hrs from the endosomes to cytosol after EGF stimulation and show that Eps15 follows a similar mechanism. Moreover, this specific redistribution of the endosomal protein binding dynamics proved to be of major importance for receptor degradation.
Collapse
|
5
|
Schneppenheim J, Loock AC, Hüttl S, Schweizer M, Lüllmann-Rauch R, Oberg HH, Arnold P, Lehmann CHK, Dudziak D, Kabelitz D, Lucius R, Lennon-Duménil AM, Saftig P, Schröder B. The Influence of MHC Class II on B Cell Defects Induced by Invariant Chain/CD74 N-Terminal Fragments. THE JOURNAL OF IMMUNOLOGY 2017; 199:172-185. [DOI: 10.4049/jimmunol.1601533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/01/2017] [Indexed: 01/24/2023]
|
6
|
Schröder B. The multifaceted roles of the invariant chain CD74--More than just a chaperone. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1269-81. [PMID: 27033518 DOI: 10.1016/j.bbamcr.2016.03.026] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/13/2023]
Abstract
The invariant chain (CD74) is well known for its essential role in antigen presentation by mediating assembly and subcellular trafficking of the MHCII complex. Beyond this, CD74 has also been implicated in a number of processes independent of MHCII. These include the regulation of endosomal trafficking, cell migration and cellular signalling as surface receptor of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF). In several forms of cancer, CD74 is up-regulated and associated with enhanced proliferation and metastatic potential. In this review, an overview of the diverse biological functions of the CD74 protein is provided with a particular focus on how these may be regulated. In particular, proteolysis of CD74 will be discussed as a central mechanism to control the actions of this important protein at different levels.
Collapse
Affiliation(s)
- Bernd Schröder
- Biochemical Institute, Christian Albrechts University of Kiel, Otto-Hahn-Platz 9, D-24118 Kiel, Germany.
| |
Collapse
|
7
|
The human-specific invariant chain isoform Iip35 modulates Iip33 trafficking and function. Immunol Cell Biol 2014; 92:791-8. [PMID: 24983457 DOI: 10.1038/icb.2014.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/12/2014] [Accepted: 05/31/2014] [Indexed: 12/24/2022]
Abstract
The invariant chain (Ii) is a multifunctional protein, which has an essential role in the assembly and transport of major histocompatibility complex class II (MHC II) molecules. From a single gene, Ii is synthesized as four different isoforms: Iip33, Iip35, Iip41 and Iip43. Iip35 and Iip43 are specific to humans, and are formed due to an upstream alternative translation site, resulting in an N-terminal extension of 16 amino acids. This extension harbors a strong endoplasmic reticulum (ER) retention motif. Consequently, Iip35 or Iip43 expressed alone are retained in the ER, whereas Iip33 and Iip41 rapidly traffic to the endosomal pathway. Endogenously expressed, the four isoforms form mixed heterotrimers in the ER; however, mainly due to the absence of the Iip35/p43 isoforms in mice, little is known about how they influence general Ii function. In this study, we have co-expressed Iip33 and Iip35 in human cells with and without MHC II to gain a better understanding of how Iip35 isoform influences the cellular properties of Iip33. We find that Iip35 significantly affects the properties of Iip33. In the presence of Iip35, the transport of Iip33 out of the ER is delayed, its half-life is dramatically prolonged and its ability to induce enlarged endosomes and delayed endosomal maturation is abrogated.
Collapse
|
8
|
Wälchli S, Kumari S, Fallang LE, Sand KMK, Yang W, Landsverk OJB, Bakke O, Olweus J, Gregers TF. Invariant chain as a vehicle to load antigenic peptides on human MHC class I for cytotoxic T-cell activation. Eur J Immunol 2013; 44:774-84. [PMID: 24293164 DOI: 10.1002/eji.201343671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/13/2013] [Accepted: 11/25/2013] [Indexed: 11/09/2022]
Abstract
Protective T-cell responses depend on efficient presentation of antigen (Ag) in the context of major histocompatibility complex class I (MHCI) and class II (MHCII) molecules. Invariant chain (Ii) serves as a chaperone for MHCII molecules and mediates trafficking to the endosomal pathway. The genetic exchange of the class II-associated Ii peptide (CLIP) with antigenic peptides has proven efficient for loading of MHCII and activation of specific CD4(+) T cells. Here, we investigated if Ii could similarly activate human CD8(+) T cells when used as a vehicle for cytotoxic T-cell (CTL) epitopes. The results show that wild type Ii, and Ii in which CLIP was replaced by known CTL epitopes from the cancer targets MART-1 or CD20, coprecipitated with HLA-A*02:01 and mediated colocalization in the endosomal pathway. Furthermore, HLA-A*02:01-positive cells expressing CLIP-replaced Ii efficiently activated Ag-specific CD8(+) T cells in a TAP- and proteasome-independent manner. Finally, dendritic cells transfected with mRNA encoding IiMART-1 or IiCD20 primed naïve CD8(+) T cells. The results show that Ii carrying antigenic peptides in the CLIP region can promote efficient presentation of the epitopes to CTLs independently of the classical MHCI peptide loading machinery, facilitating novel vaccination strategies against cancer.
