1
|
Che K, Wang C, Chen H. Advancing functional foods: a systematic analysis of plant-derived exosome-like nanoparticles and their health-promoting properties. Front Nutr 2025; 12:1544746. [PMID: 40115388 PMCID: PMC11924939 DOI: 10.3389/fnut.2025.1544746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs), emerging as novel bioactive agents, exhibit significant potential in food science and nutritional health. These nanoparticles, enriched with plant-specific biomolecules such as proteins, lipids, nucleic acids, and secondary metabolites, demonstrate unique cross-species regulatory capabilities, enabling interactions with mammalian cells and gut microbiota. PDENs enhance nutrient bioavailability by protecting sensitive compounds during digestion, modulate metabolic pathways through miRNA-mediated gene regulation, and exhibit anti-inflammatory and antioxidant properties. For instance, grape-derived PDENs reduce plasma triglycerides in high-fat diets, while ginger-derived nanoparticles alleviate colitis by downregulating pro-inflammatory cytokines. Additionally, PDENs serve as natural drug carriers, with applications in delivering therapeutic agents like doxorubicin and paclitaxel. Despite these advancements, challenges remain in standardizing extraction methods (ultracentrifugation, immunoaffinity), ensuring stability during food processing and storage, and evaluating long-term safety. Current research highlights the need for optimizing lyophilization techniques and understanding interactions between PDENs and food matrices. Furthermore, while PDENs show promise in functional food development-such as fortified beverages and probiotic formulations-their clinical translation requires rigorous pharmacokinetic studies and regulatory clarity. This review synthesizes existing knowledge on PDENs' composition, biological activities, and applications, while identifying gaps in scalability, stability, and safety assessments. Future directions emphasize interdisciplinary collaboration to harness PDENs' potential in combating metabolic disorders, enhancing food functionality, and advancing personalized nutrition strategies.
Collapse
Affiliation(s)
- Ke Che
- College of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Cong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Hao Chen
- College of Food Engineering, Anhui Science and Technology University, Fengyang, China
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
- Planting Department, Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
WDR76 mediates obesity and hepatic steatosis via HRas destabilization. Sci Rep 2019; 9:19676. [PMID: 31873167 PMCID: PMC6927951 DOI: 10.1038/s41598-019-56211-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Ras/MAPK (mitogen active protein kinase) signaling plays contradictory roles in adipocyte differentiation and is tightly regulated during adipogenesis. However, mechanisms regulating adipocyte differentiation involving Ras protein stability regulation are unknown. Here, we show that WD40 repeat protein 76 (WDR76), a novel Ras regulating E3 linker protein, controls 3T3-L1 adipocyte differentiation through HRas stability regulation. The roles of WDR76 in obesity and metabolic regulation were characterized using a high-fat diet (HFD)-induced obesity model using Wdr76-/- mice and liver-specific Wdr76 transgenic mice (Wdr76Li-TG). Wdr76-/- mice are resistant to HFD-induced obesity, insulin resistance and hyperlipidemia with an increment of HRas levels. In contrast, Wdr76Li-TG mice showed increased HFD-induced obesity, insulin resistance with reduced HRas levels. Our findings suggest that WDR76 controls HFD-induced obesity and hepatic steatosis via HRas destabilization. These data provide insights into the links between WDR76, HRas, and obesity.
Collapse
|
3
|
Nahum N, Forti E, Aksanov O, Birk R. Insulin regulates Bbs4 during adipogenesis. IUBMB Life 2017; 69:489-499. [PMID: 28371235 DOI: 10.1002/iub.1626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 03/12/2017] [Indexed: 01/08/2023]
Abstract
Bardet-Biedl syndrome (BBS) is a pleiotropic autosomal recessive disorder associated with marked obesity, increased susceptibility to insulin resistance and type 2 diabetes. However, it is unknown whether the link between BBS and diabetes is indirect or direct. Adipogenesis and adipocyte function are regulated by hormonal stimuli, with insulin and insulin growth factor (IGF) playing an important role both in normal and impaired conditions. We have previously shown augmented transcript levels of BBS genes upon induction of adipogenesis. The aim of this study was to investigate the role of insulin in BBS. Through in vitro studies in adipocytes in which Bbs4 expression was either silenced (SiBbs4) or overexpressed (OEBbs4), we showed that insulin and IGF dose- and time-dependently decrease transcription and protein expression of BBS genes during adipogenesis. Silencing of Bbs4 expression in adipocytes significantly impaired and reduced glucose uptake. This effect was reversed by Bbs4 overexpression. Inhibition of PI 3-kinase resulted in upregulation of Bbs transcripts, suggesting that the PI3K pathway is involved in the regulation of these genes. In conclusion, we showed that insulin is a direct regulator of Bbs1, 2, 4 and 6. This hormonal regulation might indicate a metabolic link of these genes to obesity and metabolic syndrome. © 2017 IUBMB Life, 69(7):489-499, 2017.
