1
|
Wang H, Geng G, Zhang D, Han F, Ye S. Analysis of microRNA-199a-3p expression in CD4 + T cells of systemic lupus erythematosus. Clin Rheumatol 2023; 42:1683-1694. [PMID: 36763225 DOI: 10.1007/s10067-023-06534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVES Accumulating evidence have suggested microRNAs (miRNAs) play important roles in the pathogenesis of systemic lupus erythematosus (SLE). Here we aimed to explore aberrant expression of miRNAs in CD4+ T cells from SLE patients and their potential function in SLE pathogenesis. METHODS First, next-generation sequencing was performed on CD4+ T cells from four SLE patients and three healthy controls (HCs). Candidate miRNAs were then validated in CD4+ T cells from 97 patients with SLE, 16 patients with rheumatoid arthritis, and 12 HCs using qRT-PCR. Then the relationship between the candidate miRNA and clinical characteristics was analyzed. Bioinformatics analysis and validation of the target genes of the candidate miRNA were performed. RESULTS A total of 66 upregulated miRNAs and 70 downregulated miRNAs were found between SLE and normal CD4+ T cells samples. miR-199a-3p was identified significant upregulation in the CD4+ T cells of lupus patients. High expression of miR-199a-3p was correlated with several clinical characteristics including low C3 level, positive anti-dsDNA antibody, high ESR level, active lupus nephritis, and active disease activity. When distinguishing active LN from non-LN or active lupus from stable lupus, the AUCs of miR-199a-3p were 0.68 and 0.70, respectively. And the expression of miR-199a-3p, involved in JAK-STAT signaling pathway, was negatively correlated with the STAM expression in CD4+ T cells of SLE. CONCLUSION Our study suggested a novel and promising role of miR-199a-3p in CD4+ T cells for SLE. Further studies are needed to precisely determine the function of miR-199a-3p in this disease. Key Points • Aberrant expression of miRNAs in CD4+ T cells and their potential function in SLE pathogenesis remained unclear. • miR-199a-3p in CD4+ T cells plays a novel role in the pathogenesis of SLE and serves as a potential target for SLE.
Collapse
Affiliation(s)
- Huijing Wang
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| | - Guannan Geng
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Gene Editing Core Facility, Center for Excellence in Brain Science and intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Danting Zhang
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Nephrology, Zhejiang University, Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| | - Shuang Ye
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Zimmerman MG, Bowen JR, McDonald CE, Young E, Baric RS, Pulendran B, Suthar MS. STAT5: a Target of Antagonism by Neurotropic Flaviviruses. J Virol 2019; 93:e00665-19. [PMID: 31534033 PMCID: PMC6854481 DOI: 10.1128/jvi.00665-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023] Open
Abstract
Flaviviruses are a diverse group of arthropod-borne viruses responsible for numerous significant public health threats; therefore, understanding the interactions between these viruses and the human immune response remains vital. West Nile virus (WNV) and Zika virus (ZIKV) infect human dendritic cells (DCs) and can block antiviral immune responses in DCs. Previously, we used mRNA sequencing and weighted gene coexpression network analysis (WGCNA) to define molecular signatures of antiviral DC responses following activation of innate immune signaling (RIG-I, MDA5, or type I interferon [IFN] signaling) or infection with WNV. Using this approach, we found that several genes involved in T cell cosignaling and antigen processing were not enriched in DCs during WNV infection. Using cis-regulatory sequence analysis, STAT5 was identified as a regulator of DC activation and immune responses downstream of innate immune signaling that was not activated during either WNV or ZIKV infection. Mechanistically, WNV and ZIKV actively blocked STAT5 phosphorylation downstream of RIG-I, IFN-β, and interleukin-4 (IL-4), but not granulocyte-macrophage colony-stimulating factor (GM-CSF), signaling. Unexpectedly, dengue virus serotypes 1 to 4 (DENV1 to DENV4) and the yellow fever 17D vaccine strain (YFV-17D) did not antagonize STAT5 phosphorylation. In contrast to WNV, ZIKV inhibited JAK1 and TYK2 phosphorylation following type I IFN treatment, suggesting divergent mechanisms used by these viruses to inhibit STAT5 activation. Combined, these findings identify STAT5 as a target of antagonism by specific pathogenic flaviviruses to subvert the immune response in infected DCs.IMPORTANCE Flaviviruses are a diverse group of insect-borne viruses responsible for numerous significant public health threats. Previously, we used a computational biology approach to define molecular signatures of antiviral DC responses following activation of innate immune signaling or infection with West Nile virus (WNV). In this work, we identify STAT5 as a regulator of DC activation and antiviral immune responses downstream of innate immune signaling that was not activated during either WNV or Zika virus (ZIKV) infection. WNV and ZIKV actively blocked STAT5 phosphorylation downstream of RIG-I, IFN-β, and IL-4, but not GM-CSF, signaling. However, other related flaviviruses, dengue virus serotypes 1 to 4 and the yellow fever 17D vaccine strain, did not antagonize STAT5 phosphorylation. Mechanistically, WNV and ZIKV showed differential inhibition of Jak kinases upstream of STAT5, suggesting divergent countermeasures to inhibit STAT5 activation. Combined, these findings identify STAT5 as a target of antagonism by specific pathogenic flaviviruses to subvert antiviral immune responses in human DCs.
Collapse
Affiliation(s)
- Matthew G Zimmerman
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - James R Bowen
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Circe E McDonald
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Ellen Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Bali Pulendran
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Galien R. Janus kinases in inflammatory bowel disease: Four kinases for multiple purposes. Pharmacol Rep 2016; 68:789-96. [DOI: 10.1016/j.pharep.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 02/09/2023]
|
4
|
Liu Y, Wang YR, Ding GH, Yang TS, Yao L, Hua J, He ZG, Qian MP. JAK2 inhibitor combined with DC-activated AFP-specific T-cells enhances antitumor function in a Fas/FasL signal-independent pathway. Onco Targets Ther 2016; 9:4425-33. [PMID: 27499636 PMCID: PMC4959582 DOI: 10.2147/ott.s97941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective Combination therapy for cancer is more effective than using only standard chemo- or radiotherapy. Our previous results showed that dendritic cell-activated α-fetoprotein (AFP)-specific T-cells inhibit tumor in vitro and in vivo. In this study, we focused on antitumor function of CD8+ T-cells combined with or without JAK2 inhibitor. Methods Proliferation and cell cycle were analyzed by CCK-8 and flow cytometry. Western blot was used to analyze the expression level of related protein and signaling pathway. Results We demonstrated reduced viability and induction of apoptosis of tumor cells with combination treatment. Intriguingly, cell cycle was blocked at the G1 phase by using AFP-specific CD8+ T-cells combined with JAK2 inhibitor (AG490). Furthermore, an enhanced expression of BAX but no influence on Fas/FasL was detected from the tumor cells. Conclusion These results indicate a Fas/FasL-independent pathway for cellular apoptosis in cancer therapies with the treatment of AFP-specific CD8+ T-cells combined with JAK2 inhibitor.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hepatobiliary Surgery, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yue-Ru Wang
- Department of Infection, Shanghai First People's Hospital Affiliated to Jiaotong University, Shanghai, People's Republic of China
| | - Guang-Hui Ding
- Department of Hepatobiliary Surgery, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Ting-Song Yang
- Department of Hepatobiliary Surgery, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Le Yao
- Department of Hepatobiliary Surgery, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jie Hua
- Department of Hepatobiliary Surgery, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zhi-Gang He
- Department of Hepatobiliary Surgery, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Ming-Ping Qian
- Department of Hepatobiliary Surgery, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Wu SC, Li LS, Kopp N, Montero J, Chapuy B, Yoda A, Christie AL, Liu H, Christodoulou A, van Bodegom D, van der Zwet J, Layer JV, Tivey T, Lane AA, Ryan JA, Ng SY, DeAngelo DJ, Stone RM, Steensma D, Wadleigh M, Harris M, Mandon E, Ebel N, Andraos R, Romanet V, Dölemeyer A, Sterker D, Zender M, Rodig SJ, Murakami M, Hofmann F, Kuo F, Eck MJ, Silverman LB, Sallan SE, Letai A, Baffert F, Vangrevelinghe E, Radimerski T, Gaul C, Weinstock DM. Activity of the Type II JAK2 Inhibitor CHZ868 in B Cell Acute Lymphoblastic Leukemia. Cancer Cell 2015; 28:29-41. [PMID: 26175414 PMCID: PMC4505625 DOI: 10.1016/j.ccell.2015.06.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/01/2015] [Accepted: 06/14/2015] [Indexed: 02/05/2023]
Abstract
A variety of cancers depend on JAK2 signaling, including the high-risk subset of B cell acute lymphoblastic leukemias (B-ALLs) with CRLF2 rearrangements. Type I JAK2 inhibitors induce paradoxical JAK2 hyperphosphorylation in these leukemias and have limited activity. To improve the efficacy of JAK2 inhibition in B-ALL, we developed the type II inhibitor CHZ868, which stabilizes JAK2 in an inactive conformation. CHZ868 potently suppressed the growth of CRLF2-rearranged human B-ALL cells, abrogated JAK2 signaling, and improved survival in mice with human or murine B-ALL. CHZ868 and dexamethasone synergistically induced apoptosis in JAK2-dependent B-ALLs and further improved in vivo survival compared to CHZ868 alone. These data support the testing of type II JAK2 inhibition in patients with JAK2-dependent leukemias and other disorders.
Collapse
Affiliation(s)
- Shuo-Chieh Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Loretta S Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nadja Kopp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Joan Montero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bjoern Chapuy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Akinori Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Huiyun Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Diederik van Bodegom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jordy van der Zwet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jacob V Layer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Trevor Tivey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jeremy A Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Samuel Y Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David Steensma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Martha Wadleigh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marian Harris
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Emeline Mandon
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Nicolas Ebel
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Rita Andraos
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Vincent Romanet
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Arno Dölemeyer
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Dario Sterker
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Michael Zender
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Masato Murakami
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Francesco Hofmann
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Frank Kuo
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Lewis B Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Stephen E Sallan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Fabienne Baffert
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | | | - Thomas Radimerski
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Christoph Gaul
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland.
