1
|
Takahashi N, Eltalkhawy YM, Nasu K, Abdelnaser RA, Monde K, Habash SA, Nasser H, Hiyoshi M, Ishimoto T, Suzu S. IL-10 induces activated phenotypes of monocytes observed in virally-suppressed HIV-1-infected individuals. Biochem Biophys Res Commun 2024; 729:150342. [PMID: 38981402 DOI: 10.1016/j.bbrc.2024.150342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Despite viral suppression by effective combined antiretroviral therapy, HIV-1-infected individuals have an increased risk of non-AIDS-related overall morbidity, which is due to the persistent chronic inflammation exemplified by the activation of monocytes, such as increased CD16high subset, and elevated plasma level of soluble CD163 (sCD163) and soluble CD14 (sCD14). Here, we show that IL-10, which has been recognized as anti-inflammatory, induces these activated phenotypes of monocytes in vitro. IL-10 increased CD16high monocytes, which was due to the upregulation of CD16 mRNA expression and completely canceled by an inhibitor of Stat3. Moreover, IL-10 increased the production of sCD163 and sCD14 by monocytes, which was consistent with the upregulation of cell surface expression of CD163 and CD14, and mRNA expression of CD163. However, unlike the IL-10-indeuced upregulation of CD16, that of CD14 was minimally affected by the Stat3 inhibitor. Furthermore, the IL-10-induced upregulation of CD163 protein and mRNA was partially inhibited by the Stat3 inhibitor, but completely canceled by an inhibitor of AMPK, an upstream kinase of Stat3 and PI3K/Akt/mTORC1 pathways. In this study, we also found that HIV-1 pathogenic protein Nef, which is known to persist in plasma of virally-suppressed individuals, induced IL-10 production in monocyte-derived macrophages. Our results may suggest that IL-10, which is inducible by Nef-activated macrophages, is one of drivers for activated phenotypes of monocytes in virally-suppressed individuals, and that IL-10 induces the increased CD16high monocytes and elevated level of sCD163 and sCD14 through the activation of different signaling pathways.
Collapse
MESH Headings
- Humans
- Interleukin-10/metabolism
- Monocytes/metabolism
- Monocytes/immunology
- HIV Infections/immunology
- HIV Infections/virology
- HIV Infections/metabolism
- HIV Infections/blood
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- HIV-1
- Receptors, IgG/metabolism
- Lipopolysaccharide Receptors/metabolism
- STAT3 Transcription Factor/metabolism
- Phenotype
- Up-Regulation
- Cells, Cultured
Collapse
Affiliation(s)
- Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| | - Youssef M Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kanako Nasu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Randa A Abdelnaser
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sara A Habash
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hesham Nasser
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masateru Hiyoshi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Chantree P, Tarasuk M, Prathaphan P, Ruangtong J, Jamklang M, Chumkiew S, Martviset P. Type I Cystatin Derived from Fasciola gigantica Suppresses Macrophage-Mediated Inflammatory Responses. Pathogens 2023; 12:pathogens12030395. [PMID: 36986318 PMCID: PMC10051455 DOI: 10.3390/pathogens12030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
There is an inverse relationship between the high incidence of helminth infection and the low incidence of inflammatory disease. Hence, it may be that helminth molecules have anti-inflammatory effects. Helminth cystatins are being extensively studied for anti-inflammatory potential. Therefore, in this study, the recombinant type I cystatin (stefin-1) of Fasciola gigantica (rFgCyst) was verified to have LPS-activated anti-inflammatory potential, including in human THP-1-derived macrophages and RAW 264.7 murine macrophages. The results from the MTT assay suggest that rFgCyst did not alter cell viability; moreover, it exerted anti-inflammatory activity by decreasing the production of proinflammatory cytokines and mediators, including IL-1β, IL-6, IL-8, TNF-α, iNOS, and COX-2 at the gene transcription and protein expression levels, as determined by qRT-PCR and Western blot analysis, respectively. Further, the secretion levels of IL-1β, IL-6, and TNF-α determined by ELISA and the NO production level determined by the Griess test were decreased. Furthermore, in Western blot analysis, the anti-inflammatory effects involved the downregulation of pIKKα/β, pIκBα, and pNF-κB in the NF-κB signaling pathway, hence reducing the translocation from the cytosol into the nucleus of pNF-κB, which subsequently turned on the gene of proinflammatory molecules. Therefore, cystatin type 1 of F. gigantica is a potential candidate for inflammatory disease treatment.
