1
|
Zhang YM, Luo Q, Lu M, Gong X, Guo YW, Zeng XB, Zhu Y, Shu D, Lin YL, Guo XR, Ming ZY. Pharmacological effects and mechanism of Ilexsaponin A1 in modulating platelet function. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119564. [PMID: 40015536 DOI: 10.1016/j.jep.2025.119564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ilex pubescens Hook. & Arn. is a traditional Chinese medicine for promoting blood circulation. Ilexsaponin A1 (IsA), a monomer of the compound, exhibits pro-angiogenic, anti-apoptotic and anti-inflammatory activities. Nevertheless, the pharmacological effects and specific mechanisms by which IsA affects platelets remain unknown. AIM OF THE STUDY This study aims to investigate the antiplatelet effects of IsA and the underlying molecular mechanisms. MATERIALS AND METHODS Platelet aggregation and ATP release were assessed using platelet aggregometry. Flow cytometry was employed to evaluate the exposure of P-selectin, integrin αⅡbβ3 activation and calcium mobilization. Fluorescence microscopy was applied to observe platelet spreading. Clot retraction was imaged by digital camera. Protein phosphorylation regulation of major signaling pathways in platelets was determined by immunoblotting analysis. Doppler flowmetry was used to investigate the in vivo effect of IsA on FeCl3-induced carotid artery injury model. Tail vein transection was used to measure bleeding time. RESULTS IsA dose-dependently inhibited platelet aggregation and ATP release induced by collagen, U46619, thrombin and ADP. It also suppressed thrombin-induced P-selectin exposure and PAC-1 binding. Furthermore, IsA inhibited intracellular Ca2+ mobilization and the inward flow of extracellular Ca2+. It also influenced integrin αⅡbβ3 outside-in signaling pathways, including the inhibition of platelet spreading, clot retraction and phosphorylation of outside-in signaling molecules. In addition, IsA suppressed the phosphorylation of Syk-PLCγ2, PI3K-Akt-GSK3β and MAPKs proteins, which are downstream effectors of the collagen and thrombin receptors. CONCLUSION IsA inhibited platelet function and thrombus formation. This has potential to be developed into a novel therapeutic agent for the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Yu-Min Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Qi Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Xue Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Ya-Wei Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Xiang-Bin Zeng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Ying Zhu
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Shu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yue-Ling Lin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Xu-Ran Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China; Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Klaihmon P, Sungkhaphan P, Thavornyutikarn B, Kitpakornsanti S, Septham P, Young A, Lorthongpanich C, Janvikul W, Singhatanadgit W. Platelet Responses to Urethane Dimethacrylate-Based Bone Cements Containing Monocalcium Phosphate/ε-Polylysine: Role of ε-Polylysine in In Vitro Wound Healing Induced by Platelet-Derived Growth Factor-BB. ACS MATERIALS AU 2025; 5:339-352. [PMID: 40093841 PMCID: PMC11907285 DOI: 10.1021/acsmaterialsau.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 03/19/2025]
Abstract
Platelets play a pivotal role in initiating bone fracture healing. However, the interaction between platelets and bone cements used for fracture repair remains relatively unexplored. This study investigated the platelet response to recently developed urethane dimethacrylate-based bone cements containing 8% (w/w) monocalcium phosphate monohydrate (MCPM) and/or 5% (w/w) ε-polylysine (PLS). All experimental bone cements achieved final monomer conversions of 75-78%, compared with the 86% conversion of the commercial PMMA bone cement Kyphon. The MCPM and PLS microparticles, varying in size, were dispersed within the glass-filler-incorporated polymer matrix. In contrast to Kyphon, all experimental cements exhibited significantly smoother and more hydrophilic surfaces. Bone cements incorporating PLS, with or without MCPM, effectively activated platelets by inducing cellular adhesion, aggregation, and extracellular-signal-regulated kinase (ERK) activation, comparable to Kyphon. Flow cytometry analysis demonstrated a statistically significant increase in CD62P-positive platelets following exposure to PLS-incorporated bone cements and exogenously administered PLS in a concentration-dependent manner, but not with Kyphon. A wound healing assay revealed a 2-fold enhancement in wound closure within 24 h and exceeding 85% at 48 h by bone cements containing PLS, with or without MCPM, and Kyphon. Notably, platelet-derived growth factor BB (PDGF-BB) secretion was significantly elevated, specifically after platelet exposure to PLS-incorporated bone cements, a phenomenon not observed with Kyphon. Interestingly, PDGF-BB neutralization attenuated wound closure induced by the PLS-incorporated bone cements. In conclusion, the urethane dimethacrylate-based bone cements containing PLS demonstrated a significant enhancement in platelet activation and PDGF-BB secretion, which, at least partly, enhanced in vitro wound closure. The results suggest that PDGF-BB plays a crucial role in the PLS-mediated enhancement of wound healing in these bone cements.
Collapse
Affiliation(s)
- Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Piyarat Sungkhaphan
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathum-thani 12120, Thailand
| | - Boonlom Thavornyutikarn
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathum-thani 12120, Thailand
| | - Setthawut Kitpakornsanti
- Faculty of Dentistry and Research Unit in Mineralized Tissue Reconstruction, Thammasat University (Rangsit Campus), Pathum-thani 12121, Thailand
| | - Praphasri Septham
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Anne Young
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, London NW3 2PF, U.K
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Janvikul
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathum-thani 12120, Thailand
| | - Weerachai Singhatanadgit
- Faculty of Dentistry and Research Unit in Mineralized Tissue Reconstruction, Thammasat University (Rangsit Campus), Pathum-thani 12121, Thailand
| |
Collapse
|
3
|
Xiao Y, Zhang R, Hua C, Wu M, Yuan Y, Zhang L, Guo F, Liu J, Yang Z, Liu G. P2Y12 receptor-independent antiplatelet mechanism of cryptotanshinone: Network pharmacology and experimental validation of multi-target signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119321. [PMID: 39755188 DOI: 10.1016/j.jep.2025.119321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cryptotanshinone serves as the principal bioactive constituent of Salvia miltiorrhiza Bunge, possesses a wide range of pharmacological activities. Salvia miltiorrhiza Bunge, a long-standing therapeutic agent in traditional Chinese medicine (TCM) practice, is renowned for its efficacy in enhancing blood circulation and alleviating blood stasis and infarction, thereby treating cardiovascular and cerebrovascular diseases. AIM OF THE STUDY Platelet activation, when excessive or aberrant, poses a significant risk, catalyzing the onset of various thrombotic disorders. Thus, this investigation is meticulously designed to assess the antiplatelet pharmacological activity of cryptotanshinone, delving into its mechanisms of action that operate independently of the P2Y12 receptor. MATERIALS AND METHODS We employed a combination of isolated human platelet functional analysis, network pharmacology, molecular docking, and animal experiments to explore the P2Y12 receptor-independent antiplatelet targets and the biological mechanisms by which cryptotanshinone improves thrombosis. RESULTS Utilizing the ADP-hydrolyzing enzyme apyrase, we isolated the direct effects of cryptotanshinone on platelet function. The findings reveal that cryptotanshinone can effectively inhibit platelet activation in a manner that is independent of the P2Y12 receptor, all the while maintaining normal tail bleeding times in murine models and not exacerbating mesenteric thrombosis. These effects appear to be mediated through intricate signaling pathways, including PI3K-AKT, MAPK, and STAT3. CONCLUSION This study compellingly confirms the capacity of cryptotanshinone to suppress platelet function independently of the P2Y12 receptor, establishing a robust theoretical foundation for innovative strategies in thrombosis prevention.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Rui Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Chaoying Hua
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Meng Wu
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Yujing Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Li Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Fang Guo
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Jian Liu
- School of Laboratory Animal and Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Zhanzhan Yang
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China.
| | - Gang Liu
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug RandD, Guizhou Medical University, Guiyang, 561113, China.
| |
Collapse
|
4
|
Howes JM, Harper MT. Application of the Cellular Thermal Shift Assay (CETSA) to validate drug target engagement in platelets. Platelets 2024; 35:2354833. [PMID: 38767506 DOI: 10.1080/09537104.2024.2354833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Small molecule drugs play a major role in the study of human platelets. Effective action of a drug requires it to bind to one or more targets within the platelet (target engagement). However, although in vitro assays with isolated proteins can be used to determine drug affinity to these targets, additional factors affect target engagement and its consequences in an intact platelet, including plasma membrane permeability, intracellular metabolism or compartmentalization, and level of target expression. Mechanistic interpretation of the effect of drugs on platelet activity requires comprehensive investigation of drug binding in the proper cellular context, i.e. in intact platelets. The Cellular Thermal Shift Assay (CETSA) is a valuable method to investigate target engagement within complex cellular environments. The assay is based on the principle that drug binding to a target protein increases that protein's thermal stability. In this technical report, we describe the application of CETSA to platelets. We highlight CETSA as a quick and informative technique for confirming the direct binding of drugs to platelet protein targets, providing a platform for understanding the mechanism of action of drugs in platelets, and which will be a valuable tool for investigating platelet signaling and function.
Collapse
Affiliation(s)
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Sedighi S, Liu T, O’Meally R, Cole RN, O’Rourke B, Foster DB. Inhibition of Cardiac p38 Highlights the Role of the Phosphoproteome in Heart Failure Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624554. [PMID: 39605458 PMCID: PMC11601511 DOI: 10.1101/2024.11.20.624554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Heart failure (HF) is a complex condition characterized by the inability of the heart to pump sufficient oxygen to the organs to meet their metabolic needs. Among the altered signal transduction pathways associated with HF pathogenesis, the p38 mitogen-activated protein kinase (p38 MAPK) pathway-activated in response to stress- has attracted considerable attention for its potential role in HF progression and cardiac hypertrophy. However, the exact mechanisms by which p38 MAPK influences HF remain unclear. Addressing knowledge gaps may provide insight on why p38 inhibition has yielded inconsistent outcomes in clinical trials. Here we investigate the effects of p38 MAPK inhibition via SB203580 on cardiac remodeling in a guinea pig model of HF and sudden cardiac death. Using a well-established HF model with ascending aortic constriction and daily isoproterenol (ACi) administration, we assessed proteomic changes across three groups: sham-operated controls, untreated ACi, and ACi treated with SB203580 (ACiSB). Cardiac function was evaluated by M-mode echocardiography, while proteome and phosphoproteome profiles were analyzed using multiplexed tandem mass tag labeling and LC-MS/MS. Our findings demonstrate that chronic SB203580 treatment offers protection against progressive decline in cardiac function in HF. The proteomic data indicate that SB203580-treatment exerts broad protection of the cardiac phosphoproteome, beyond inhibiting maladaptive p38-dependent phosphorylation, extending to PKA and AMPK networks among others, ultimately protecting the phosphorylation status of critical myofibrillar and Ca2+-handling proteins. Though SB203580 had a more restricted impact on widespread protein changes in HF, its biosignature was consistent with preserved mitochondrial energetics as well as reduced oxidative and inflammatory stress.
Collapse
Affiliation(s)
- Sogol Sedighi
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert O’Meally
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brian O’Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - D. Brian Foster
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Wang S, Yao M, Yang X, Zhu Y, Peng B. The genetic risk factors for cerebral venous thrombosis: a case-control study in a Chinese national comprehensive hospital. Thromb J 2024; 22:50. [PMID: 38886735 PMCID: PMC11181614 DOI: 10.1186/s12959-024-00621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND About 13-25% of cerebral venous thrombosis (CVT) cases lack clear etiology, which may be associated with underlying genetic factors. This study aims to investigate genetic factors in CVT patients using whole exome sequencing (WES). METHODS Thirty-eight CVT patients hospitalized underwent WES. 977 subjects with WES data from a community cohort study --the Shunyi cohort were as the control group. Using bioinformatics analysis, differential genes with rare damaging variants between two groups were filtered (P < 0.05). KEGG enrichment analysis was performed on the screened genes to identify pathways associated with CVT. RESULTS Through analysis of medical history, routine tests, and imaging examinations, the etiology of 38 patients: 8 cases of antiphospholipid syndrome, 6 cases with hematologic diseases, 3 cases of protein C deficiency, and 2 cases of protein S deficiency. Five cases occurred during pregnancy or puerperium, and 3 cases had a history of oral contraceptive use, and so on. The etiology was unknown in 12 cases (31.6%), and the etiology of 4 patients were further clarified through WES: F9 c.838 + 1_838 + 16del, Hemizygote: F9 EX1-EX7 Dup; CBS c.430G > A, CBS c.949 A > G; F2 c.1787G > A; SERPINC1 c.409-11G > T. Comparing the WES data of two groups, a total of 179 different genes with rare damaging variants were screened (P < 0.05), with 5 genes of interest (JAK2, C3, PROC, PROZ, SERPIND1). Enrichment analysis of the 179 different genes revealed the complement and coagulation pathway and the mitogen activated protein kinases (MAPK) pathway were associated with CVT. CONCLUSION For CVT patients with unknown etiology, WES could help identify the cause of CVT early, which is of great significance for treatment decisions and prognosis. In addition to the complement and coagulation pathway, MAPK pathway is associated with CVT, potentially related to platelet regulation and inflammatory response.