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Waters M, Brooks A. JAK2 activation by growth hormone and other cytokines. Biochem J 2015; 466:1-11. [PMID: 25656053 PMCID: PMC4325515 DOI: 10.1042/bj20141293] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022]
Abstract
Growth hormone (GH) and structurally related cytokines regulate a great number of physiological and pathological processes. They do this by coupling their single transmembrane domain (TMD) receptors to cytoplasmic tyrosine kinases, either as homodimers or heterodimers. Recent studies have revealed that many of these receptors exist as constitutive dimers rather than being dimerized as a consequence of ligand binding, which has necessitated a new paradigm for describing their activation process. In the present study, we describe a model for activation of the tyrosine kinase Janus kinase 2 (JAK2) by the GH receptor homodimer based on biochemical data and molecular dynamics simulations. Binding of the bivalent ligand reorientates and rotates the receptor subunits, resulting in a transition from a form with parallel TMDs to one where the TMDs separate at the point of entry into the cytoplasm. This movement slides the pseudokinase inhibitory domain of one JAK kinase away from the kinase domain of the other JAK within the receptor dimer-JAK complex, allowing the two kinase domains to interact and trans-activate. This results in phosphorylation and activation of STATs and other signalling pathways linked to this receptor which then regulate postnatal growth, metabolism and stem cell activation. We believe that this model will apply to most if not all members of the class I cytokine receptor family, and will be useful in the design of small antagonists and agonists of therapeutic value.
Collapse
Key Words
- class i cytokine receptors
- cytokine receptor signalling
- growth hormone
- growth hormone receptor
- janus kinase 2 (jak2)
- srk family kinases
- cntf, ciliary neurotropic factor
- crh, cytokine receptor homology
- ct-1, cardiotropin-1
- ecd, extracellular domain
- epo, erythropoietin
- fniii, fibronectin iii-like
- gh, growth hormone
- gm-csf, granulocyte-macrophage colony-stimulating factor
- jak, janus kinase
- jm, juxtamembrane
- mab, monoclonal antibody
- osm, oncostatin-m
- pk, pseudokinase
- tmd, transmembrane domain
- tpo, thrombopoietin
Collapse
Affiliation(s)
- Michael J. Waters
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
| | - Andrew J. Brooks
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
- †The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, QLD 4072, Australia
| |
Collapse
|
7
|
Abstract
Polycythemia vera (PV) is a chronic myeloproliferative neoplasm defined by erythrocytosis and often accompanied by leukocytosis and thrombocytosis. Current treatment options, including IFN-α and hydroxyurea, effectively manage PV in many patients. However, some high-risk patients, particularly those who become hydroxyurea-intolerant/resistant, may benefit from IFN-α or new treatment options. A better understanding of PV pathophysiology, including the role of the JAK/STAT pathway, has inspired the development of new therapies. Several JAK inhibitors directly target JAK/STAT pathway activation and have been evaluated in Phase II/III trials with promising results. Pegylated variants of IFN-α, which reduce dosing frequency and toxicity associated with recombinant IFN-α, have yielded favorable efficacy results in Phase II trials. Finally, histone deacetylase inhibitors have been developed to manage PV at the level of chromatin-regulated gene expression. The earliest Phase III results from these next-generation therapies are expected in 2014.
Collapse
Affiliation(s)
- Srdan Verstovsek
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 418, Houston, TX 77030, USA
| | - Rami S Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Burgon J, Robertson AL, Sadiku P, Wang X, Hooper-Greenhill E, Prince LR, Walker P, Hoggett EE, Ward JR, Farrow SN, Zuercher WJ, Jeffrey P, Savage CO, Ingham PW, Hurlstone AF, Whyte MKB, Renshaw SA. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1796-805. [PMID: 24431232 PMCID: PMC3921102 DOI: 10.4049/jimmunol.1300087] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Joseph Burgon
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
| | - Anne L. Robertson
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Pranvera Sadiku
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Xingang Wang
- Institute of Molecular and Cellular Biology, 61, Biopolis Drive, Proteos, Singapore
| | - Edward Hooper-Greenhill
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd., Stevenage, United Kingdom
| | - Lynne R. Prince
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Paul Walker
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, The University of Manchester, Manchester, United Kingdom
| | - Emily E. Hoggett
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan R. Ward
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
| | - Stuart N. Farrow
- Respiratory Therapy Area, GlaxoSmithKline Research and Development Ltd., Stevenage, United Kingdom
| | - William J. Zuercher
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Philip Jeffrey
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd., Stevenage, United Kingdom
| | - Caroline O. Savage
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd., Stevenage, United Kingdom
| | - Philip W. Ingham
- Institute of Molecular and Cellular Biology, 61, Biopolis Drive, Proteos, Singapore
| | - Adam F. Hurlstone
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, The University of Manchester, Manchester, United Kingdom
| | - Moira K. B. Whyte
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
The role of JAK-STAT signaling in adipose tissue function. Biochim Biophys Acta Mol Basis Dis 2013; 1842:431-9. [PMID: 23735217 DOI: 10.1016/j.bbadis.2013.05.030] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 01/14/2023]
Abstract
Adipocytes play important roles in lipid storage, energy homeostasis and whole body insulin sensitivity. The JAK-STAT (Janus Kinase-Signal Transducer and Activator of Transcription) pathway mediates a variety of physiological processes including development, hematopoiesis, and inflammation. Although the JAK-STAT signaling pathway occurs in all cells, this pathway can mediate cell specific responses. Studies in the last two decades have identified hormones and cytokines that activate the JAK-STAT signaling pathway. These cytokines and hormones have profound effects on adipocytes. The content of this review will introduce the types of adipocytes and immune cells that make up adipose tissue, the impact of obesity on adipose cellular composition and function, and the general constituents of the JAK-STAT pathway and how its activators regulate adipose tissue development and physiology. A summary of the identification of STAT target genes in adipocytes reveals how these transcription factors impact various areas of adipocyte metabolism including insulin action, modulation of lipid stores, and glucose homeostasis. Lastly, we will evaluate exciting new data linking the JAK-STAT pathway and brown adipose tissue and consider the future outlook in this area of investigation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
|
10
|
Delgado MD, Albajar M, Gomez-Casares MT, Batlle A, León J. MYC oncogene in myeloid neoplasias. Clin Transl Oncol 2012; 15:87-94. [PMID: 22911553 DOI: 10.1007/s12094-012-0926-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/24/2012] [Indexed: 01/13/2023]
Abstract
MYC is a transcription factor that regulates many critical genes for cell proliferation, differentiation, and biomass accumulation. MYC is one of the most prevalent oncogenes found to be altered in human cancer, being deregulated in about 50 % of tumors. Although MYC deregulation has been more frequently associated to lymphoma and lymphoblastic leukemia than to myeloid malignancies, a body of evidence has been gathered showing that MYC plays a relevant role in malignancies derived from the myeloid compartment. The myeloid leukemogenic activity of MYC has been demonstrated in different murine models. Not surprisingly, MYC has been found to be amplified or/and deregulated in the three major types of myeloid neoplasms: acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms, including chronic myeloid leukemia. Here, we review the recent literature describing the involvement of MYC in myeloid tumors.
Collapse
Affiliation(s)
- M Dolores Delgado
- Group of Transcriptional Control and Cancer, Departamento de Biología Molecular, Facultad de Medicina, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria, CSIC, SODERCAN, Avda Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | | | | | | | | |
Collapse
|
11
|
GM-CSF protects rat photoreceptors from death by activating the SRC-dependent signalling and elevating anti-apoptotic factors and neurotrophins. Graefes Arch Clin Exp Ophthalmol 2012; 250:699-712. [PMID: 22297538 DOI: 10.1007/s00417-012-1932-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND The term retinitis pigmentosa (RP) comprises a heterogeneous group of hereditary and sporadic human retinal degenerative diseases. The molecular and cellular events still remain obscure, thus hiding effective therapies. Granulocyte–macrophage colony-stimulating factor (GM-CSF) is a hematopoietic factor which plays a crucial role in protecting neuronal cells. Binding of GM-CSF to its receptor induces several intracellular signaling pathways and kinases. Here we examined whether GM-CSF has a neuroprotective effect on photoreceptor degeneration in Royal College of Surgeons (RCS) rats. METHODS GM-CSF was injected into the vitreous body of RCS rats either once at the onset of photoreceptor degeneration at day 21, or twice at day 21 and day 42. At day 84, when photoreceptor degeneration is completed, the rats were sacrificed, their eyes enucleated and processed for histological staining and counting the surviving photoreceptor nuclei. The expression of apoptosis-related factors, such as BAD, APAF1 and BCL-2 was examined by Western blot analysis. The expression of neurotrophins such as ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF), and glia-derived neurotrophic actor (GDNF), as well as glial fibrillary acidic protein (GFAP) was analysed by Western blots and immunohistochemistry. The expression of JAK/STAT, ERK1/2 and SRC pathway proteins was assessed by Western blot analysis. RESULTS GM-CSF protects significantly against photoreceptor degeneration in comparison to control group. After a single injection of GM-CSF at P21, a 4-fold increase of photoreceptors was observed, whereas eyes which received a repeated injection of GM-CSF at P42 showed a 10-fold increase of photoreceptors. Western blot analysis revealed a decreased BAD and an increased pBAD and BCL-2 expression, indicating changed expression profiles of apoptosis-related proteins. Neurotrophic factors examined are up-regulated, whereas GFAP was also modulated. At cell signalling levels, GM-CSF activates SRC-dependent STAT3 which is independent of JAK2, while proteins of the ERK1/2 pathway are not affected. CONCLUSIONS The data suggest that GM-CSF is a potent therapeutic agent in photoreceptor degeneration caused by mutation of the receptor tyrosine kinase gene (Mertk), and may be also effective in other photoreceptor degeneration.
Collapse
|
12
|
Abstract
Hematopoiesis is a process capable of generating millions of cells every second, as distributed in many cell types. The process is regulated by a number of transcription factors that regulate the differentiation along the distinct lineages and dictate the genetic program that defines each mature phenotype. Myc was first discovered as the oncogene of avian leukemogenic retroviruses; it was later found translocated in human lymphoma. From then on, evidence accumulated showing that c-Myc is one of the transcription factors playing a major role in hematopoiesis. The study of genetically modified mice with overexpression or deletion of Myc has shown that c-Myc is required for the correct balance between self-renewal and differentiation of hematopoietic stem cells (HSCs). Enforced Myc expression in mice leads to reduced HSC pools owing to loss of self-renewal activity at the expense of increased proliferation of progenitor cells and differentiation. c-Myc deficiency consistently results in the accumulation of HSCs. Other models with conditional Myc deletion have demonstrated that different lineages of hematopoietic cells differ in their requirement for c-Myc to regulate their proliferation and differentiation. When transgenic mice overexpress c-Myc or N-Myc in mature cells from the lymphoid or myeloid lineages, the result is lymphoma or leukemia. In agreement, enforced expression of c-Myc blocks the differentiation in several leukemia-derived cell lines capable of differentiating in culture. Not surprising, MYC deregulation is recurrently found in many types of human lymphoma and leukemia. Whereas MYC is deregulated by translocation in Burkitt lymphoma and, less frequently, other types of lymphoma, MYC is frequently overexpressed in acute lymphoblastic and myeloid leukemia, through mechanisms unrelated to chromosomal translocation, and is often associated with disease progression.