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fortin JS, Cloutier M, Thibodeau J. Exposing the Specific Roles of the Invariant Chain Isoforms in Shaping the MHC Class II Peptidome. Front Immunol 2013; 4:443. [PMID: 24379812 PMCID: PMC3861868 DOI: 10.3389/fimmu.2013.00443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022] Open
Abstract
The peptide repertoire (peptidome) associated with MHC class II molecules (MHCIIs) is influenced by the polymorphic nature of the peptide binding groove but also by cell-intrinsic factors. The invariant chain (Ii) chaperones MHCIIs, affecting their folding and trafficking. Recent discoveries relating to Ii functions have provided insights as to how it edits the MHCII peptidome. In humans, the Ii gene encodes four different isoforms for which structure-function analyses have highlighted common properties but also some non-redundant roles. Another layer of complexity arises from the fact that Ii heterotrimerizes, a characteristic that has the potential to affect the maturation of associated MHCIIs in many different ways, depending on the isoform combinations. Here, we emphasize the peptide editing properties of Ii and discuss the impact of the various isoforms on the MHCII peptidome.
Collapse
Affiliation(s)
- Jean-Simon Fortin
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montréal, QC , Canada
| | - Maryse Cloutier
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montréal, QC , Canada
| | - Jacques Thibodeau
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
10
|
Zhang C, Li A, Gao S, Zhang X, Xiao H. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion. PLoS One 2011; 6:e21233. [PMID: 21731680 PMCID: PMC3123320 DOI: 10.1371/journal.pone.0021233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/24/2011] [Indexed: 01/20/2023] Open
Abstract
Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4) and Endophilin B1 (Endo B1) that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H+)-ATPases (V-ATPases) to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA), producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.
Collapse
Affiliation(s)
- Chengliang Zhang
- Department of Biomedical and Integrative Physiology, Michigan State University, East Lansing, Michigan, United States of America
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Aimin Li
- Department of Biomedical and Integrative Physiology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Shenglan Gao
- Department of Biomedical and Integrative Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Xinchun Zhang
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Hua Xiao
- Department of Biomedical and Integrative Physiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
11
|
Landsverk OJB, Barois N, Gregers TF, Bakke O. Invariant chain increases the half-life of MHC II by delaying endosomal maturation. Immunol Cell Biol 2010; 89:619-29. [PMID: 21116285 DOI: 10.1038/icb.2010.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mounting adaptive immune responses requires the cell surface expression of major histocompatibility class II molecules (MHC II) loaded with antigenic peptide. However, in the absence of antigenic stimuli, the surface population of MHC II is highly dynamic and exhibits a high turnover. Several studies have focused on the regulation of MHC II, and it is now recognized that ubiquitination is one key mechanism operating in the turnover of MHC II in B cells and dendritic cells. Here, we describe how the invariant chain (Ii) can prolong the half-life of MHC II through its action on the endocytic pathway. We find that in cells expressing intermediate-to-high levels of Ii, the half-life of MHC II is increased, with MHC II accumulating in slowly-maturing endosomes. The accumulation in endosomes is not due to retention of new MHC II directed from the endoplasmatic reticulum, as also mature, not Ii associated, MHC II is preserved. We suggest that this alternative endocytic pathway induced by Ii would serve to enhance the rate, quantity and diversity of MHC II antigen presentation by concentrating MHC II into specialized compartments and reducing the need for new MHC II synthesis upon antigen encounter.
Collapse
Affiliation(s)
- Ole J B Landsverk
- Department of Molecular Biosciences, Centre for Immune Regulation, University of Oslo and Rikshospitalet, Oslo University Hospital Norway, Oslo, Norway
| | | | | | | |
Collapse
|
12
|
Human immunodeficiency virus type 1 nef expression prevents AP-2-mediated internalization of the major histocompatibility complex class II-associated invariant chain. J Virol 2008; 82:8373-82. [PMID: 18596106 DOI: 10.1128/jvi.00670-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The lentiviral Nef protein has been studied extensively for its ability to induce the downregulation of several immunoreceptors on the surfaces of infected cells. However, Nef expression is unique in inducing highly effective upregulation of the major histocompatibility complex class II-associated chaperone invariant (Ii) chain complexes in different cell types. Under normal conditions, endocytosis of the Ii chain and other molecules, like the transferrin receptor and CD4, is rapid and AP-2 dependent. Human immunodeficiency virus type 1 (HIV-1) Nef expression strongly reduces the internalization of the Ii chain, enhances that of CD4, and does not modify transferrin uptake. The mutation of AP-2 binding motifs LL164 and DD174 in Nef leads to the inhibition of Ii chain upregulation. In AP-2-depleted cells, surface levels of the Ii chain are high and remain unmodified by Nef expression, further indicating that Nef regulates Ii chain internalization via the AP-2 pathway. Immunoprecipitation experiments revealed that the Ii chain can interact with Nef in a dileucine-dependent manner. Importantly, we have shown that Nef-induced CD4 downregulation and Ii chain upregulation are genetically distinguishable. We have identified natural nef alleles that have lost one of the two functions but not the other one. Moreover, we have characterized Nef mutant forms possessing a similar phenotype in the context of HIV-1 infection. Therefore, the Nef-induced accumulation of Ii chain complexes at the cell surface probably results from a complex mechanism leading to the impairment of AP-2-mediated endocytosis rather than from direct competition between Nef and the Ii chain for binding AP-2.