Collapse
Affiliation(s)
- Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Mayuri Tarasuk
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Parisa Prathaphan
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Mantana Jamklang
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Chumkiew
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-863590511
| |
Collapse
|
3
|
Habanjar O, Bingula R, Decombat C, Diab-Assaf M, Caldefie-Chezet F, Delort L. Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. Int J Mol Sci 2023; 24:4002. [PMID: 36835413 PMCID: PMC9964711 DOI: 10.3390/ijms24044002] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Several immune and immunocompetent cells, including dendritic cells, macrophages, adipocytes, natural killer cells, T cells, and B cells, are significantly correlated with the complex discipline of oncology. Cytotoxic innate and adaptive immune cells can block tumor proliferation, and others can prevent the immune system from rejecting malignant cells and provide a favorable environment for tumor progression. These cells communicate with the microenvironment through cytokines, a chemical messenger, in an endocrine, paracrine, or autocrine manner. These cytokines play an important role in health and disease, particularly in host immune responses to infection and inflammation. They include chemokines, interleukins (ILs), adipokines, interferons, colony-stimulating factors (CSFs), and tumor necrosis factor (TNF), which are produced by a wide range of cells, including immune cells, such as macrophages, B-cells, T-cells, and mast cells, as well as endothelial cells, fibroblasts, a variety of stromal cells, and some cancer cells. Cytokines play a crucial role in cancer and cancer-related inflammation, with direct and indirect effects on tumor antagonistic or tumor promoting functions. They have been extensively researched as immunostimulatory mediators to promote the generation, migration and recruitment of immune cells that contribute to an effective antitumor immune response or pro-tumor microenvironment. Thus, in many cancers such as breast cancer, cytokines including leptin, IL-1B, IL-6, IL-8, IL-23, IL-17, and IL-10 stimulate while others including IL-2, IL-12, and IFN-γ, inhibit cancer proliferation and/or invasion and enhance the body's anti-tumor defense. Indeed, the multifactorial functions of cytokines in tumorigenesis will advance our understanding of cytokine crosstalk pathways in the tumor microenvironment, such as JAK/STAT, PI3K, AKT, Rac, MAPK, NF-κB, JunB, cFos, and mTOR, which are involved in angiogenesis, cancer proliferation and metastasis. Accordingly, targeting and blocking tumor-promoting cytokines or activating and amplifying tumor-inhibiting cytokines are considered cancer-directed therapies. Here, we focus on the role of the inflammatory cytokine system in pro- and anti-tumor immune responses, discuss cytokine pathways involved in immune responses to cancer and some anti-cancer therapeutic applications.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Rea Bingula
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
The Role of Inflammatory Cytokines in the Pathogenesis of Colorectal Carcinoma—Recent Findings and Review. Biomedicines 2022; 10:biomedicines10071670. [PMID: 35884974 PMCID: PMC9312930 DOI: 10.3390/biomedicines10071670] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The inflammatory process plays a significant role in the development of colon cancer (CRC). Intestinal cytokine networks are critical mediators of tissue homeostasis and inflammation but also impact carcinogenesis at all stages of the disease. Recent studies suggest that inflammation is of greater importance in the serrated pathway than in the adenoma-carcinoma pathway. Interleukins have gained the most attention due to their potential role in CRC pathogenesis and promising results of clinical trials. Malignant transformation is associated with the pro-tumorigenic and anti-tumorigenic cytokines. The harmony between proinflammatory and anti-inflammatory factors is crucial to maintaining homeostasis. Immune cells in the tumor microenvironment modulate immune sensitivity and facilitate cancer escape from immune surveillance. Therefore, clarifying the role of underlying cytokine pathways and the effects of their modulation may be an important step to improve the effectiveness of cancer immunotherapy.