Collapse
Affiliation(s)
- M Dolores Delgado
- Departamento de Biología Molecular, Facultad de Medicina and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | | |
Collapse
|
13
|
Liu B, Yang P, Ye Y, Zhou Y, Li L, Tashiro SI, Onodera S, Ikejima T. Role of ROS in the protective effect of silibinin on sodium nitroprusside-induced apoptosis in rat pheochromocytoma PC12 cells. Free Radic Res 2011; 45:835-47. [PMID: 21568648 DOI: 10.3109/10715762.2011.580343] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Silibinin mostly has been used as hepatoprotectants, but it has other interesting activities, e.g. anti-cancer, cardial protective and brain-protective activities. A previous study demonstrated that silibinin protected amyloid β (Aβ)-induced mouse cognitive disorder by behavioural pharmacological observation. This study assessed the effect of silibinin on sodium nitroprusside (SNP)-treated rat pheochromocytoma PC12 cells. Subsequent morphologic observation, flow cytometric analysis and Western blot analysis indicated that treatment with SNP significantly induced apoptosis in PC12 cells. However, silibinin eliminated the apoptotic effect by reactive oxygen species (ROS) generation, especially hydroxyl free radical. Silibinin-induced autophagy through ROS generation when exerting a protective effect and silibinin-induced autophagy also enhanced the ROS generation since 3-methyladenine (3-MA), a specific autophagy inhibitor, decreased the ROS generation and rapamycin, an autophagy inducer, enhanced the ROS generation. Therefore, there exists a positive feedback loop between autophagy and ROS generation. Autophagy prevented SNP-induced apoptosis, since the addition of 3-MA significantly eliminated the protective effect of silibinin. This protective effect was attributed to the generation of ROS and its two downstream Ras/PI3K/NF-κB and Ras/Raf/MEK/ERK pathways. Both prevented PC12 cells from apoptosis. The PI3K/NF-κB pathway induced autophagy to protect PC12 cells, but the Raf/MEK/ERK pathway directly protected PC12 cells bypassing the autophagic effect.
Collapse
Affiliation(s)
- Binbin Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Smit LS, Meyer DJ, Argetsinger LS, Schwartz J, Carter‐Su C. Molecular Events in Growth Hormone–Receptor Interaction and Signaling. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Meads MB, Li ZW, Dalton WS. A novel TNF receptor-associated factor 6 binding domain mediates NF-kappa B signaling by the common cytokine receptor beta subunit. THE JOURNAL OF IMMUNOLOGY 2010; 185:1606-15. [PMID: 20622119 DOI: 10.4049/jimmunol.0902026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GM-CSF, IL-3, and IL-5 are proinflammatory cytokines that control the production and function of myeloid and lymphoid cells. Their receptors are composed of a ligand-specific alpha subunit and a shared common signal-transducing beta subunit (beta common receptor or GM-CSFR beta [beta(c)]). The pleiotropic nature of biologic outcomes mediated by beta(c) and the presence of large, uncharacterized regions of its cytoplasmic domain suggest that much remains to be learned about its downstream signaling pathways. Although some previous work has attempted to link beta(c) with NF-kappaB activation, a definitive mechanism that mediates this pathway has not been described and, to date, it has not been clear whether the receptor can directly activate NF-kappaB. We demonstrate that NF-kappaB activation by beta(c) is dependent on TNFR-associated factor 6 (TRAF6) and that association of TRAF6 with beta(c) requires a consensus-binding motif found in other molecules known to interact with TRAF6. Furthermore, point mutation of this motif abrogated the ability of beta(c) to mediate NF-kappaB activation and reduced the viability of an IL-3-dependent hematopoietic cell line. Because this receptor plays a key role in hematopoiesis and the beta(c) cytoplasmic domain identified in this work mediates hematopoietic cell viability, this new pathway is likely to contribute to immune cell biology. This work is significant because it is the first description of a TRAF6-dependent signaling pathway associated with a type I cytokine receptor. It also suggests that TRAF6, a mediator of TNFR and TLR signaling, may be a common signaling intermediate in diverse cytokine receptor systems.
Collapse
Affiliation(s)
- Mark B Meads
- Department of Experimental Therapeutics and Oncologic Sciences, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | | | |
Collapse
|
16
|
Brumatti G, Salmanidis M, Ekert PG. Crossing paths: interactions between the cell death machinery and growth factor survival signals. Cell Mol Life Sci 2010; 67:1619-30. [PMID: 20157838 PMCID: PMC11115775 DOI: 10.1007/s00018-010-0288-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 01/08/2023]
Abstract
Cytokines and growth factors play a crucial role in the maintenance of haematopoietic homeostasis. They transduce signals that regulate the competing commitments of haematopoietic stem cells, quiescence or proliferation, retention of stem cell pluripotency or differentiation, and survival or demise. When the balance between these commitments and the requirements of the organisms is disturbed, particularly when it favours survival and proliferation, cancer may result. Cell death provoked by loss of growth factor signalling is regulated by the Bcl-2 family of apoptosis regulators, and thus survival messages transduced by growth factors must regulate the activity of these proteins. Many aspects of direct interactions between cytokine signalling and regulation of apoptosis remain elusive. In this review, we explore the mechanisms by which cytokines, in particular Interleukin-3 and granulocyte-macrophage colony-stimulating factor, promote cell survival and suppress apoptosis as models of how cytokine signalling and apoptotic pathways intersect.
Collapse
Affiliation(s)
- Gabriela Brumatti
- Children's Cancer Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Department of Paediatrics, University of Melbourne, Flemington Rd Parkville, Melbourne, 3052, Australia.
| | | | | |
Collapse
|
17
|
Hansen G, Hercus TR, McClure BJ, Stomski FC, Dottore M, Powell J, Ramshaw H, Woodcock JM, Xu Y, Guthridge M, McKinstry WJ, Lopez AF, Parker MW. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 2008; 134:496-507. [PMID: 18692472 DOI: 10.1016/j.cell.2008.05.053] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/18/2008] [Accepted: 06/05/2008] [Indexed: 11/26/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific alpha subunit and a betac subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.
Collapse
Affiliation(s)
- Guido Hansen
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zaks-Zilberman M, Harrington AE, Ishino T, Chaiken IM. Interleukin-5 receptor subunit oligomerization and rearrangement revealed by fluorescence resonance energy transfer imaging. J Biol Chem 2008; 283:13398-406. [PMID: 18326494 DOI: 10.1074/jbc.m710230200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-5 exerts hematopoietic functions through binding to the IL-5 receptor subunits, alpha and betac. Specific assembly steps of full-length subunits as they occur in cell membranes, ultimately leading to receptor activation, are not well understood. We tracked the oligomerization of IL-5 receptor subunits using fluorescence resonance energy transfer (FRET) imaging. Full-length IL-5Ralpha and betac were expressed in Phoenix cells as chimeric proteins fused to enhanced cyan or yellow fluorescent protein (CFP or YFP, respectively). A time- and dose-dependent increase in FRET signal between IL-5Ralpha-CFP and betac-YFP was observed in response to IL-5, indicative of heteromeric receptor alpha-betac subunit interaction. This response was inhibited by AF17121, a peptide antagonist of IL-5Ralpha. Substantial FRET signals with betac-CFP and betac-YFP co-expressed in the absence of IL-5Ralpha demonstrated that betac subunits exist as preformed homo-oligomers. IL-5 had no effect on this betac-alone FRET signal. Interestingly, the addition of IL-5 to cells co-expressing betac-CFP, betac-YFP, and nontagged IL-5Ralpha led to further increase in FRET efficiency. Observation of preformed betac oligomers fits with the view that this form can lead to rapid cellular responses upon IL-5 stimulation. The IL-5-induced effects on betac assembly in the presence of nontagged IL-5Ralpha provide direct evidence that IL-5 can cause higher order rearrangements of betac homo-oligomers. These results suggest that IL-5 and perhaps other betac cytokines (IL-3 and granulocyte/macrophage colony-stimulating factor) trigger cellular responses by the sequential binding of cytokine ligand to the specificity receptor (subunit alpha), followed by binding of the ligand-subunit alpha complex to, and consequent rearrangement of, a ground state form of betac oligomers.
Collapse
Affiliation(s)
- Meirav Zaks-Zilberman
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | |
Collapse
|
19
|
|
20
|
Tortorella C, Simone O, Piazzolla G, Stella I, Antonaci S. Age-related impairment of GM-CSF-induced signalling in neutrophils: role of SHP-1 and SOCS proteins. Ageing Res Rev 2007; 6:81-93. [PMID: 17142110 DOI: 10.1016/j.arr.2006.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/20/2006] [Accepted: 10/28/2006] [Indexed: 11/23/2022]
Abstract
Functional activities of mature human neutrophils are strongly influenced by the pro-inflammatory cytokine granulocyte macrophage-colony stimulating factor (GM-CSF). Accordingly, a defective response to GM-CSF might have dramatic consequences for neutrophil functions and the host defence against infections. Such an event is most likely to occur in senescence. A number of studies have, in fact, reported an impairment of the GM-CSF capacity to prime and/or to activate respiratory burst, as well as to delay apoptotic events, in neutrophils from elderly individuals. In the last 2 decades many efforts have been made to explore at molecular levels the mechanism underlying these defects. Recent studies let us depict a scenario in which an increased activity of inhibitory molecules, such as Src homology domain-containing protein tyrosine phosphatase-1 (SHP-1) and suppressors of cytokine signalling (SOCS), is responsible for the age-related failure of GM-CSF to stimulate neutrophil functions via inhibition of Lyn-, phosphoinositide 3-kinase (PI3-K)/extracellular signal-regulated kinase (ERK)- and signal transducers and activators of transcription (STAT)-dependent pathways. The control of SHP-1 and/or SOCS activity might therefore be an important therapeutic target for the restoration of normal immune responses during senescence.