Collapse
Affiliation(s)
- Shaoying Wang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ming Yao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinzhuang Yang
- Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beiing, China
| | - Yicheng Zhu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Bin Peng
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
7
|
Provenzale I, Solari FA, Schönichen C, Brouns SLN, Fernández DI, Kuijpers MJE, van der Meijden PEJ, Gibbins JM, Sickmann A, Jones C, Heemskerk JWM. Endothelium-mediated regulation of platelet activation: Involvement of multiple protein kinases. FASEB J 2024; 38:e23468. [PMID: 38334433 DOI: 10.1096/fj.202300360rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The endothelial regulation of platelet activity is incompletely understood. Here we describe novel approaches to find molecular pathways implicated on the platelet-endothelium interaction. Using high-shear whole-blood microfluidics, employing coagulant or non-coagulant conditions at physiological temperature, we observed that the presence of human umbilical vein endothelial cells (HUVEC) strongly suppressed platelet adhesion and activation, via the collagen receptor glycoprotein VI (GPVI) and the PAR receptors for thrombin. Real-time monitoring of the cytosolic Ca2+ rises in the platelets indicated no major improvement of inhibition by prostacyclin or nitric oxide. Similarly under stasis, exposure of isolated platelets to HUVEC reduced the Ca2+ responses by collagen-related peptide (CRP-XL, GPVI agonist) and thrombin (PAR agonist). We then analyzed the label-free phosphoproteome of platelets (three donors), exposed to HUVEC, CRP-XL, and/or thrombin. High-resolution mass spectrometry gave 5463 phosphopeptides, corresponding to 1472 proteins, with good correlation between biological and technical replicates (R > .86). Stringent filtering steps revealed 26 regulatory pathways (Reactome) and 143 regulated kinase substrates (PhosphoSitePlus), giving a set of protein phosphorylation sites that was differentially (44) or similarly (110) regulated by HUVEC or agonist exposure. The differential regulation was confirmed by stable-isotope analysis of platelets from two additional donors. Substrate analysis indicated major roles of poorly studied protein kinase classes (MAPK, CDK, DYRK, STK, PKC members). Collectively, these results reveal a resetting of the protein phosphorylation profile in platelets exposed to endothelium or to conventional agonists and to endothelium-promoted activity of a multi-kinase network, beyond classical prostacyclin and nitric oxide actors, that may contribute to platelet inhibition.
Collapse
Affiliation(s)
- Isabella Provenzale
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Claudia Schönichen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Center for Thrombosis and Haemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sanne L N Brouns
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Delia I Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Chris Jones
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute Maastricht, Maastricht, The Netherlands
| |
Collapse
|
8
|
Liu Y, Wang T, Zhou Q, Xin G, Niu H, Li F, Wang Y, Li S, Dong Y, Zhang K, Feng L, Fu W, Zhang B, Huang W. Endogenous SIRT6 in platelets negatively regulates platelet activation and thrombosis. Front Pharmacol 2023; 14:1268708. [PMID: 38186648 PMCID: PMC10766690 DOI: 10.3389/fphar.2023.1268708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Thromboembolism resulting from platelet dysfunction constitutes a significant contributor to the development of cardiovascular disease. Sirtuin 6 (SIRT6), an essential NAD+-dependent enzyme, has been linked to arterial thrombosis when absent in endothelial cells. In the present study, we have confirmed the presence of SIRT6 protein in anucleated platelets. However, the precise regulatory role of platelet endogenous SIRT6 in platelet activation and thrombotic processes has remained uncertain. Herein, we present compelling evidence demonstrating that platelets isolated from SIRT6-knockout mice (SIRT6-/-) exhibit a notable augmentation in thrombin-induced platelet activation, aggregation, and clot retraction. In contrast, activation of SIRT6 through specific agonist treatment (UBCS039) confers a pronounced protective effect on platelet activation and arterial thrombosis. Moreover, in platelet adoptive transfer experiments between wild-type (WT) and SIRT6-/- mice, the loss of SIRT6 in platelets significantly prolongs the mean thrombus occlusion time in a FeCl3-induced arterial thrombosis mouse model. Mechanistically, we have identified that SIRT6 deficiency in platelets leads to the enhanced expression and release of proprotein convertase subtilisin/kexin type 9 (PCSK9), subsequently activating the platelet activation-associated mitogen-activated protein kinase (MAPK) signaling pathway. These findings collectively unveil a novel protective role of platelet endogenous SIRT6 in platelet activation and thrombosis. This protective effect is, at least in part, attributed to the inhibition of platelet PCSK9 secretion and mitogen-activated protein kinase signaling transduction. Our study provides valuable insights into the intricate interplay between SIRT6 and platelet function, shedding light on potential therapeutic avenues for managing thrombotic disorders.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qilong Zhou
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Guang Xin
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Niu
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Li
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yilan Wang
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyi Li
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuman Dong
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zhang
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lijuan Feng
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Fu
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Boli Zhang
- Innovative Chinese Medicine Academician Workstation, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Huang
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Ishijima T, Nakajima K. Mechanisms of Microglia Proliferation in a Rat Model of Facial Nerve Anatomy. BIOLOGY 2023; 12:1121. [PMID: 37627005 PMCID: PMC10452325 DOI: 10.3390/biology12081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Although microglia exist as a minor glial cell type in the normal state of the brain, they increase in number in response to various disorders and insults. However, it remains unclear whether microglia proliferate in the affected area, and the mechanism of the proliferation has long attracted the attention of researchers. We analyzed microglial mitosis using a facial nerve transection model in which the blood-brain barrier is left unimpaired when the nerves are axotomized. Our results showed that the levels of macrophage colony-stimulating factor (M-CSF), cFms (the receptor for M-CSF), cyclin A/D, and proliferating cell nuclear antigen (PCNA) were increased in microglia in the axotomized facial nucleus (axotFN). In vitro experiments revealed that M-CSF induced cFms, cyclin A/D, and PCNA in microglia, suggesting that microglia proliferate in response to M-CSF in vivo. In addition, M-CSF caused the activation of c-Jun N-terminal kinase (JNK) and p38, and the specific inhibitors of JNK and p38 arrested the microglial mitosis. JNK and p38 were shown to play roles in the induction of cyclins/PCNA and cFms, respectively. cFms was suggested to be induced through a signaling cascade of p38-mitogen- and stress-activated kinase-1 (MSK1)-cAMP-responsive element binding protein (CREB) and/or p38-activating transcription factor 2 (ATF2). Microglia proliferating in the axotFN are anticipated to serve as neuroprotective cells by supplying neurotrophic factors and/or scavenging excite toxins and reactive oxygen radicals.
Collapse
Affiliation(s)
- Takashi Ishijima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
| | - Kazuyuki Nakajima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
- Glycan & Life Systems Integration Center, Soka University, Tokyo 192-8577, Japan
| |
Collapse
|
10
|
Metformin Serves as a Novel Drug Treatment for Arterial Thrombosis: Inhibitory Mechanisms on Collagen-Induced Human Platelet Activation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metformin is widely used as first-line medication for type 2 diabetes (T2D), the main disease comorbid with kidney disease, cardiovascular diseases (CVDs), and retinopathy. Platelets are crucial in platelet-dependent arterial thrombosis, which causes CVDs and cerebrovascular diseases. Research indicates that metformin may improve these diseases; metformin reportedly reduced platelet activation in rats. However, no reports have included human platelets. We investigated the mechanisms underlying metformin’s effects on platelet activation by using human platelets and evaluated its in vivo effectiveness in experimental mice. Metformin inhibited platelet aggregation stimulated by collagen but not by arachidonic acid, U46619, or thrombin. Metformin suppressed ATP release, [Ca2+]i mobilization, and P-selectin expression, as well as phospholipase C (PLC)γ2/protein kinase C (PKC), p38 mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK3β) phosphorylation. Metformin did not affect vasodilator-stimulated phosphoprotein (VASP) phosphorylation. In the animal studies, metformin reduced acute pulmonary thromboembolism mortality without increasing bleeding times. These results provide insights into the role and mechanisms of metformin in human platelet activation. Metformin decreased platelet activation by interfering with the PLCγ2/PKC, PI3K/Akt/GSK3β, and p38 MAPK pathways through a VASP-independent mechanism. Metformin demonstrates promise as a new class of antiplatelet agent that can inhibit platelet activation.
Collapse
|
11
|
Small Molecule Arranged Thermal Proximity Co aggregation (smarTPCA)-A Novel Approach to Characterize Protein-Protein Interactions in Living Cells by Similar Isothermal Dose-Responses. Int J Mol Sci 2022; 23:ijms23105605. [PMID: 35628420 PMCID: PMC9147192 DOI: 10.3390/ijms23105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Chemical biology and the application of small molecules has proven to be a potent perturbation strategy, especially for the functional elucidation of proteins, their networks, and regulators. In recent years, the cellular thermal shift assay (CETSA) and its proteome-wide extension, thermal proteome profiling (TPP), have proven to be effective tools for identifying interactions of small molecules with their target proteins, as well as off-targets in living cells. Here, we asked the question whether isothermal dose-response (ITDR) CETSA can be exploited to characterize secondary effects downstream of the primary binding event, such as changes in post-translational modifications or protein-protein interactions (PPI). By applying ITDR-CETSA to MAPK14 kinase inhibitor treatment of living HL-60 cells, we found similar dose-responses for the direct inhibitor target and its known interaction partners MAPKAPK2 and MAPKAPK3. Extension of the dose-response similarity comparison to the proteome wide level using TPP with compound concentration range (TPP-CCR) revealed not only the known MAPK14 interaction partners MAPKAPK2 and MAPKAPK3, but also the potentially new intracellular interaction partner MYLK. We are confident that dose-dependent small molecule treatment in combination with ITDR-CETSA or TPP-CCR similarity assessment will not only allow discrimination between primary and secondary effects, but will also provide a novel method to study PPI in living cells without perturbation by protein modification, which we named "small molecule arranged thermal proximity coaggregation" (smarTPCA).
Collapse
|
12
|
Neflamapimod induces vasodilation in resistance mesenteric arteries by inhibiting p38 MAPKα and downstream Hsp27 phosphorylation. Sci Rep 2022; 12:4905. [PMID: 35318382 PMCID: PMC8941071 DOI: 10.1038/s41598-022-08877-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 01/02/2023] Open
Abstract
Neflamapimod, a selective inhibitor of p38 mitogen activated protein kinase alpha (MAPKα), is under clinical investigation for its efficacy in Alzheimer's disease (AD) and dementia with Lewy Bodies (DLB). Here, we investigated if neflamapimod-mediated acute inhibition of p38 MAPKα could induce vasodilation in resistance-size rat mesenteric arteries. Our pressure myography data demonstrated that neflamapimod produced a dose-dependent vasodilation in mesenteric arteries. Our Western blotting data revealed that acute neflamapimod treatment significantly reduced the phosphorylation of p38 MAPKα and its downstream target heat-shock protein 27 (Hsp27) involved in cytoskeletal reorganization and smooth muscle contraction. Likewise, non-selective inhibition of p38 MAPK by SB203580 attenuated p38 MAPKα and Hsp27 phosphorylation, and induced vasodilation. Endothelium denudation or pharmacological inhibition of endothelium-derived vasodilators such as nitric oxide (NO) and prostacyclin (PGI2) had no effect on such vasodilation. Neflamapimod-evoked vasorelaxation remained unaltered by the inhibition of smooth muscle cell K+ channels. Altogether, our data for the first time demonstrates that in resistance mesenteric arteries, neflamapimod inhibits p38 MAPKα and phosphorylation of its downstream actin-associated protein Hsp27, leading to vasodilation. This novel finding may be clinically significant and is likely to improve systemic blood pressure and cognitive deficits in AD and DLB patients for which neflamapimod is being investigated.