Collapse
Affiliation(s)
- Netta Nahum
- Department of Biotechnology and Epidemiology, Ben-Gurion University, Beer-Sheva, Israel.,Department of Nutrition, School of Health Science, Ariel University, Ariel, Israel
| | - Efrat Forti
- Department of Biotechnology and Epidemiology, Ben-Gurion University, Beer-Sheva, Israel
| | - Olga Aksanov
- Department of Biotechnology and Epidemiology, Ben-Gurion University, Beer-Sheva, Israel
| | - Ruth Birk
- Department of Nutrition, School of Health Science, Ariel University, Ariel, Israel
| |
Collapse
|
4
|
Rasal2 deficiency reduces adipogenesis and occurrence of obesity-related disorders. Mol Metab 2017; 6:494-502. [PMID: 28580280 PMCID: PMC5444017 DOI: 10.1016/j.molmet.2017.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/15/2017] [Indexed: 01/23/2023] Open
Abstract
Objective Identification of additional regulatory factors involved in the onset of obesity is important to understand the mechanisms underlying this prevailing disease and its associated metabolic disorders and to develop therapeutic strategies. Through isolation and analysis of a mutant, we aimed to uncover the function of a Ras-GAP gene, Rasal2 (Ras protein activator like 2), in the development of obesity and related metabolic disorders and to obtain valuable insights regarding the mechanism underlying the function. Methods An obesity-based genetic screen was performed to identify an insertional mutation that disrupts the expression of Rasal2 (Rasal2PB/PB mice). Important metabolic parameters, such as fat mass and glucose tolerance, were measured in Rasal2PB/PB mice. The impact of Rasal2 on adipogenesis was evaluated in the mutant mice and in 3T3-L1 preadipocytes treated with Rasal2 siRNA. Ras and ERK activities were then evaluated in Rasal2-deficient preadipocytes or mice, and their functional relationships with Rasal2 on adipogenesis were investigated by employing Ras and MEK inhibitors. Results Rasal2PB/PB mice showed drastic decrease in Rasal2 expression and a lean phenotype. The mutant mice displayed decreased adiposity and resistance to high-fat diet induced metabolic disorders. Further analysis indicated that Rasal2 deficiency leads to impaired adipogenesis in vivo and in vitro. Moreover, while Rasal2 deficiency resulted in increased activity of both Ras and ERK in preadipocytes, reducing Ras, but not ERK, suppressed the impaired adipogenesis. Conclusions Rasal2 promotes adipogenesis, which may critically contribute to its role in the development of obesity and related metabolic disorders and may do so by repressing Ras activity in an ERK-independent manner. Rasal2-deficient mice show decreased adiposity fed on either high-fat or normal-chow diet. Rasal2-deficient mice are resistant to high-fat diet-induced obesity and related metabolic disorders. Rasal2 deficiency causes a decrease in adipogenesis in vivo and in vitro. Rasal2 likely regulates adipogenesis by repressing Ras activity through an ERK-independent mechanism.
Collapse
|
5
|
Hegde V, Na HN, Dubuisson O, Burke SJ, Collier JJ, Burk D, Mendoza T, Dhurandhar NV. An adenovirus-derived protein: A novel candidate for anti-diabetic drug development. Biochimie 2016; 121:140-50. [PMID: 26700141 PMCID: PMC5125614 DOI: 10.1016/j.biochi.2015.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/08/2015] [Indexed: 01/04/2023]
Abstract
AIMS Exposure to human adenovirus Ad36 is causatively and correlatively linked with better glycemic control in animals and humans, respectively. Although the anti-hyperglycemic property of Ad36 may offer some therapeutic potential, it is impractical to use an infectious agent for therapeutic benefit. Cell-based studies identified that Ad36 enhances cellular glucose disposal via its E4orf1 protein. Ability to improve glycemic control in vivo is a critical prerequisite for further investigating the therapeutic potential of E4orf1. Therefore, the aim of this study was to determine the ability of E4orf1 to improve glycemic control independent of insulin despite high fat diet. MATERIALS & METHODS 8-9wk old male C57BL/6J mice fed a high-fat diet (60% kcal) were injected with a retrovirus plasmid expressing E4orf1, or a null vector (Control). Glycemic control was determined by glucose and insulin tolerance test. Islet cell size, amount of insulin and glucagon were determined in formalin-fixed pancreas. Rat insulinoma cell line (832/13) was infected with E4orf1 or control to determine changes in glucose stimulated insulin secretion. Protein from flash frozen adipose tissue depots, liver and muscle was used to determine molecular signaling by western blotting. RESULTS In multiple experiments, retrovirus-mediated E4orf1 expression in C57BL/6J mice significantly and reproducibly improved glucose excursion following a glucose load despite a high fat diet (60% energy). Importantly, E4orf1 improved glucose clearance without increasing insulin sensitivity, production or secretion, underscoring its insulin-independent effect. E4orf1 modulated molecular signaling in mice tissue, which included greater protein abundance of adiponectin, p-AKT and Glucose transporter Glu4. CONCLUSIONS This study provides the proof of concept for translational development of E4orf1 as a potential anti-diabetic agent. High fat intake and impaired insulin signaling are often associated with obesity, diabetes and insulin resistance. Hence, the ability of E4orf1 to improve glycemic control despite high fat diet and independent of insulin, is particularly attractive.
Collapse
Affiliation(s)
- Vijay Hegde
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Ha-Na Na
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Olga Dubuisson
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Susan J Burke
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - J Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - David Burk
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Tamra Mendoza
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | |
Collapse
|
6
|
Dhurandhar NV. Insulin sparing action of adenovirus 36 and its E4orf1 protein. J Diabetes Complications 2013; 27:191-9. [PMID: 23246247 DOI: 10.1016/j.jdiacomp.2012.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 02/06/2023]
Abstract
Additional drugs are required to effectively manage diabetes and its complications. Recent studies have revealed protective effects of Ad36, a human adenovirus, and its E4orf1 protein on glucose disposal, which may be creatively harnessed to develop novel anti-diabetic agents. Experimental Ad36 infection improves hyperglycemia in animal models and natural Ad36 infection in humans is associated with better glycemic control. Available data indicate distinctive advantages for a drug that may mimic the action of Ad36/E4orf1. The key features of such a potential drug include the ability to increase glucose uptake by adipose tissue and skeletal muscle, to reduce hepatic glucose output independent of proximal insulin signaling, and to up-regulate adiponectin and its hepatic action. The effect of Ad36/E4orf1 on hepatocyte metabolism suggests a role for treating hepatic steatosis. Despite these potential advantages, considerable research is required before such a drug is developed. The in vivo efficacy and safety of E4orf1 in improving hyperglycemia remain unknown, and an appropriate drug delivery system is required. Nonetheless, Ad36 E4orf1 offers a research opportunity to develop a new anti-diabetic agent with multiple potential advantages and conceptually advances the use of a rather unconventional source, microbial proteins, for anti-diabetic drug development.