Collapse
|
5
|
Virdis P, Migheli R, Bordoni V, Fiorentino FP, Sanna L, Marchesi I, Pintore G, Galleri G, Muroni MR, Bagella L, Fozza C, De Miglio MR, Podda L. Clarifying the molecular mechanism of tomentosin‑induced antiproliferative and proapoptotic effects in human multiple myeloma via gene expression profile and genetic interaction network analysis. Int J Mol Med 2021; 48:213. [PMID: 34643251 PMCID: PMC8522960 DOI: 10.3892/ijmm.2021.5046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is an aggressive B cell malignancy. Substantial progress has been made in the therapeutic context for patients with MM, however it still represents an incurable disease due to drug resistance and recurrence. Development of more effective or synergistic therapeutic approaches undoubtedly represents an unmet clinical need. Tomentosin is a bioactive natural sesquiterpene lactone extracted by various plants with therapeutic properties, including anti‑neoplastic effects. In the present study, the potential antitumor activity of tomentosin was evaluated on the human RPMI‑8226 cell line, treated with increasing tomentosin concentration for cytotoxicity screening. The data suggested that both cell cycle arrest and cell apoptosis could explain the antiproliferative effects of tomentosin and may result in the inhibition of RPMI‑8226 cell viability. To assess differentially expressed genes contributing to tomentosin activity and identify its mechanism of action, a microarray gene expression profile was performed, identifying 126 genes deregulated by tomentosin. To address the systems biology and identify how tomentosin deregulates gene expression in MM from a systems perspective, all deregulated genes were submitted to enrichment and molecular network analysis. The Protein‑Protein Interaction (PPI) network analysis showed that tomentosin in human MM induced the downregulation of genes involved in several pathways known to lead immune‑system processes, such as cytokine‑cytokine receptor interaction, chemokine or NF‑κB signaling pathway, as well as genes involved in pathways playing a central role in cellular neoplastic processes, such as growth, proliferation, migration, invasion and apoptosis. Tomentosin also induced endoplasmic reticulum stress via upregulation of cyclic AMP‑dependent transcription factor ATF‑4 and DNA damage‑inducible transcript 3 protein genes, suggesting that in the presence of tomentosin the protective unfolded protein response signaling may induce cell apoptosis. The functional connections analysis executed using the Connectivity Map tool, suggested that the effects of tomentosin on RPMI‑8226 cells might be similar to those exerted by heat shock proteins inhibitors. Taken together, these data suggested that tomentosin may be a potential drug candidate for the treatment of MM.
Collapse
Affiliation(s)
- Patrizia Virdis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Rossana Migheli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | | | - Luca Sanna
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Irene Marchesi
- Kitos Biotech Srls, Porto Conte Ricerche, I-07100 Sassari, Sardinia, Italy
| | - Giorgio Pintore
- Department of Chemistry and Pharmacy, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Grazia Galleri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Claudio Fozza
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Luigi Podda
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| |
Collapse
|
6
|
Virdis P, Marchesi I, Fiorentino FP, Migheli R, Sanna L, Bordoni V, Pintore G, Galleri G, Muroni MR, Bagella L, Fozza C, De Miglio MR, Podda L. Tomentosin a Sesquiterpene Lactone Induces Antiproliferative and Proapoptotic Effects in Human Burkitt Lymphoma by Deregulation of Anti- and Pro-Apoptotic Genes. Life (Basel) 2021; 11:life11111128. [PMID: 34833004 PMCID: PMC8623649 DOI: 10.3390/life11111128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
(1) Tomentosin is the most representative sesquiterpene lactone extracted by I. viscosa. Recently, it has gained particular attention in therapeutic oncologic fields due to its anti-tumor properties. (2) In this study, the potential anticancer features of tomentosin were evaluated on human Burkitt’s lymphoma (BL) cell line, treated with increasing tomentosin concentration for cytotoxicity screening. (3) Our data showed that both cell cycle arrest and cell apoptosis induction are responsible of the antiproliferative effects of tomentosin and may end in the inhibition of BL cell viability. Moreover, a microarray gene expression profile was performed to assess differentially expressed genes contributing to tomentosin activity. Seventy-five genes deregulated by tomentosin have been identified. Downregulated genes are enriched in immune-system pathways, and PI3K/AKT and JAK/STAT pathways which favor proliferation and growth processes. Importantly, different deregulated genes identified in tomentosin-treated BL cells are prevalent in molecular pathways known to lead to cellular death, specifically by apoptosis. Tomentosin-treatment in BL cells induces the downregulation of antiapoptotic genes such as BCL2A1 and CDKN1A and upregulation of the proapoptotic PMAIP1 gene. (4) Overall, our results suggest that tomentosin could be taken into consideration as a potential natural product with limited toxicity and relevant anti-tumoral activity in the therapeutic options available to BL patients.