Collapse
|
13
|
Zhang S, Chen H, Li C, Chen B, Gong H, Zhao Y, Qi R. Water-Soluble Tomato Extract Fruitflow Alters the Phosphoproteomic Profile of Collagen-Stimulated Platelets. Front Pharmacol 2021; 12:746107. [PMID: 34646142 PMCID: PMC8502824 DOI: 10.3389/fphar.2021.746107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Platelet hyperactivity is a risk factor for cardiovascular disease and thrombosis. Recent studies reported that the tomato extract Fruitflow inhibited platelet function, but the molecular mechanism is still unclear. The present study used proteomics to quantitatively analyze the effect of fruitflow on the inhibition of collagen-stimulated platelets and validated the involvement of several signaling molecules. Fruitflow significantly inhibited human platelet aggregation and P-selectin expression that were induced by collagen. Proteomics analysis revealed that compared fruitflow-treated collagen-stimulated platelets with only collagen-stimulated platelets, 60 proteins were upregulated and 10 proteins were downregulated. Additionally, 66 phosphorylated peptides were upregulated, whereas 37 phosphorylated peptides were downregulated. Gene Ontology analysis indicated that fruitflow treatment downregulated phosphoinositide 3-kinase (PI3K)/protein kinase B and guanosine triphosphatase-mediated signal transduction in collagen-activated platelets. Biological validation indicated that fruitflow decreased Akt, glycogen synthase kinase 3β, p38 mitogen-activated protein kinase (MAPK), and heat shock protein (Hsp27) phosphorylation in collagen-stimulated platelets. Fruitflow recovered cyclic adenosine monophosphate levels in collagen-activated platelets and reduced protein kinase A substrate phosphorylation that was induced by collagen. These findings suggest that fruitflow is a functional food that can inhibit platelet function, conferring beneficial effects for people who are at risk for platelet hyperactivity-associated thrombosis.
Collapse
Affiliation(s)
- Shenghao Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huilian Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chuanbao Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huan Gong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruomei Qi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Duan X, Perveen R, Dandamudi A, Adili R, Johnson J, Funk K, Berryman M, Davis AK, Holinstat M, Zheng Y, Akbar H. Pharmacologic targeting of Cdc42 GTPase by a small molecule Cdc42 activity-specific inhibitor prevents platelet activation and thrombosis. Sci Rep 2021; 11:13170. [PMID: 34162972 PMCID: PMC8222210 DOI: 10.1038/s41598-021-92654-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/27/2021] [Indexed: 01/14/2023] Open
Abstract
Gene targeting of Cdc42 GTPase has been shown to inhibit platelet activation. In this study, we investigated a hypothesis that inhibition of Cdc42 activity by CASIN, a small molecule Cdc42 Activity-Specific INhibitor, may down regulate platelet activation and thrombus formation. We investigated the effects of CASIN on platelet activation in vitro and thrombosis in vivo. In human platelets, CASIN, but not its inactive analog Pirl7, blocked collagen induced activation of Cdc42 and inhibited phosphorylation of its downstream effector, PAK1/2. Moreover, addition of CASIN to washed human platelets inhibited platelet spreading on immobilized fibrinogen. Treatment of human platelets with CASIN inhibited collagen or thrombin induced: (a) ATP secretion and platelet aggregation; and (b) phosphorylation of Akt, ERK and p38-MAPK. Pre-incubation of platelets with Pirl7, an inactive analog of CASIN, failed to inhibit collagen induced aggregation. Washing of human platelets after incubation with CASIN eliminated its inhibitory effect on collagen induced aggregation. Intraperitoneal administration of CASIN to wild type mice inhibited ex vivo aggregation induced by collagen but did not affect the murine tail bleeding times. CASIN administration, prior to laser-induced injury in murine cremaster muscle arterioles, resulted in formation of smaller and unstable thrombi compared to control mice without CASIN treatment. These data suggest that pharmacologic targeting of Cdc42 by specific and reversible inhibitors may lead to the discovery of novel antithrombotic agents.
Collapse
Affiliation(s)
- Xin Duan
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Rehana Perveen
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Akhila Dandamudi
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Reheman Adili
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James Johnson
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Kevin Funk
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Mark Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Ashley Kuenzi Davis
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA.
| | - Huzoor Akbar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
15
|
Sun N, Ye Z, Hao T, Zheng S, Sun Y, Zhang Y, Zhang L. Inhibition of Arterial Thrombus Formation by Blocking Exposed Collagen Surface Using LWWNSYY-Poly(l-Glutamic Acid) Nanoconjugate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6792-6799. [PMID: 34047558 DOI: 10.1021/acs.langmuir.1c00894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exposed collagen surface on diseased blood vessel wall is a trigger of platelet adhesion and subsequent thrombus formation, which is associated with many serious diseases such as myocardial infarction and stroke. Various antithrombotic agents have been developed, but are usually targeted on blood components such as platelet, which suffered from the risk of bleeding due to interference with hemostasis. In contrast, blocking the exposed collagen surface would prevent thrombus formation without the risk of bleeding. In the present study, an antithrombotic nanoconjugate (LWWNSYY-poly glutamic acid, L7-PGA) targeting collagen surface was designed by immobilizing heptapeptide LWWNSYY, a biomimetic inhibitor designed in our previous work, on poly(l-glutamic acid). Successful binding of L7-PGA on the collagen surface was confirmed by a negative ΔG of -5.99 ± 0.26 kcal/mol. L7-PGA was found to effectively inhibit platelet adhesion on the collagen surface, with a reduced IC50 of only 1/5 of that of free LWWNSYY. The inhibition of thrombus formation by L7-PGA was also validated in vivo by a reduction of 31.2% in the weight of thrombus. These results highlight L7-PGA as an effective inhibitor of arterial thrombus formation via blocking exposed collagen surface, which would be helpful for the development of novel antithrombotic nanomedicine.
Collapse
Affiliation(s)
- Na Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Zhao Ye
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Tanyi Hao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Si Zheng
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
16
|
Analysis of the mechanism of damage produced by thiazole orange photoinactivation in apheresis platelets. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 19:403-412. [PMID: 32955423 DOI: 10.2450/2020.0100-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/06/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Pathogen Reduction Technologies (PRTs) are broad spectrum nucleic acid replication-blocking antimicrobial treatments designed to mitigate risk of infection from blood product transfusions. Thiazole Orange (TO), a photosensitizing nucleic acid dye, was previously shown to photoinactivate several types of bacterial and viral pathogens in RBC suspensions without adverse effects on function. In this report we extended TO treatment to platelet concentrates (PCs) to see whether it is compatible with in vitro platelet functions also, and thus, could serve as a candidate technology for further evaluation. MATERIAL AND METHODS PCs were treated with TO, and an effective treatment dose for inactivation of Staphylococci was identified. Platelet function and physiology were then evaluated by various assays in vitro. RESULTS Phototreatment of PCs yielded significant reduction (≥4-log) in Staphylococci at TO concentrations ≥20 μM. However, treatment with TO reduced aggregation response to collagen over time, and platelets became unresponsive by 24 hours post-treatment (from >80% at 1 h to 0% at 24 h). TO treatment also significantly increased CD62P expression (<1% CD62P+ for untreated and >50% for TO treated at 1 h) and induced apoptosis in platelets (<1% Annexin V+ for untreated and >50% for TO treated at 1 h) and damaged mitochondrial DNA. A mitochondria-targeted antioxidant and reactive oxygen species (ROS) scavenger Mito-Tempo mitigated these adverse effects. DISCUSSION The results demonstrate that TO compromises mitochondria and perturbs internal signaling that activates platelets and triggers apoptosis. This study illustrates that protecting platelet mitochondria and its functions should be a fundamental consideration in selecting a PRT for transfusion units containing platelets, such as PCs.
Collapse
|
17
|
Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, Liu M, Zhao X, Xie Y, Yang Y, Zhang S, Fan Z, Dong J, Yuan Z, Ding Z, Zhang Y, Hu L. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020; 13:120. [PMID: 32887634 PMCID: PMC7471641 DOI: 10.1186/s13045-020-00954-7] [Citation(s) in RCA: 471] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Critically ill patients diagnosed with COVID-19 may develop a pro-thrombotic state that places them at a dramatically increased lethal risk. Although platelet activation is critical for thrombosis and is responsible for the thrombotic events and cardiovascular complications, the role of platelets in the pathogenesis of COVID-19 remains unclear. METHODS Using platelets from healthy volunteers, non-COVID-19 and COVID-19 patients, as well as wild-type and hACE2 transgenic mice, we evaluated the changes in platelet and coagulation parameters in COVID-19 patients. We investigated ACE2 expression and direct effect of SARS-CoV-2 virus on platelets by RT-PCR, flow cytometry, Western blot, immunofluorescence, and platelet functional studies in vitro, FeCl3-induced thrombus formation in vivo, and thrombus formation under flow conditions ex vivo. RESULTS We demonstrated that COVID-19 patients present with increased mean platelet volume (MPV) and platelet hyperactivity, which correlated with a decrease in overall platelet count. Detectable SARS-CoV-2 RNA in the blood stream was associated with platelet hyperactivity in critically ill patients. Platelets expressed ACE2, a host cell receptor for SARS-CoV-2, and TMPRSS2, a serine protease for Spike protein priming. SARS-CoV-2 and its Spike protein directly enhanced platelet activation such as platelet aggregation, PAC-1 binding, CD62P expression, α granule secretion, dense granule release, platelet spreading, and clot retraction in vitro, and thereby Spike protein enhanced thrombosis formation in wild-type mice transfused with hACE2 transgenic platelets, but this was not observed in animals transfused with wild-type platelets in vivo. Further, we provided evidence suggesting that the MAPK pathway, downstream of ACE2, mediates the potentiating role of SARS-CoV-2 on platelet activation, and that platelet ACE2 expression decreases following SARS-COV-2 stimulation. SARS-CoV-2 and its Spike protein directly stimulated platelets to facilitate the release of coagulation factors, the secretion of inflammatory factors, and the formation of leukocyte-platelet aggregates. Recombinant human ACE2 protein and anti-Spike monoclonal antibody could inhibit SARS-CoV-2 Spike protein-induced platelet activation. CONCLUSIONS Our findings uncovered a novel function of SARS-CoV-2 on platelet activation via binding of Spike to ACE2. SARS-CoV-2-induced platelet activation may participate in thrombus formation and inflammatory responses in COVID-19 patients.
Collapse
Affiliation(s)
- Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yangyang Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaofang Wang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Li Yang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haishan Li
- Department of Emergency, Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengduan Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyan Zhao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shenghui Zhang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jianzeng Dong
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongren Ding
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Liang Hu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
18
|
Patel P, Naik UP. Platelet MAPKs-a 20+ year history: What do we really know? J Thromb Haemost 2020; 18:2087-2102. [PMID: 32574399 DOI: 10.1111/jth.14967] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023]
Abstract
The existence of mitogen activated protein kinases (MAPKs) in platelets has been known for more than 20 years. Since that time hundreds of reports have been published describing the conditions that cause MAPK activation in platelets and their role in regulating diverse platelet functions from the molecular to physiological level. However, this cacophony of reports, with inconsistent and sometimes contradictory findings, has muddied the waters leading to great confusion. Since the last review of platelet MAPKs was published more than a decade ago, there have been more than 50 reports, including the description of novel knockout mouse models, that have furthered our knowledge. Therefore, we undertook an extensive literature review to delineate what is known about platelet MAPKs. We specifically discuss what is currently known about how MAPKs are activated and what signaling cascades they regulate in platelets incorporating recent findings from knockout mouse models. In addition, we will discuss the role each MAPK plays in regulating distinct platelet functions. In doing so, we hope to clarify the role for MAPKs and identify knowledge gaps in this field that await future researchers. In addition, we discuss the limitations of current studies with a particular focus on the off-target effects of commonly used MAPK inhibitors. We conclude with a look at the clinical utility of MAPK inhibitors as potential antithrombotic therapies with an analysis of current clinical trial data.