Collapse
Affiliation(s)
- Nikhil V Dhurandhar
- Infections and Obesity laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
7
|
Krishnapuram R, Kirk-Ballard H, Dhurandhar EJ, Dubuisson O, Messier V, Rabasa-Lhoret R, Hegde V, Aggarwal S, Dhurandhar NV. Insulin receptor-independent upregulation of cellular glucose uptake. Int J Obes (Lond) 2013; 37:146-53. [PMID: 22310476 PMCID: PMC4841456 DOI: 10.1038/ijo.2012.6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cellular glucose uptake can be enhanced by upregulating Ras signaling in either insulin-dependent or -independent manner. In presence of insulin and intact insulin signaling, Ras has a negligible role in glucose uptake. Conversely, when insulin signaling is impaired in obesity or diabetes, the insulin-independent Ras pathway may be valuable for enhancing glucose disposal. We previously reported that Ad36, a human adenovirus, enhances cellular glucose uptake by upregulating the Ras/Glut4 pathway. Here, we investigated if Ad36-upregulated Ras via the insulin-independent pathway, to enhance glucose uptake. Furthermore, uncontrolled upregulation of Ras is linked with oncogenic cell transformation, if the tumor-suppressor gene p53 is also downregulated. Hence, we determined if upregulation of Ras by Ad36 would induce oncogenic cell transformation. Finally, we determined the relevance of Ad36 to insulin resistance in humans. METHODS Insulin receptor (IR) was knocked down with small interfering RNA in 3T3-L1 adipocytes, to determine if Ad36 increases the Ras/Glut4 pathway and glucose uptake without IR-signaling. Next, the effects of Ad36 on cell transformation and p53 abundance were determined. Finally, overweight or obese women were screened for seropositivity to Ad36, as an indicator of natural Ad36 infection. Associations of Ad36 infection with adiposity and C-reactive proteins (CRPs)-two key markers of insulin resistance, and with glucose disposal, were determined. RESULTS Unaffected by IR knock-down, Ad36 significantly increased the Ras pathway, Glut4 translocation and glucose uptake in 3T3-L1 adipocytes. Despite Ras upregulation, Ad36 did not transform 3T3-L1 cells. This may be because Ad36 significantly increased p53 protein in 3T3-L1 cells or mice adipose tissue. Ad36 seropositivity was associated with greater adiposity and CRP levels, yet a significantly higher systemic glucose disposal rate. CONCLUSIONS Overall, the study offers Ras/Glut4 pathway as an alternate to enhance glucose disposal when insulin signaling is impaired, and, importantly, provides Ad36 as a tool to understand the modulation of that pathway.
Collapse
Affiliation(s)
- R Krishnapuram
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - H Kirk-Ballard
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - EJ Dhurandhar
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - O Dubuisson
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - V Messier
- Institut de Recherches Cliniques de Montré al (IRCM) 110, Avenue Des Pins Ouest, Montreal, Quebec, Canada
- Nutrition Department, Université de Montré al, Montreal, Quebec, Canada
| | - R Rabasa-Lhoret
- Institut de Recherches Cliniques de Montré al (IRCM) 110, Avenue Des Pins Ouest, Montreal, Quebec, Canada
- Nutrition Department, Université de Montré al, Montreal, Quebec, Canada
| | - V Hegde
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - S Aggarwal
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - NV Dhurandhar
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
8
|
Dhurandhar EJ, Dubuisson O, Mashtalir N, Krishnapuram R, Hegde V, Dhurandhar NV. E4orf1: a novel ligand that improves glucose disposal in cell culture. PLoS One 2011; 6:e23394. [PMID: 21886789 PMCID: PMC3160302 DOI: 10.1371/journal.pone.0023394] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/14/2011] [Indexed: 12/31/2022] Open
Abstract
Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance (IR), are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K), and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 'requires' E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as 'sufficient' to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras--the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large (Dlg1) protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif (PBM) of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes, adipocytes, or myoblasts, and reduced glucose output by hepatocytes. Thus, the highly attractive anti-hyperglycemic effect of Ad36 is mirrored by E4orf1 protein, which may offer a novel ligand to develop anti-hyperglycemic drugs.
Collapse
Affiliation(s)
- Emily J. Dhurandhar
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Olga Dubuisson
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Nazar Mashtalir
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Rashmi Krishnapuram
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Vijay Hegde
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Nikhil V. Dhurandhar
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
9
|
Rogers PM, Mashtalir N, Rathod MA, Dubuisson O, Wang Z, Dasuri K, Babin S, Gupta A, Markward N, Cefalu WT, Dhurandhar NV. Metabolically favorable remodeling of human adipose tissue by human adenovirus type 36. Diabetes 2008; 57:2321-31. [PMID: 18599527 PMCID: PMC2518483 DOI: 10.2337/db07-1311] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 06/11/2008] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Experimental infection of rats with human adenovirus type 36 (Ad-36) promotes adipogenesis and improves insulin sensitivity in a manner reminiscent of the pharmacologic effect of thiozolinediones. To exploit the potential of the viral proteins as a therapeutic target for treating insulin resistance, this study investigated the ability of Ad-36 to induce metabolically favorable changes in human adipose tissue. RESEARCH DESIGN AND METHODS We determined whether Ad-36 increases glucose uptake in human adipose tissue explants. Cell-signaling pathways targeted by Ad-36 to increase glucose uptake were determined in the explants and human adipose-derived stem cells. Ad-2, a nonadipogenic human adenovirus, was used as a negative control. As a proof of concept, nondiabetic and diabetic subjects were screened for the presence of Ad-36 antibodies to ascertain if natural Ad-36 infection predicted improved glycemic control. RESULTS Ad-36 increased glucose uptake by adipose tissue explants obtained from nondiabetic and diabetic subjects. Without insulin stimulation, Ad-36 upregulated expressions of several proadipogenic genes, adiponectin, and fatty acid synthase and reduced the expression of inflammatory cytokine macrophage chemoattractant protein-1 in a phosphotidylinositol 3-kinase (PI3K)-dependent manner. In turn, the activation of PI3K by Ad-36 was independent of insulin receptor signaling but dependent on Ras signaling recruited by Ad-36. Ad-2 was nonadipogenic and did not increase glucose uptake. Natural Ad-36 infection in nondiabetic and diabetic subjects was associated with significantly lower fasting glucose levels and A1C, respectively. CONCLUSIONS Ad-36 proteins may provide novel therapeutic targets that remodel human adipose tissue to a more metabolically favorable profile.