Collapse
|
13
|
Gupta SN, Kloster MM, Rodionov DG, Bakke O. Re-routing of the invariant chain to the direct sorting pathway by introduction of an AP3-binding motif from LIMP II. Eur J Cell Biol 2006; 85:457-67. [PMID: 16542748 DOI: 10.1016/j.ejcb.2006.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 11/16/2022] Open
Abstract
AP3 is a heteromeric adaptor protein complex involved in the biogenesis of late endosomal/lysosomal structures. It recognizes tyrosine- and leucine-based sorting signals present in the cytoplasmic tails or loops of a number of proteins and is thought to be responsible for the direct transport of these proteins from the Golgi network to late endosomal/lysosomal structures. We have previously reported (Rodionov, Höning, Silye, Kongsvik, von Figura, Bakke, 2002. Structural requirements for interactions between leucine-sorting signals and clathrin-associated adaptor protein complex AP3. J. Biol. Chem. 277, 47436-47443) that in vitro binding of AP3 to the leucine signals is dependent on the nature of three residues immediately upstream of the leucine signal and suggested that these three amino acids define whether the protein is sorted to endosomes via the plasma membrane (PM) or traffics directly to the late endosomes/lysosomes. In this paper, we show in vivo evidence that residues favoring AP3 binding introduced into a protein that is transported via the PM such as the invariant chain can re-route such protein into direct sorting to late endosomal/lysosomal structures.
Collapse
Affiliation(s)
- Shailly N Gupta
- Department of Molecular Biosciences, University of Oslo, N-0316 Oslo, Norway
| | | | | | | |
Collapse
|
14
|
Boes M, van der Wel N, Peperzak V, Kim YM, Peters PJ, Ploegh H. In vivo control of endosomal architecture by class II-associated invariant chain and cathepsin S. Eur J Immunol 2005; 35:2552-62. [PMID: 16094690 DOI: 10.1002/eji.200526323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The invariant chain (Ii) is a chaperone that regulates assembly and transport of class II MHC molecules. In the absence of the lysosomal protease cathepsin S (CatS), degradation of Ii is impaired and an Ii remnant that extends from the N terminus to about residue 110 accumulates in class II MHC-positive endosomal compartments, which are enlarged in size and lack multivesicular morphology. In primary B cells examined in vitro and in lymph nodes examined by immuno-electron microscopy, CatS controls architecture of class II-positive endosomal compartments. In a compound mutant mouse that lacks both CatS and Ii, the normal size of endosomes in class II-positive cells is restored, although internal endosomal membranes are absent. Proper degradation of Ii is thus essential for normal endosomal morphology in antigen-presenting cells in vivo.
Collapse
Affiliation(s)
- Marianne Boes
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Wilson NS, Villadangos JA. Regulation of Antigen Presentation and Cross-Presentation in the Dendritic Cell Network: Facts, Hypothesis, and Immunological Implications. Adv Immunol 2005; 86:241-305. [PMID: 15705424 DOI: 10.1016/s0065-2776(04)86007-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are central to the maintenance of immunological tolerance and the initiation and control of immunity. The antigen-presenting properties of DCs enable them to present a sample of self and foreign proteins, contained within an organism at any given time, to the T-cell repertoire. DCs achieve this communication with T cells by displaying antigenic peptides bound to MHC I and MHC II molecules. Here we review the studies carried out over the past 15 years to characterize these antigen presentation mechanisms, emphasizing their significance in relation to DC function in vivo. The life cycles of different DC populations found in vivo are described. Furthermore, we provide a critical assessment of the studies that examine the mechanisms controlling DC MHC class II antigen presentation, which have often reached contradictory conclusions. Finally, we review findings pertaining to the biological mechanisms that enable DCs to present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. Throughout, we highlight what we consider to be major knowledge gaps in the field and speculate on possible directions for future research.