Collapse
Affiliation(s)
- Pravin Patel
- Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ulhas P Naik
- Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Onuma T, Iida M, Kito Y, Tanabe K, Kojima A, Nagase K, Uematsu K, Enomoto Y, Doi T, Tokuda H, Ogura S, Iwama T, Kozawa O, Iida H. Cigarette Smoking Cessation Temporarily Enhances the Release of Phosphorylated-HSP27 from Human Platelets. Intern Med 2020; 59:1841-1847. [PMID: 32350194 PMCID: PMC7474987 DOI: 10.2169/internalmedicine.4000-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective Cigarette smoking is a risk factor for arteriopathy, including acute coronary syndrome, stroke and peripheral vascular disease. Thus, cessation is strongly recommended in order to reduce these risks. We recently demonstrated that smoking cessation causes temporary hyper-aggregability of human platelets. We previously showed that heat shock protein 27 (HSP27) is released from human platelets stimulated by collagen, accompanied by its phosphorylation. Accumulating evidence indicates potent roles of extracellular HSP27 as a modulator of inflammation. In the present study, using the stored samples obtained in the previous study, we investigated the effect of cigarette smoking cessation on the release of phosphorylated-HSP27 from collagen-activated human platelets (n=15 patients). Methods We enrolled patients who visited smoking cessation outpatient services between January 2012 and November 2014. Platelet-rich plasma, chronologically obtained before and after the cessation, was stimulated by collagen using a PA-200 aggregometer in the previous study. The levels of phosphorylated-HSP27 released from platelets were determined by an enzyme-linked immunosorbent assay. The phosphorylation of HSP27 in platelets was evaluated by a Western blot analysis. Results Cessation of cigarette smoking significantly upregulated the levels of collagen-stimulated release of phosphorylated-HSP27 at four and eight weeks after quitting smoking compared to before cessation. However, there was no significant difference between the levels before cessation and those at 12 weeks after cessation. The levels of phosphorylated-HSP27 stimulated by collagen in the platelets at four weeks after smoking cessation were remarkably enhanced compared to before cessation. Conclusion Cigarette smoking cessation temporarily enhances the collagen-stimulated release of phosphorylated-HSP27 from human platelets in the short term.
Collapse
Affiliation(s)
- Takashi Onuma
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Japan
| | - Mami Iida
- Department of General Medicine, Gifu Prefectural General Medical Center, Japan
| | - Yuko Kito
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Japan
| | - Akiko Kojima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Japan
| | - Kiyoshi Nagase
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Japan
| | - Kodai Uematsu
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Haruhiko Tokuda
- Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Japan
| |
Collapse
|
20
|
Sledz KM, Moore SF, Vijayaragavan V, Mallah S, Goudswaard LJ, Williams CM, Hunter RW, Hers I. Redundant role of ASK1-mediated p38MAPK activation in human platelet function. Cell Signal 2020; 68:109528. [PMID: 31917191 DOI: 10.1016/j.cellsig.2020.109528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a member of mitogen-activated protein kinase kinase kinase (MAP3K) family, which recently has been implicated in the regulation of p38 MAPK/PLA2/thromboxane (TxA2) generation, as well as P2Y12 signalling in murine platelets. ASK1 has therefore been proposed as a potential target for anti-thrombotic therapy. At present it is unknown whether ASK1 also contributes to TxA2 formation and platelet function in human. In this study we therefore examined the role of ASK1 using the ASK1 inhibitor selonsertib (GS-4997). We established that ASK1 is responsible for p38 phosphorylation and TxA2 formation in murine platelets, with both GS4997 and p38 inhibitors reducing TxA2 formation. Similar to murine platelets, activation of human platelets resulted in the rapid and transient phosphorylation of ASK1 and the MAP2Ks MMK3/4/6. In contrast, phosphorylation of p38 and its substrate; MAPKAP-kinase2 (MAPKAPK2) was much more sustained. In keeping with these findings, inhibition of ASK1 blocked early, but not later p38/MAPKAPK2 phosphorylation. The latter was dependent on non-canonical autophosphorylation as it was blocked by the p38 inhibitor; SB203580 and the SYK inhibitor; R406. Furthermore, ASK1 and p38 inhibitors had no effect on PLA2 phosphorylation, TxA2 formation and platelet aggregation, demonstrating that this pathway is redundant in human platelets. Together, these results demonstrate that ASK1 contributes to TxA2 formation in murine, but not human platelets and highlight the importance of confirming findings from genetic murine models in humans.
Collapse
Affiliation(s)
- Kamila M Sledz
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Samantha F Moore
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Vijayasameerah Vijayaragavan
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Shahida Mallah
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Lucy J Goudswaard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Christopher M Williams
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Roger W Hunter
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
21
|
Tokuda H, Kusunose M, Senda K, Kojima K, Onuma T, Kojima A, Mizutani D, Enomoto Y, Iwama T, Iida H, Kozawa O. The release of phosphorylated-HSP27 from activated platelets of obstructive sleep apnea syndrome (OSAS) patients. Respir Investig 2020; 58:117-127. [PMID: 31838041 DOI: 10.1016/j.resinv.2019.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/17/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Obstructive sleep apnea syndrome (OSAS) is a well known risk of arterial thrombosis that results in cardiovascular morbidity. It has been reported that platelet aggregability is enhanced in patients with OSAS. In the present study, we investigated whether phosphorylated-HSP27 is released from the activated platelets of OSAS patients. METHODS Patients diagnosed with OSAS (n = 21) were recruited, and platelet-rich plasma (PRP) was stimulated by ADP, ristosetin, collagen, and thrombin receptor-activating peptide. Platelet aggregation was measured using an aggregometer with a laser-scattering system. The levels of protein phosphorylation and the released levels of phosphorylated-HSP27 were determined by Western blot analysis and an ELISA, respectively. RESULTS The phosphorylation of HSP27 in the platelets was induced by the stimulators. The released levels of phosphorylated-HSP27 was correlated with the levels of phosphorylated-HSP27 stimulated by ADP or collagen. The levels of ADP-induced phosphorylated-HSP27 were correlated with those of both phosphorylated-protein kinase B (Akt) and phosphorylatd-p38 mitogen-activated protein kinase; however, the levels of phosphorylated-HSP27 stimulated by collagen were correlated with phosphorylated-Akt levels only. The ED50 value of ADP on the platelet aggregation in OSAS (1.067 ± 0.128 μM) was lower than that in healthy subjects (1.778 ± 0.122 μM) and was inversely correlated with both the value of minimum SpO2 and the released level of phosphorylated-HSP27 stimulated by ADP. CONCLUSION The results strongly suggest that phosphorylated-HSP27 is released from the activated platelets of OSAS patients.
Collapse
Affiliation(s)
- Haruhiko Tokuda
- Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| | - Masaaki Kusunose
- Department of Respiratory Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Kazuyoshi Senda
- Department of Respiratory Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Kumi Kojima
- Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Takashi Onuma
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Akiko Kojima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Daisuke Mizutani
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| |
Collapse
|
22
|
Hernández B, Fuentes E, Palomo I, Alarcón M. Increased platelet function during frailty. Exp Hematol 2019; 77:12-25.e2. [DOI: 10.1016/j.exphem.2019.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
|
23
|
Inamdar VV, Reddy H, Dangelmaier C, Kostyak JC, Kunapuli SP. The protein tyrosine phosphatase PTPN7 is a negative regulator of ERK activation and thromboxane generation in platelets. J Biol Chem 2019; 294:12547-12554. [PMID: 31266805 DOI: 10.1074/jbc.ra119.007735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/20/2019] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine phosphatase nonreceptor type 7 (PTPN7), also called hematopoietic protein tyrosine phosphatase, controls extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase in T lymphocytes. Because ERK1/2 plays an important role in regulating thromboxane A2 (TXA2) generation in platelets, we investigated the function of PTPN7 in these cells. Using immunoblot analysis, we detected PTPN7 in both human and mouse platelets but not in PTPN7-null mice. PTPN7 KO mouse platelets exhibited increased platelet functional responses, including aggregation, dense granule secretion, and TXA2 generation, compared with platelets from WT littermates, upon stimulation with both G protein-coupled receptor (GPCR) and glycoprotein VI (GPVI) agonists. Using the GPCR agonist AYPGKF in the presence of the COX inhibitor indomethacin, we found that PTPN7 KO mouse platelets aggregated and secreted to the same extent as WT platelets, suggesting that elevated TXA2 is responsible for the potentiation of platelet functional responses in PTPN7-KO platelets. Phosphorylation of ERK1/2 was also elevated in PTPN7 KO platelets. Stimulation of platelets with the GPVI agonist collagen-related peptide along with the COX inhibitor indomethacin did not result in phosphorylation of ERK1/2, indicating that GPVI-mediated ERK phosphorylation occurs through TXA2 Although bleeding times did not significantly differ between PTPN7-null and WT mice, time to death was significantly faster in PTPN7-null mice than in WT mice in a pulmonary thromboembolism model. We conclude that PTPN7 regulates platelet functional responses downstream of GPCR agonists, but not GPVI agonists, through inhibition of ERK activation and thromboxane generation.
Collapse
Affiliation(s)
- Vaishali V Inamdar
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | - Haritha Reddy
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | - Carol Dangelmaier
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | - John C Kostyak
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
24
|
Pharmacological actions of miltirone in the modulation of platelet function. Acta Pharmacol Sin 2019; 40:199-207. [PMID: 29795134 DOI: 10.1038/s41401-018-0010-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/30/2017] [Accepted: 01/25/2018] [Indexed: 01/27/2023]
Abstract
Salvia miltiorrhiza Bunge contains various active constituents, some of which have been developed as commercially available medicine. Moreover, some other ingredients in Salvia miltiorrhiza play roles in anti-platelet activity. The aim of the present study was to investigate the effects and the underlying mechanism of miltirone, a lipophilic compound of Salvia miltiorrhiza Bunge. The ability of miltirone to modulate platelet function was investigated by a variety of in vitro and in vivo experiments. Platelet aggregation and dense granule secretion induced by various agonists were measured with platelet aggregometer. Clot retraction and spreading were imaged by digital camera and fluorescence microscope. Ferric chloride-induced carotid injury model and pulmonary thromboembolism model were used to check miltirone antithrombotic effect in vivo. To elucidate the mechanisms of anti-platelet activity of miltirone, flow cytometry and western blotting were performed. Miltirone (2, 4, 8 µM) was shown to suppress platelet aggregation, dense granule, and α granule secretion in a dose-dependent manner. Meanwhile, miltirone inhibited the clot retraction and spreading of washed platelets. It reduced the phosphorylation of PLCγ2, PKC, Akt, GSK3β and ERK1/2 in the downstream signal pathway of collagen receptor. It also reduced the phosphorylation of Src and FAK in the integrin αIIbβ3-mediated "outside-in" signaling, while it did not suppress the phosphorylation of β3. In addition, miltirone prolonged the occlusion time and reduced collagen/epinephrine-induced pulmonary thrombi. Miltirone suppresses platelet "inside-out" and "outside-in" signaling by affecting PLCγ2/PKC/ERK1/2, PI3K/Akt, and Src/FAK signaling. Therefore, miltirone might represent a potential anti-platelet candidate for the prevention of thrombotic disorders.
Collapse
|
25
|
Song JH, Shim A, Kim YJ, Ahn JH, Kwon BE, Pham TT, Lee J, Chang SY, Ko HJ. Antiviral and Anti-Inflammatory Activities of Pochonin D, a Heat Shock Protein 90 Inhibitor, against Rhinovirus Infection. Biomol Ther (Seoul) 2018; 26:576-583. [PMID: 29715717 PMCID: PMC6254639 DOI: 10.4062/biomolther.2017.233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 01/05/2023] Open
Abstract
Human rhinoviruses (HRV) are one of the major causes of common cold in humans and are also associated with acute asthma and bronchial illness. Heat-shock protein 90 (Hsp90), a molecular chaperone, is an important host factor for the replication of single-strand RNA viruses. In the current study, we examined the effect of the Hsp90 inhibitor pochonin D, in vitro and in vivo, using a murine model of human rhinovirus type 1B (HRV1B) infection. Our data suggested that Hsp90 inhibition significantly reduced the inflammatory cytokine production and lung damage caused by HRV1B infection. The viral titer was significantly lowered in HRV1B-infected lungs and in Hela cells upon treatment with pochonin D. Infiltration of innate immune cells including granulocytes and monocytes was also reduced in the bronchoalveolar lavage (BAL) by pochonin D treatment after HRV1B infection. Histological analysis of the lung and respiratory tract showed that pochonin D protected the mice from HRV1B infection. Collectively, our results suggest that the Hsp90 inhibitor, pochonin D, could be an attractive antiviral therapeutic for treating HRV infection.