Collapse
Affiliation(s)
- Patrizia Virdis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
| | - Irene Marchesi
- Kitos Biotech Srls, Porto Conte Ricerche, 07100 Sassari, Italy; (I.M.); (F.P.F.)
| | | | - Rossana Migheli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
| | - Luca Sanna
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.B.); (L.B.)
| | - Giorgio Pintore
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Grazia Galleri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.B.); (L.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Claudio Fozza
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
- Correspondence: (C.F.); (M.R.D.M.)
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
- Correspondence: (C.F.); (M.R.D.M.)
| | - Luigi Podda
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
| |
Collapse
|
7
|
Chang CM, Lam HYP, Hsu HJ, Jiang SJ. Interleukin-10: A double-edged sword in breast cancer. Tzu Chi Med J 2021; 33:203-211. [PMID: 34386356 PMCID: PMC8323643 DOI: 10.4103/tcmj.tcmj_162_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/01/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is a frequently diagnosed cancer among women worldwide. Currently, BC can be divided into different subgroups according to the presence of the following hormone receptors: estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Each of these subgroups has different treatment strategies. However, the presence of new metastatic lesions and patient deterioration suggest resistance to a given treatment. Various lines of evidence had shown that cytokines are one of the important mediators of tumor growth, invasion, metastasis, and treatment resistance. Interleukin-10 (IL-10) is an immunoregulatory cytokine, and acts as a poor prognostic marker in many cancers. The anti-inflammatory IL-10 blocks certain effects of inflammatory cytokines. It also antagonizes the co-stimulatory molecules on the antigen-presenting cells. Here, we review the current knowledge on the function and molecular mechanism of IL-10, and recent findings on how IL-10 contributes to the progression of BC.
Collapse
Affiliation(s)
- Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Life Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
8
|
Saraiva M, Vieira P, O'Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med 2020; 217:jem.20190418. [PMID: 31611251 PMCID: PMC7037253 DOI: 10.1084/jem.20190418] [Citation(s) in RCA: 588] [Impact Index Per Article: 117.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
The authors review the molecular mechanisms regulating IL-10 production and response and describe classic and novel functions of IL-10 in immune and non-immune cells. They further discuss the therapeutic potential of IL-10 in different diseases and the outstanding questions underlying an effective application of IL-10 in clinical settings. The cytokine IL-10 is a key anti-inflammatory mediator ensuring protection of a host from over-exuberant responses to pathogens and microbiota, while playing important roles in other settings as sterile wound healing, autoimmunity, cancer, and homeostasis. Here we discuss our current understanding of the regulation of IL-10 production and of the molecular pathways associated with IL-10 responses. In addition to IL-10’s classic inhibitory effects on myeloid cells, we also describe the nonclassic roles attributed to this pleiotropic cytokine, including how IL-10 regulates basic processes of neural and adipose cells and how it promotes CD8 T cell activation, as well as epithelial repair. We further discuss its therapeutic potential in the context of different diseases and the outstanding questions that may help develop an effective application of IL-10 in diverse clinical settings.