Collapse
Affiliation(s)
- Cosimo Tortorella
- Department of Internal Medicine, Immunology and Infectious Diseases, University of Bari Medical School, Policlinico, 70124 Bari, Italy.
| | | | | | | | | |
Collapse
|
21
|
Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara SI, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007; 448:561-6. [PMID: 17625570 DOI: 10.1038/nature05945] [Citation(s) in RCA: 4082] [Impact Index Per Article: 226.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 05/17/2007] [Indexed: 02/07/2023]
Abstract
Improvement in the clinical outcome of lung cancer is likely to be achieved by identification of the molecular events that underlie its pathogenesis. Here we show that a small inversion within chromosome 2p results in the formation of a fusion gene comprising portions of the echinoderm microtubule-associated protein-like 4 (EML4) gene and the anaplastic lymphoma kinase (ALK) gene in non-small-cell lung cancer (NSCLC) cells. Mouse 3T3 fibroblasts forced to express this human fusion tyrosine kinase generated transformed foci in culture and subcutaneous tumours in nude mice. The EML4-ALK fusion transcript was detected in 6.7% (5 out of 75) of NSCLC patients examined; these individuals were distinct from those harbouring mutations in the epidermal growth factor receptor gene. Our data demonstrate that a subset of NSCLC patients may express a transforming fusion kinase that is a promising candidate for a therapeutic target as well as for a diagnostic molecular marker in NSCLC.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Anaplastic Lymphoma Kinase
- Animals
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Chromosome Inversion/genetics
- Chromosomes, Human, Pair 2/genetics
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Molecular Sequence Data
- Mutation/genetics
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Receptor Protein-Tyrosine Kinases
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
Collapse
Affiliation(s)
- Manabu Soda
- Division of Functional Genomics, Jichi Medical University, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mukherji A, Janbandhu V, Kumar V. HBx-dependent cell cycle deregulation involves interaction with cyclin E/A-cdk2 complex and destabilization of p27Kip1. Biochem J 2007; 401:247-56. [PMID: 16939421 PMCID: PMC1698683 DOI: 10.1042/bj20061091] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The HBx (X protein of hepatitis B virus) is a promiscuous transactivator implicated to play a key role in hepatocellular carcinoma. However, HBx-regulated molecular events leading to deregulation of cell cycle or establishment of a permissive environment for hepatocarcinogenesis are not fully understood. Our cell culture-based studies suggested that HBx had a profound effect on cell cycle progression even in the absence of serum. HBx presence led to an early and sustained level of cyclin-cdk2 complex during the cell cycle combined with increased protein kinase activity of cdk2 heralding an early proliferative signal. The increased cdk2 activity also led to an early proteasomal degradation of p27(Kip1) that could be reversed by HBx-specific RNA interference and blocked by a chemical inhibitor of cdk2 or the T187A mutant of p27. Further, our co-immunoprecipitation and in vitro binding studies with recombinant proteins suggested a direct interaction between HBx and the cyclin E/A-cdk2 complex. Interference with different signalling cascades known to be activated by HBx suggested a constitutive requirement of Src kinases for the association of HBx with these complexes. Notably, the HBx mutant that did not interact with cyclin E/A failed to destabilize p27(Kip1) or deregulate the cell cycle. Thus HBx appears to deregulate the cell cycle by interacting with the key cell cycle regulators independent of its well-established role in transactivation.
Collapse
Affiliation(s)
- Atish Mukherji
- Virology Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Vaibhao C. Janbandhu
- Virology Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi-110067, India
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Huang HM, Lee YL, Chang TW. JAK1 N-terminus binds to conserved Box 1 and Box 2 motifs of cytokine receptor common beta subunit but signal activation requires JAK1 C-terminus. J Cell Biochem 2006; 99:1078-84. [PMID: 16767694 DOI: 10.1002/jcb.20942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The human interleukin-3 receptor (hIL-3R) consists of a unique alpha subunit (hIL-3Ralpha) and a common beta subunit (betac). Binding of IL-3 to IL-3R activates Janus kinases JAK1 and JAK2. Our previously study showed that JAK2 and JAK1 were constitutively associated with the hIL-3Ralpha and betac subunits, respectively. In this study, we further demonstrate that JAK2 binds to the intracellular domain of hIL-3Ralpha and JAK1 binds to the Box 1 and Box 2 motifs of betac using GST-hIL-3R fusion proteins in pull-down assays. JAK1 mutational analysis revealed that its JH7-3 domains bound directly to the Box 1 and Box 2 motifs of betac. We further examined the role of JAK1 JH7-3 domains in JAK1 and JAK2-mediated signaling using the CDJAKs fusion proteins, which consisted of a CD16 extracellular domain, a CD7 transmembrane domain, and either JAK1 (CDJAK1), JAK2 (CDJAK2), or JAK1-JH7-3 domains (CDJAK1-JH7-3) as intracellular domains. Anti-CD16 antibody crosslinking of wild type fusion proteins CDJAK1 with CDJAK2 could mimic IL-3 signaling, however, the crosslinking of fusion proteins CDJAK1-JH7-3 with CDJAK2 failed to activate downstream proteins. These results suggest that the JAK1-JH7-3 domains are required for betac interaction and abolish wild type JAK1 and JAK2-mediated signaling.
Collapse
Affiliation(s)
- Huei-Mei Huang
- Graduate Institute of Cell and Molecular Biology, Taipei Medical University, Taipei, Taiwan.
| | | | | |
Collapse
|
24
|
Choi JH, Kim HS, Kim SH, Yang YR, Bae YS, Chang JS, Kwon HM, Ryu SH, Suh PG. Phospholipase Cgamma1 negatively regulates growth hormone signalling by forming a ternary complex with Jak2 and protein tyrosine phosphatase-1B. Nat Cell Biol 2006; 8:1389-97. [PMID: 17128263 DOI: 10.1038/ncb1509] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 10/06/2006] [Indexed: 01/20/2023]
Abstract
Growth hormone binds to its membrane receptor (GHR), whereby it regulates many cellular functions, including proliferation, differentiation and chemotaxis. However, although the activation of growth hormone-mediated signalling is well understood, the precise mechanism responsible for its regulation has not been elucidated. Here, we demonstrate that phospholipase Cgamma1 (PLCgamma1) modulates the action of growth hormone-mediated signalling by interacting with tyrosine kinase Jak2 (janus kinase 2) in a growth hormone-dependent manner. In the absence of PLCgamma1 (PLCgamma1(-/-)), growth hormone-induced JAK2 and STAT5 phosphorylation significantly increased in mouse embryonic fibroblasts (MEFs). Furthermore, the re-expression of PLCgamma1 reduced growth hormone-induced Jak2 activation. Growth hormone-induced Jak2 phosphorylation was enhanced by siRNA-specific knockdown of PLCgamma1. Interestingly, PLCgamma1 physically linked Jak2 and protein tyrosine phosphatase-1B (PTP-1B) by binding to both using different domains, and this process was implicated in the modulation of cytokine signalling through Jak2. In addition, in PLCgamma1(-/-) MEFs, growth hormone-dependent c-Fos activation was upregulated and growth hormone-induced proliferation was potentiated. These results suggest that PLCgamma1 has a key function in the regulation of growth hormone-mediated signalling by negatively regulating Jak2 activation.
Collapse
Affiliation(s)
- Jang Hyun Choi
- National Research Laboratory of Signaling Network, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fortin CF, Larbi A, Dupuis G, Lesur O, Fülöp T. GM-CSF activates the Jak/STAT pathway to rescue polymorphonuclear neutrophils from spontaneous apoptosis in young but not elderly individuals. Biogerontology 2006; 8:173-87. [PMID: 17086367 DOI: 10.1007/s10522-006-9067-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
Polymorphonuclear neutrophils (PMN) are the first cells to be recruited to the site of tissular aggression. They have a short-life span and die by spontaneous apoptosis. However, their life span and functional activities can be extended in vitro by a number of proinflammatory cytokines, including the granulocyte-macrophage colony stimulating factor (GM-CSF). We have reported that the protective effect of GM-CSF did not occur in PMN of elderly subjects. Data reported here showed that this difference was not due to a change in the expression of the GM-CSF receptor in the PMN of elderly individuals compared to young subjects. Furthermore, we showed here that GM-CSF activated the Janus kinase/signal transducer and activator of transcription (Jak/STAT) pathway and this activation appeared to be maintained for an extended period of time (18 h) playing an important role in the GM-CSF induced delayed PMN apoptosis. In marked contrast, GM-CSF had no effects on Jak2 activation in PMN of elderly individuals. We found that an inhibitor of Jak2 activation (AG490) abolished the protective effect of GM-CSF in PMN from young donors, however had no effect in PMN of elderly subjects. GM-CSF induced a transient activation of STAT3 and STAT5 in PMN of young donors but failed to activate to the same extent these signal transducers in PMN of elderly donors. The levels of proCaspase-3 were reduced in PMN of young donors treated with GM-CSF for 18 h but remained unchanged in PMN of elderly subjects treated under the same conditions compared to the untreated PMN. Our data are consistent with the interpretation that, at least in part (1) the protective effect of GM-CSF against apoptosis results from the activation of the Jak/STAT pathway and (2) decreased rescue from apoptosis in PMN of elderly is related to a failure of GM-CSF to activate this pathway in these cells.
Collapse
Affiliation(s)
- Carl F Fortin
- Department of Medicine, Research Center on Aging, Laboratory of Biogerontology, Sherbrooke Geriatric University Institute, 1036, rue Belvèdere sud, J1H 4C4 Sherbrooke, QC, Canada
| | | | | | | | | |
Collapse
|
26
|
Murphy JM, Young IG. IL-3, IL-5, and GM-CSF signaling: crystal structure of the human beta-common receptor. VITAMINS AND HORMONES 2006; 74:1-30. [PMID: 17027509 DOI: 10.1016/s0083-6729(06)74001-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cytokines, interleukin-3 (IL-3), interleukin-5 (IL-5), and granulocyte-macrophage colony stimulating factor (GM-CSF), are polypeptide growth factors that exhibit overlapping activities in the regulation of hematopoietic cells. They appear to be primarily involved in inducible hematopoiesis in response to infections and are involved in the pathogenesis of allergic and inflammatory diseases and possibly in leukemia. The X-ray structure of the beta common (betac) receptor ectodomain has given new insights into the structural biology of signaling by IL-3, IL-5, and GM-CSF. This receptor is shared between the three ligands and functions together with three ligand-specific alpha-subunits. The structure shows betac is an intertwined homodimer in which each chain contains four domains with approximate fibronectin type-III topology. The two betac-subunits that compose the homodimer are interlocked by virtue of the swapping of beta-strands between domain 1 of one subunit and domain 3 of the other subunit. Site-directed mutagenesis has shown that the interface between domains 1 and 4 in this unique structure forms the functional epitope. This epitope is similar to those of other members of the cytokine class I receptor family but is novel in that it is formed by two different receptor chains. The chapter also reviews knowledge on the closely related mouse beta(IL-3) receptor and on the alpha-subunit-ligand interactions. The knowledge on the two beta receptors is placed in context with advances in understanding of the structural biology of other members of the cytokine class I receptor family.