Collapse
Affiliation(s)
- Pamela M. Rogers
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Nazar Mashtalir
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Miloni A. Rathod
- Department of Nutrition, Wayne State University, Detroit, Michigan
| | - Olga Dubuisson
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Zhong Wang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Kumar Dasuri
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Scott Babin
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Alok Gupta
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Nathan Markward
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - William T. Cefalu
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Nikhil V. Dhurandhar
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
10
|
Hummasti S, Hong C, Bensinger SJ, Tontonoz P. HRASLS3 is a PPARgamma-selective target gene that promotes adipocyte differentiation. J Lipid Res 2008; 49:2535-44. [PMID: 18664718 DOI: 10.1194/jlr.m800269-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prevalence of obesity and its associated metabolic diseases worldwide has focused attention on understanding the mechanisms underlying adipogenesis. The nuclear receptor PPARgamma has emerged as a central regulator of adipose tissue function and formation. Despite the identification of numerous PPARgamma targets involved in a range of processes, from lipid droplet formation to adipokine secretion, information is still lacking on targets downstream of PPARgamma that directly affect fat cell differentiation. Here we identify HRASLS3 as a novel PPARgamma regulated gene with a role in adipogenesis. HRASLS3 expression increases during the differentiation of preadipocyte cell lines and is highly expressed in white and brown adipose tissue in mice. HRASLS3 expression is induced by PPARgamma ligands in preadipocyte cell lines as well in adipose tissue in vivo. We demonstrate that the HRASLS3 promoter contains a functional PPAR response element and is a direct target for regulation by PPARgamma/RXR heterodimers. Finally, we show that overexpression of HRASLS3 augments PPARgamma-driven lipid accumulation and adipogenesis, whereas siRNA-mediated knockdown of HRASLS3 expression decreases differentiation. Together, these results identify HRASLS3 as one of the downstream effectors of PPARgamma action in adipogenesis.
Collapse
Affiliation(s)
- Sarah Hummasti
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
11
|
Wang ZQ, Cefalu WT, Zhang XH, Yu Y, Qin J, Son L, Rogers PM, Mashtalir N, Bordelon JR, Ye J, Dhurandhar NV. Human adenovirus type 36 enhances glucose uptake in diabetic and nondiabetic human skeletal muscle cells independent of insulin signaling. Diabetes 2008; 57:1805-13. [PMID: 18420488 PMCID: PMC2453622 DOI: 10.2337/db07-1313] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 04/10/2008] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Human adenovirus type 36 (Ad-36) increases adiposity but improves insulin sensitivity in experimentally infected animals. We determined the ability of Ad-36 to increase glucose uptake by human primary skeletal muscle (HSKM) cells. RESEARCH DESIGN AND METHODS The effect of Ad-36 on glucose uptake and cell signaling was determined in HSKM cells obtained from type 2 diabetic and healthy lean subjects. Ad-2, another human adenovirus, was used as a negative control. Gene expression and proteins of GLUT1 and GLUT4 were measured by real-time PCR and Western blotting. Role of insulin and Ras signaling pathways was determined in Ad-36-infected HSKM cells. RESULTS Ad-36 and Ad-2 infections were confirmed by the presence of respective viral mRNA and protein expressions. In a dose-dependent manner, Ad-36 significantly increased glucose uptake in diabetic and nondiabetic HSKM cells. Ad-36 increased gene expression and protein abundance of GLUT1 and GLUT4, GLUT4 translocation to plasma membrane, and phosphatidylinositol 3-kinase (PI 3-kinase) activity in an insulin-independent manner. In fact, Ad-36 decreased insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and IRS-1-and IRS-2-associated PI 3-kinase activities. On the other hand, Ad-36 increased Ras gene expression and protein abundance, and Ras siRNA abrogated Ad-36-induced PI 3-kinase activation, GLUT4 protein abundance, and glucose uptake. These effects were not observed with Ad-2 infection. CONCLUSIONS Ad-36 infection increases glucose uptake in HSKM cells via Ras-activated PI 3-kinase pathway in an insulin-independent manner. These findings may provide impetus to exploit the role of Ad-36 proteins as novel therapeutic targets for improving glucose handling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adenovirus Infections, Human/metabolism
- Adenovirus Infections, Human/physiopathology
- Adenoviruses, Human/physiology
- Cell Membrane/metabolism
- Cell Membrane/virology
- Deoxyglucose/metabolism
- Diabetes Mellitus/metabolism
- Glucose/metabolism
- Glucose Transport Proteins, Facilitative/genetics
- Glucose Transport Proteins, Facilitative/metabolism