Collapse
Affiliation(s)
- Nicholas S Wilson
- Immunology Division and The Cooperative Research Center for Vaccine Technology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | |
Collapse
|
16
|
Nordeng TW, Gregers TF, Kongsvik TL, Méresse S, Gorvel JP, Jourdan F, Motta A, Bakke O. The cytoplasmic tail of invariant chain regulates endosome fusion and morphology. Mol Biol Cell 2002; 13:1846-56. [PMID: 12058053 PMCID: PMC117608 DOI: 10.1091/mbc.01-10-0478] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The major histocompatibility complex class II associated invariant chain (Ii) has been shown to inhibit endocytic transport and to increase the size of endosomes. We have recently found that this property has a significant impact on antigen processing and presentation. Here, we show in a cell-free endosome fusion assay that expression of Ii can increase fusion after phosphatidylinositol 3-kinase activity is blocked by wortmannin. In live cells wortmannin was also not able to block formation of the Ii-induced enlarged endosomes. The effects of Ii on endosomal transport and morphology depend on elements within the cytoplasmic tail. Data from mutagenesis analysis and nuclear magnetic resonance-based structure calculations of the Ii cytoplasmic tail demonstrate that free negative charges that are not involved in internal salt bridges are essential for both interactions between the tails and for the formation of enlarged endosomes. This correlation indicates that it is interactions between the Ii cytoplasmic tails that are involved in endosome fusion. The combined data from live cells, cell-free assays, and molecular dynamic simulations suggest that Ii molecules on different vesicles can promote endosome docking and fusion and thereby control endosomal traffic of membrane proteins and endosomal content.
Collapse
Affiliation(s)
- Tommy W Nordeng
- Centre d'Immunologie de Marseille-Luminy, Centre National de la Recherche Scientifique-INSERM-Univ-Med, 13288 Marseille, Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lagaudrière-Gesbert C, Newmyer SL, Gregers TF, Bakke O, Ploegh HL. Uncoating ATPase Hsc70 is recruited by invariant chain and controls the size of endocytic compartments. Proc Natl Acad Sci U S A 2002; 99:1515-20. [PMID: 11818572 PMCID: PMC122222 DOI: 10.1073/pnas.042688099] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeting of class II major histocompatibility complex molecules to endocytic compartments is mediated by their association with the invariant chain (Ii). Although the identity of certain sorting signals located in Ii's cytoplasmic tail is known, proteins that interact with Ii's cytoplasmic tail in living cells remain to be identified. Synthesis of a biotinylated trimeric Ii cytoplasmic tail allowed the retrieval of two proteins that interact with this domain. We identify one of them as the 70-kDa heat-shock cognate protein (hsc70), the uncoating ATPase of clathrin-coated vesicles, and the other as its mitochondrial homologue, the glucose-regulated protein grp75. Expression of Ii in COS cells results in the formation of large endocytic compartments. We observe extensive colocalization of hsc70 with Ii in these macrosomes. Expression of a dominant-negative (K71M) green fluorescent protein-tagged version of hsc70 counteracted the ability of Ii to modify the endocytic pathway, demonstrating an interaction in vivo of Ii with hsc70 as part of the machinery responsible for macrosome formation.
Collapse
|
18
|
Stumptner-Cuvelette P, Benaroch P. Multiple roles of the invariant chain in MHC class II function. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:1-13. [PMID: 11853874 DOI: 10.1016/s0167-4889(01)00166-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Bryant PW, Lennon-Duménil AM, Fiebiger E, Lagaudrière-Gesbert C, Ploegh HL. Proteolysis and antigen presentation by MHC class II molecules. Adv Immunol 2002; 80:71-114. [PMID: 12078484 PMCID: PMC7130937 DOI: 10.1016/s0065-2776(02)80013-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteolysis is the primary mechanism used by all cells not only to dispose of unwanted proteins but also to regulate protein function and maintain cellular homeostasis. Proteases that reside in the endocytic pathway are the principal actors of terminal protein degradation. The proteases contained in the endocytic pathway are classified into four major groups based on the active-site amino acid used by the enzyme to hydrolyze amide bonds of proteins: cysteine, aspartyl, serine, and metalloproteases. The presentation of peptide antigens by major histocompatibility complex (MHC) class II molecules is strictly dependent on the action of proteases. Class II molecules scour the endocytic pathway for antigenic peptides to bind and present at the cell surface for recognition by CD4+ T cells. The specialized cell types that support antigen presentation by class II molecules are commonly referred to as professional antigen presenting cells (APCs), which include bone marrow-derived B lymphocytes, dendritic cells (DCs), and macrophages. In addition, the expression of certain endocytic proteases is regulated either at the level of gene transcription or enzyme maturation and their activity is controlled by the presence of endogenous protease inhibitors.