Collapse
Affiliation(s)
- James M Murphy
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia 0200
| | | |
Collapse
|
27
|
TAKEMURA T, KANBE K, TAKEUCHI K, INOUE K, TAKAGISHI K. Serum matrix metalloproteinase activity relating to cartilage destruction in rheumatoid arthritis. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1479-8077.2005.00149.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Huang A, Zhang YY, Chen K, Hatakeyama K, Keaney JF. Cytokine-stimulated GTP cyclohydrolase I expression in endothelial cells requires coordinated activation of nuclear factor-kappaB and Stat1/Stat3. Circ Res 2005; 96:164-71. [PMID: 15604419 DOI: 10.1161/01.res.0000153669.24827.df] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial production of nitric oxide (NO) is dependent on adequate cellular levels of tetrahydrobiopterin (BH4), an important cofactor for the nitric oxide synthases. Vascular diseases are often characterized by vessel wall inflammation and cytokine treatment of endothelial cells increases BH4 levels, in part through the induction of GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme for BH4 biosynthesis. However, the molecular mechanisms of cytokine-mediated GTPCH I induction in the endothelium are not entirely clear. We sought to investigate the signaling pathways whereby cytokines induce GTPCH I expression in human umbilical vein endothelial cells (HUVECs). Interferon-gamma (IFN-gamma) induced endothelial cell GTPCH I protein and BH4 modestly, whereas high-level induction required combinations of IFN-gamma and tumor necrosis factor-alpha (TNF-alpha). In the presence of IFN-gamma, TNF-alpha increased GTPCH I mRNA in a manner dependent on nuclear factor-kappaB (NF-kappaB), as this effect was abrogated by overexpression of a dominant-negative IkappaB construct. HUVEC IFN-gamma treatment resulted in signal transducer and activator of transcription 1 (Stat1) activation and DNA binding in a Jak2-dependent manner, as this was inhibited by AG490. Conversely, overexpression of Jak2 effectively substituted for IFN-gamma in supporting TNF-alpha-mediated GTPCH I induction. The role of IFN-gamma was also Stat1-dependent as Stat1-null cells exhibited no GTPCH I induction in response to cytokines. However, Stat1 activation with oncostatin M failed to support TNF-alpha-mediated GTPCH I induction because of concomitant Stat3 activation. Consistent with this notion, siRNA-mediated Stat3 gene silencing allowed oncostatin M to substitute for IFN-gamma in this system. These data implicate both NF-kappaB and Stat1 in endothelial cell cytokine-stimulated GTPCH I induction and highlight the role of Stat3 in modulating Stat1-supported gene transcription. Thus, IFN-gamma and TNF-alpha exert distinct but cooperative roles for BH4 biosynthesis in endothelium that may have important implications for vascular function during vascular inflammation.
Collapse
Affiliation(s)
- Annong Huang
- Evans Memorial Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Mass 02118, USA
| | | | | | | | | |
Collapse
|
29
|
Kurita R, Tabata Y, Sagara H, Arai KI, Watanabe S. A novel smoothelin-like, actin-binding protein required for choroidal fissure closure in zebrafish. Biochem Biophys Res Commun 2004; 313:1092-100. [PMID: 14706655 DOI: 10.1016/j.bbrc.2003.12.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A gene expressed in the choroidal fissure of the zebrafish eye was isolated. This gene, designated #61, contained significant homology with the previously reported actin-binding protein smoothelin. During zebrafish embryogenesis, #61 expression was first detected in the lateral mesoderm of the mid-trunk region, and then strong expression was observed in the choroid fissure of the eye and in a part of the brain at 30 hpf. Abrogation of #61 activity by an antisense morpholino oligonucleotide resulted in the failure of closure of the choroid fissure at 30 hpf. In addition, hemorrhage was observed at the caudal side of the eye. Detailed analysis indicated that leakage of blood may have arisen from the hyaloid vessels and the primordial midbrain channels. On the other hand, retinal differentiation and optic nerve formation seemed normal. Taken together, our data suggest that gene #61 may play a role in the formation of hyaloid vessels and subsequent choroid fissure closure.
Collapse
Affiliation(s)
- Ryo Kurita
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
30
|
Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18:189-218. [PMID: 14737178 DOI: 10.1038/sj.leu.2403241] [Citation(s) in RCA: 522] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The roles of the JAK/STAT, Raf/MEK/ERK and PI3K/Akt signal transduction pathways and the BCR-ABL oncoprotein in leukemogenesis and their importance in the regulation of cell cycle progression and apoptosis are discussed in this review. These pathways have evolved regulatory proteins, which serve to limit their proliferative and antiapoptotic effects. Small molecular weight cell membrane-permeable drugs that target these pathways have been developed for leukemia therapy. One such example is imatinib mesylate, which targets the BCR-ABL kinase as well as a few structurally related kinases. This drug has proven to be effective in the treatment of CML patients. However, leukemic cells have evolved mechanisms to become resistant to this drug. A means to combat drug resistance is to target other prominent signaling components involved in the pathway or to inhibit BCR-ABL by other mechanisms. Treatment of imatinib-resistant leukemia cells with drugs that target Ras (farnysyl transferase inhibitors) or with the protein destabilizer geldanamycin has proven to be a means to inhibit the growth of resistant cells. This review will tie together three important signal transduction pathways involved in the regulation of hematopoietic cell growth and indicate how their expression is dysregulated by the BCR-ABL oncoprotein.
Collapse
Affiliation(s)
- L S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | |
Collapse
|
31
|
Brown AL, Peters M, D'Andrea RJ, Gonda TJ. Constitutive mutants of the GM-CSF receptor reveal multiple pathways leading to myeloid cell survival, proliferation, and granulocyte-macrophage differentiation. Blood 2003; 103:507-16. [PMID: 14504109 DOI: 10.1182/blood-2003-05-1435] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) family of receptors promotes the survival, proliferation, and differentiation of cells of the myeloid compartment. Several signaling pathways are activated downstream of the receptor, however it is not clear how these induce specific biologic outcomes. We have previously identified 2 classes of constitutively active mutants of the shared signaling subunit, human (h) betac, of the human GM-CSF/interleukin-3 (IL-3)/IL-5 receptors that exhibit different modes of signaling. In a factor-dependent bipotential myeloid cell line, FDB1, an activated mutant containing a substitution in the transmembrane domain (V449E) induces factor-independent proliferation and survival, while mutants in the extracellular domain induce factor-independent granulocyte-macrophage differentiation. Here we have used further mutational analysis to demonstrate that there are nonredundant functions for several regions of the cytoplasmic domain with regard to mediating proliferation, viability, and differentiation, which have not been revealed by previous studies with the wild-type GM-CSF receptor. This unique lack of redundancy has revealed an association of a conserved membrane-proximal region with viability signaling and a critical but distinct role for tyrosine 577 in the activities of each class of mutant.
Collapse
Affiliation(s)
- Anna L Brown
- Child Health Research Institute, 72 King William Rd, North Adelaide, South Australia, 5006 Australia.
| | | | | | | |
Collapse
|
32
|
Yu WM, Hawley TS, Hawley RG, Qu CK. Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling. Oncogene 2003; 22:5995-6004. [PMID: 12955078 DOI: 10.1038/sj.onc.1206846] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SHP-2 tyrosine phosphatase is highly expressed in hematopoietic cells, however, the function of SHP-2 in hematopoietic cell signaling is not well understood. Here we focus on the role of SHP-2 phosphatase in the signal transduction of interleukin (IL)-3, a cytokine involved in hematopoietic cell survival, proliferation, and differentiation. We established immortalized SHP-2(-/-) hematopoietic cell pools and showed that IL-3-induced proliferative response was diminished in SHP-2(-/-) cells. Moreover, inhibition of the catalytic activity of SHP-2 in wild-type (WT) bone marrow hematopoietic progenitor cells and Ba/F3 cells by overexpression of catalytically inactive SHP-2 mutant suppressed their differentiative and proliferative responses to IL-3, demonstrating an important positive role for SHP-2 in IL-3 signal transduction. Further biochemical analyses revealed that IL-3-induced Jak/Stat, Erk, and PI3 kinase pathways in SHP-2(-/-) cells were impaired and reintroduction of WT SHP-2 into mutant cells partially restored IL-3 signaling. Interestingly, in catalytically inactive SHP-2-overexpressing Ba/F3 cells, although IL-3-induced activation of Jak2 and Erk kinases was reduced and shortened, PI3 kinase activation remained unaltered. Taken together, these results suggest that SHP-2 tyrosine phosphatase plays multiple roles in IL-3 signal transduction, functioning in both catalytic-dependent and -independent manners in the Jak/Stat, Erk, and PI3 kinase pathways.
Collapse
Affiliation(s)
- Wen-Mei Yu
- Department of Hematopoiesis, Jerome H Holland Laboratory for the Biomedical Sciences, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, USA
| | | | | | | |
Collapse
|
33
|
Friedman AD, Nimbalkar D, Quelle FW. Erythropoietin receptors associate with a ubiquitin ligase, p33RUL, and require its activity for erythropoietin-induced proliferation. J Biol Chem 2003; 278:26851-61. [PMID: 12746455 DOI: 10.1074/jbc.m210039200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proliferation and survival of hematopoietic cells is strictly regulated by cytokine growth factors that act through receptors of the Type I cytokine receptor family, including erythropoietin (Epo) and its receptor, EpoR. Mitogenic signaling by these receptors depends on activation of Jak tyrosine kinases. However, other required components of this pathway have not been fully identified. In a screen for proteins that interact with EpoR and Jak2, we identified a novel member of the U-box family of ubiquitin ligases. This receptor-associated ubiquitin ligase, RUL, co-precipitated with EpoR from mammalian cells and mediated ubiquitination of EpoR. Also, endogenously expressed RUL was rapidly and transiently phosphorylated on serine after cytokine treatment of factor-dependent hematopoietic cells. Expression of ubiquitin ligase-deficient mutants of RUL inhibited Epo-induced expression of c-myc and bcl-2, two immediate-early genes normally associated with Epo-induced cell growth. Consistent with that finding, expression of mutant RUL also inhibited Epo-dependent proliferation and survival of factor-dependent cells. Together, these observations suggest that RUL is a required component of mitogenic signaling by EpoR. We also show that RUL is phosphorylated in response to growth factors that act through non-cytokine receptors, suggesting that RUL may function as a common regulator of mitogenesis.