Collapse
Affiliation(s)
- Jae-Hyoung Song
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Aeri Shim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yeon-Jeong Kim
- College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
| | - Jae-Hee Ahn
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Bo-Eun Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Thuy Trang Pham
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun-Young Chang
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
26
|
Akbar H, Duan X, Piatt R, Saleem S, Davis AK, Tandon NN, Bergmeier W, Zheng Y. Small molecule targeting the Rac1-NOX2 interaction prevents collagen-related peptide and thrombin-induced reactive oxygen species generation and platelet activation. J Thromb Haemost 2018; 16:2083-2096. [PMID: 30007118 PMCID: PMC6472274 DOI: 10.1111/jth.14240] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Indexed: 12/29/2022]
Abstract
Essentials Reactive oxygen species (ROS) generation by NOX2 plays a critical role in platelet activation. Rac1 regulation of NOX2 is important for ROS generation. Small molecule inhibitor of the Rac1-p67phox interaction prevents platelet activation. Pharmacologic targeting of Rac1-NOX2 axis can be a viable approach for antithrombotic therapy. SUMMARY Background Platelets from patients with X-linked chronic granulomatous disease or mice deficient in nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidase isoform NOX2 exhibit diminished reactive oxygen species (ROS) generation and platelet activation. Binding of Rac1 GTPase to p67phox plays a critical role in NOX2 activation by facilitating the assembly of the NOX2 enzyme complex. Objective We tested the hypothesis that Phox-I, a rationally designed small molecule inhibitor of Rac-p67phox interaction, may serve as an antithrombosis agent by suppressing ROS production and platelet activation. Results Collagen-related peptide (CRP) induced ROS generation in a time-dependent manner. Platelets from Rac1-/- mice or human platelets treated with NSC23766, a specific Rac inhibitor, produced significantly less ROS in response to CRP. Treatment of platelets with Phox-I inhibited diverse CRP-induced responses, including: (i) ROS generation; (ii) release of P-selectin; (iii) secretion of ATP; (iv) platelet aggregation; and (v) phosphorylation of Akt. Similarly, incubation of platelets with Phox-I inhibited thrombin-induced: (i) secretion of ATP; (ii) platelet aggregation; (iii) rise in cytosolic calcium; and (iv) phosphorylation of Akt. In mouse models, intraperitoneal administration of Phox-I inhibited: (i) collagen-induced platelet aggregation without affecting the tail bleeding time and (ii) in vivo platelet adhesion/accumulation at the laser injury sites on the saphenous vein without affecting the time for complete cessation of blood loss. Conclusions Small molecule targeting of the Rac1-p67phox interaction may present an antithrombosis regimen by preventing GPVI- and non-GPVI-mediated NOX2 activation, ROS generation and platelet function without affecting the bleeding time.
Collapse
Affiliation(s)
- H Akbar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - X Duan
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - R Piatt
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - S Saleem
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - A K Davis
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | - W Bergmeier
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Y Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
27
|
Jayakumar T, Hsu CY, Khamrang T, Hsia CH, Hsia CW, Manubolu M, Sheu JR. Possible Molecular Targets of Novel Ruthenium Complexes in Antiplatelet Therapy. Int J Mol Sci 2018; 19:ijms19061818. [PMID: 29925802 PMCID: PMC6032250 DOI: 10.3390/ijms19061818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
In oncotherapy, ruthenium (Ru) complexes are reflected as potential alternatives for platinum compounds and have been proved as encouraging anticancer drugs with high efficacy and low side effects. Cardiovascular diseases (CVDs) are mutually considered as the number one killer globally, and thrombosis is liable for the majority of CVD-related deaths. Platelets, an anuclear and small circulating blood cell, play key roles in hemostasis by inhibiting unnecessary blood loss of vascular damage by making blood clot. Platelet activation also plays a role in cancer metastasis and progression. Nevertheless, abnormal activation of platelets results in thrombosis under pathological settings such as the rupture of atherosclerotic plaques. Thrombosis diminishes the blood supply to the heart and brain resulting in heart attacks and strokes, respectively. While currently used anti-platelet drugs such as aspirin and clopidogrel demonstrate efficacy in many patients, they exert undesirable side effects. Therefore, the development of effective therapeutic strategies for the prevention and treatment of thrombotic diseases is a demanding priority. Recently, precious metal drugs have conquered the subject of metal-based drugs, and several investigators have motivated their attention on the synthesis of various ruthenium (Ru) complexes due to their prospective therapeutic values. Similarly, our recent studies established that novel ruthenium-based compounds suppressed platelet aggregation via inhibiting several signaling cascades. Our study also described the structure antiplatelet-activity relationship (SAR) of three newly synthesized ruthenium-based compounds. This review summarizes the antiplatelet activity of newly synthesized ruthenium-based compounds with their potential molecular mechanisms.
Collapse
Affiliation(s)
- Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chia-Yuan Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| | - Themmila Khamrang
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India.
| | - Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Manjunath Manubolu
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43212, USA.
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
28
|
Babur Ö, Ngo ATP, Rigg RA, Pang J, Rub ZT, Buchanan AE, Mitrugno A, David LL, McCarty OJT, Demir E, Aslan JE. Platelet procoagulant phenotype is modulated by a p38-MK2 axis that regulates RTN4/Nogo proximal to the endoplasmic reticulum: utility of pathway analysis. Am J Physiol Cell Physiol 2018; 314:C603-C615. [PMID: 29412690 PMCID: PMC6008067 DOI: 10.1152/ajpcell.00177.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023]
Abstract
Upon encountering physiological cues associated with damaged or inflamed endothelium, blood platelets set forth intracellular responses to ultimately support hemostatic plug formation and vascular repair. To gain insights into the molecular events underlying platelet function, we used a combination of interactome, pathway analysis, and other systems biology tools to analyze associations among proteins functionally modified by reversible phosphorylation upon platelet activation. While an interaction analysis mapped out a relative organization of intracellular mediators in platelet signaling, pathway analysis revealed directional signaling relations around protein kinase C (PKC) isoforms and mitogen-activated protein kinases (MAPKs) associated with platelet cytoskeletal dynamics, inflammatory responses, and hemostatic function. Pathway and causality analysis further suggested that platelets activate a specific p38-MK2 axis to phosphorylate RTN4 (reticulon-4, also known as Nogo), a Bcl-xl sequestration protein and critical regulator of endoplasmic reticulum (ER) physiology. In vitro, we find that platelets drive a p38-MK2-RTN4-Bcl-xl pathway associated with the regulation of the ER and platelet phosphatidylserine exposure. Together, our results support the use of pathway tools in the analysis of omics data sets as a means to help generate novel, mechanistic, and testable hypotheses for platelet studies while uncovering RTN4 as a putative regulator of platelet cell physiological responses.
Collapse
Affiliation(s)
- Özgün Babur
- Department of Molecular and Medical Genetics, Oregon Health & Science University , Portland, Oregon
- Computational Biology Program, Oregon Health & Science University , Portland, Oregon
| | - Anh T P Ngo
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | - Rachel A Rigg
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | - Zhoe T Rub
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | - Ariana E Buchanan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Annachiara Mitrugno
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University , Portland, Oregon
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University , Portland, Oregon
- Division of Hematology & Medical Oncology, Oregon Health & Science University , Portland, Oregon
| | - Emek Demir
- Department of Molecular and Medical Genetics, Oregon Health & Science University , Portland, Oregon
- Computational Biology Program, Oregon Health & Science University , Portland, Oregon
| | - Joseph E Aslan
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University , Portland, Oregon
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
29
|
Li X, Shang E, Dong Q, Li Y, Zhang J, Xu S, Zhao Z, Shao W, Lv C, Zheng Y, Wang H, Lei X, Zhu B, Zhang Z. Small molecules capable of activating DNA methylation-repressed genes targeted by the p38 mitogen-activated protein kinase pathway. J Biol Chem 2018; 293:7423-7436. [PMID: 29559556 DOI: 10.1074/jbc.ra117.000757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Regulation of gene expression by epigenetic modifications such as DNA methylation is crucial for developmental and disease processes, including cell differentiation and cancer development. Genes repressed by DNA methylation can be derepressed by various compounds that target DNA methyltransferases, histone deacetylases, and other regulatory factors. However, some additional, unknown mechanisms that promote DNA methylation-mediated gene silencing may exist. Chemical agents that can counteract the effects of epigenetic repression that is not regulated by DNA methyltransferases or histone deacetylases therefore may be of research interest. Here, we report the results of a high-throughput screen using a 308,251-member chemical library to identify potent small molecules that derepress an EGFP reporter gene silenced by DNA methylation. Seven hit compounds were identified that did not directly target bulk DNA methylation or histone acetylation. Analyzing the effect of these compounds on endogenous gene expression, we discovered that three of these compounds (compounds LX-3, LX-4, and LX-5) selectively activate the p38 mitogen-activated protein kinase (MAPK) pathway and derepress a subset of endogenous genes repressed by DNA methylation. Selective agonists of the p38 pathway have been lacking, and our study now provides critical compounds for studying this pathway and p38 MAPK-targeted genes repressed by DNA methylation.
Collapse
Affiliation(s)
- Xiang Li
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Erchang Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qiang Dong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jing Zhang
- National Institute of Biological Sciences, Beijing 102206, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shaohua Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zuodong Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Cong Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Zheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Bing Zhu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
30
|
Tokuda H, Kuroyanagi G, Onuma T, Enomoto Y, Doi T, Iida H, Otsuka T, Ogura S, Iwama T, Kojima K, Kozawa O. Ristocetin induces phosphorylated-HSP27 (HSPB1) release from the platelets of type 2 DM patients: Anti-platelet agent-effect on the release. Biomed Rep 2018. [PMID: 29541457 DOI: 10.3892/br.2018.1058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been previously reported that HSP27 is released from platelets in type 2 diabetes mellitus (DM) patients according to phosphorylation. In the present study, we investigated the effect of ristocetin, a glycoprotein (GP)Ib/IX/V activator, on the release of HSP27 and the effect of anti-platelet agents, such as acetylsalicylic acid (ASA), on this release. Forty-six patients with type 2 DM were recruited, and classified into two groups depending on administration of anti-platelet agents, resulting in 31 patients without these agents (control group) and 15 patients with them (anti-platelet group). Ristocetin potently induced the aggregation of platelets in the two groups. Ristocetin-induced changes of the area under the curve of light transmittance and the ratio of the size of platelet aggregates in the anti-platelet group were slightly different from those in the control group. On the other hand, the levels of phosphorylated-HSP27 induced by ristocetin in the platelets from a patient of the anti-platelet group taking ASA were significantly lower than those from a patient of the control group. The levels of HSP27 release from the ristocetin-stimulated platelets were significantly correlated with the levels of phosphorylated-HSP27 in the platelets from patients in the two groups. The levels of HSP27 release and those of platelet-derived growth factor-AB (PDGF-AB) secretion stimulated by ristocetin in the anti-platelet group were lower than those in the control group. In addition, the levels of HSP27 release and those of PDGF-AB secretion stimulated by ADP in the anti-platelet group were lower than those in the control group. These results strongly suggest that anti-platelet agents inhibit the HSP27 release from platelets stimulated by ristocetin but not the aggregation in type 2 DM patients.
Collapse
Affiliation(s)
- Haruhiko Tokuda
- Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takashi Onuma
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.,Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kumi Kojima
- Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
31
|
Shi P, Zhang L, Zhang M, Yang W, Wang K, Zhang J, Otsu K, Huang G, Fan X, Liu J. Platelet-Specific p38α Deficiency Improved Cardiac Function After Myocardial Infarction in Mice. Arterioscler Thromb Vasc Biol 2017; 37:e185-e196. [PMID: 28982666 DOI: 10.1161/atvbaha.117.309856] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE MAPKs (mitogen-activated protein kinases), especially p38, play detrimental roles in cardiac diseases and cardiac remodeling post-myocardial infarction. However, the activation and function of MAPKs in coronary thrombosis in vivo and its relationship with clinical outcomes remain poorly understood. APPROACH AND RESULTS Here, we showed that p38α was the major isoform expressed in human and mouse platelets. Platelet-specific p38α-deficient mice presented impaired thrombosis and hemostasis but had improved cardiac function, reduced infarct size, decreased inflammatory response, and microthrombus in a left anterior descending artery ligation model. Signaling analysis revealed that p38 activation was one of the earliest events in platelets after treatment with receptor agonists or reactive oxygen species. p38α/MAPK-activated protein kinase 2/heat shock protein 27 and p38α/cytosolic phospholipases A2 were the major pathways regulating receptor-mediated or hydrogen peroxide-induced platelet activation in an ischemic environment. Moreover, the distinct roles of ERK1/2 (extracellular signal-regulated kinase) in receptor- or reactive oxygen species-induced p38-mediated platelet activation reflected the complicated synergistic relationships among MAPKs. Analysis of clinical samples revealed that MAPKs were highly phosphorylated in platelets from preoperative patients with ST-segment-elevation myocardial infarction, and increased phosphorylation of p38 was associated with no-reflow outcomes. CONCLUSIONS We conclude that p38α serves as a critical regulator of platelet activation and potential indicator of highly thrombotic lesions and no-reflow, and inhibition of platelet p38α may improve clinical outcomes in subjects with ST-segment-elevation myocardial infarction.