Collapse
Affiliation(s)
- Paula Wolf Bryant
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
20
|
Jayawardena-Wolf J, Benlagha K, Chiu YH, Mehr R, Bendelac A. CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 2001; 15:897-908. [PMID: 11754812 DOI: 10.1016/s1074-7613(01)00240-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endosomal trafficking is an essential component of the CD1 pathway of lipid antigen presentation to T cells. We demonstrate that CD1d access to endosomal compartments is under dual regulation by an intrinsic tyrosine-based motif, which governs intense recycling between the plasma membrane and the endosome, and by the invariant chain, with which CD1d associates in the endoplasmic reticulum. Both pathways independently enhance antigen presentation to V(alpha)14(+) NKT cells, the main subset of CD1d-restricted T cells. These results reveal the complexity of CD1d trafficking and suggest that the invariant chain was a component of ancestral antigen presentation pathways prior to the evolution of MHC and CD1.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antigen Presentation/physiology
- Antigens, CD1/chemistry
- Antigens, CD1/genetics
- Antigens, CD1/metabolism
- Antigens, CD1d
- Antigens, Differentiation, B-Lymphocyte/physiology
- Antigens, Surface/metabolism
- B-Lymphocytes/metabolism
- Biotinylation
- Cell Membrane/metabolism
- Cells, Cultured/metabolism
- Dendritic Cells/metabolism
- Endoplasmic Reticulum/metabolism
- Endosomes/metabolism
- Evolution, Molecular
- Fibroblasts/metabolism
- Glycosylation
- Histocompatibility Antigens Class II/physiology
- Hybridomas/metabolism
- Kinetics
- Lymphoma, B-Cell/pathology
- Lysosomes/metabolism
- Mice
- Microscopy, Fluorescence
- Protein Binding
- Protein Processing, Post-Translational
- Protein Transport
- Recombinant Fusion Proteins/metabolism
- Subcellular Fractions/metabolism
- Transfection
- Tumor Cells, Cultured/metabolism
- Tyrosine/chemistry
Collapse
Affiliation(s)
- J Jayawardena-Wolf
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
21
|
Brunet A, Samaan A, Deshaies F, Kindt TJ, Thibodeau J. Functional characterization of a lysosomal sorting motif in the cytoplasmic tail of HLA-DObeta. J Biol Chem 2000; 275:37062-71. [PMID: 10964920 DOI: 10.1074/jbc.m005112200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HLA-DO is an intracellular non-classical class II major histocompatibility complex molecule expressed in the endocytic pathway of B lymphocytes, which regulates the loading of antigenic peptides onto classical class II molecules such as HLA-DR. The activity of HLA-DO is mediated through its interaction with the peptide editor HLA-DM. Here, our results demonstrate that although HLA-DO is absolutely dependent on its association with DM to egress the endoplasmic reticulum, the cytoplasmic portion of its beta chain encodes a functional lysosomal sorting signal. By confocal microscopy and flow cytometry analysis, we show that reporter transmembrane molecules fused to the cytoplasmic tail of HLA-DObeta accumulated in Lamp-1(+) vesicles of transfected HeLa cells. Mutagenesis of a leucine-leucine motif abrogated lysosomal accumulation and resulted in cell surface redistribution of reporter molecules. Finally, we show that mutation of the di-leucine sequence in DObeta did not alter its lysosomal sorting when associated with DM molecules. Taken together, these results demonstrate that lysosomal expression of the DO-DM complex is mediated primarily by the tyrosine-based motif of HLA-DM and suggest that the DObeta-encoded motif is involved in the fine-tuning of the intracellular sorting.
Collapse
Affiliation(s)
- A Brunet
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie et Immunologie, Université de Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
22
|
Leal ST, Araripe JR, Urményi TP, Cross GA, Rondinelli E. Trypanosoma cruzi: cloning and characterization of a RAB7 gene. Exp Parasitol 2000; 96:23-31. [PMID: 11038317 DOI: 10.1006/expr.2000.4549] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The small monomeric GTP-binding proteins of the RAB subfamily are key regulatory elements of the machinery that controls membrane traffic in eukaryotic cells. These proteins have been localized to many different intracellular organelles, on both endocytic and exocytic compartments, suggesting that each step of vesicular traffic can involve a specific RAB protein. The presence of conserved amino acid domains in these proteins has allowed the cloning of their genes from several organisms, including yeast, plants, humans, and parasites. In this work we describe the identification, cloning, and characterization of a RAB7 gene homologue in Trypanosoma cruzi (TcRAB7). Our data indicate that this gene is present as a single copy in the T. cruzi genome, located on a 2.25-Mb chromosomal DNA. TcRAB7 is expressed in T. cruzi epimastigotes, metacyclic trypomastigotes, and spheromastigotes. We established transformed cell lines that express two versions of an epitope-tagged TcRAB7 protein: one wild type (pTAG) and one deleted at the C-terminal cysteines (pDeltaCXC). Wild-type TcRAB7 protein (pTAG) appears to be localized exclusively in the membrane fraction, while the mutated TcRAB7 protein (pDeltaCXC) loses the ability to associate with the membrane, showing only cytosolic localization. Also, we produced the recombinant TcRAB7 protein and demonstrated that it binds GTP. The identification of exo- and endocytic machinery components in T. cruzi and their function would provide specific markers of these subcellular compartments, thereby unveiling important aspects of vesicular traffic in this parasite.
Collapse
Affiliation(s)
- S T Leal
- Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, RJ, 21949-900, Brazil
| | | | | | | | | |
Collapse
|
23
|
Bakke O, Nordeng TW. Intracellular traffic to compartments for MHC class II peptide loading: signals for endosomal and polarized sorting. Immunol Rev 1999; 172:171-87. [PMID: 10631946 DOI: 10.1111/j.1600-065x.1999.tb01365.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this review we focus on the traffic of MHC class II and endocytosed antigens to intracellular compartments where antigenic peptides are loaded. We also discuss briefly the nature of the peptide loading compartment and the sorting signals known to direct antigen receptors and MHC class II and associated molecules to this location. MHC class II molecules are expressed on a variety of polarized epithelial and endothelial cells, and polarized cells are thus potentially important for antigen presentation. Here we review some cell biological aspects of polarized sorting of MHC class II and the associated invariant chain and the signals that are involved in the sorting process to the basolateral domain. The molecules involved in sorting and loading of peptide may modulate antigen presentation, and in particular we discuss how invariant chain may change the cellular phenotype and the kinetics of the endosomal pathway.