Collapse
Affiliation(s)
- Ann D Friedman
- Department of Pharmacology and The Immunology Graduate Program, The University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
34
|
Ruchatz H, Coluccia AML, Stano P, Marchesi E, Gambacorti-Passerini C. Constitutive activation of Jak2 contributes to proliferation and resistance to apoptosis in NPM/ALK-transformed cells. Exp Hematol 2003; 31:309-15. [PMID: 12691918 DOI: 10.1016/s0301-472x(03)00007-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The t(2;5) translocation results in a 80-kDa oncogenic fusion protein consisting of NPM and the kinase domain of the tyrosine kinase ALK and is present in over half the cases of anaplastic large cell lymphoma (ALCL). NPM/ALK exerts its transforming potential via activation of multiple signaling pathways promoting growth factor independence and protection from apoptosis. Jak/Stat signaling is aberrantly activated in several human hematopoietic malignancies. We investigated the role of Jak2 in the context of NPM/ALK-mediated oncogenesis. MATERIALS AND METHODS Constitutive tyrosine phosphorylation of Jak2 was analyzed by Jak2 immunoprecipitation and subsequent anti-phosphotyrosine Western blotting. NPM/ALK-transformed cells were treated with the Jak2 inhibitor AG490 or transfected with wild-type or dominant-negative Jak2 expression constructs to measure 3[H]-thymidine incorporation. Apoptosis was assessed by flow cytometric analysis of annexin V-stained cells. The effect of Jak2 on Stat5-dependent transcriptional activity was measured by beta-casein promoter-dependent luciferase expression. RESULTS Jak2 was found to be constitutively tyrosine phosphorylated in ALCL cells and in NPM/ALK-transformed hematopoietic cells. Also, NPM/ALK was present in immunoprecipitates of Jak2. Inhibition of Jak2 led to a reduction of NPM/ALK-mediated proliferation and induced apoptosis. Stat5-dependent transcriptional activity was inhibited by transfection of NPM/ALK-transformed cells with a dominant-negative Jak2 expression construct or treatment with AG490. CONCLUSION Constitutive activation of Jak2 constitutes a pro-proliferative, anti-apoptotic signaling pathway in NPM/ALK-transformed hematopoietic cells.
Collapse
Affiliation(s)
- Holger Ruchatz
- The National Cancer Institute, Oncogenic Fusion Proteins Unit, Department of Experimental Oncology, Milan, Italy
| | | | | | | | | |
Collapse
|
35
|
Xie S, Lin H, Sun T, Arlinghaus RB. Jak2 is involved in c-Myc induction by Bcr-Abl. Oncogene 2002; 21:7137-46. [PMID: 12370803 DOI: 10.1038/sj.onc.1205942] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2002] [Revised: 07/31/2002] [Accepted: 08/07/2002] [Indexed: 11/09/2022]
Abstract
We have previously shown that the Jak2 tyrosine kinase is activated in Bcr-Abl positive cell lines and blood cells from CML blast crisis patients by tyrosine phosphorylation. We are searching for downstream targets of Jak2 in Bcr-Abl positive cells. It is known that c-Myc expression is required for the oncogenic effects of Bcr-Abl, and that over-expression of c-Myc complements the transformation defect of the Bcr-Abl SH2 deletion mutant. Moreover, the Bcr-Abl SH2 deletion mutant and an Abl C-terminal deletion mutant are deficient in activating c-Myc expression. Since the Jak2 binds to the C-terminal domain of Bcr-Abl and optimal Jak2 activation requires the SH2 domain, we tested whether Jak2 was involved in c-Myc protein induction by Bcr-Abl. We treated the 32Dp210 Bcr-Abl cells with the Jak2 specific tyrosine kinase inhibitor, AG490, and found that this drug, like the Abl tyrosine kinase inhibitor STI-571, inhibited c-Myc protein induction by Bcr-Abl. Treatment of 32Dp210 Bcr-Abl cells with AG490 also inhibited c-MYC RNA expression. It is also known that c-Myc protein is a labile protein that is increased in amounts in response to various growth factors by a mechanism not involving new Myc protein formation. Treatment of 32Dp210 Bcr-Abl cells with both the proteasome inhibitor MG132 and AG490 blocked the reduction of the c-Myc protein observed by AG490 alone. An adaptor protein SH2-Bbeta is involved in the enhancement of the tyrosine kinase activity of Jak2 following ligand/receptor interaction. In this regard we showed that the Jak2/Bcr-Abl complex contains SH2-Bbeta. Expression of the SH2-Bbeta R555E mutant in 32Dp210 Bcr-Abl cells reduced c-Myc expression about 40% compared to a vector control. Interestingly, we found the reduction of the c-Myc protein in several clones of dominant-negative (DN) Jak2 expressing K562 cells correlated very well with the reduction of tumor growth of these cells in nude mice as compared to vector transfected K562 cells. Both STI-571 and AG490 also induced apoptosis in 32Dp210 cells. Of interest, IL-3 containing medium reversed the STI-571 induced apoptosis of 32Dp210 cells but did not reverse the induction of apoptosis by AG490, which strongly supports the specificity of the inhibitory effects of AG490 on the Jak2 tyrosine kinase. In summary, our findings indicate that Jak2 mediates the increase in c-Myc expression that is induced by Bcr-Abl. Our results indicate that activated Jak2 not only mediates an increase of c-MYC RNA expression but also interferes with proteasome-dependent degradation of c-Myc protein.
Collapse
Affiliation(s)
- Shanhai Xie
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, TX 77030, USA
| | | | | | | |
Collapse
|
36
|
Kamijo T, Koike K, Nakazawa Y, Takeuchi K, Ishii E, Komiyama A. Synergism between stem cell factor and granulocyte-macrophage colony-stimulating factor on cell proliferation by induction of cyclins. Cytokine 2002; 19:267-75. [PMID: 12421569 DOI: 10.1006/cyto.2002.1966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synergism between stem cell factor (SCF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to be essential for hematopoietic cell proliferation. Since HML-2 cells proliferate exponentially in the presence of SCF and GM-CSF together, we analyzed the molecular mechanism of the interaction between these two factors in the cells. An immediate-early gene product, c-myc, was additively upregulated in HML-2 cells by addition of a combination of SCF and GM-CSF. c-myc antisense oligonucleotides effectively suppressed cell proliferation and downregulated the induction of D3, E, A, and B cyclins in HML-2 cells stimulated with the two-factor combination. HML-2 cells arrested at the G0/G1 phase with SCF alone and expressed modest amounts of c-myc and cyclin D3, but not cyclin E. With GM-CSF treatment alone, the cells could not progress to the G2/M phase and expressed c-myc, cyclin D3 and cyclin E but not cyclins A or B. The addition of the counterpart cytokine resulted in cell cycle completion by induction of the deficient cyclins. Taken together, it appears that the induction of c-myc is an indispensable event in the proliferation of HML-2 cells and that the cytokines SCF and GM-CSF interact reciprocally for expression of all cyclins required for cell cycle progression.
Collapse
Affiliation(s)
- Takehiko Kamijo
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Gallo A, Cuozzo C, Esposito I, Maggiolini M, Bonofiglio D, Vivacqua A, Garramone M, Weiss C, Bohmann D, Musti AM. Menin uncouples Elk-1, JunD and c-Jun phosphorylation from MAP kinase activation. Oncogene 2002; 21:6434-45. [PMID: 12226747 DOI: 10.1038/sj.onc.1205822] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Revised: 06/18/2002] [Accepted: 06/28/2002] [Indexed: 11/09/2022]
Abstract
Menin, a nuclear protein encoded by the tumor suppressor gene MEN1, interacts with the AP-1 transcription factor JunD and inhibits its transcriptional activity. In addition, overexpression of Menin counteracts Ras-induced tumorigenesis. We show that Menin inhibits ERK-dependent phosphorylation and activation of both JunD and the Ets-domain transcription factor Elk-1. We also show that Menin represses the inducible activity of the c-fos promoter. Furthermore, Menin expression inhibits Jun N-terminal kinase (JNK)-mediated phosphorylation of both JunD and c-Jun. Kinase assays show that Menin overexpression does not interfere with activation of either ERK2 or JNK1, suggesting that Menin acts at a level downstream of MAPK activation. An N-terminal deletion mutant of Menin that cannot inhibit JunD phosphorylation by JNK, can still repress JunD phosphorylation by ERK2, suggesting that Menin interferes with ERK and JNK pathways through two distinct inhibitory mechanisms. Taken together, our data suggest that Menin uncouples ERK and JNK activation from phosphorylation of their nuclear targets Elk-1, JunD and c-Jun, hence inhibiting accumulation of active Fos/Jun heterodimers. This study provides new molecular insights into the tumor suppressor function of Menin and suggests a mechanism by which Menin may interfere with Ras-dependent cell transformation and oncogenesis.
Collapse
Affiliation(s)
- Adriana Gallo
- Centro di Endocrinologia e Oncologia Sperimentale del CNR, Dipartimento di Biologia e Patologia Cellulare e Molecolare, Universita' di Napoli 'FedericoII', 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Watanabe S, Murakami T, Nakamura T, Morimoto C, Arai KI. Human GM-CSF induces HIV-1 LTR by multiple signalling pathways. Biochimie 2002; 84:633-42. [PMID: 12453635 DOI: 10.1016/s0300-9084(02)01433-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) gene expression is known to be affected by numerous cytokines or growth factors. However, the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on long terminal repeat (LTR)-mediated transcription of HIV-1 still remains unknown. By transient transfection experiments with HIV-1 LTR reporter constructs, we showed that strong LTR-mediated activation was induced by GM-CSF in mouse Ba/F3 cells expressing human GM-CSF receptors (GM-CSFR). Mutational analysis of the HIV-1 LTR reporters revealed that both NF-kappaB and Sp1 binding sites play important roles as positive regulatory elements. Analysis of various mutants of the cytoplasmic region of GM-CSFR indicated that both the conserved membrane proximal region and tyrosine residues located in the distal part of the beta subunit were required for HIV-1 LTR activation. Possible involvement of MAPK and PI3-K signalling pathways was suggested by the partial inhibition by wortmannin, a specific inhibitor of the PI3-K pathway, and enhancement by constitutively active MEK1, of HIV-1 LTR activation. However, the MEK1 pathway is not essential since MEK1 inhibitor PD98059 did not suppress GM-CSF-induced HIV-1-LTR activation. Further analyses of GM-CSFR mutants suggested that some other unknown signalling pathway also participates in GM-CSF-induced HIV-1 LTR activation. Taken together, the data suggest that GM-CSF could upregulate the LTR-driven transcription of HIV-1 through modulation of NF-kappaB and SP1 by multiple signalling pathways.