- Glucose Transporter Type 1/genetics
- Glucose Transporter Type 1/metabolism
- Humans
- Insulin/physiology
- Insulin Receptor Substrate Proteins
- Intracellular Signaling Peptides and Proteins/metabolism
- Microsomes/metabolism
- Microsomes/virology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/virology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoproteins/metabolism
- RNA, Small Interfering/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- Zhong Q Wang
- Division of Nutrition and Chronic Diseases, Louisiana State University System, Baton Rouge, Louisiana, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zatechka DS, Kador PF, Garcia-Castiñeiras S, Lou MF. Diabetes can alter the signal transduction pathways in the lens of rats. Diabetes 2003; 52:1014-22. [PMID: 12663474 DOI: 10.2337/diabetes.52.4.1014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes is known to affect cataract formation by means of osmotic stress induced by activated aldose reductase in the sorbitol pathway. In addition, alterations in the bioavailability of numerous extralenticular growth factors has been reported and shown to result in various consequences. We have found that the basic fibroblast growth factor (bFGF) accumulates in the vitreous humor of 3- and 8-week diabetic rats. Consequently, the associating signal transduction cascades were severely disrupted, including upregulated phosphorylation of extracellular signal-regulated kinase (ERK) and the common stress-associated mitogen-activated protein kinases p38 and SAPK/JNK. Conversely, under diabetic condition, we observed a dramatic inhibition of phosphatidylinositol-3 kinase activity in lenses obtained from the same animal. Rats treated with the aldose reductase inhibitor AL01576 for the duration of the diabetic condition showed that the diabetes-induced lenticular signaling alterations were normalized, comparable to controls. However, treatment of AL01576 in vitro was ineffective at normalizing the altered constituents in extracted diabetic vitreous after the onset of diabetes. The effect of AL01576 in the high galactose-induced cataract model in vitro was also examined. Administration of AL01576 to lens organ culture normalized the aberrant signaling effects and morphological characteristics associated with in vitro sugar cataract formation. In conclusion, our findings demonstrate diabetes-associated alterations in the lens signal transduction parameters and the effectiveness of AL01576 at normalizing such alterations. The causes for these alterations can be attributed to elevated vitreal bFGF in conjunction with osmotic stress and associated attenuation in redox status of the lens.
Collapse
Affiliation(s)
- D Steven Zatechka
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | | | | |
Collapse
|
13
|
Klip A, Marette A. Regulation of Glucose Transporters by Insulin and Exercise: Cellular Effects and Implications for Diabetes. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Abstract
Lovastatin treatment caused down-regulation of the insulin-responsive glucose transporter 4 (Glut4) and up-regulation of Glut1 in 3T3-L1 adipocytes. These changes in protein expression were associated with a marked inhibition of insulin-stimulated glucose transport. Lovastatin had no effect on cell cholesterol levels, but its effects were reversed by mevalonate, demonstrating that inhibition of isoprenoid biosynthesis causes insulin resistance in 3T3-L1 adipocytes. These findings support the notion that whole body insulin resistance may arise as a result of perturbations in general biochemical pathways, rather than primary defects in insulin signalling.
Collapse
Affiliation(s)
- L H Chamberlain
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.
| |
Collapse
|
15
|
Cormont M, Le Marchand-Brustel Y. The role of small G-proteins in the regulation of glucose transport (review). Mol Membr Biol 2001; 18:213-20. [PMID: 11681788 DOI: 10.1080/09687680110077541] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Insulin increases the rate of glucose transport into fat and muscle cells by stimulating the translocation of intracellular Glut 4-containing vesicles to the plasma membrane. This results in a marked increase in the amount of the facilitative glucose transporter Glut 4 at the cell surface, allowing for an enhanced glucose uptake. This process requires a continuous cycling through the early endosomes, a Glut 4 specific storage compartment and the plasma membrane. The main effect of insulin is to increase the rate of Glut 4 trafficking from its specific storage compartment to the plasma membrane. The whole phenomenon involves signal transduction from the insulin receptor, vesicle trafficking (sorting and fusion processes) and actin cytoskeleton modifications, which are all supposed to require small GTPases. This review describes the potential role of the various members of the Ras, Rad, Rho, Arf and Rab families in the traffic of the Glut 4-containing vesicles.
Collapse
Affiliation(s)
- M Cormont
- INSERM E99-11 and IFR 50, Faculté de Médecine, Nice, France.
