1
|
Kini RM, Koh CY. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem Pharmacol 2020; 181:114105. [PMID: 32579959 DOI: 10.1016/j.bcp.2020.114105] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases such as coronary and peripheral artery diseases, venous thrombosis, stroke, hypertension, and heart failure are enormous burden to health and economy globally. Snake venoms have been the sources of discovery of successful therapeutics targeting cardiovascular diseases. For example, the first-in-class angiotensin-converting enzyme inhibitor captopril was designed largely based on bradykinin-potentiating peptides from Bothrops jararaca venom. In the recent years, sensitive and high throughput approaches drive discovery and cataloging of new snake venom toxins. As one of the largest class of snake venom toxin, there are now>700 sequences of three-finger toxins (3FTxs) available, many of which are yet to be studied. While the function of 3FTxs are normally associated with neurotoxicity, increasingly more 3FTxs have been characterized to have pharmacological effects on cardiovascular systems. Here we focus on this family of snake venom toxins and their potential in developing therapeutics against cardiovascular diseases.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117558, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore.
| |
Collapse
|
2
|
Characterization of Neuwiedin, a new disintegrin from Bothrops neuwiedi venom gland with distinct cysteine pattern. Toxicon 2015; 104:57-64. [PMID: 26272708 DOI: 10.1016/j.toxicon.2015.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/21/2015] [Accepted: 08/05/2015] [Indexed: 11/24/2022]
Abstract
Disintegrins are cysteine-rich toxins containing the RGD motif exposed in a loop that binds integrins such as αIIbβ3, α5β1 and αvβ3. The flexibility of the RGD loop, controlled by the profile of the cysteine pairs and the residues flanking the RGD sequence, are key structural features for the functional activity of these molecules. Recently, our group reported a transcript in the venom gland of Bothrops neuwiedi corresponding to a new P-II SVMP precursor, BnMPIIx, in which the RGD-binding loop includes many substituted residues and unique cysteine residues at the C-terminal. In this paper, we obtained the recombinant disintegrin domain of BnMPIIx, Neuwiedin, which inhibited ADP-induced platelet aggregation, endothelial cell adhesion to fibrinogen and tube formation in Matrigel with no particular selectivity to αIIbβ3 or endothelial cell integrins. This value was also comparable to the inhibition observed with other recombinant disintegrins with conserved cysteine positions and residues in RGD loop. In this regard, Neuwiedin is an important component to understand the functional relevance of the diversity generated by accelerated evolution of venom toxins as well as to find out eventual new disintegrin-dependent targets that may be approached with disintegrins.
Collapse
|
3
|
Della-Casa MS, Junqueira-de-Azevedo I, Butera D, Clissa PB, Lopes DS, Serrano SMT, Pimenta DC, Magalhães GS, Ho PL, Moura-da-Silva AM. "Insularin, a disintegrin from Bothrops insularis venom: inhibition of platelet aggregation and endothelial cell adhesion by the native and recombinant GST-insularin proteins". Toxicon 2010; 57:125-33. [PMID: 21073888 DOI: 10.1016/j.toxicon.2010.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/18/2010] [Accepted: 10/27/2010] [Indexed: 11/30/2022]
Abstract
Insularin (INS) was obtained from Bothrops insularis venom by reversed-phase high-performance liquid chromatography using a C(18) column and characterized as a disintegrin by peptide mass fingerprint and inhibition of ADP-induced platelet aggregation. A cDNA coding for P-II a metalloproteinase/disintegrin was cloned from a cDNA library from B. insularis venom glands. The deduced protein sequence possesses 73 amino acid residues, including the N-terminal, internal peptides of native insularin, the ARGDNP-sequence and 12 cysteines in a conserved alignment. This cDNA fragment was subcloned in the pGEX-4T-1 vector and expressed in a prokaryotic expression system as a fusion protein with glutathione S-transferase (GST-INS). Both native and recombinant insularin inhibited ADP-induced platelet aggregation and endothelial cells (HUVEC) adhesion with similar activities indicating that GST-INS folded correctly and preserved the integrin-binding loop. Insularin may be a tool in studies that involve platelets and endothelial cell adhesion dependent on alphaIIbeta3 and alphavbeta3 integrins.
Collapse
Affiliation(s)
- Maisa Splendore Della-Casa
- Laboratório de Imunopatologia, Instituto Butantan, Av Vital Brazil 1500, 05503-000, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Structural requirements of KTS-disintegrins for inhibition of alpha(1)beta(1) integrin. Biochem J 2009; 417:95-101. [PMID: 18774946 DOI: 10.1042/bj20081403] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Obtustatin and viperistatin represent the shortest known snake venom monomeric disintegrins. In the present study, we have produced recombinant full-length wild-type and site-directed mutants of obtustatin to assess the role of the K(21)TS(23) tripeptide and C-terminal residues for specific inhibition of the alpha(1)beta(1) integrin. Thr(22) appeared to be the most critical residue for disintegrin activity, whereas substitution of the flanking lysine or serine residues for alanine resulted in a less pronounced decrease in the anti-alpha(1)beta(1) integrin activity of the disintegrin. The triple mutant A(21)AA(23) was devoid of blocking activity towards alpha(1)beta(1) integrin-mediated cell adhesion. The potency of recombinant KTS-disintegrins also depended on the residue C-terminally adjacent to the active motif. Substitution of Leu(24) of wild-type obtustatin for an alanine residue slightly decreased the inhibitory activity of the mutant, whereas an arginine residue in this position enhanced the potency of the mutant over wild-type obtustatin by 6-fold. In addition, the replacements L38V and P40Q may account for a further 25-fold increase in alpha(1)beta(1) inhibitory potency of viperistatin over KTSR-obtustatin.