Collapse
Affiliation(s)
- Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paulo Vieira
- Department of Immunology, Unité Lymphopoièse, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK.,National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
9
|
Poole E, Neves TC, Oliveira MT, Sinclair J, da Silva MCC. Human Cytomegalovirus Interleukin 10 Homologs: Facing the Immune System. Front Cell Infect Microbiol 2020; 10:245. [PMID: 32582563 PMCID: PMC7296156 DOI: 10.3389/fcimb.2020.00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Human Cytomegalovirus (HCMV) can cause a variety of health disorders that can lead to death in immunocompromised individuals and neonates. The HCMV lifecycle comprises both a lytic (productive) and a latent (non-productive) phase. HCMV lytic infection occurs in a wide range of terminally differentiated cell types. HCMV latency has been less well-studied, but one characterized site of latency is in precursor cells of the myeloid lineage. All known viral genes are expressed during a lytic infection and a subset of these are also transcribed during latency. The UL111A gene which encodes the viral IL-10, a homolog of the human IL-10, is one of these genes. During infection, different transcript isoforms of UL111A are generated by alternative splicing. The most studied of the UL111A isoforms are cmvIL-10 (also termed the "A" transcript) and LAcmvIL-10 (also termed the "B" transcript), the latter being a well-characterized latency associated transcript. Both isoforms can downregulate MHC class II, however they differ in a number of other immunomodulatory properties, such as the ability to bind the IL10 receptor and induce signaling through STAT3. There are also a number of other isoforms which have been identified which are expressed by differential splicing during lytic infection termed C, D, E, F, and G, although these have been less extensively studied. HCMV uses the viral IL-10 proteins to manipulate the immune system during lytic and latent phases of infection. In this review, we will discuss the literature on the viral IL-10 transcripts identified to date, their encoded proteins and the structures of these proteins as well as the functional properties of all the different isoforms of viral IL-10.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tainan Cerqueira Neves
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Martha Trindade Oliveira
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - John Sinclair
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
10
|
Khatri V, Chauhan N, Kalyanasundaram R. Parasite Cystatin: Immunomodulatory Molecule with Therapeutic Activity against Immune Mediated Disorders. Pathogens 2020; 9:E431. [PMID: 32486220 PMCID: PMC7350340 DOI: 10.3390/pathogens9060431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
The use of parasites or their products for treating chronic inflammation associated diseases (CIADs) has generated significant attention recently. Findings from basic and clinical research have provided valuable information on strengthening the notion that parasites' molecules can be developed as biotherapeutic agents. Completion of the genome, secreotome, and proteome of the parasites has provided an excellent platform for screening and identifying several host immunomodulatory molecules from the parasites and evaluate their therapeutic potential for CIADs. One of the widely studied host immunomodulatory molecules of the parasites is the cysteine protease inhibitor (cystatin), which is primarily secreted by the parasites to evade host immune responses. In this review, we have attempted to summarize the findings to date on the use of helminth parasite-derived cystatin as a therapeutic agent against CIADs. Although several studies suggest a role for alternatively activated macrophages, other regulatory cells, and immunosuppressive molecules, in this immunoregulatory activity of the parasite-derived cystatin, there is still no clear demonstration as to how cystatin induces its anti-inflammatory effect in suppressing CIADs.