Collapse
Affiliation(s)
- Panlai Shi
- From the Department of Biochemistry and Molecular Cell Biology (P.S., L.Z., K.W., X.F., J.L.), Department of Cardiology, Ninth People's Hospital (M.Z., W.Y., J.Z.), and Shanghai Institute of Immunology (G.H.), Shanghai Jiao Tong University School of Medicine, China; and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.).
| | - Lin Zhang
- From the Department of Biochemistry and Molecular Cell Biology (P.S., L.Z., K.W., X.F., J.L.), Department of Cardiology, Ninth People's Hospital (M.Z., W.Y., J.Z.), and Shanghai Institute of Immunology (G.H.), Shanghai Jiao Tong University School of Medicine, China; and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.).
| | - Mingliang Zhang
- From the Department of Biochemistry and Molecular Cell Biology (P.S., L.Z., K.W., X.F., J.L.), Department of Cardiology, Ninth People's Hospital (M.Z., W.Y., J.Z.), and Shanghai Institute of Immunology (G.H.), Shanghai Jiao Tong University School of Medicine, China; and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.)
| | - Wenlong Yang
- From the Department of Biochemistry and Molecular Cell Biology (P.S., L.Z., K.W., X.F., J.L.), Department of Cardiology, Ninth People's Hospital (M.Z., W.Y., J.Z.), and Shanghai Institute of Immunology (G.H.), Shanghai Jiao Tong University School of Medicine, China; and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.)
| | - Kemin Wang
- From the Department of Biochemistry and Molecular Cell Biology (P.S., L.Z., K.W., X.F., J.L.), Department of Cardiology, Ninth People's Hospital (M.Z., W.Y., J.Z.), and Shanghai Institute of Immunology (G.H.), Shanghai Jiao Tong University School of Medicine, China; and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.)
| | - Junfeng Zhang
- From the Department of Biochemistry and Molecular Cell Biology (P.S., L.Z., K.W., X.F., J.L.), Department of Cardiology, Ninth People's Hospital (M.Z., W.Y., J.Z.), and Shanghai Institute of Immunology (G.H.), Shanghai Jiao Tong University School of Medicine, China; and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.)
| | - Kinya Otsu
- From the Department of Biochemistry and Molecular Cell Biology (P.S., L.Z., K.W., X.F., J.L.), Department of Cardiology, Ninth People's Hospital (M.Z., W.Y., J.Z.), and Shanghai Institute of Immunology (G.H.), Shanghai Jiao Tong University School of Medicine, China; and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.)
| | - Gonghua Huang
- From the Department of Biochemistry and Molecular Cell Biology (P.S., L.Z., K.W., X.F., J.L.), Department of Cardiology, Ninth People's Hospital (M.Z., W.Y., J.Z.), and Shanghai Institute of Immunology (G.H.), Shanghai Jiao Tong University School of Medicine, China; and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.).
| | - Xuemei Fan
- From the Department of Biochemistry and Molecular Cell Biology (P.S., L.Z., K.W., X.F., J.L.), Department of Cardiology, Ninth People's Hospital (M.Z., W.Y., J.Z.), and Shanghai Institute of Immunology (G.H.), Shanghai Jiao Tong University School of Medicine, China; and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.).
| | - Junling Liu
- From the Department of Biochemistry and Molecular Cell Biology (P.S., L.Z., K.W., X.F., J.L.), Department of Cardiology, Ninth People's Hospital (M.Z., W.Y., J.Z.), and Shanghai Institute of Immunology (G.H.), Shanghai Jiao Tong University School of Medicine, China; and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.).
| |
Collapse
|
32
|
Holy EW, Akhmedov A, Speer T, Camici GG, Zewinger S, Bonetti N, Beer JH, Lüscher TF, Tanner FC. Carbamylated Low-Density Lipoproteins Induce a Prothrombotic State Via LOX-1: Impact on Arterial Thrombus Formation In Vivo. J Am Coll Cardiol 2017; 68:1664-1676. [PMID: 27712780 DOI: 10.1016/j.jacc.2016.07.755] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/22/2016] [Accepted: 07/12/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Carbamylation alters low-density lipoprotein (LDL) structure and is thought to promote vascular inflammation and dysfunction in patients with chronic kidney disease (CKD). OBJECTIVES This study sought to determine whether carbamylated LDL (cLDL) exerts prothrombotic effects in vascular cells and platelets and whether cLDL enhances arterial thrombus formation in vivo. METHODS LDL was isolated from healthy subjects or patients with CKD by sequential ultracentrifugation. Ex vivo carbamylation of LDL from healthy subjects was induced with potassium cyanate. Arterial thrombus formation was analyzed in a murine carotid artery photochemical injury model. Protein expression and mRNA levels were analyzed by Western blotting, flow cytometry, and real-time PCR. Platelet aggregation was measured by impedance aggregometry. RESULTS Intravenous administration of cLDL in mice accelerated arterial thrombus formation compared to treatment with native LDL (nLDL) or vehicle. Tissue lysates of mouse carotid arteries revealed that cLDL induced the expression of TF, PAI-1, and LOX-1 mRNA in vascular cells. In human aortic smooth muscle and endothelial cells, cLDL induced TF and PAI-1 expression. In contrast, nLDL had no effect on either cell type. While nLDL and cLDL had no aggregatory effect on resting platelets, cLDL enhanced platelet aggregation in response to different agonists. This effect was mediated by mitogen-activated protein kinase p38 phosphorylation and LOX-1 translocation to the surface. LDL isolated from patients with CKD mimicked the prothrombotic effects of cLDL on vascular cells, platelets, and thrombus formation in vivo. CONCLUSIONS We found that cLDL induces prothrombotic effects in vascular cells and platelets by activation of the LOX-1 receptor and enhances thrombus formation in vivo. This observation reveals a new mechanism underlying the increased incidence of acute thrombotic events observed in patients with CKD and may lead to the development of new lipid-targeting therapies in this population.
Collapse
Affiliation(s)
- Erik W Holy
- University Heart Center Zurich, University Hospital Zürich, Zürich, Switzerland.
| | - Alexander Akhmedov
- Center of Molecular Cardiology, University of Zürich, Zürich, Switzerland
| | - Thimoteus Speer
- Department of Internal Medicine 4, Saarland University Hospital, Homburg, Germany
| | - Giovanni G Camici
- Center of Molecular Cardiology, University of Zürich, Zürich, Switzerland
| | - Stephen Zewinger
- Department of Internal Medicine 4, Saarland University Hospital, Homburg, Germany
| | - Nicole Bonetti
- Center of Molecular Cardiology, University of Zürich, Zürich, Switzerland
| | - Jürg H Beer
- Department of Medicine, Cantonal Hospital Baden, Baden, Switzerland
| | - Thomas F Lüscher
- University Heart Center Zurich, University Hospital Zürich, Zürich, Switzerland; Center of Molecular Cardiology, University of Zürich, Zürich, Switzerland
| | - Felix C Tanner
- University Heart Center Zurich, University Hospital Zürich, Zürich, Switzerland; Center of Molecular Cardiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
33
|
Onuma T, Tanabe K, Kito Y, Tsujimoto M, Uematsu K, Enomoto Y, Matsushima-Nishiwaki R, Doi T, Nagase K, Akamatsu S, Tokuda H, Ogura S, Iwama T, Kozawa O, Iida H. Sphingosine 1-phosphate (S1P) suppresses the collagen-induced activation of human platelets via S1P4 receptor. Thromb Res 2017; 156:91-100. [PMID: 28609704 DOI: 10.1016/j.thromres.2017.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 11/25/2022]
Abstract
Sphingosine 1-phosphate (S1P) is as an extracellular factor that acts as a potent lipid mediator by binding to specific receptors, S1P receptors (S1PRs). However, the precise role of S1P in human platelets that express S1PRs has not yet been fully clarified. We previously reported that heat shock protein 27 (HSP27) is released from human platelets accompanied by its phosphorylation stimulated by collagen. In the present study, we investigated the effect of S1P on the collagen-induced platelet activation. S1P pretreatment markedly attenuated the collagen-induced aggregation. Co-stimulation with S1P and collagen suppressed collagen-induced platelet activation, but the effect was weaker than that of S1P-pretreatment. The collagen-stimulated secretion of platelet-derived growth factor (PDGF)-AB and the soluble CD40 ligand (sCD40L) release were significantly reduced by S1P. In addition, S1P suppressed the collagen-induced release of HSP27 as well as the phosphorylation of HSP27. S1P significantly suppressed the collagen-induced phosphorylation of p38 mitogen-activated protein kinase. S1P increased the levels of GTP-bound Gαi and GTP-bound Gα13 coupled to S1PPR1 and/or S1PR4. CYM50260, a selective S1PR4 agonist, but not SEW2871, a selective S1PR1 agonist, suppressed the collagen-stimulated platelet aggregation, PDGF-AB secretion and sCD40L release. In addition, CYM50260 reduced the release of phosphorylated-HSP27 by collagen as well as the phosphorylation of HSP27. The selective S1PR4 antagonist CYM50358, which failed to affect collagen-induced HSP27 phosphorylation, reversed the S1P-induced attenuation of HSP27 phosphorylation by collagen. These results strongly suggest that S1P inhibits the collagen-induced human platelet activation through S1PR4 but not S1PR1.
Collapse
Affiliation(s)
- Takashi Onuma
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuko Kito
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Tsujimoto
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kodai Uematsu
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyoshi Nagase
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shigeru Akamatsu
- Department of Anesthesiology and Critical Care Medicine, Chuno Kosei Hospital, Seki, Japan
| | - Haruhiko Tokuda
- Department of Clinical Laboratory and Biobank, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
34
|
Schroeder CC, Scariot JSVR, Ribeiro JCZGM, Deliberador TM, Giovanini AMMAF. Platelet Rich Plasma (PRP) Produces an Atherofibrotic Histophenotype During Craniofacial Bone Repair Due to Changes of Immunohistochemical Expression of Erk1/2, p38α/β, Adiponectin and Elevated Presence of Cells Exhibiting B-scavenger Receptor (CD36+). Braz Dent J 2017; 27:243-54. [PMID: 27224555 DOI: 10.1590/0103-6440201602450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/18/2016] [Indexed: 11/22/2022] Open
Abstract
The platelet-extracellular matrix interaction in platelet rich plasma (PRP) through thrombospondin receptor-CD36 induces the secretion of growth factors responsible for cellular proliferation and differentiation during the repair process. Since CD36 also acts as a class B-scavenger-receptor for development of foam-like cells and mitogen-activated kinases, such as Erk1/2 and p38α/β, are important proteins activated by platelet growth factor, the aim of this study was to evaluate the immunohistochemical presence of CD36, Erk1/2, p38α/β during the bone repair treated and non-treated with PRP and to compare these results with the histomorphometry of repair. Simultaneously, the immunopresence of adiponectin was analyzed, which may contribute to osteogenesis at the same time it inhibits fibrosis and impairs adipogenesis and foam cell formation in the medullary area. An artificial bone defect measuring 5×1 mm was produced in the calvaria of 56 Wistar rats. The defects were randomly treated with autograft, autograft+PRP, PRP alone and sham. The animals were euthanized at 2 and 6 weeks post-surgery. Data were analyzed by ANOVA followed by non-parametric test Student Newman-Keuls (p<0.05) for histomorphometric and immunohistochemical interpretation. The results revealed that in specimens that received PRP the immunopositivity for Erk1/2, p38α/β and CD36 proteins increased significantly while the immunohistochemical expression of adiponectin decreased simultaneously. There was also an accentuated reduction of bone matrix deposition and increase of the medullary area represented by fibrosis and/or presence of foam-like cells, which exhibited immunophenotype CD36+adiponectin. The findings of this study suggest that PRP acted as an inhibitor of osteogenesis during the craniofacial bone repair and induced a pathological condition that mimics an atherofibrotic condition.