Collapse
|
5
|
Juarez P, Comas I, Gonzalez-Candelas F, Calvete JJ. Evolution of Snake Venom Disintegrins by Positive Darwinian Selection. Mol Biol Evol 2008; 25:2391-407. [DOI: 10.1093/molbev/msn179] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
6
|
Sumathipala R, Xu C, Seago J, Mould AP, Humphries MJ, Craig SE, Patel Y, Wijelath ES, Sobel M, Rahman S. The “Linker” Region (Amino Acids 38-47) of the Disintegrin Elegantin Is a Novel Inhibitory Domain of Integrin α5β1-Dependent Cell Adhesion on Fibronectin. J Biol Chem 2006; 281:37686-96. [PMID: 16982624 DOI: 10.1074/jbc.m603943200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disintegrins are a family of potent inhibitors of cell-cell and cell-matrix adhesion. In this study we have identified a region of the disintegrin elegantin, termed the "linker domain" (amino acids 38-47), with inhibitory activity toward alpha(5)beta(1)-mediated cell adhesion on fibronectin (Fn). Using a chimeric structure-function approach in which sequences of the functionally distinct disintegrin kistrin were introduced into the elegantin template at targeted sites, a loss of inhibitory function toward alpha(5)beta(1)-mediated adhesion on Fn was observed when the elegantin linker domain was substituted. Subsequent analysis comparing the inhibitory efficacies of the panel of elegantin-kistrin chimeras toward CHO alpha(5) cell adhesion on recombinant Fn III(6-10) fragments showed that the loss of inhibitory activity associated with the disruption of the elegantin linker domain was dependent upon the presence of a functional Fn III(9) synergy site within the Fn III(6-10) substrate. This suggested that the elegantin linker domain inhibits primarily the activity of the Fn synergy domain in promoting alpha(5)beta(1) integrin-mediated cell adhesion. Construction of a cyclic peptide corresponding to the entire region of the elegantin linker domain showed that this domain has intrinsic alpha(5)beta(1) inhibitory activity comparable with the activity of the RGDS peptide. These data demonstrate a novel biological function for a disintegrin domain that antagonizes integrin-mediated cell adhesion.
Collapse
Affiliation(s)
- Rushika Sumathipala
- Laboratory of Thrombosis and Vascular Remodelling, Division of Cardiovascular Medicine, King's College London School of Medicine, St Thomas' Hospital, Lambeth Palace Road, London SE1 7EH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lu X, Davies J, Lu D, Xia M, Wattam B, Shang D, Sun Y, Scully M, Kakkar V. The effect of the single substitution of arginine within the RGD tripeptide motif of a modified neurotoxin dendroaspin on its activity of platelet aggregation and cell adhesion. ACTA ACUST UNITED AC 2006; 13:171-83. [PMID: 16798616 DOI: 10.1080/15419060600726183] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Arg-Gly-Asp (RGD) tripeptide unit is a cell-cell and cell-extracellular matrix recognition sequence of some integrins that is found within several extracellular matrix glycoproteins and dendroaspin, a disintegrin-like venom protein isolated from the snake venom of the Dendroaspis jamsonii. In the present study, the RGD motif in dendroaspin was substituted by Lys-Gly-Asp (KGD), His-Gly-Asp (HGD), Gln-Gly-Asp (QGD) and Ala-Gly-Asp (AGD) denoted as KGD-den, HGD-den, QGD-den and AGD-den, respectively. Each of the mutants exhibited activity as inhibitor of ADP-induced platelet aggregation with IC50 values of 0.26, 2.5, 6, and 17 microM for KGD-den, HGD-den, QGD-den, and AGD-den, respectively, as compared with RGD-den (IC50 = 0.18 microM). Interestingly, HGD-den was approx. two-fold more potent and a more selective inhibitor than either the KGD-den or QGD-den counterpart at blocking A375-SM human melanoma cell adhesion to fibrinogen (beta3-mediated). KGD-den, HGD-den, and QGD-den were preferentially antagonists of A375-SM human melanoma cell adhesion to fibrinogen rather than to fibronectin (alpha5beta1-, beta3-mediated). Both HGD-den and KGD-den were equipotent as inhibitors of human erythroleukaemia (HEL) cell adhesion to fibrinogen (IC50 = 0.15 microM) and also preferential inhibitors of HEL cell adhesion to fibrinogen (beta3 and beta1-mediated) rather than to fibronectin. These findings show that the presence of the arginine within the RGD motif of dendroaspin is not obligatory and substitution of this residue can modulate inhibitory potency and integrin binding selectivity.
Collapse
Affiliation(s)
- Xinjie Lu
- Thrombosis Research Institute, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Monleón D, Esteve V, Kovacs H, Calvete J, Celda B. Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR. Biochem J 2005; 387:57-66. [PMID: 15535803 PMCID: PMC1134932 DOI: 10.1042/bj20041343] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Echistatin is a potent antagonist of the integrins alpha(v)beta3, alpha5beta1 and alpha(IIb)beta3. Its full inhibitory activity depends on an RGD (Arg-Gly-Asp) motif expressed at the tip of the integrin-binding loop and on its C-terminal tail. Previous NMR structures of echistatin showed a poorly defined integrin-recognition sequence and an incomplete C-terminal tail, which left the molecular basis of the functional synergy between the RGD loop and the C-terminal region unresolved. We report a high-resolution structure of echistatin and an analysis of its internal motions by off-resonance ROESY (rotating-frame Overhauser enhancement spectroscopy). The full-length C-terminal polypeptide is visible as a beta-hairpin running parallel to the RGD loop and exposing at the tip residues Pro43, His44 and Lys45. The side chains of the amino acids of the RGD motif have well-defined conformations. The integrin-binding loop displays an overall movement with maximal amplitude of 30 degrees . Internal angular motions in the 100-300 ps timescale indicate increased flexibility for the backbone atoms at the base of the integrin-recognition loop. In addition, backbone atoms of the amino acids Ala23 (flanking the R24GD26 tripeptide) and Asp26 of the integrin-binding motif showed increased angular mobility, suggesting the existence of major and minor hinge effects at the base and the tip, respectively, of the RGD loop. A strong network of NOEs (nuclear Overhauser effects) between residues of the RGD loop and the C-terminal tail indicate concerted motions between these two functional regions. A full-length echistatin-alpha(v)beta3 docking model suggests that echistatin's C-terminal amino acids may contact alpha(v)-subunit residues and provides new insights to delineate structure-function correlations.