| | | |
Collapse
|
16
|
Jiang H, Li J, Katz EB, Charron MJ. GLUT4 ablation in mice results in redistribution of IRAP to the plasma membrane. Biochem Biophys Res Commun 2001; 284:519-25. [PMID: 11394912 DOI: 10.1006/bbrc.2001.4994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glucose transporter (GLUT) 4 is the insulin responsive glucose transporter in adipose tissue, skeletal muscle, and heart. Insulin elicits increased glucose uptake by recruiting GLUT4 from a specialized intracellular storage site to the cell surface. Expression of various proteins that colocalize with GLUT4 and/or are involved in insulin-stimulated GLUT4 translocation was examined in adipocytes as well as skeletal and cardiac muscles from GLUT4 null mice. Our data demonstrate that expression of insulin-regulated aminopeptidase (IRAP) is divergently regulated in GLUT4 null tissues, e.g., upregulated 1.6-fold in GLUT4 null adipocytes and downregulated in GLUT4 null skeletal muscle (40%) and heart (60%). IRAP exhibited abnormal subcellular distribution and impaired insulin-stimulated translocation in GLUT4-deficient tissues. We propose the compartment containing IRAP and proteins normally associated with GLUT4 vesicle traffics constitutively to the cell surface in GLUT4 null adipocytes and skeletal muscle.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Adipocytes/chemistry
- Adipocytes/drug effects
- Adipocytes/metabolism
- Aminopeptidases/analysis
- Aminopeptidases/metabolism
- Animals
- Cell Compartmentation/drug effects
- Cell Compartmentation/physiology
- Cell Membrane/chemistry
- Cell Membrane/enzymology
- Cell Separation
- Crosses, Genetic
- Cystinyl Aminopeptidase
- Glucose Transporter Type 4
- Insulin/pharmacology
- Male
- Membrane Glycoproteins/analysis
- Membrane Glycoproteins/metabolism
- Membrane Proteins/analysis
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Monosaccharide Transport Proteins/analysis
- Monosaccharide Transport Proteins/deficiency
- Monosaccharide Transport Proteins/genetics
- Muscle Proteins
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Myocardium/metabolism
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/metabolism
- Protein Transport/drug effects
- Protein Transport/genetics
- Qa-SNARE Proteins
- R-SNARE Proteins
- Receptors, Transferrin/analysis
- Receptors, Transferrin/metabolism
- Subcellular Fractions/chemistry
- Subcellular Fractions/metabolism
- rab4 GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- H Jiang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
17
|
Li J, Houseknecht KL, Stenbit AE, Katz EB, Charron MJ. Reduced glucose uptake precedes insulin signaling defects in adipocytes from heterozygous GLUT4 knockout mice. FASEB J 2000; 14:1117-25. [PMID: 10834933 DOI: 10.1096/fasebj.14.9.1117] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Decreased GLUT4 expression, impaired insulin receptor (IR), IRS-1, and pp60/IRS-3 tyrosine phosphorylation are characteristics of adipocytes from insulin-resistant animal models and obese NIDDM humans. However, the sequence of events leading to the development of insulin signaling defects and the significance of decreased GLUT4 expression in causing adipocyte insulin resistance are unknown. The present study used male heterozygous GLUT4 knockout mice (GLUT4(+/-)) as a novel model of diabetes to study the development of insulin signaling defects in adipocytes with the progression of whole body insulin resistance and diabetes. Male GLUT4(+/-) mice with normal fed glycemia and insulinemia (N/N), normal fed glycemia and hyperinsulinemia (N/H), and fed hyperglycemia with hyperinsulinemia (H/H) exist at all ages. The expression of GLUT4 protein and the maximal insulin-stimulated glucose transport was 50% decreased in adipocytes from all three groups. Insulin signaling was normal in N/N adipose cells. From 35 to 70% reductions in insulin-stimulated tyrosine phosphorylation of IR, IRS-1, and pp60/IRS-3 were noted with no changes in the cellular content of IR, IRS-1, and p85 in N/H adipocytes. Insulin-stimulated protein tyrosine phosphorylation was further decreased to 12-23% in H/H adipose cells accompanied by 42% decreased IR and 80% increased p85 expression. Insulin-stimulated, IRS-1-associated PI3 kinase activity was decreased by 20% in N/H and 68% reduced in H/H GLUT4(+/-) adipocytes. However, total insulin-stimulated PI3 kinase activity was normal in H/H GLUT4(+/-) adipocytes. Taken together, these results strongly suggest that hyperinsulinemia triggers a reduction of IR tyrosine kinase activity that is further exacerbated by the appearance of hyperglycemia. However, the insulin signaling cascade has sufficient plasticity to accommodate significant changes in specific components without further reducing glucose uptake. Furthermore, the data indicate that the cellular content of GLUT4 is the rate-limiting factor in mediating maximal insulin-stimulated glucose uptake in GLUT4(+/-) adipocytes.
Collapse
Affiliation(s)
- J Li
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Biological actions of insulin are mediated by the insulin receptor, a member of a large family of receptor tyrosine kinases (RTK). Signal transduction by the insulin receptor follows a paradigm for RTK signalling. Many intracellular signalling molecules contain multiple modular domains that mediate protein-protein interactions and participate in the formation of signalling complexes. Phosphorylation cascades are also a prominent feature of RTK signalling. Distal pathways are difficult to dissect because branching paths emerge from downstream effectors and several upstream inputs converge upon single branch points. Thus, insulin action is determined by complicated signalling networks rather than simple linear pathways. Interestingly, many signalling molecules downstream from the insulin receptor are also activated by a plethora of RTKs. Therefore, mechanisms that generate specificity are required. In this review we discuss recent advances in the elucidation of specific metabolic insulin signalling pathways related to glucose transport, one of the most distinctive biological actions of insulin. We also present examples of potential mechanisms underlying specificity in insulin signalling including interactions between multiple branching pathways, subcellular compartmentalization, tissue-specific expression of key effectors and modulation of signal frequency and amplitude.