Collapse
|
35
|
Chen Z, Schubert P, Bakkour S, Culibrk B, Busch MP, Devine DV. p38 mitogen-activated protein kinase regulates mitochondrial function and microvesicle release in riboflavin- and ultraviolet light-treated apheresis platelet concentrates. Transfusion 2017; 57:1199-1207. [DOI: 10.1111/trf.14035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/03/2016] [Accepted: 12/31/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zhongming Chen
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
| | - Peter Schubert
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Sonia Bakkour
- Blood Systems Research Institute; University of California; San Francisco California
| | - Brankica Culibrk
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
| | - Michael P. Busch
- Blood Systems Research Institute; University of California; San Francisco California
- Department of Laboratory Medicine; University of California; San Francisco California
| | - Dana V. Devine
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
36
|
Hirata S, Murata T, Suzuki D, Nakamura S, Jono‐Ohnishi R, Hirose H, Sawaguchi A, Nishimura S, Sugimoto N, Eto K. Selective Inhibition of ADAM17 Efficiently Mediates Glycoprotein Ibα Retention During Ex Vivo Generation of Human Induced Pluripotent Stem Cell-Derived Platelets. Stem Cells Transl Med 2016; 6:720-730. [PMID: 28297575 PMCID: PMC5442763 DOI: 10.5966/sctm.2016-0104] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022] Open
Abstract
Donor‐independent platelet concentrates for transfusion can be produced in vitro from induced pluripotent stem cells (iPSCs). However, culture at 37°C induces ectodomain shedding on platelets of glycoprotein Ibα (GPIbα), the von Willebrand factor receptor critical for adhesive function and platelet lifetime in vivo, through temperature‐dependent activation of a disintegrin and metalloproteinase 17 (ADAM17). The shedding can be suppressed by using inhibitors of panmetalloproteinases and possibly of the upstream regulator p38 mitogen‐activated protein kinase (p38 MAPK), but residues of these inhibitors in the final platelet products may be accompanied by harmful risks that prevent clinical application. Here, we optimized the culture conditions for generating human iPSC‐derived GPIbα+ platelets, focusing on culture temperature and additives, by comparing a new and safe selective ADAM17 inhibitor, KP‐457, with previous inhibitors. Because cultivation at 24°C (at which conventional platelet concentrates are stored) markedly diminished the yield of platelets with high expression of platelet receptors, 37°C was requisite for normal platelet production from iPSCs. KP‐457 blocked GPIbα shedding from iPSC platelets at a lower half‐maximal inhibitory concentration than panmetalloproteinase inhibitor GM‐6001, whereas p38 MAPK inhibitors did not. iPSC platelets generated in the presence of KP‐457 exhibited improved GPIbα‐dependent aggregation not inferior to human fresh platelets. A thrombus formation model using immunodeficient mice after platelet transfusion revealed that iPSC platelets generated with KP‐457 exerted better hemostatic function in vivo. Our findings suggest that KP‐457, unlike GM‐6001 or p38 MAPK inhibitors, effectively enhances the production of functional human iPSC‐derived platelets at 37°C, which is an important step toward their clinical application. Stem Cells Translational Medicine2017;6:720–730
Collapse
Affiliation(s)
- Shinji Hirata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Kaken Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | - Daisuke Suzuki
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ryoko Jono‐Ohnishi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hidenori Hirose
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Kyoto Development Center, Megakaryon Co., Ltd., Kyoto, Japan
| | - Akira Sawaguchi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Nishimura
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Innovation Stem Cell Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
37
|
Tsujimoto M, Tokuda H, Kuroyanagi G, Yamamoto N, Kainuma S, Matsushima-Nishiwaki R, Onuma T, Iida Y, Kojima A, Sawada S, Doi T, Enomoto Y, Tanabe K, Akamatsu S, Iida H, Ogura S, Otsuka T, Kozawa O, Iwama T. AICAR reduces the collagen-stimulated secretion of PDGF-AB and release of soluble CD40 ligand from human platelets: Suppression of HSP27 phosphorylation via p44/p42 MAP kinase. Exp Ther Med 2016; 12:1107-1112. [PMID: 27446328 DOI: 10.3892/etm.2016.3435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that collagen-induced phosphorylation of heat shock protein (HSP) 27 via p44/p42 mitogen-activated protein (MAP) kinase in human platelets is sufficient to induce the secretion of platelet-derived growth factor (PDGF)-AB and the release of soluble cluster of differentiation 40 ligand (sCD40L). Adenosine monophosphate-activated protein kinase (AMPK), which is known to regulate energy homeostasis, has a crucial role as an energy sensor in various eukaryotic cells. The present study investigated the effects of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5'-monophosphate (AICAR), which is an activator of AMPK, on the collagen-induced activation of human platelets. It was demonstrated that AICAR dose-dependently reduced collagen-stimulated platelet aggregation up to 1.0 µM. Analysis of the size of platelet aggregates demonstrated that AICAR decreased the ratio of large aggregates (50-70 µm), whereas the ratio of small aggregates (9-25 µm) was increased by AICAR administration. AICAR markedly attenuated the phosphorylation levels of p44/p42 MAP kinase and HSP27, which are induced by collagen. Furthermore, AICAR significantly decreased the secretion of PDGF-AB and the collagen-induced release of sCD40L. These results indicated that AICAR-activated AMPK may reduce the secretion of PDGF-AB and the collagen-induced release of sCD40L by inhibiting HSP27 phosphorylation via p44/p42 MAP kinase in human platelets.
Collapse
Affiliation(s)
- Masanori Tsujimoto
- Department of Neurosugery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8603, Japan
| | - Naohiro Yamamoto
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8603, Japan
| | - Shingo Kainuma
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8603, Japan
| | | | - Takashi Onuma
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuko Iida
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akiko Kojima
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Anesthesiology and Critical Care Medicine, Matsunami General Hospital, Gifu 501-6062, Japan
| | - Shigenobu Sawada
- Department of Neurosugery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yukiko Enomoto
- Department of Neurosugery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shigeru Akamatsu
- Department of Anesthesiology and Critical Care Medicine, Matsunami General Hospital, Gifu 501-6062, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8603, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Toru Iwama
- Department of Neurosugery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
38
|
Development of antithrombotic nanoconjugate blocking integrin α2β1-collagen interactions. Sci Rep 2016; 6:26292. [PMID: 27195826 PMCID: PMC4872532 DOI: 10.1038/srep26292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 01/07/2023] Open
Abstract
An antithrombotic nanoconjugate was designed in which a designed biomimetic peptide LWWNSYY was immobilized to the surface of poly(glycidyl methacrylate) nanoparticles (PGMA NPs). Our previous work has demonstrated LWWNSYY to be an effective inhibitor of integrin α2β1-collagen interaction and subsequent thrombus formation, however its practical application suffered from the formation of clusters in physiological environment caused by its high hydrophobicity. In our present study, the obtained LWWNSYY-PGMA nanoparticles (L-PGMA NPs) conjugate, with an improved dispersibility of LWWNSYY by PGMA NPs, have shown binding to collagen receptors with a Kd of 3.45 ± 1.06 μM. L-PGMA NPs have also proven capable of inhibiting platelet adhesion in vitro with a reduced IC50 of 1.83 ± 0.29 μg/mL. High inhibition efficiency of L-PGMA NPs in thrombus formation was further confirmed in vivo with a 50% reduction of thrombus weight. Therefore, L-PGMA NPs were developed as a high-efficiency antithrombotic nanomedicine targeted for collagen exposed on diseased blood vessel wall.
Collapse
|
39
|
Tokuda H, Kuroyanagi G, Tsujimoto M, Matsushima-Nishiwaki R, Akamatsu S, Enomoto Y, Iida H, Otsuka T, Ogura S, Iwama T, Kojima K, Kozawa O. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients. Int J Mol Sci 2016; 17:ijms17050737. [PMID: 27187380 PMCID: PMC4881559 DOI: 10.3390/ijms17050737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/21/2022] Open
Abstract
It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients.
Collapse
Affiliation(s)
- Haruhiko Tokuda
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi 474-8511, Japan.
- Department of Pharmacology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Nagoya 467-8601, Japan.
| | - Masanori Tsujimoto
- Department of Pharmacology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Rie Matsushima-Nishiwaki
- Department of Pharmacology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Shigeru Akamatsu
- Department of Anesthesiology and Critical Care Medicine, Chuno Kosei Hospital, 5-1 Wakakusa, Seki, Gifu 501-6062, Japan.
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Nagoya 467-8601, Japan.
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Kumi Kojima
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi 474-8511, Japan.
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
40
|
Liu G, Xie W, He AD, Da XW, Liang ML, Yao GQ, Xiang JZ, Gao CJ, Ming ZY. Antiplatelet activity of chrysin via inhibiting platelet αIIbβ3-mediated signaling pathway. Mol Nutr Food Res 2016; 60:1984-93. [PMID: 27006308 DOI: 10.1002/mnfr.201500801] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/21/2016] [Accepted: 02/25/2016] [Indexed: 01/06/2023]
Abstract
SCOPE Propolis is thought to help prevent thrombotic and related cardiovascular diseases in humans. Chrysin, a bioflavonoids compound found in high levels in propolis and in honey, has been reported to possess antiplatelet activity. However, the mechanism by which it inhibits platelet function is unclear. METHODS AND RESULTS The effects of chrysin on agonist-activated platelet-aggregation, granule-secretion, and integrin αIIbβ3 activation were examined. Its effects on the phosphorylation of Akt, GSK3β, MAPKs, and several proteins of the glycoprotein VI (GPVI) signaling pathway were also studied on collaged-activated platelets. In addition, human platelet spreading on immobilized fibrinogen was also tested. We found that chrysin dose dependently inhibited platelet aggregation and granule secretion induced by collagen, as well as platelet aggregation induced by ADP, thrombin, and U46619. Chrysin also markedly reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen. Biochemical analysis revealed that chrysin inhibited collagen-induced activation of Syk, PLCγ2, PKC, as well as the phosphorylation of Akt and ERK1/2. Additionally, chrysin attenuated phosphorylation of molecules such as FcγRIIa, FAK, Akt, and GSK3β in platelet spreading on immobilized fibrinogen. CONCLUSIONS Our findings indicate that chrysin suppresses not only integrin αIIbβ3-mediated "inside-out" signaling, but also the "outside-in" signal transmission. This implies that chrysin may represent a potential candidate for an antiplatelet agent.
Collapse
Affiliation(s)
- Gang Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Department of Nutrition and Food Hygiene, Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Wen Xie
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ao-Di He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Xing-Wen Da
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ming-Lu Liang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Guang-Qiang Yao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ji-Zhou Xiang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Cun-Ji Gao
- Department of Nutrition and Food Hygiene, Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China. .,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China. .,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
41
|
Jayakumar T, Yang CH, Geraldine P, Yen TL, Sheu JR. The pharmacodynamics of antiplatelet compounds in thrombosis treatment. Expert Opin Drug Metab Toxicol 2016; 12:615-32. [PMID: 27055051 DOI: 10.1080/17425255.2016.1176141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pitchairaj Geraldine
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Ting-Lin Yen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
42
|
Palomer E, Carretero J, Benvegnù S, Dotti CG, Martin MG. Neuronal activity controls Bdnf expression via Polycomb de-repression and CREB/CBP/JMJD3 activation in mature neurons. Nat Commun 2016; 7:11081. [PMID: 27010597 PMCID: PMC4820842 DOI: 10.1038/ncomms11081] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/19/2016] [Indexed: 01/07/2023] Open
Abstract
It has been recently described that in embryonic stem cells, the expression of some important developmentally regulated genes is repressed, but poised for fast activation under the appropriate stimuli. In this work we show that Bdnf promoters are repressed by Polycomb Complex 2 in mature hippocampal neurons, and basal expression is guaranteed by the coexistence with activating histone marks. Neuronal stimulation triggered by N-methyl-D-aspartate application induces the transcription of these promoters by H3K27Me3 demethylation and H3K27Me3 phosphorylation at Serine 28 leading to displacement of EZH2, the catalytic subunit of Polycomb Repressor Complex 2. Our data show that the fast transient expression of Bdnf promoters II and VI after neuronal stimulation is dependent on acetylation of histone H3K27 by CREB-p/CBP. Thus, regulatory mechanisms established during development seem to remain after differentiation controlling genes induced by different stimuli, as would be the case of early memory genes in mature neurons. In neurons, brain-derived neurotrophic factor (BDNF) transcription is activated by synaptic activity, in part by epigenetic regulation of its promoter regions. Here the authors characterize histone modifications in response to NMDA treatment that result in different kinetics of Bdnf activation from its different promoter regions.