Collapse
Affiliation(s)
- Daniel Monleón
- *Departamento de Química Física, Universitat de València, Dr. Moliner 50, 46100 Burjassot (Valencia), Spain
| | - Vicent Esteve
- *Departamento de Química Física, Universitat de València, Dr. Moliner 50, 46100 Burjassot (Valencia), Spain
- †Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
| | - Helena Kovacs
- ‡Bruker Biospin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Juan J. Calvete
- †Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
- To whom correspondence should be addressed: correspondence regarding NMR structure determination to Bernardo Celda (email ), and correspondence regarding disintegrins to Juan Calvete (email )
| | - Bernardo Celda
- *Departamento de Química Física, Universitat de València, Dr. Moliner 50, 46100 Burjassot (Valencia), Spain
- §Servicio Central de Soporte a la Investigación Experimental, Universitat de València, Dr. Moliner 50, 46100 Burjassot (Valencia), Spain
- To whom correspondence should be addressed: correspondence regarding NMR structure determination to Bernardo Celda (email ), and correspondence regarding disintegrins to Juan Calvete (email )
| |
Collapse
|
9
|
Calvete JJ, Marcinkiewicz C, Monleón D, Esteve V, Celda B, Juárez P, Sanz L. Snake venom disintegrins: evolution of structure and function. Toxicon 2005; 45:1063-74. [PMID: 15922775 DOI: 10.1016/j.toxicon.2005.02.024] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Indexed: 11/20/2022]
Abstract
Disintegrins represent a family of polypeptides present in the venoms of various vipers that selectively block the function of integrin receptors. Here, we review our current view and hypothesis on the emergence and the structural and functional diversification of disintegrins by accelerated evolution and the selective loss of disulfide bonds of duplicated genes. Research on disintegrins is relevant for understanding the biology of viper venom toxins, but also provides information on new structural determinants involved in integrin recognition that may be useful in basic and clinical research. The role of the composition, conformation, and dynamics of the integrin inhibitory loop acting in concert with the C-terminal tail in determining the selective inhibition of integrin receptors is discussed.
Collapse
Affiliation(s)
- Juan J Calvete
- Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
10
|
Yamazaki Y, Hyodo F, Morita T. Wide distribution of cysteine-rich secretory proteins in snake venoms: isolation and cloning of novel snake venom cysteine-rich secretory proteins. Arch Biochem Biophys 2003; 412:133-41. [PMID: 12646276 DOI: 10.1016/s0003-9861(03)00028-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cysteine-rich secretory proteins (CRISPs) are found in epididymis and granules of mammals, and they are thought to function in sperm maturation and in the immune system. Recently, we isolated and obtained clones for novel snake venom proteins that are classified as CRISP family proteins. To elucidate the distribution of snake venom CRISP family proteins, we evaluated a wide range of venoms for immuno-cross-reactivity. Then we isolated, characterized, and cloned genes for three novel CRISP family proteins (piscivorin, ophanin, and catrin) from the venom of eastern cottonmouth (Agkistrodon piscivorus piscivorus), king cobra (Ophiophagus hannah), and western diamondback rattlesnake (Crotalus atrox). Our results show the wide distribution of snake venom CRISP family proteins among Viperidae and Elapidae from different continents, indicating that CRISP family proteins compose a new group of snake venom proteins.
Collapse
Affiliation(s)
- Yasuo Yamazaki
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | | | | |
Collapse
|
11
|
Chang HH, Chang CP, Chang JC, Dung SZ, Lo S. Application of Recombinant Rhodostomin in Studying Cell Adhesion. J Biomed Sci 2002; 4:235-243. [PMID: 12386385 DOI: 10.1007/bf02253423] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rhodostomin from venom of Agkistrodon rhodostoma (also called Calloselasma rhodostoma) contains 68 amino acid residues including 6 pairs of disulfide bonds and an arginine-glycine-aspartic acid (RGD) sequence at positions 49-51. It has been known as one of the strongest antagonists to platelet aggregation among the family termed disintegrin. In this review paper, in addition to introducing the characteristics of disintegrin and its related molecules, the advantages of using recombinant DNA technology to produce rhodostomin are described. The recombinant rhodostomin has been demonstrated to facilitate cell adhesion via interaction between the RGD motif of rhodostomin and integrins on the cell surface. This property allowed us to use the recombinant rhodostomin as an extracellular matrix to study cell adhesion and to distinguish attachment efficiency between two melanoma cell lines B16-F1 and B16-F10, the former is a low metastasis cell while the latter is a high metastasis cell. Furthermore, by using the recombinant rhodostomin as a substrate, osteoprogenitor-like cells are able to be selected and enriched within 3 days from rat bone marrow which contains a heterogeneous cell population. Finally, we show that the recombinant rhodostomin can be immobilized on beads and which serve as an affinity column to dissect cell-surface protein(s) binding to the RGD motif of rhodostomin.
Collapse
Affiliation(s)
- H.-H. Chang
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Liu J, Yang XW, Chen WQ, Tang JG. Effect of disulfide bond on the conformation and anticoagulant activity of an Arg-Gly-Asp motif displayed on a mutant insulin protein framework. Int J Pept Res Ther 2002. [DOI: 10.1007/bf02538380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Smith JB, Theakston RDG, Coelho ALJ, Barja-Fidalgo C, Calvete JJ, Marcinkiewicz C. Characterization of a monomeric disintegrin, ocellatusin, present in the venom of the Nigerian carpet viper, Echis ocellatus. FEBS Lett 2002; 512:111-5. [PMID: 11852062 DOI: 10.1016/s0014-5793(02)02233-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ocellatusin is a new RGD-containing short monomeric disintegrin. It is a better inhibitor of alpha(5)beta(1) integrin and a more potent inducer of the expression of a ligand-induced binding site epitope on beta(1) integrin subunit than echistatin. In further contrast to echistatin, ocellatusin has a direct chemotactic stimulus on human neutrophils in vitro. The distinct effects of these two close evolutionarily related disintegrins might be explained by the presence of methionine-22 and histidine-29 in the RGD loop of ocellatusin, which are arginine and aspartic acid, respectively, in echistatin. These mutations may modulate the conformation and/or recognition properties of the integrin-binding loop of ocellatusin.