Collapse
Affiliation(s)
- F H Nystrom
- Hypertension-Endocrine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1754, USA
| | | |
Collapse
|
19
|
Egert S, Nguyen N, Schwaiger M. Contribution of alpha-adrenergic and beta-adrenergic stimulation to ischemia-induced glucose transporter (GLUT) 4 and GLUT1 translocation in the isolated perfused rat heart. Circ Res 1999; 84:1407-15. [PMID: 10381893 DOI: 10.1161/01.res.84.12.1407] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intracellular signaling mechanism of the ischemia-stimulated glucose transporter (GLUT) translocation in the heart is not yet characterized. It has been suggested that catecholamines released during ischemia may be involved in this pathway. The purpose of this study was to evaluate the contribution of alpha-adrenoceptors and beta-adrenoceptors to ischemia-mediated GLUT4 and GLUT1 translocation in the isolated, Langendorff-perfused rat heart. Additionally, GLUT translocation was studied in response to catecholamine stimulation with phenylephrine (Phy) and isoproterenol (Iso). The results were compared with myocardial uptake of glucose analogue [18F]fluorodeoxyglucose (FDG). Subcellular analysis of GLUT4 and GLUT1 protein on plasma membrane vesicles (PM) and intracellular membrane vesicles (IM) using membrane preparation and immunoblotting revealed that alpha- and beta-receptor agonists stimulated GLUT4 translocation from IM to PM (2.5-fold for Phy and 2.1-fold for Iso, P<0.05 versus control), which was completely inhibited by phentolamine (Phe) and propranolol (Pro), respectively. Plasmalemmal GLUT1 moderately rose after Iso exposure, and this was prevented by Pro. In contrast, ischemia-stimulated GLUT4 translocation (2.2-fold, P<0.05 versus control) was only inhibited by alpha-adrenergic antagonist Phe but not by beta-adrenergic antagonist Pro. Similarly, Phe but not Pro inhibited ischemia-stimulated GLUT1 translocation. GLUT data were confirmed by FDG uptake monitored using bismuth germanate detectors. The catecholamine-stimulated FDG uptake (6.9-fold for Phy and 8.9-fold for Iso) was significantly inhibited by Phe and Pro; however, only Phe but not Pro significantly reduced the ischemia-induced 2.5-fold increase in FDG uptake (P<0.05 versus ischemia). This study suggests that alpha-adrenoceptor stimulation may play a role in the ischemia-mediated increase in glucose transporter trafficking leading to the stimulation of FDG uptake in the isolated, perfused rat heart, whereas beta-adrenergic activation does not participate in this signaling pathway.
Collapse
Affiliation(s)
- S Egert
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Germany.
| | | | | |
Collapse
|
20
|
Liu SC, Wang Q, Lienhard GE, Keller SR. Insulin receptor substrate 3 is not essential for growth or glucose homeostasis. J Biol Chem 1999; 274:18093-9. [PMID: 10364263 DOI: 10.1074/jbc.274.25.18093] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The insulin receptor substrates (IRS) 1 and 2 are required for normal growth and glucose homeostasis in mice. To determine whether IRS-3, a recently cloned member of the IRS family, is also involved in the regulation of these, we have generated mice with a targeted disruption of the IRS-3 gene and characterized them. Compared with wild-type mice, the IRS-3-null mice showed normal body weight throughout development, normal blood glucose levels in the fed and fasted state and following an oral glucose bolus, and normal fed and fasted plasma insulin levels. IRS-3 is most abundant in adipocytes and is tyrosine-phosphorylated in response to insulin in these cells. Therefore, isolated adipocytes were analyzed for changes in insulin effects. Insulin-stimulated glucose transport in the adipocytes from the IRS-3-null mice was the same as in wild-type cells. The extent of tyrosine phosphorylation of IRS-1/2 following insulin stimulation was similar in adipocytes from IRS-3-null and wild-type mice, and the insulin-induced association of tyrosine-phosphorylated IRS-1/2 with phosphatidylinositol 3-kinase and SHP-2 was not detectably increased by IRS-3 deficiency. Thus, IRS-3 was not essential for normal growth, glucose homeostasis, and glucose transport in adipocytes, and in its absence no significant compensatory augmentation of insulin signaling through IRS-1/2 was evident.
Collapse
Affiliation(s)
- S C Liu
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Complex metabolic diseases like type 2 diabetes (noninsulin-dependent diabetes) and obesity present a difficult challenge to pharmaceutical companies in their attempts to develop new therapies. The polygenic nature of these diseases and the influence of nongenetic factors make it difficult to identify the most critical molecular processes to target for drug development. Transgenic animal models provide an approach to evaluate specific sites in metabolic and hormone signalling pathways under physiologic (as opposed to in vitro) conditions. The advantages and limitations of using transgenic animals in drug development will be covered and an overview of recent information from transgenic studies relevant to type 2 diabetes and obesity will be given.
Collapse
|
22
|
Mastroberardino L, Spindler B, Forster I, Loffing J, Assandri R, May A, Verrey F. Ras pathway activates epithelial Na+ channel and decreases its surface expression in Xenopus oocytes. Mol Biol Cell 1998; 9:3417-27. [PMID: 9843578 PMCID: PMC25648 DOI: 10.1091/mbc.9.12.3417] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The small G protein K-Ras2A is rapidly induced by aldosterone in A6 epithelia. In these Xenopus sodium reabsorbing cells, aldosterone rapidly activates preexisting epithelial Na+ channels (XENaC) via a transcriptionally mediated mechanism. In the Xenopus oocytes expression system, we tested whether the K-Ras2A pathway impacts on XENaC activity by expressing XENaC alone or together with XK-Ras2A rendered constitutively active (XK-Ras2AG12V). As a second control, XENaC-expressing oocytes were treated with progesterone, a sex steroid that induces maturation of the oocytes similarly to activated Ras. Progesterone or XK-Ras2AG12V led to oocyte maturation characterized by a decrease in surface area and endogenous Na+ pump function. In both conditions, the surface expression of exogenous XENaC's was also decreased; however, in comparison with progesterone-treated oocytes, XK-ras2AG12V-coinjected oocytes expressed a fivefold higher XENaC-mediated macroscopic Na+ current that was as high as that of control oocytes. Thus, the Na+ current per surface-expressed XENaC was increased by XK-Ras2AG12V. The chemical driving force for Na+ influx was not changed, suggesting that XK-Ras2AG12V increased the mean activity of XENaCs at the oocyte surface. These observations raise the possibility that XK-Ras2A, which is the first regulatory protein known to be transcriptionally induced by aldosterone, could play a role in the control of XENaC function in aldosterone target cells.