Collapse
Affiliation(s)
- Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA; (N.C.); (R.K.)
| | | | | |
Collapse
|
11
|
Nardochinoid B Inhibited the Activation of RAW264.7 Macrophages Stimulated by Lipopolysaccharide through Activating the Nrf2/HO-1 Pathway. Molecules 2019; 24:molecules24132482. [PMID: 31284554 PMCID: PMC6650925 DOI: 10.3390/molecules24132482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Nardochinoid B (NAB) is a new compound isolated from Nardostachys chinensis. Although our previous study reported that the NAB suppressed the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated RAW264.7 cells, the specific mechanisms of anti-inflammatory action of NAB remains unknown. Thus, we examined the effects of NAB against LPS-induced inflammation. In this study, we found that NAB suppressed the LPS-induced inflammatory responses by restraining the expression of inducible nitric oxide synthase (iNOS) proteins and mRNA instead of cyclooxygenase-2 (COX-2) protein and mRNA in RAW264.7 cells, implying that NAB may have lower side effects compared with nonsteroidal anti-inflammatory drugs (NSAIDs). Besides, NAB upregulated the protein and mRNA expressions of heme oxygenase (HO)-1 when it exerted its anti-inflammatory effects. Also, NAB restrained the production of NO by increasing HO-1 expression in LPS-stimulated RAW264.7 cells. Thus, it is considered that the anti-inflammatory effect of NAB is associated with an induction of antioxidant protein HO-1, and thus NAB may be a potential HO-1 inducer for treating inflammatory diseases. Moreover, our study found that the inhibitory effect of NAB on NO is similar to that of the positive drug dexamethasone, suggesting that NAB has great potential for developing new drugs in treating inflammatory diseases.
Collapse
|
12
|
Hishida A, Okugawa Y, Morimoto Y, Shirai Y, Okamoto K, Momokita S, Ogawa A, Tanaka K, Nishikawa R, Toiyama Y, Inoue Y, Sakurai H, Urata H, Tanaka M, McMillan DC, Miki C. Genetic influence of cytokine polymorphisms on the clinical outcome of Japanese gastrointestinal cancer patients in palliative care. Oncol Lett 2019; 17:623-629. [PMID: 30655809 DOI: 10.3892/ol.2018.9614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/23/2018] [Indexed: 11/05/2022] Open
Abstract
Gastrointestinal cancer is one of the most common causes of mortality globally. The present study examined the influence of cytokine genetic polymorphisms [interleukin (IL)-1B C-31T, IL-1RN VNTR, IL-6 C-634G, IL-8 T-251A, IL-10 T-819C and IL-10 A-1082G] on clinical outcomes in patients with gastrointestinal cancer in palliative care. A total of 59 patients with gastrointestinal cancer who were admitted to Iga City General Hospital were analyzed. Genotyping was conducted using a polymerase chain reaction with confronting two-pair primers. Patients with at least one IL-1RN 2 allele demonstrated a significantly better survival (P=0.0275) while those with IL-6-634 G/G demonstrated a worse survival (P=0.0024). Multivariate analyses using the Cox proportional hazard model revealed that those with at least one IL-1RN 2 allele, IL-6-634 G/G or IL-10-1082 A/G had a significantly elevated adjusted hazard ratio of 9.20 (P=0.014), 41.01 (P=0.001) or 6.49 (P=0.046), respectively, compared with those with each homozygous wild-type polymorphism. In addition, the evaluation of weight loss by genotype revealed the potential influence of IL-10 T-819C genotype (P=0.072). IL-1RN, IL-6 and IL-10 polymorphisms were associated with the survival of patients with gastrointestinal cancer, suggesting the clinical feasibility of genetic testing in patients with gastrointestinal cancer in palliative care.