Collapse
Affiliation(s)
- J Bryan Smith
- Department of Pharmacology, Sol Sherry Thrombosis Research Center, Temple University, School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sundell IB, Theakston RD, Kamiguti AS, Harris RJ, Treweeke AT, Laing GD, Fox JW, Warrell DA, Zuzel M. The inhibition of platelet aggregation and blood coagulation by Micropechis ikaheka venom. Br J Haematol 2001; 114:852-60. [PMID: 11564074 DOI: 10.1046/j.1365-2141.2001.03045.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uncoagulable blood and life-threatening bleeding can result from the action of some snake venom toxins on haemostatic components of blood and vessel walls. Although envenoming by Micropechis ikaheka primarily affects neurones and muscle cells causing post-synaptic neuromuscular blockade and rhabdomyolysis, disturbances of haemostasis also occur. Therefore, the present study explored the effects of M. ikaheka venom on platelets and endothelium, which are important components of the haemostatic mechanism. The venom inhibited platelet aggregation in response to ADP and collagen, and also delayed clotting dependent on platelet activation or endothelial cell tissue factor expression. Some of these effects were reduced by the incubation of venom with a phospholipase A2 (PLA2) inhibitor and could be reproduced by a 17 kDa venom fraction containing a PLA2. In addition, an 11 kDa fraction containing a long-chain neurotoxin reduced ADP-induced aggregation. The venom was also found to reduce endothelial cell adherence to vitronectin-, fibronectin- and collagen-coated surfaces. These results suggest that, by inhibiting procoagulant activities of platelets and endothelial cells, a 17 kDa PLA2 plays an important role in the anticoagulant action of M. ikaheka venom.
Collapse
Affiliation(s)
- I B Sundell
- Department of Haematology, University of Liverpool, Duncan Building, Daulby Street, Liverpool L69 3GA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chang CP, Chang JC, Chang HH, Tsai WJ, Lo SJ. Positional importance of Pro53 adjacent to the Arg49-Gly50-Asp51 sequence of rhodostomin in binding to integrin alphaIIbbeta3. Biochem J 2001; 357:57-64. [PMID: 11415436 PMCID: PMC1221928 DOI: 10.1042/0264-6021:3570057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rhodostomin (RHO), a disintegrin isolated from snake venom, has been demonstrated to inhibit platelet aggregation through interaction with integrin alphaIIbbeta3, but there is a lack of direct evidence for RHO-integrin alphaIIbbeta3 binding. In addition, no study on the length of Arg(49)-Gly(50)-Asp(51) (RGD) loop of RHO influencing on its binding to integrin alphaIIbbeta3 has been reported. In the present study we have developed a highly sensitive dot-blot and glutathione S-transferase-RHO pull-down assays; the latter was coupled with a biotin-avidin-horseradish peroxidase enhanced-chemiluminescence detection system. These were able to demonstrate the direct binding of RHO to integrin alphaIIbbeta3. The pull-down assay further showed that four alanine-insertion mutants upstream of the RGD motif and three insertions downstream of the RGD were able to decrease integrin alphaIIbbeta3 binding activity to only a limited extent. By contrast, two insertions immediately next to RGD and one insertion in front of the Cys(57) caused almost complete loss of binding activity to alphaIIbbeta3. The results of the platelet-aggregation-inhibition assay and platelet-adhesion assay for the insertion mutants were consistent with results of the pull-down assay. It is thus concluded that, although an insertion of a single alanine residue in many positions of the RGD loop has only minor effects on RHO binding to integrin alphaIIbbeta3, the specific position of Pro(53) residue adjacent to the RGD sequence is important for RHO binding to platelet integrin alphaIIbbeta3.
Collapse
Affiliation(s)
- C P Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, 155 Li-nan Street, Sec. 2, Shih-Pai, Taipei 11221, Taiwan
| | | | | | | | | |
Collapse
|
16
|
Wattam B, Shang D, Rahman S, Egglezou S, Scully M, Kakkar V, Lu X. Arg-Tyr-Asp (RYD) and Arg-Cys-Asp (RCD) motifs in dendroaspin promote selective inhibition of beta1 and beta3 integrins. Biochem J 2001; 356:11-7. [PMID: 11336631 PMCID: PMC1221807 DOI: 10.1042/0264-6021:3560011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arg-Gly-Asp (RGD) is a unique minimal integrin-binding sequence that is found within several glycoprotein ligands. This sequence has also been found in snake-venom anti-platelet proteins, including the disintegrins and dendroaspin, a natural variant of short-chain neurotoxins isolated from the venom of Dendroaspis jamesonii. In the present study, the motifs RYD and RCD were introduced into the dendroaspin scaffold to replace RGD. Both motifs in dendroaspin caused inhibition of ADP-induced platelet aggregation with IC(50) values of 200 and 300 nM respectively, similar to that of the wild-type RGD motif (170 nM). In comparison with wild-type dendroaspin, both RYD- and RCD-containing dendroaspins were more selective in the inhibition of the adhesion of K562 cells to laminin rather than to fibrinogen and fibronectin, even though they were 10-30-fold less potent at inhibiting K562 cell (containing alpha(5)beta(1) integrin) adhesion to laminin compared with wild-type. Interestingly, the RYD motif produced a similar IC(50) value to the RGD motif at inhibiting A375-SM cell (beta(3) integrin) adhesion to collagen, whereas the RCD motif was approx. 2-6-fold less potent compared with either RGD or RYD. These findings show that the selectivity of dendroaspin binding to beta(1) and beta(3) integrins can be modulated by the introduction of alternative cell recognition sequences.