Collapse
Affiliation(s)
- O Bakke
- Department of Biology, University of Oslo, Norway.
| | | |
Collapse
|
24
|
Simonsen A, Pedersen KW, Nordeng TW, von der Lippe A, Stang E, Long EO, Bakke O. Polarized Transport of MHC Class II Molecules in Madin-Darby Canine Kidney Cells Is Directed by a Leucine-Based Signal in the Cytoplasmic Tail of the β-Chain. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
MHC class II molecules are found on the basolateral plasma membrane domain of polarized epithelial cells, where they can present Ag to intraepithelial lymphocytes in the vascular space. We have analyzed the sorting information required for efficient intracellular localization and polarized distribution of MHC class II molecules in stably transfected Madin-Darby canine kidney cells. These cells were able to present influenza virus particles to HLA-DR1-restricted T cell clones. Wild-type MHC class II molecules were located on the basolateral plasma membrane domain, in basolateral early endosomes, and in late multivesicular endosomes, the latter also containing the MHC class II-associated invariant chain and an HLA-DM fusion protein. A phenylalanine-leucine residue within the cytoplasmic tail of the β-chain was required for basolateral distribution, efficient internalization, and localization of the MHC class II molecules to basolateral early endosomes. However, distribution to apically located, late multivesicular endosomes did not depend on signals in the class II cytoplasmic tails as both wild-type class II molecules and mutant molecules lacking the phenylalanine-leucine motif were found in these compartments. Our results demonstrate that sorting information in the tails of class II dimers is an absolute requirement for their basolateral surface distribution and intracellular localization.
Collapse
Affiliation(s)
- Anne Simonsen
- *Department of Biology, University of Oslo, Oslo, Norway; and
| | | | | | | | - Espen Stang
- *Department of Biology, University of Oslo, Oslo, Norway; and
| | - Eric O. Long
- †Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Oddmund Bakke
- *Department of Biology, University of Oslo, Oslo, Norway; and
| |
Collapse
|
25
|
Nordeng TW, Bakke O. Overexpression of proteins containing tyrosine- or leucine-based sorting signals affects transferrin receptor trafficking. J Biol Chem 1999; 274:21139-48. [PMID: 10409667 DOI: 10.1074/jbc.274.30.21139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Targeting of many transmembrane proteins to post-Golgi compartments is dependent on cytoplasmically exposed sorting signals. The most widely used signals conform to the tyrosine- or the leucine-based motifs. Both types of signals have been implicated in protein localization to the same intracellular compartments, but previous results from both cell-free experiments and studies of transfected cell lines have indicated that the two types of signals interact with separate components of the sorting machinery. We have overexpressed several transmembrane proteins in stably transfected Madin-Darby canine kidney cells using an inducible promoter system. Overexpression of proteins containing tyrosine- or leucine-based sorting signals resulted in reduced internalization of the transferrin receptor, whereas recycling and polarized distribution was not influenced. Our results indicate that proteins with tyrosine- and leucine-based sorting signals can be transported along common saturable pathways.
Collapse
Affiliation(s)
- T W Nordeng
- Division of Molecular Cell Biology, Department of Biology, University of Oslo, Oslo 0316, Norway.
| | | |
Collapse
|
26
|
Nordeng TW, Gorvel JP, Bakke O. Intracellular transport of molecules engaged in the presentation of exogenous antigens. Curr Top Microbiol Immunol 1998; 232:179-215. [PMID: 9557399 DOI: 10.1007/978-3-642-72045-1_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T W Nordeng
- Department of Biology, University of Oslo, Norway
| | | | | |
Collapse
|
27
|
Mellor H, Flynn P, Nobes CD, Hall A, Parker PJ. PRK1 is targeted to endosomes by the small GTPase, RhoB. J Biol Chem 1998; 273:4811-4. [PMID: 9478917 DOI: 10.1074/jbc.273.9.4811] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RhoB has been shown to be an endosomal GTPase both by immunocytochemistry and electron microscopy, however, its role in endocytosis is unknown. Elucidation of the cellular roles of other members of this superfamily of signaling proteins has come with the identification of their downstream partners. We show here that the recently isolated serine/threonine kinase PRK1 is targeted to the endosomal compartment by RhoB. This is established both through immunofluorescence and cell fractionation. PRK1 is shown to interact with activated RhoB in cells and is localized to endosomes through its Rho-binding HR1 domain. Translocation of PRK1 to the endosomal compartment by RhoB is accompanied by a shift in the electrophoretic mobility of the kinase indicative of an accompanying activation.