Collapse
Affiliation(s)
- Sumiko Watanabe
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | |
Collapse
|
39
|
Cárcamo JM, Bórquez-Ojeda O, Golde DW. Vitamin C inhibits granulocyte macrophage-colony-stimulating factor-induced signaling pathways. Blood 2002; 99:3205-12. [PMID: 11964284 DOI: 10.1182/blood.v99.9.3205] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vitamin C is present in the cytosol as ascorbic acid, functioning primarily as a cofactor for enzymatic reactions and as an antioxidant to scavenge free radicals. Human granulocyte macrophage-colony-stimulating factor (GM-CSF) induces an increase in reactive oxygen species (ROS) and uses ROS for some signaling functions. We therefore investigated the effect of vitamin C on GM-CSF-mediated responses. Loading U937 cells with vitamin C decreased intracellular levels of ROS and inhibited the production of ROS induced by GM-CSF. Vitamin C suppressed GM-CSF-dependent phosphorylation of the signal transducer and activator of transcription 5 (Stat-5) and mitogen-activated protein (MAP) kinase (Erk1 and Erk2) in a dose-dependent manner as was phosphorylation of MAP kinase induced by both interleukin 3 (IL-3) and GM-CSF in HL-60 cells. In 293T cells transfected with alpha and beta GM-CSF receptor subunits (alphaGMR and betaGMR), GM-CSF-induced phosphorylation of betaGMR and Jak-2 activation was suppressed by vitamin C loading. GM-CSF-mediated transcriptional activation of a luciferase reporter construct containing STAT-binding sites was also inhibited by vitamin C. These results substantiate the importance of ROS in GM-CSF signaling and indicate a role for vitamin C in downmodulating GM-CSF signaling responses. Our findings point to vitamin C as a regulator of cytokine redox-signal transduction in host defense cells and a possible role in controlling inflammatory responses.
Collapse
Affiliation(s)
- Juan M Cárcamo
- Program in Molecular Pharmacology and Therapeutics, Department of Clinical Chemistry and Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
40
|
Zeng R, Aoki Y, Yoshida M, Arai KI, Watanabe S. Stat5B shuttles between cytoplasm and nucleus in a cytokine-dependent and -independent manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4567-75. [PMID: 11971004 DOI: 10.4049/jimmunol.168.9.4567] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In response to cytokine stimuli, Stats are phosphorylated and translocated to the nucleus to activate target genes. Then, most are dephosphorylated and returned to the cytoplasm. Using Ba/F3 cells, we found that the nuclear export of Stat5B by cytokine depletion was inhibited by leptomycin B (LMB), a specific inhibitor of nuclear export receptor chromosome region maintenance 1. Interestingly, LMB treatment in the absence of cytokine led to the accumulation of Stat5B in the nucleus, suggesting that Stat5B shuttles between the nucleus and the cytoplasm as a monomer without cytokine stimulation. This notion is supported by the observation that LMB-induced accumulation of Stat5B in the nucleus was also observed with Stat5B having a mutated tyrosine 699, which is essential for dimer formation. Using a series of mutant Stat5Bs, we identified a part of the coiled coil domain to be a critical region for monomer nuclear import and a more N-terminal region to be critical for the cytokine stimulation dependent import of Stat5B. Taken together, we propose a model in which Stat5B shuttles between the nucleus and cytoplasm by two different mechanisms, one being a factor-independent constitutive shuttling by monomeric form, and the other, a factor stimulation-dependent one regulated by tyrosine phosphorylation and subsequent dimerization.
Collapse
Affiliation(s)
- Rong Zeng
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
41
|
Valdembri D, Serini G, Vacca A, Ribatti D, Bussolino F. In vivo activation of JAK2/STAT-3 pathway during angiogenesis induced by GM-CSF. FASEB J 2002; 16:225-7. [PMID: 11744626 DOI: 10.1096/fj.01-0633fje] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Besides the regulation of hematopoiesis, granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the expression of a functional program in cultured endothelial cells (ECs) related to angiogenesis and to the their survival in bone marrow microenvironment. ECs express the specific GM-CSF receptor that signals through the recruitment and the activation of Janus kinase (JAK)2 (Soldi et al., Blood 89, 863-872, 1987). We now report that GM-CSF in vivo induces angiogenesis and activates JAK-2 and signal transducers and activators of transcription (STAT)-3. This cytokine has an angiogenetic activity in chick chorioallantoic membrane (CAM) without recruitment of inflammatory cells and induces vessel sprouting from chicken aorta rings. When added to CAM, subnanomolar concentrations of GM-CSF cause a rapid phosphorylation in tyrosine residues of JAK-2 persisting at least for 10 min. Furthermore, we show that signal transducers and activators of transcription (STAT)-3, but not STAT-5, also are phosphorylated for 30 min after GM-CSF stimulation. AG-490, a JAK-2 inhibitor, reduced in a dose-dependent manner the angiogenic effect of GM-CSF in CAM. These findings provide the first evidence that the JAK-2/STAT-3 pathway is activated in vivo and participates in vessel formation triggered by GM-CSF.
Collapse
Affiliation(s)
- Donatella Valdembri
- Institute for Cancer Research and Treatment and Department of Genetics, Biology and Biochemistry, School of Medicine, University of Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
42
|
Takeda M, Dohmae N, Takio K, Arai K, Watanabe S. Cell cycle-dependent interaction of Mad2 with conserved Box1/2 region of human granulocyte-macrophage colony-stimulating factor receptor common betac. J Biol Chem 2001; 276:41803-9. [PMID: 11551900 DOI: 10.1074/jbc.m101488200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Box1 and 2 (box1/2) are conserved cytoplasmic motifs located in the membrane proximal region of cytokine receptors, including the human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor common betac. Deletion of box1/2 abrogated all the examined activities of GM-CSF, and this phenomenon is explained by the loss of binding by Jak2. To test if a molecule other than Jak2 interacting with the box1/2 region plays a role in GM-CSF receptor signal transduction, we screened for molecules interacting with the box1/2 region by a pull-down assay using recombinant purified protein of GST fused with the betac box1/2 region and a Ba/F3 cell lysate. The mouse homologue of Mad2 protein, which plays an important role in the M phase of the cell cycle, was revealed to associate with the box1/2 region specifically. Peptides corresponding to the box1 sequence also bound to Mad2, and mutation of the box1 decreased the Mad2 interaction. Deletion analysis indicated that interaction with box1/2 occurred through the C-terminal portion of Mad2. Mad2 is known to change affinity for binding partners cell cycle dependently. Binding affinity of Mad2 to box1/2 increased in the late M phase, suggesting the possibility that GM-CSF participates in regulation of the M phase check point through interaction with Mad2.
Collapse
Affiliation(s)
- M Takeda
- Department of Molecular and Developmental Biology, Institute of Medical Science, Core Research for Evolutional Science and Technology, Japan
| | | | | | | | | |
Collapse
|
43
|
Madamanchi NR, Li S, Patterson C, Runge MS. Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK-STAT pathway. J Biol Chem 2001; 276:18915-24. [PMID: 11278437 DOI: 10.1074/jbc.m008802200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The growth-stimulating effects of thrombin are mediated primarily via activation of a G protein-coupled receptor, PAR-1. Because PAR-1 has no intrinsic tyrosine kinase activity, yet requires tyrosine phosphorylation events to induce mitogenesis, we investigated the role of the Janus tyrosine kinases (JAKs) in thrombin-mediated signaling. JAK2 was activated rapidly in rat vascular smooth muscle cells (VSMC) treated with thrombin, and signal transducers and activators of transcription (STAT1 and STAT3) were phosphorylated and translocated to the nucleus in a JAK2-dependent manner. AG-490, a JAK2-specific inhibitor, and a dominant negative JAK2 mutant inhibited thrombin-induced ERK2 activity and VSMC proliferation suggesting that JAK2 is upstream of the Ras/Raf/MEK/ERK pathway. To elucidate the functional significance of JAK-STAT activation, we studied the effect of thrombin on heat shock protein (Hsp) expression, based upon the following: 1) reports that thrombin stimulates reactive oxygen species production in VSMC; 2) the putative role of Hsps in modulating cellular responses to reactive oxygen species; and 3) the presence of functional STAT1/3-binding sites in Hsp70 and Hsp90beta promoters. Indeed, thrombin up-regulated Hsp70 and Hsp90 protein expression via enhanced binding of STATs to cognate binding sites in the Hsp70 and Hsp90 promoters. Together, these results suggest that JAK-STAT pathway activation is necessary for thrombin-induced VSMC growth and Hsp gene expression.
Collapse
Affiliation(s)
- N R Madamanchi
- Program in Molecular Cardiology, University of North Carolina, Chapel Hill, North Carolina 27599-7295
| | | | | | | |
Collapse
|
44
|
Watanabe S, Zeng R, Aoki Y, Itoh T, Arai K. Initiation of polyoma virus origin-dependent DNA replication through STAT5 activation by human granulocyte-macrophage colony-stimulating factor. Blood 2001; 97:1266-73. [PMID: 11222369 DOI: 10.1182/blood.v97.5.1266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several lines of evidence indicate that transcriptional activation is coupled with DNA replication initiation, but the nature of initiation of DNA replication in mammalian cells is unclear. Polyoma virus replicon is an excellent system to analyze the initiation of DNA replication in murine cells because its replication requires an enhancer, and all components of replication machinery, except for DNA helicase large T antigen, are supplied by host cells. This system was used to examine the role of signal transducer and activator of transcription (STAT5) in replication initiation of polyoma replicon in the mouse lymphoid cell line BA/F3. The plasmid with tandem repeats of consensus STAT5 binding sites followed by polyoma replication origin was replicated by stimulation with human granulocyte-macrophage colony-stimulating factor (hGM-CSF) in the presence of polyoma large T antigen in BA/F3 cells. Mutation analysis of the hGM-CSF receptor beta subunit revealed that only the box1 region is essential, and the C-terminal tyrosine residues are dispensable for the activity. Addition of the tyrosine kinase inhibitor genistein suppressed this replication without affecting transcriptional activation of STAT5. Because deletion analysis of STAT5 indicates the importance of the C-terminal transcriptional activation domain of STAT5 for the initiation of replication, the role of this region in the activation of replication was examined with a GAL4-STAT5 fusion protein. GAL4-STAT5 activated replication of the plasmid containing tandem repeats of GAL4 binding sites and polyoma replication origin in BA/F3 cells. Mutation analysis of GAL4-STAT5 indicated that multiple serine residues coordinately have a role in activating replication. This is the first direct evidence indicating the potential involvement of STAT5 in replication.