Collapse
Affiliation(s)
- B Wattam
- Thrombosis Research Institute, Manresa Road, London SW3 6LR, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Lu X, Sun Y, Shang D, Wattam B, Egglezou S, Hughes T, Hyde E, Scully M, Kakkar V. Evaluation of the role of proline residues flanking the RGD motif of dendroaspin, an inhibitior of platelet aggregation and cell adhesion. Biochem J 2001; 355:633-8. [PMID: 11311124 PMCID: PMC1221777 DOI: 10.1042/bj3550633] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of a panel of proline mutants of dendroaspin, an inhibitor of platelet aggregation and cell adhesion, including A(42)-dendroaspin, A(47)-dendroaspin, A(49)-dendroaspin, A(42,47)-dendroaspin and A(47,49)-dendroaspin, was investigated using platelet-aggregation and cell-adhesion assays. Here we show that a single alanine-for-proline substitution did not affect potency when measured as the ability either to inhibit platelet aggregation induced by ADP (IC(50) approximately 170 nM) or to block transfected A375-SM cell adhesion to fibrinogen in the presence of Mn(2+) as compared with wild-type dendroaspin. By comparison, double proline substitution with alanines significantly reduced the potency in both assays by approx. 5-8-fold. These observations, therefore, suggest that proline residues flanking the RGD motif in dendroaspin and other RGD-containing venom proteins, e.g. disintegrins, may contribute to maintaining a favourable conformation for the solvent-exposed RGD site for its recognition by integrin receptors.
Collapse
Affiliation(s)
- X Lu
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Baluna R, Coleman E, Jones C, Ghetie V, Vitetta ES. The effect of a monoclonal antibody coupled to ricin A chain-derived peptides on endothelial cells in vitro: insights into toxin-mediated vascular damage. Exp Cell Res 2000; 258:417-24. [PMID: 10896793 DOI: 10.1006/excr.2000.4954] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Immunotoxins (ITs) containing plant or bacterial toxins have a dose-limiting toxicity of vascular leak syndrome (VLS) in humans. The active A chain of ricin toxin (RTA), other toxins, ribosome-inactivating proteins, and the VLS-inducing cytokine IL-2 contain the conserved sequence motif (x)D(y) where x = L, I, G, or V and y = V, L, or S. RTA-derived LDV-containing peptides attached to a monoclonal antibody, RFB4, induce endothelial cell (EC) damage in vitro and vascular leak in two animal models in vivo. We have now investigated the mechanism(s) by which this occurs and have found that (1) the exposed D75 in the LDV sequence in RTA and the C-terminal flanking threonine play critical roles in the ability of RFB4-conjugated RTA peptide to bind to and damage ECs and (2) the LDV sequence in RTA induces early manifestations of apoptosis in HUVECs by activating caspase-3. These data suggest that RTA-mediated inhibition of protein synthesis (due to its active site) and apoptosis (due to LDV) may be mediated by different portions of the RTA molecule. These results suggest that ITs prepared with RTA mutants containing alterations in LDVT may kill tumor cells in vivo in the absence of EC-mediated VLS.
Collapse
Affiliation(s)
- R Baluna
- The Cancer Immunology Center, The Immunology Graduate Program, The Cancer Education Summer Program, 5323 Harry Hines Boulevard, Dallas, Texas 75235-8756, USA
| | | | | | | | | |
Collapse
|
19
|
LeBaron RG, Athanasiou KA. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. TISSUE ENGINEERING 2000; 6:85-103. [PMID: 10941205 DOI: 10.1089/107632700320720] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review describes research on selected peptide sequences that affect cell adhesion as it applies in orthopedic applications. Of particular interest are the integrin-binding RGD peptides and heparin-binding peptides. The influence of these peptides on cell adhesion is described. Cell adhesion is defined as a sequence of four steps: cell attachment, cell spreading, organization of an actin cytoskeleton, and formation of focal adhesions. RGD sequences clearly influence cell attachment and spreading, whereas heparin-binding sequences appear to be less efficient. Collectively, these sequences appear to promote all steps of cell adhesion in certain cell types. This review also addresses issues related to peptide immobilization, as well as potential complexities that may develop as a result of using these versatile cell-binding sequences. Also described are future directions in the field concerning use of existing and more sophisticated peptide substrata.
Collapse
Affiliation(s)
- R G LeBaron
- Laboratory of Extracellular Matrix and Cell Adhesion Research, Division of Life Sciences, The University of Texas at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
20
|
Chang HH, Lin CH, Lo SJ. Recombinant rhodostomin substrates induce transformation and active calcium oscillation in human platelets. Exp Cell Res 1999; 250:387-400. [PMID: 10413593 DOI: 10.1006/excr.1999.4547] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Platelet activation has been a focus of numerous studies in normal and abnormal states. Morphological changes and calcium signals found with activated platelets in vitro have been well characterized. However, the rate of cell spreading on substrates and the frequency of calcium oscillation within individual platelets upon activation have not yet been reported. In this study, we first examined the ability of a recombinant fusion protein of rhodostomin (GST-rhodostomin), a snake disintegrin containing an Arg-Gly-Asp (RGD) motif, to activate platelets when GST-rhodostomin served as a substrate. Four aspects of platelet activities induced by immobilized GST-rhodostomin and fibrinogen were analyzed in parallel. Examinations of (1) translocation of P-selectin from intracellular compartments to the plasma membrane, (2) platelet adhesion to and spreading on substrates, (3) platelet contact pattern on substrates, and (4) the degree of phosphorylation of focal adhesion kinase in platelets indicated that GST-rhodostomin was a better substrate for platelet activation than fibrinogen. Analysis of the rate of platelet spreading on GST-rhodostomin was examined by time-lapsed video microscopy. The spreading rate averaged 0.43 micrometer/minute, while cell spreading averaged 0.22 micrometer/minute when platelets were plated on fibrinogen and treated with thrombin. A newly developed method, using time-lapsed microscopy and the Metamorph program, was used to analyze calcium signals within platelets. We found that platelets on GST-rhodostomin evoked calcium oscillation at a frequency of 4.77 spike/cell/minute vs 2.76 spike/cell/minute on fibrinogen. The results of cell spreading and calcium oscillation were consistent with the results of microscopic and biochemical assays. We therefore conclude that the determination of the rate of platelet spreading and the frequency of calcium oscillation within platelets performed in this study provides more quantitative parameters for measuring platelet activities. Our results also suggest that GST-rhodostomin might potentially be used as a probe to dissect the molecular mechanisms underlying the kinetic processes of platelet activation.