Collapse
Affiliation(s)
- Ernest Palomer
- Departamento de Neurobiología Molecular, Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, 28049 Madrid, Spain
| | - Javier Carretero
- Departamento de Neurobiología Molecular, Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, 28049 Madrid, Spain
| | - Stefano Benvegnù
- Departamento de Neurobiología Molecular, Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, 28049 Madrid, Spain
| | - Carlos G Dotti
- Departamento de Neurobiología Molecular, Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, 28049 Madrid, Spain
| | - Mauricio G Martin
- Departamento de Neurobiología Molecular, Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, 28049 Madrid, Spain.,Laboratorio de Neurobiología, Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Universidad Nacional de Córdoba, 5016 Córdoba, Argentina
| |
Collapse
|
43
|
Therapeutic and prophylactic activity of itraconazole against human rhinovirus infection in a murine model. Sci Rep 2016; 6:23110. [PMID: 26976677 PMCID: PMC4791555 DOI: 10.1038/srep23110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/25/2016] [Indexed: 11/17/2022] Open
Abstract
Human rhinovirus (HRV) is the most common viral infectious agent in humans and is the predominant cause of the common cold. There is a need for appropriate vaccines or therapeutic agents to treat HRV infection. In this study, we investigated whether itraconazole (ICZ) can protect cells from HRV-induced cytotoxicity. Replication of HRV1B was reduced by ICZ treatment in the lungs of HRV1B- as compared to vehicle-treated mice. The numbers of immune cells, including granulocytes and monocytes, were reduced in bronchoalveolar lavage fluid (BALF) by ICZ administration after HRV1B infection, corresponding to decreased pro-inflammatory cytokine and chemokine levels in BALF. A histological analysis of lung tissue showed that ICZ suppressed inflammation caused by HRV1B infection. Interestingly, pretreatment of mice with ICZ in the form of a nasal spray had potent prophylactic antiviral activity. Cholesterol accumulation in the plasma membrane was observed upon HRV infection; ICZ blocked cholesterol trafficking to the plasma membrane, as well as resulted in its accumulation in subcellular compartments near the nucleus. These findings suggest that ICZ is a potential antiviral agent for the treatment of HRV infection, which can be adopted preventatively as well as therapeutically.
Collapse
|
44
|
Tsujimoto M, Kuroyanagi G, Matsushima-Nishiwaki R, Kito Y, Enomoto Y, Iida H, Ogura S, Otsuka T, Tokuda H, Kozawa O, Iwama T. Factor Xa Inhibitor Suppresses the Release of Phosphorylated HSP27 from Collagen-Stimulated Human Platelets: Inhibition of HSP27 Phosphorylation via p44/p42 MAP Kinase. PLoS One 2016; 11:e0149077. [PMID: 26867010 PMCID: PMC4750972 DOI: 10.1371/journal.pone.0149077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/26/2016] [Indexed: 11/18/2022] Open
Abstract
Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase.
Collapse
Affiliation(s)
- Masanori Tsujimoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | - Yuko Kito
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
45
|
Misshapen/NIK-related kinase (MINK1) is involved in platelet function, hemostasis, and thrombus formation. Blood 2015; 127:927-37. [PMID: 26598717 DOI: 10.1182/blood-2015-07-659185] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022] Open
Abstract
The sterile-20 kinase misshapen/Nck-interacting kinase (NIK)-related kinase 1 (MINK1) is involved in many important cellular processes such as growth, cytoskeletal rearrangement, and motility. Here, with MINK1-deficient (MINK1(-/-)) mice, we showed that MINK1 plays an important role in hemostasis and thrombosis via the regulation of platelet functions. In the tail-bleeding assay, MINK1(-/-) mice exhibited a longer bleeding time than wild-type (WT) mice (575.2 ± 59.7 seconds vs 419.6 ± 66.9 seconds). In a model of ferric chloride-induced mesenteric arteriolar thrombosis, vessel occlusion times were twice as long in MINK1(-/-) mice as in WT mice. In an in vitro microfluidic whole-blood perfusion assay, thrombus formation on a collagen matrix under arterial shear conditions was significantly reduced in MINK1(-/-) platelets. Moreover, MINK1(-/-) platelets demonstrated impaired aggregation and secretion in response to low doses of thrombin and collagen. Furthermore, platelet spreading on fibrinogen was largely hampered in MINK1(-/-) platelets. The functional differences of MINK1(-/-) platelets could be attributed to impaired adenosine 5'-diphosphate secretion. Signaling events associated with MINK1 appeared to involve extracellular signal-regulated kinase, p38, and Akt. Hence, MINK1 may be an important signaling molecule that mediates mitogen-activated protein kinase signaling and participates in platelet activation and thrombus formation.
Collapse
|
46
|
Sudo K, Takezawa Y, Kohsaka S, Nakajima K. Involvement of nitric oxide in the induction of interleukin-1 beta in microglia. Brain Res 2015; 1625:121-34. [PMID: 26335060 DOI: 10.1016/j.brainres.2015.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 12/29/2022]
Abstract
In response to in vitro stimulation with lipopolysaccharide (LPS), microglia induce the production of the inflammatory cytokine interleukin-1 beta (IL-1β) together with nitric oxide (NO) and superoxide anion (O2(-)). Here we investigated the role of NO and O2(-) in the signaling mechanism by which IL-1β is induced in microglia. The LPS-inducible IL-1β was significantly suppressed by pretreatment with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, but not by pretreatment with the O2(-) scavenger N-acetyl cysteine, suggesting the close association of NO with IL-1β induction. The pretreatment of microglia with the inducible NO synthase inhibitor 1400W prior to LPS stimulation significantly reduced the production of IL-1β, and the addition of the NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) into microglia led to the induction of IL-1β. These results suggested that NO induces IL-1β through a specific signaling cascade. LPS-dependent IL-1β induction was significantly suppressed by inhibitors of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and nuclear factor kappaB (NFκB), indicating that ERK/JNK and NFκB serve in the cascade of IL-1β induction. As expected, ERK/JNK and NFκB were all activated in the SNAP-stimulated microglia. Taken together, these results indicate that NO is an important signaling molecule for the ERK/JNK and NFκB activations, which are requisite to the induction of IL-1β in microglia.
Collapse
Affiliation(s)
- Kenji Sudo
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Tokyo 192-8577, Japan
| | - Yosuke Takezawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Tokyo 192-8577, Japan
| | | | - Kazuyuki Nakajima
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Tokyo 192-8577, Japan.
| |
Collapse
|
47
|
Kragholm K, Newby LK, Melloni C. Emerging treatment options to improve cardiovascular outcomes in patients with acute coronary syndrome: focus on losmapimod. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4279-86. [PMID: 26273189 PMCID: PMC4532348 DOI: 10.2147/dddt.s69546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Each year, despite optimal use of recommended acute and secondary prevention therapies, 4%–5% of patients with acute coronary syndrome (ACS) experience relapse of ACS or other cardiovascular events including stroke, heart failure, or sudden cardiac death after the index ACS. The sudden atherosclerotic plaque rupture leading to an ACS event is often accompanied by inflammation, which is thought to be a key pathogenic pathway to these excess cardiovascular events. Losmapimod is a novel, oral p38 mitogen-activated protein kinase (MAPK) inhibitor that targets MAPKs activated in macrophages, myocardium, and endothelial cells that occur as a part of global coronary vascular inflammation following plaque rupture. This review aims to 1) discuss the pathophysiological pathways through which p38 MAPKs may play key roles in initiation and progression of inflammatory disease and how losmapimod is thought to counteract these p38 MAPKs, and 2) to describe the efficacy and safety data for losmapimod obtained from preclinical studies and randomized controlled trials that support the hypothesis that it has promise as a treatment for patients with ACS.
Collapse
Affiliation(s)
- Kristian Kragholm
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | - Laura Kristin Newby
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | - Chiara Melloni
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
48
|
Inhibitory effect of hydrogen sulfide on platelet aggregation and the underlying mechanisms. J Cardiovasc Pharmacol 2015; 64:481-7. [PMID: 25098346 DOI: 10.1097/fjc.0000000000000142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
H2S (hydrogen sulfide) possesses anti-inflammatory and antioxidant capabilities and offers cardiovascular protection. The effect of H2S on platelet function, however, has been less clear. Platelet activation is a key step in the initiation and development of atherothrombotic diseases. This study explored the effects and mechanisms of H2S on human platelet in vitro and under dyslipidemia conditions. This study indicated that the collagen-induced aggregation of washed human platelets, adenosine triphosphate release, and TXA2 formation were inhibited by NaHS incubation. Furthermore, NaHS significantly decreased intracellular calcium concentration in washed human platelets stimulated with collagen and inhibited collagen-induced c-PLA2, p38 MAPK, ERK, JNK, PLC-γ2, and Akt phosphorylation. Finally, NaHS inhibited the aggregation of washed human platelets induced by oxidized low-density lipoprotein plus collagen. The level of plasma lipids and the collagen-induced rapid platelet aggregation in ApoE knockout mice were also significantly decreased by NaHS treatment. Our study shows that NaHS is able to inhibit platelet aggregation induced by collagen. The underlying mechanisms are related to NaHS-induced changes in various signaling pathways and [Ca]i in the platelets. The interaction of NaHS and platelets is also affected by lipid metabolism.
Collapse
|
49
|
Huang W, Lv B, Zeng H, Shi D, Liu Y, Chen F, Li F, Liu X, Zhu R, Yu L, Jiang X. Paracrine Factors Secreted by MSCs Promote Astrocyte Survival Associated With GFAP Downregulation After Ischemic Stroke via p38 MAPK and JNK. J Cell Physiol 2015; 230:2461-75. [DOI: 10.1002/jcp.24981] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Weiyi Huang
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Bingke Lv
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Huijun Zeng
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Dandan Shi
- Department of Anatomy; Key Laboratory of Construction and Detection of Guangdong Province; Southern Medical University; Guangzhou China
| | - Yi Liu
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Fanfan Chen
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Feng Li
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Xinghui Liu
- Department of Anatomy; Key Laboratory of Construction and Detection of Guangdong Province; Southern Medical University; Guangzhou China
| | - Rong Zhu
- Department of Anatomy; Key Laboratory of Construction and Detection of Guangdong Province; Southern Medical University; Guangzhou China
| | - Lei Yu
- Department of Anatomy; Key Laboratory of Construction and Detection of Guangdong Province; Southern Medical University; Guangzhou China
| | - Xiaodan Jiang
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| |
Collapse
|
50
|
Tokuda H, Kuroyanagi G, Tsujimoto M, Enomoto Y, Matsushima-Nishiwaki R, Onuma T, Kojima A, Doi T, Tanabe K, Akamatsu S, Iida H, Ogura S, Otsuka T, Iwama T, Tanikawa T, Ishikawa K, Kojima K, Kozawa O. Release of Phosphorylated HSP27 (HSPB1) from Platelets Is Accompanied with the Acceleration of Aggregation in Diabetic Patients. PLoS One 2015; 10:e0128977. [PMID: 26046355 PMCID: PMC4457785 DOI: 10.1371/journal.pone.0128977] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
We investigated the relationship between HSP27 phosphorylation and collagen-stimulated activation of platelets in patients with diabetes mellitus (DM). Platelet-rich plasma was prepared from blood of type 2 DM patients. The platelet aggregation was analyzed in size of aggregates by an aggregometer using a laser scattering method. The protein phosphorylation was analyzed by Western blotting. Phosphorylated-HSP27 and PDGF-AB released from platelets were measured by ELISA. The phosphorylated-HSP27 levels at Ser-78 and Ser-82 induced by collagen were directly proportional to the platelet aggregation. Total HSP27 levels in platelets were decreased concomitantly with the phosphorylation. The released HSP27 levels were significantly correlated with the phosphorylated levels of HSP27 in the platelets stimulated by 0.3 μg/ml collagen. The low dose collagen-stimulated release of HSP27 was detected but relatively small in healthy donors. The released levels of PDGF-AB were in parallel with the levels of released HSP27. Area under the curve (AUC) of small aggregation (9-25 μm) induced by 0.3 μg/ml collagen was inversely proportional to the levels of released HSP27. AUC of large aggregation (50-70 μm) was directly proportional to the levels of released HSP27. Exogenous recombinant phosphorylated- HSP27 hardly affected the aggregation or the released levels of PDGF-AB induced by collagen. These results strongly suggest that HSP27 is released from human platelets accompanied with its phosphorylation induced by collagen, which is correlated with the acceleration of platelet aggregation in type 2 DM patients.
Collapse
Affiliation(s)
- Haruhiko Tokuda
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Tsujimoto
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Takashi Onuma
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akiko Kojima
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Critical Care Medicine, Matsunami General Hospital, Gifu, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shigeru Akamatsu
- Department of Anesthesiology and Critical Care Medicine, Matsunami General Hospital, Gifu, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahisa Tanikawa
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kei Ishikawa
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kumi Kojima
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|