Collapse
Affiliation(s)
- H Mellor
- Protein Phosphorylation Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.
| | | | | | | | | |
Collapse
|
28
|
Motta A, Amodeo P, Fucile P, Castiglione Morelli MA, Bremnes B, Bakke O. A new triple-stranded alpha-helical bundle in solution: the assembling of the cytosolic tail of MHC-associated invariant chain. Structure 1997; 5:1453-64. [PMID: 9384561 DOI: 10.1016/s0969-2126(97)00295-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The invariant chain (li) is a transmembrane protein that associates with the major histocompatibility complex class II (MHC II) molecules in the endoplasmic reticulum. The cytosolic tail of li contains two leucine-based sorting motifs and is involved in sorting the MHC II molecules to the endosomal pathway where the peptide antigen is bound. This region of li also contributes to phenotypical changes in cells, such as the formation of large endocytic structures. RESULTS We report here the three-dimensional structure of a 27 amino acid peptide corresponding to the cytosolic tail of li. The structure was determined by nuclear magnetic resonance (NMR) spectroscopy using a computational strategy. At high concentration, this structure reveals a new triple-stranded alpha-helical bundle in which the helices, two parallel and one antiparallel, are almost coplanar. Trimerization is mediated by electrostatic interactions intercalated by three hydrophobic layers. CONCLUSIONS The new trimer fold, the first to be identified by NMR data alone, can be used to improve understanding of protein-protein interactions and to model multiple-helical transmembrane proteins and receptors. We suggest that interactions of the li cytosolic tails may form part of a mechanism that could cause the endosomal retention and enlarged endosomes induced by li.
Collapse
Affiliation(s)
- A Motta
- Istituto di Chimica di Molecole di Interesse Biologico del CNR (Istituto Nazionale di Chimica dei Sistemi Biologici), I-80072, Arco Felice, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Gedde-Dahl M, Freisewinkel I, Staschewski M, Schenck K, Koch N, Bakke O. Exon 6 is essential for invariant chain trimerization and induction of large endosomal structures. J Biol Chem 1997; 272:8281-7. [PMID: 9079649 DOI: 10.1074/jbc.272.13.8281] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Invariant chain (Ii) is a transmembrane type II protein that forms a complex with the major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum (ER). The membrane proximal luminal region of Ii is responsible for the non-covalent association with MHC class II molecules. Chemical cross-linking in COS cells was used to study the effect of luminal and cytoplasmic deletions on trimerization of Ii. We demonstrate that trimerization of Ii is independent of the cytosolic tail of Ii, whereas residues 162-191 (the sequence encoded by exon 6) in the luminal part of Ii are essential for trimer formation. Immunofluorescence studies of the transfected luminal deletion constructs show that the amino acids encoded by exon 6 of Ii are also essential for the induction of large endosomal vesicles. The data suggest that Ii must be in a trimeric form to modify the endosomal pathway.
Collapse
Affiliation(s)
- M Gedde-Dahl
- Division of Molecular Cell Biology, Department of Biology, University of Oslo, N-0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
30
|
Marie-Cardine A, Fischer S, Gorvel JP, Maridonneau-Parini I. Recruitment of activated p56lck on endosomes of CD2-triggered T cells, colocalization with ZAP-70. J Biol Chem 1996; 271:20734-9. [PMID: 8702825 DOI: 10.1074/jbc.271.34.20734] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have previously established that upon CD2 activation of T cells, p56(lck) showed a transient increase in its kinase activity and was partially internalized. Here we studied the possibility that p56(lck) could retain its kinase activity in the endosomes of CD2-triggered cells. T cells were fractionated on a sucrose gradient, and the endosomal fraction was isolated. In CD2-triggered cells, part of Lck was internalized and presented a maximal kinase activity in the endosome-enriched fraction after 5 min, decreasing thereafter. In the endosomal fraction of activated cells, four tyrosine-phosphorylated proteins of apparent molecular masses of 30, 40, 56, and 70 kDa were detected. We demonstrated that the protein tyrosine kinase ZAP-70 was recruited to the endosomal fraction upon CD2 stimulation with kinetics similar to that of p56(lck), suggesting that recruitment of protein tyrosine kinases to endosomal vesicles could promote specific transduction signals at the intracellular level.