Collapse
Affiliation(s)
- H H Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan, Republic of China
| | | | | |
Collapse
|
21
|
Baluna R, Rizo J, Gordon BE, Ghetie V, Vitetta ES. Evidence for a structural motif in toxins and interleukin-2 that may be responsible for binding to endothelial cells and initiating vascular leak syndrome. Proc Natl Acad Sci U S A 1999; 96:3957-62. [PMID: 10097145 PMCID: PMC22402 DOI: 10.1073/pnas.96.7.3957] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/1999] [Indexed: 01/26/2023] Open
Abstract
The dose-limiting toxicity of interleukin-2 (IL-2) and immunotoxin (IT) therapy in humans is vascular leak syndrome (VLS). VLS has a complex etiology involving damage to vascular endothelial cells (ECs), extravasation of fluids and proteins, interstitial edema, and organ failure. IL-2 and ITs prepared with the catalytic A chain of the plant toxin, ricin (RTA), and other toxins, damage human ECs in vitro and in vivo. Damage to ECs may initiate VLS; if this damage could be avoided without losing the efficacy of ITs or IL-2, larger doses could be administered. In this paper, we provide evidence that a three amino acid sequence motif, (x)D(y), in toxins and IL-2 damages ECs. Thus, when peptides from RTA or IL-2 containing this sequence motif are coupled to mouse IgG, they bind to and damage ECs both in vitro and, in the case of RTA, in vivo. In contrast, the same peptides with a deleted or mutated sequence do not. Furthermore, the peptide from RTA attached to mouse IgG can block the binding of intact RTA to ECs in vitro and vice versa. In addition, RTA, a fragment of Pseudomonas exotoxin A (PE38-lys), and fibronectin also block the binding of the mouse IgG-RTA peptide to ECs, suggesting that an (x)D(y) motif is exposed on all three molecules. Our results suggest that deletions or mutations in this sequence or the use of nondamaging blocking peptides may increase the therapeutic index of both IL-2, as well as ITs prepared with a variety of plant or bacterial toxins.
Collapse
Affiliation(s)
- R Baluna
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75235-8675, USA
| | | | | | | | | |
Collapse
|
22
|
Rahman S, Aitken A, Flynn G, Formstone C, Savidge GF. Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation. Biochem J 1998; 335 ( Pt 2):247-57. [PMID: 9761721 PMCID: PMC1219776 DOI: 10.1042/bj3350247] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several recent studies have demonstrated that the amino acid residues flanking the RGD sequence of high-affinity ligands modulate their specificity of interaction with integrin complexes. The present study has addressed the role of the residues flanking the RGD sequence in regulating the recognition by disintegrin of the alphaIIb beta3 and alpha5beta1 complexes by construction of a panel of recombinant molecules of Elegantin (the platelet aggregation inhibitor from the venom of Trimerasurus elegans) expressing specific RGD sequence motifs. Wild-type Elegantin (ARGDNP) and several variants including Eleg. AM (ARGDMP), Eleg. PM (PRGDMP) and Eleg. PN (PRGDNP) were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli. The inhibitory efficacies of the panel of Elegantin variants were analysed in platelet adhesion assays with substrates immobilized with fibrinogen and fibronectin. Elegantin molecules containing an Ala residue N-terminal to the RGD sequence (wild-type Elegantin and Eleg. AM) showed strong inhibitory activity towards alphaIIbbeta3-dependent platelet adhesion on fibronectin, whereas a Pro residue in this position (Eleg. PM and Kistrin, the inhibitor from the venom of Calloselasma rhodostoma) engendered lower activity. The decreased activity could not be attributed to a decrease in the affinity of the disintegrin for the alphaIIb beta3 complex because both Eleg. AM and Eleg. PM had similar Kd (app) values. In contrast, Elegantin molecules into which a Met residue was introduced in place of the Asn residue C-terminal to the RGD sequence showed 10-13-fold elevated inhibitory activity towards platelet adhesion on fibrinogen and this was maintained with either a Pro or Ala residue N-terminal to the RGD sequence. In experiments with the alpha5 beta1 complex on K562 cells, the inhibitory efficacies of the panel of Elegantin molecules were analysed under two different cation conditions. First, in the presence of Ca2+/Mg2+, K562 cell adhesion on fibronectin was inhibited equally well by Elegantin and Eleg. AM but inhibited poorly by Eleg. PM and Kistrin. In contrast with platelets, the decreased inhibitory efficacy of the PRGDMP disintegrins was due to poor recognition of the alpha5 beta1 complex. In the presence of Mn2+ cation, K562 cell adhesion on fibrinogen was observed in an alpha5 beta1-dependent manner. Under these conditions both PRGD and ARGD containing disintegrins were strong inhibitors of K562 cell adhesion on fibrinogen and this was due to a markedly improved recognition of the alpha5 beta1 complex by the PRGD molecules. These observations demonstrate the pivotal role of the amino acids flanking the RGD sequence for disintegrin recognition of integrin complexes and highlight the subtle nature by which integrin-ligand binding specificity can be modulated by both cation and adhesive motif.
Collapse
Affiliation(s)
- S Rahman
- The Coagulation Research Laboratory, Division of Internal Medicine, United Medical and Dental School of Guy's, King's and St Thomas' Hospitals (GKT), St. Thomas' Campus, Lambeth Palace Road, London SE1 7EH, UK.
| | | | | | | | | |
Collapse
|
23
|
Zhang XP, Kamata T, Yokoyama K, Puzon-McLaughlin W, Takada Y. Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alphavbeta3. J Biol Chem 1998; 273:7345-50. [PMID: 9516430 DOI: 10.1074/jbc.273.13.7345] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MDC-15 (ADAM-15, metargidin), a membrane-anchored metalloprotease/disintegrin/cysteine-rich protein, is expressed on the surface of a wide range of cells and has an RGD tripeptide in its disintegrin-like domain. MDC-15 is potentially involved in cell-cell interactions through its interaction with integrins. We expressed a recombinant MDC-15 disintegrin-like domain as a fusion protein with glutathione S-transferase (designated D-15) in bacteria and examined its binding function to integrins using mammalian cells expressing different recombinant integrins. We found that D-15 specifically interacts with alphavbeta3 but not with the other integrins tested (alpha2beta1, alpha3beta1, alpha4beta1, alpha5beta1, alpha6beta1, alpha6beta4, alphavbeta1, alphaIIbbeta3, and alphaLbeta2). Mutation of the tripeptide RGD to SGA totally blocked binding of D-15 to alphavbeta3, suggesting that D-15-alphavbeta3 interaction is RGD-dependent. When the sequence RPTRGD is mutated to NWKRGD, D-15 is recognized by both alphaIIbbeta3 and alphavbeta3, suggesting that the receptor binding specificity is mediated by the sequence flanking the RGD tripeptide, as in snake venom disintegrins. These results indicate that the disintegrin-like domain of MDC-15 functions as an adhesion molecule and may be involved n alphavbeta3-mediated cell-cell interactions.