Collapse
Affiliation(s)
- S Watanabe
- Department of Molecular and Developmental Biology, Institute of Medical Science, Core Research for Evolutional Science and Technology, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
45
|
Sakurai Y, Arai K, Watanabe S. In vitro analysis of STAT5 activation by granulocyte-macrophage colony-stimulating factor. Genes Cells 2000; 5:937-947. [PMID: 11122381 DOI: 10.1046/j.1365-2443.2000.00379.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor activates multiple and complex signalling pathways in response to GM-CSF stimulation. Biochemical studies suggested that signalling pathways are transmitted through protein/protein interactions, but how these biochemical cascades are initiated and transmitted in response to cytokine stimulation is largely unknown. RESULTS To investigate these events biochemically, we established an in vitro system leading to the GM-CSF-dependent activation of Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 5 in cell homogenates prepared from BA/F3 cells expressing the GM-CSF receptor. Activation of STAT5 DNA binding ability requires both membrane and cytoplasmic fractions while phosphorylation of JAK2 requires only the membrane fraction. Since the addition of anti-betac or phosphotyrosine antibodies inhibited GM-CSF induced STAT5 DNA binding activity, we examined the role of tyrosine residues of betac for in vitro activation of STAT5. Addition of synthetic tyrosine-phosphorylated peptides derived from betac cytoplasmic tyrosines prior to GM-CSF stimulation inhibited the in vitro activation of STAT5. The association between these tyrosine-phosphorylated peptides and STAT5 was observed by using peptide-coupling beads and BA/F3 lysates. CONCLUSIONS We established a GM-CSF-dependent in vitro system. In cases of STAT5 activation, each phosphorylated tyrosine residue of betac can act as a docking site and enhance STAT5 activation.
Collapse
Affiliation(s)
- Y Sakurai
- Department of Molecular and Developmental Biology, Institute of Medical Science, Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, University of Tokyo
| | | | | |
Collapse
|
46
|
Yamauchi T, Yamauchi N, Ueki K, Sugiyama T, Waki H, Miki H, Tobe K, Matsuda S, Tsushima T, Yamamoto T, Fujita T, Taketani Y, Fukayama M, Kimura S, Yazaki Y, Nagai R, Kadowaki T. Constitutive tyrosine phosphorylation of ErbB-2 via Jak2 by autocrine secretion of prolactin in human breast cancer. J Biol Chem 2000; 275:33937-44. [PMID: 10938266 DOI: 10.1074/jbc.m000743200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the oncogene for ErbB-2 is an unfavorable prognostic marker in human breast cancer. Its oncogenic potential appears to depend on the state of tyrosine phosphorylation. However, the mechanisms by which ErbB-2 is constitutively tyrosine-phosphorylated in human breast cancer are poorly understood. We now show that human breast carcinoma samples with ErbB-2 overexpression have higher proliferative and metastatic activity in the presence of autocrine secretion of prolactin (PRL). By using a neutralizing antibody or dominant negative (DN) strategies or specific inhibitors, we also show that activation of Janus kinase Jak2 by autocrine secretion of PRL is one of the significant components of constitutive tyrosine phosphorylation of ErbB-2, its association with Grb2 and activation of mitogen-activated protein (MAP) kinase in human breast cancer cell lines that overexpress ErbB-2. Furthermore, the neutralizing anti-PRL antibody or erbB-2 antisense oligonucleotide or DN Jak2 or Jak2 inhibitor or DNRas or MAP kinase kinase inhibitor inhibits the proliferation of both untreated and PRL-treated cells. Our results indicate that autocrine secretion of PRL stimulates tyrosine phosphorylation of ErbB-2 by Jak2, provides docking sites for Grb2 and stimulates Ras-MAP kinase cascade, thereby causing unrestricted cellular proliferation. The identification of this novel cross-talk between ErbB-2 and the autocrine growth stimulatory loop for PRL may provide new targets for therapeutic and preventive intervention of human breast cancer.
Collapse
Affiliation(s)
- T Yamauchi
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Erickson-Miller CL, Pelus LM, Lord KA. Signaling induced by erythropoietin and stem cell factor in UT-7/Epo cells: transient versus sustained proliferation. Stem Cells 2000; 18:366-73. [PMID: 11007921 DOI: 10.1634/stemcells.18-5-366] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UT-7/Epo cells are human factor-dependent erythroleukemic cells, requiring erythropoietin (Epo) for long-term growth. Stem cell factor (SCF) stimulates proliferation of UT-7/Epo only transiently, for three to five days. An investigation of the signal transduction pathways activated by these cytokines in UT-7/Epo cells may identify those signals specifically required for sustained growth. Proliferation assays demonstrate that SCF generates a substantial growth response in UT-7/Epo cells; however, the cells do not multiply or survive past five to seven days. While Epo induces the activation of JAK2 and STAT5, SCF stimulation shows no activation of JAK2 or STATs 1, 3, or 5. The activation of MAPK (p42/44) by SCF was transient, lasting only 30 min, in contrast to Epo, which stimulated phosphorylation of p42/44 for up to 2 h. The expression of the early response genes c-fos, egr1, and cytokine-inducible SH2 protein (CIS) in response to SCF or Epo stimulation demonstrated that the transient expression of p42/44 correlated with the transient expression of c-fos and egr1. In addition, CIS was activated by Epo but not SCF. These data indicate that EpoR, JAK2, and STAT5 activation are not required for the initiation of proliferation of these erythroid cells, that the transient activation of p42/44 correlates with the transient gene expression of c-fos and egr1, and sustained expression of c-fos and egr1 as seen in UT-7/Epo cells continuously grown in Epo may be necessary for long-term proliferation.
Collapse
Affiliation(s)
- C L Erickson-Miller
- Department of Molecular Virology and Host Defense, SmithKline Beecham Pharmaceuticals, Collegeville, Pennsylvania, USA.
| | | | | |
Collapse
|
48
|
Endo K, Takeshita T, Kasai H, Sasaki Y, Tanaka N, Asao H, Kikuchi K, Yamada M, Chenb M, O'Shea JJ, Sugamura K. STAM2, a new member of the STAM family, binding to the Janus kinases. FEBS Lett 2000; 477:55-61. [PMID: 10899310 DOI: 10.1016/s0014-5793(00)01760-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We here cloned a cDNA encoding STAM2, a new member of the STAM family, which contains an SH3 domain and ITAM. STAM2 like STAM1 is associated with Jak2 and Jak3, and involved in the signaling for DNA synthesis and c-myc induction mediated by IL-2 and GM-CSF. Co-expression of the SH3 deletion mutants of STAM1 and STAM2 induces an additive effect on suppressing DNA synthesis upon stimulation with IL-2 and GM-CSF, suggesting that STAM1 and STAM2 exhibit compensatory effects on the signaling pathways downstream of Jak2 and Jak3 upon stimulation with GM-SCF and IL-2, respectively.
Collapse
Affiliation(s)
- K Endo
- Department of Microbiology, Tohoku University School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu R, Arai K, Watanabe S. Analysis of antiapoptosis activity of human GM-CSF receptor. J Allergy Clin Immunol 2000; 106:S10-8. [PMID: 10887329 DOI: 10.1067/mai.2000.106772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human GM-CSF (hGM-CSF) induces proliferation and sustains the viability of a mouse IL-3-dependent lymphoid cell line BA/F3 that expresses the functional hGM-CSF receptor (hGMR). To reveal an antiapoptotic mechanism of hGM-CSF, we analyzed various apoptotic markers of BA/F3 cells in various conditions. Within 24 hours of factor depletion, caspase 3-like, but not caspase 1-like, enzyme activity and DNA fragmentation were augmented. Analysis with the tyrosine kinase inhibitor (genistein) and an MEK1 inhibitor (PD98059) on antiapoptosis activity indicates that the activation of either the genistein-sensitive signaling pathway or the PD98059-sensitive signaling pathway of the betac subunit may be sufficient to suppress apoptosis through hGMR. Because hGMR mutants (which activate JAK2 but neither STAT5 nor the MAPK cascade) have antiapoptotic activity in BA/F3 cells, the involvement of JAK2, excluding the molecules mentioned earlier, for antiapoptosis activity seems likely. Because the JAK2 inhibitor AG-490 suppressed the antiapoptotic activity of hGM-CSF, the essential role for JAK2 activation to maintain the viability is considered. Interestingly, hGMR mutants, which lack MAPK cascade activation, require a higher dose of hGM-CSF than that for wild-type hGMR. Because the expression level and affinity to hGM-CSF among wild-type hGMR and mutant hGMR are the same, we speculated that biologic response is determined by a combination of strength of various signaling events.
Collapse
Affiliation(s)
- R Liu
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, and CREST, Japan
| | | | | |
Collapse
|
50
|
Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000; 19:2548-56. [PMID: 10851053 DOI: 10.1038/sj.onc.1203551] [Citation(s) in RCA: 931] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Members of the IL-6 cytokine family are involved in a variety of biological responses, including the immune response, inflammation, hematopoiesis, and oncogenesis by regulating cell growth, survival, and differentiation. These cytokines use gp130 as a common receptor subunit. The binding of ligand to gp130 activates the JAK/STAT signal transduction pathway, where STAT3 plays a central role in transmitting the signals from the membrane to the nucleus. STAT3 is essential for gp130-mediated cell survival and G1 to S cell-cycle-transition signals. Both c-myc and pim have been identified as target genes of STAT3 and together can compensate for STAT3 in cell survival and cell-cycle transition. STAT3 is also required for gp130-mediated maintenance of the pluripotential state of proliferating embryonic stem cells and for the gp130-induced macrophage differentiation of M1 cells. Furthermore, STAT3 regulates cell movement, such as leukocyte, epidermal cell, and keratinocyte migration. STAT3 also appears to regulate B cell differentiation into antibody-forming plasma cells. Since the IL-6/gp130/STAT3 signaling pathway is involved in both B cell growth and differentiation into plasma cells it is likely to play a central role in the generation of plasma cell neoplasias. Oncogene (2000).
Collapse
Affiliation(s)
- T Hirano
- Division of Molecular Oncology C-7, Biomedical Research Center, Osaka University Graduate School of Medicine, 2-2 Yamada-oko, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|