Collapse
Affiliation(s)
- A Marie-Cardine
- INSERM U332, Institut Cochin de Génétique Moléculaire, 75014 Paris
| | | | | | | |
Collapse
|
31
|
German RN, Castellino F, Han R, Reis e Sousa C, Romagnoli P, Sadegh-Nasseri S, Zhong GM. Processing and presentation of endocytically acquired protein antigens by MHC class II and class I molecules. Immunol Rev 1996; 151:5-30. [PMID: 8872483 DOI: 10.1111/j.1600-065x.1996.tb00701.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R N German
- Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Bevec T, Stoka V, Pungercic G, Dolenc I, Turk V. Major histocompatibility complex class II-associated p41 invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. J Exp Med 1996; 183:1331-8. [PMID: 8666891 PMCID: PMC2192513 DOI: 10.1084/jem.183.4.1331] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The invariant chain (Ii) is associated with major histocompatibility complex class II molecules during early stages of their intracellular transport. In an acidic endosomal/lysosomal compartment, it is proteolytically cleaved and removed from class II heterodimers. Participation of aspartic and cysteine proteases has been observed in in vitro degradation of Ii, but the specific enzymes responsible for its in vivo processing are as yet undefined. We have previously isolated a noncovalent complex of the lysosomal cysteine protease cathepsin L with a peptide fragment derived from the p41 form of Ii from human kidney. Here we show that this Ii fragment, which is identical to the alternatively spliced segment of p41, is a very potent competitive inhibitor of cathepsin L (equilibrium inhibition constant Ki = 1.7 X 10(-12) M). It inhibits two other cysteine proteases, cathepsin H and papain, but to much lesser extent. Cysteine proteases cathepsins B, C, and S, as well as representatives of serine, aspartic, and metalloproteases, are not inhibited at all. These findings suggest a novel role for p41 in the regulation of various proteolytic activities during antigen processing and presentation. The Ii inhibitory fragment shows no sequence homology with the known cysteine protease inhibitors, and may, therefore, represent a new class.
Collapse
Affiliation(s)
- T Bevec
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
33
|
Romagnoli P, Germain RN. Inhibition of invariant chain (Ii)-calnexin interaction results in enhanced degradation of Ii but does not prevent the assembly of alpha beta Ii complexes. J Exp Med 1995; 182:2027-36. [PMID: 7500048 PMCID: PMC2192254 DOI: 10.1084/jem.182.6.2027] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Calnexin is a resident protein of the endoplasmic reticulum (ER) that associates with nascent protein chains. Among the newly synthesized integral membrane proteins known to bind to calnexin is invariant chain (Ii), and Ii release from calnexin coincides with proper assembly with major histocompatibility complex (MHC) class II heterodimers. Although calnexin association with several membrane glycoproteins depends on interactions involving N-linked glycans, we previously reported that a truncation mutant of mouse Ii (mIi1-107) lacking both N-glycosylation sites was highly effective in associating with MHC class II heterodimers and escorting these dimers through the secretory pathway. This could indicate that calnexin, despite binding to both Ii and class II, is not necessary for the proper interaction of these proteins, or that in contrast to most membrane glycoproteins, the N-linked glycans of Ii are not critical to its interaction with this chaperone. To examine this issue, we have directly explored the binding of calnexin to both Ii truncation mutants lacking the typical sites of N-glycosylation or Ii produced in cells treated with tunicamycin to prevent glycan addition. These experiments revealed that either method of eliminating N-linked carbohydrates on Ii also inhibited association with calnexin. A lumenally truncated form of Ii (mIi1-131) that still has N-linked carbohydrates showed a decreased affinity for calnexin compared with intact Ii, however, indicating that calnexin-Ii binding is not determined solely by the sugar moieties. All forms of Ii lacking N-linked sugars and showing defective association with calnexin also had enhanced rates of preendosomal degradation. Despite this effect on degradation rate, tunicamycin treatment did not inhibit the association of class II with glycan-free Ii. These data support the view that calnexin is not an absolute requirement for the proper assembly of class II-Ii nonamers, but rather acts primarily to retain Ii in the ER and to inhibit its degradation. These two properties of calnexin-Ii interaction may help ensure that sufficient intact Ii is available for efficient inactivation of the binding sites of newly synthesized class II molecules, while limiting the ability of excess free Ii to alter the transport properties of the early endocytic pathway.
Collapse
Affiliation(s)
- P Romagnoli
- Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA
| | | |
Collapse
|
34
|
Escola JM, Grivel JC, Chavrier P, Gorvel JP. Different endocytic compartments are involved in the tight association of class II molecules with processed hen egg lysozyme and ribonuclease A in B cells. J Cell Sci 1995; 108 ( Pt 6):2337-45. [PMID: 7673353 DOI: 10.1242/jcs.108.6.2337] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The processing of exogenous antigens and the association of peptides with class II molecules both occur within the endocytic pathway. 2A4 B lymphoma cells of the H-2k haplotype were grown in the presence or the absence of two different exogenous antigens (hen egg lysozyme and ribonuclease A) internalized by fluid-phase endocytosis. Using subcellular fractionation techniques, we demonstrate that, in the presence of hen egg lysozyme, newly synthesized SDS-stable class II molecules are detected in a dense endocytic compartment which does not have the characteristics of neither early and late endosomes nor lysosomes. In contrast, no SDS-stable class II molecules are observed between ribonuclease A and newly synthesized class II molecules. Interestingly, when class II molecules are analyzed at steady state, SDS-stable class II molecules induced by ribonuclease A are found in a compartment cosedimenting with late endosomes. These results suggest that the tight associations between ribonuclease A or hen egg lysozyme with class II molecules occur in distinct endocytic compartments and that these associations may depend on the sensitivity of antigens to proteolysis.
Collapse
Affiliation(s)
- J M Escola
- Centre d'Immunologie INSERM-CNRS de Marseille Luminy, France
| | | | | | | |
Collapse
|