Collapse
Affiliation(s)
- X P Zhang
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
24
|
Tselepis VH, Green LJ, Humphries MJ. An RGD to LDV motif conversion within the disintegrin kistrin generates an integrin antagonist that retains potency but exhibits altered receptor specificity. Evidence for a functional equivalence of acidic integrin-binding motifs. J Biol Chem 1997; 272:21341-8. [PMID: 9261147 DOI: 10.1074/jbc.272.34.21341] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Integrin ligands almost invariably employ a variant of either the RGD or LDV motif as a key element of their receptor recognition site. These short acidic peptide sequences collaborate with specific nonhomologous flanking residues and spatially separate "synergy" sequences to determine receptor binding specificity. Although the consensus sequences for RGD and LDV motifs are quite different, their common use suggests that they might share a critical role in receptor-ligand engagement. To date, the effects of interconversion of the two motifs within a natural protein framework have not been tested; however, in this study, we have converted the natural RGD site found in the snake venom disintegrin kistrin into an LDV motif and examined the effects of the change on the specificity of integrin recognition and on disintegrin potency. While an assessment of receptor binding using cell adhesion and purified integrin solid-phase assays demonstrated recognition of recombinant RGD kistrin by alphaVbeta3 and alpha5beta1, a series of LDV kistrin chimeras did not bind to these integrins, but instead were recognized specifically by alpha4beta1. The minimal change to elicit this distinct switch in receptor specificity was found to involve alteration of only three residues within kistrin. Alanine scanning mutagenesis was used to provide further information on the functional contribution of the three residues. More important, the LDV kistrin chimeras also retained much of the characteristic potency of RGD kistrin, indicating that the kistrin scaffold is optimized for presentation of both RGD and LDV sequences. These findings provide evidence for similarities in motif pharmacophore and reinforce the hypothesis that RGD and LDV sites have an equivalent functional role in receptor binding. They also demonstrate the potential for other disintegrin-containing proteins, perhaps from the ADAM family, to employ LDV sequences for integrin binding.
Collapse
Affiliation(s)
- V H Tselepis
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
25
|
Significance of RGD Loop and C-Terminal Domain of Echistatin for Recognition of αIIbβ3 and αvβ3 Integrins and Expression of Ligand-Induced Binding Site. Blood 1997. [DOI: 10.1182/blood.v90.4.1565.1565_1565_1575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Echistatin is a viper venom disintegrin containing RGD loop maintained by disulfide bridges. It binds with a high affinity to αvβ3 and αIIbβ3 and it induces extensive conformational changes in these integrins resulting in expression of ligand-induced binding site (LIBS) epitopes. We investigated the activities of echistatin and its three analogues (R24A, D27W, echistatin 1-41). R24A echistatin did not react with αIIbβ3 and αvβ3 integrins and did not cause LIBS effect. D27W echistatin showed increased binding to αIIbβ3 and decreased binding to αvβ3. This substitution impaired the ability of echistatin to induce LIBS in αvβ3 integrin. Deletion of nine C-terminal amino acids of echistatin decreased its ability to bind αIIbβ3 and inhibit platelet aggregation. Truncated echistatin failed to induce LIBS epitopes on cells transfected with αIIbβ3 and αvβ3 genes. The ability of echistatin 1-41 to compete with binding of vitronectin to immobilized αvβ3 and monoclonal antibody 7E3 to platelets and to VNRC3 cells was decreased, although this analogue, after immobilization, retained its ability to bind purified αvβ3. We propose a hypothesis in which echistatin's RGD loop determines selective recognition of αIIbβ3 and αvβ3 integrin, whereas the C-terminal domain supports its binding to resting integrin and significantly contributes to the expression of LIBS epitope and to conformational changes of the receptor, leading to a further increase of the binding affinity of echistatin and of the inhibitory effect.
Collapse
|
26
|
Significance of RGD Loop and C-Terminal Domain of Echistatin for Recognition of αIIbβ3 and αvβ3 Integrins and Expression of Ligand-Induced Binding Site. Blood 1997. [DOI: 10.1182/blood.v90.4.1565] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEchistatin is a viper venom disintegrin containing RGD loop maintained by disulfide bridges. It binds with a high affinity to αvβ3 and αIIbβ3 and it induces extensive conformational changes in these integrins resulting in expression of ligand-induced binding site (LIBS) epitopes. We investigated the activities of echistatin and its three analogues (R24A, D27W, echistatin 1-41). R24A echistatin did not react with αIIbβ3 and αvβ3 integrins and did not cause LIBS effect. D27W echistatin showed increased binding to αIIbβ3 and decreased binding to αvβ3. This substitution impaired the ability of echistatin to induce LIBS in αvβ3 integrin. Deletion of nine C-terminal amino acids of echistatin decreased its ability to bind αIIbβ3 and inhibit platelet aggregation. Truncated echistatin failed to induce LIBS epitopes on cells transfected with αIIbβ3 and αvβ3 genes. The ability of echistatin 1-41 to compete with binding of vitronectin to immobilized αvβ3 and monoclonal antibody 7E3 to platelets and to VNRC3 cells was decreased, although this analogue, after immobilization, retained its ability to bind purified αvβ3. We propose a hypothesis in which echistatin's RGD loop determines selective recognition of αIIbβ3 and αvβ3 integrin, whereas the C-terminal domain supports its binding to resting integrin and significantly contributes to the expression of LIBS epitope and to conformational changes of the receptor, leading to a further increase of the binding affinity of echistatin and of the inhibitory effect.