Collapse
Affiliation(s)
- L Mastroberardino
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
In normal animals, the extracellular concentration of glucose is maintained within a very narrow range by the matching of glucose flux into and out of the extracellular space through the tightly coordinated secretion of insulin and glucagon. Functional alterations in beta-cells, liver, or skeletal muscle and adipose tissue may disrupt glucose homeostasis and lead to the development of non-insulin-dependent diabetes mellitus (type 2 diabetes). This review outlines the contribution of these organs and tissues to the control of glucose homeostasis. We discuss new insights obtained through studies of transgenic mice that overexpress or show decreased expression of putative key genes in the regulation of pancreatic beta-cell function, in the control of hepatic glucose uptake and output, and in the regulation of glucose uptake and utilization by skeletal muscle and adipose tissue.
Collapse
Affiliation(s)
- F Bosch
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | |
Collapse
|
24
|
Affiliation(s)
- B B Kahn
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
25
|
Morin CL, Eckel RH. Transgenic and knockout rodents: Novel insights into mechanisms of body weight regulation. J Nutr Biochem 1997. [DOI: 10.1016/s0955-2863(97)00123-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Tsao TS, Stenbit AE, Li J, Houseknecht KL, Zierath JR, Katz EB, Charron MJ. Muscle-specific transgenic complementation of GLUT4-deficient mice. Effects on glucose but not lipid metabolism. J Clin Invest 1997; 100:671-7. [PMID: 9239415 PMCID: PMC508236 DOI: 10.1172/jci119579] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have taken the approach of introducing the muscle-specific myosin light chain (MLC)-GLUT4 transgene into the GLUT4-null background to assess the relative role of muscle and adipose tissue GLUT4 in the etiology of the GLUT4-null phenotype. The resulting MLC-GLUT4-null mice express GLUT4 predominantly in the fast-twitch extensor digitorum longus (EDL) muscle. GLUT4 is nearly absent in female white adipose tissue (WAT) and slow-twitch soleus muscle of both sexes of MLC-GLUT4-null mice. GLUT4 content in male MLC-GLUT4-null WAT is 20% of that in control mice. In transgenically complemented EDL muscle, 2-deoxyglucose (2-DOG) uptake was restored to normal (male) or above normal (female) levels. In contrast, 2-DOG uptake in slow-twitch soleus muscle of MLC-GLUT4-null mice was not normalized. With the normalization of glucose uptake in fast-twitch skeletal muscle, whole body insulin action was restored in MLC-GLUT4-null mice, as shown by the results of the insulin tolerance test. These results demonstrate that skeletal muscle GLUT4 is a major regulator of skeletal muscle and whole body glucose metabolism. Despite normal skeletal muscle glucose uptake and insulin action, the MLC-GLUT4-null mice exhibited decreased adipose tissue deposits, adipocyte size, and fed plasma FFA levels that are characteristic of GLUT4-null mice. Together these results indicate that the defects in skeletal muscle and whole body glucose metabolism and adipose tissue in GLUT4-null mice arise independently.
Collapse
Affiliation(s)
- T S Tsao
- Department of Biochemistry, Albert Einstein College of Medicine, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Chaika OV, Chaika N, Volle DJ, Wilden PA, Pirrucello SJ, Lewis RE. CSF-1 receptor/insulin receptor chimera permits CSF-1-dependent differentiation of 3T3-L1 preadipocytes. J Biol Chem 1997; 272:11968-74. [PMID: 9115260 DOI: 10.1074/jbc.272.18.11968] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A chimeric growth factor receptor (CSF1R/IR) was constructed by splicing cDNA sequences encoding the extracellular ligand binding domain of the human colony stimulating factor-1 (CSF-1) receptor to sequences encoding the transmembrane and cytoplasmic domains of the human insulin receptor. The addition of CSF-1 to cells transfected with the CSF1R/IR chimera cDNA stimulated the tyrosine phosphorylation of a protein that was immunoprecipitated by an antibody directed against the carboxyl terminus of the insulin receptor. Phosphopeptide maps of the 32P-labeled CSF1R/IR protein revealed the same pattern of phosphorylation observed in 32P-labeled insulin receptor beta subunits. CSF-1 stimulated the tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and Shc in cells expressing the CSF1R/IR chimera. Lipid accumulation and the expression of a differentiation-specific marker demonstrated that 3T3-L1 preadipocytes undergo CSF-1-dependent differentiation when transfected with the CSF1R/IR chimera cDNA but not when transfected with the expression vector alone. A 12-amino acid deletion within the juxtamembrane region of the CSF1R/IR (CSF1R/IRDelta960) blocked CSF-1-stimulated phosphorylation of IRS-1 and Shc but did not inhibit CSF-1-mediated differentiation of 3T3-L1 preadipocytes. These observations indicate that adipocyte differentiation can be initiated by intracellular pathways that do not require tyrosine phosphorylation of IRS-1 or Shc.
Collapse
Affiliation(s)
- O V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
28
|
Patti ME, Kahn CR. Lessons from transgenic and knockout animals about noninsulin-dependent diabetes mellitus. Trends Endocrinol Metab 1996; 7:311-9. [PMID: 18406764 DOI: 10.1016/s1043-2760(96)00154-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The application of transgenic techniques to alter gene expression in vivo has provided new models to evaluate the role of specific genes in the complex pathogenesis of noninsulin-dependent diabetes mellitus (NIDDM). In this review, we summarize methods used to create transgenic animals and highlight results from those models which have contributed to our understanding of the overall pathophysiology of NIDDM. Transgenic animal models have clearly demonstrated the requirement for normal insulin action in skeletal muscle, adipose tissue, and liver, as well as normal insulin secretion by the pancreatic beta-cell, in the maintenance of glucose homeostasis. In addition, these data confirm that isolated defects in single critical genes, including the insulin receptor, IRS-1, and glucokinase, may play a role in the development of some types of insulin resistance and NIDDM. However, it is likely that multiple additive defects, both genetic and acquired, are required to produce the full clinical syndrome typical of more common forms of NIDDM.
Collapse
Affiliation(s)
- M E Patti
- Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|