Collapse
|
27
|
Takagi J, Kamata T, Meredith J, Puzon-McLaughlin W, Takada Y. Changing ligand specificities of alphavbeta1 and alphavbeta3 integrins by swapping a short diverse sequence of the beta subunit. J Biol Chem 1997; 272:19794-800. [PMID: 9242639 DOI: 10.1074/jbc.272.32.19794] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Integrins mediate signal transduction through interaction with multiple cellular or extracellular matrix ligands. Integrin alphavbeta3 recognizes fibrinogen, von Willebrand factor, and vitronectin, while alphavbeta1 does not. We studied the mechanisms for defining ligand specificity of these integrins by swapping the highly diverse sequences in the I domain-like structure of the beta1 and beta3 subunits. When the sequence CTSEQNC (residues 187-193) of beta1 is replaced with the corresponding CYDMKTTC sequence of beta3, the ligand specificity of alphavbeta1 is altered. The mutant (alphavbeta1-3-1), like alphavbeta3, recognizes fibrinogen, von Willebrand factor, and vitronectin (a gain-of-function effect). The alphavbeta1-3-1 mutant is recruited to focal contacts on fibrinogen and vitronectin, suggesting that the mutant transduces intracellular signals on adhesion. The reciprocal beta3-1-3 mutation blocks binding of alphavbeta3 to these multiple ligands and to LM609, a function-blocking anti-alphavbeta3 antibody. These results suggest that the highly divergent sequence is a key determinant of integrin ligand specificity. Also, the data support a recent hypothetical model of the I domain of beta, in which the sequence is located in the ligand binding site.
Collapse
Affiliation(s)
- J Takagi
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
28
|
Taylor MR, Couto JR, Scallan CD, Ceriani RL, Peterson JA. Lactadherin (formerly BA46), a membrane-associated glycoprotein expressed in human milk and breast carcinomas, promotes Arg-Gly-Asp (RGD)-dependent cell adhesion. DNA Cell Biol 1997; 16:861-9. [PMID: 9260929 DOI: 10.1089/dna.1997.16.861] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lactadherin, a major glycoprotein of the human milk fat globule membrane, is abundant in human breast milk and expressed in human breast carcinomas. Previously, we have shown that the mature protein, formerly known as BA46, has three domains: an epidermal growth factor (EGF)-like domain containing an Arg-Gly-Asp (RGD) cell adhesion sequence and C1 and C2 domains similar to those found in coagulation factors V and VIII. An alignment of lactadherin with its bovine (MGP57/53) and murine (MFG-E8) homologs shows that the RGD sequence has been conserved during evolution, suggesting that the RGD sequence is not fortuitous. We demonstrate that lactadherin purified using Triton X-114 phase partitioning promotes RGD-dependent cell attachment of green monkey kidney cells (MA104), mouse fibroblast cells (3T3-L1), and breast carcinoma cells (ELL-G). A lactadherin-specific monoclonal antibody, Mc3, inhibits attachment to purified lactadherin, suggesting that contaminants in the purification are not responsible for binding. In addition, the anti-integrin alpha(v)beta3 monoclonal antibody LM609 inhibits cell attachment of MA104 cells to lactadherin. These results demonstrate that lactadherin promotes RGD-dependent cell adhesion via integrins. Denaturation of lactadherin with heat and reducing conditions diminished cell attachment, suggesting that optimal cell attachment to RGD is dependent on the structural presentation of the sequence.
Collapse
Affiliation(s)
- M R Taylor
- Cancer Research Fund of Contra Costa, Walnut Creek, CA 94596, USA
| | | | | | | | | |
Collapse
|
29
|
Marchot P, Prowse CN, Kanter J, Camp S, Ackermann EJ, Radić Z, Bougis PE, Taylor P. Expression and activity of mutants of fasciculin, a peptidic acetylcholinesterase inhibitor from mamba venom. J Biol Chem 1997; 272:3502-10. [PMID: 9013597 DOI: 10.1074/jbc.272.6.3502] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fasciculin, a selective peptidic inhibitor of acetylcholinesterase, is a member of the three-fingered peptide toxin superfamily isolated from snake venoms. The availability of a crystal structure of a fasciculin 2 (Fas2)-acetylcholinesterase complex affords an opportunity to examine in detail the interaction of this toxin with its target site. To this end, we constructed a synthetic fasciculin gene with an appropriate leader peptide for expression and secretion from mammalian cells. Recombinant wild-type Fas2, expressed and amplified in Chinese hamster ovary cells, was purified to homogeneity and found to be identical in composition and biological activities to the venom-derived toxin. Sixteen mutations at positions where the crystal structure of the complex indicates a significant interfacial contact point or determinant of conformation were generated. Two mutants of loop I, T8A/T9A and R11Q, ten mutants of the longest loop II, R24T, K25L, R27W, R28D, H29D, DeltaPro30, P31R, K32G, M33A, and V34A/L35A, and two mutants of loop III, D45K and K51S, were expressed transiently in human embryonic kidney cells. Inhibitory potencies of the Fas2 mutants toward mouse AChE were established, based on titration of the mutants with a polyclonal anti-Fas2 serum. The Arg27, Pro30, and Pro31 mutants each lost two or more orders of magnitude in Fas2 activity, suggesting that this subset of three residues, at the tip of loop II, dominates the loop conformation and interaction of Fas2 with the enzyme. The Arg24, Lys32, and Met33 mutants lost about one order of magnitude, suggesting that these residues make moderate contributions to the strength of the complex, whereas the Lys25, Arg28, Val34-Leu35, Asp45, and Lys51 mutants appeared as active as Fas2. The Thr8-Thr9, Arg11, and His29 mutants showed greater ratios of inhibitory activity to immunochemical titer than Fas2. This may reflect immunodominant determinants in these regions or intramolecular rearrangements in conformation that enhance the interaction. Of the many Fas2 residues that lie at the interface with acetylcholinesterase, only a few appear to provide substantial energetic contributions to the high affinity of the complex.
Collapse
Affiliation(s)
- P Marchot
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0636, USA
| | | | | | | | | | | | | | | |
Collapse
|