Collapse
Affiliation(s)
- Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yoshinaga Okugawa
- Department of Surgery, Iga City General Hospital, Iga, Mie 518-0823, Japan.,Department of Medical Oncology, Iga City General Hospital, Iga, Mie 518-0823, Japan.,Department of Biochemical Laboratory, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Yuhki Morimoto
- Department of Surgery, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Yumiko Shirai
- Department of Nutrition, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Kyoko Okamoto
- Department of Nursing, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Sachiko Momokita
- Department of Biochemical Laboratory, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Aki Ogawa
- Department of Nursing, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Koji Tanaka
- Department of Surgery, Iga City General Hospital, Iga, Mie 518-0823, Japan.,Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Ryutaro Nishikawa
- Department of Surgery, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroyuki Sakurai
- Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hisashi Urata
- Department of Surgery, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Motoyoshi Tanaka
- Department of Medical Oncology, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Donald C McMillan
- Department of Surgical Science, University of Glasgow School of Medicine, Dentistry and Nursing, Glasgow G4 0SF, UK
| | - Chikao Miki
- Department of Surgery, Iga City General Hospital, Iga, Mie 518-0823, Japan.,Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
13
|
Lin S, Wang Y, Mu S, Zhang J, Yuan F, Sun K. Pathway analysis based on Monte Carlo Cross-Validation in polyarticular juvenile idiopathic arthritis. Pathol Res Pract 2016; 213:7-12. [PMID: 27894617 DOI: 10.1016/j.prp.2016.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Juvenile idiopathic arthritis (JIA) is a common chronic disease with onset before the 16 years old in a child. Polyarticular JIA has been reported as the main form of JIA in several locations. Until now, understanding of the genetic basis of JIA is incomplete. The purpose of this study was to identify pathway pairs of great potential functional relevance in the progression of polyarticular JIA. MATERIALS AND METHODS Microarray data of 59 peripheral blood samples from healthy children and 61 samples from polyarticular JIA were transformed to gene expression data. Differential expressed genes (DEG) between patients and normal controls were identified using Linear Models for Microarray Analysis. After performed enrichment of DEG, differential pathways were identified with Fisher's test and false discovery rate. Differential pathway pairs were constructed with random two differential pathways, and were evaluated by Random Forest classification. Monte Carlo Cross-Validation was introduced to screen the best pathway pair. RESULTS 42 DEG with P-values<0.01 were identified. 19 differential pathways with P-values<0.01 were identified. Area under the curve (AUC) of pathway pairs was generated with RF classification. After 50 bootstraps of Monte Carlo Cross-Validation, the best pathway pair with the highest AUC value was identified, and it was the pair of tumoricidal function of hepatic natural killer cells pathway and erythropoietin signaling pathway. CONCLUSION These identified pathway pairs may play pivotal roles in the progress of polyarticular JIA and can be applied for diagnosis. Particular attention can be focused on them for further research.
Collapse
Affiliation(s)
- Shunhua Lin
- Department of Orthopaedics, The People's Hopital of Rizhao, Rizhao 276800, Shandong, PR China
| | - Yuanji Wang
- Department of Orthopaedics, The People's Hopital of Rizhao, Rizhao 276800, Shandong, PR China
| | - Shunmei Mu
- Department of Ophthalmology, The People's Hopital of Donggang District, Rizhao 276800, Shandong, PR China
| | - Junxi Zhang
- Department of Orthopaedics, The People's Hopital of Rizhao, Rizhao 276800, Shandong, PR China
| | - Fangchang Yuan
- Department of Orthopaedics, The People's Hopital of Rizhao, Rizhao 276800, Shandong, PR China
| | - Kang Sun
- Department of Orthopaedics, The Affiliated Hopital of Qingdao University, Qingdao 266000, Shandong, PR China.
| |
Collapse
|
14
|
Sarray S, Saleh LR, Lisa Saldanha F, Al-Habboubi HH, Mahdi N, Almawi WY. Serum IL-6, IL-10, and TNFα levels in pediatric sickle cell disease patients during vasoocclusive crisis and steady state condition. Cytokine 2015; 72:43-7. [PMID: 25569375 DOI: 10.1016/j.cyto.2014.11.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/20/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Vaso-occlusive crisis (VOC) is a significant complication of sickle cell disease (SCD), and altered production of pro-inflammatory and anti-inflammatory molecules contributed to its pathogenesis. In view of the association of chronic inflammation with VOC onset, and given the capacity of interleukin (IL)-10 as anti-inflammatory, and IL-6, and TNFα as pro-inflammatory cytokines, we tested the association of altered IL-10, IL-6, and TNFα secretion with VOC pathogenesis and its severity. Study subjects comprised 147 SCD patients with active VOC (VOC Group), and 63 pain-free SCD patients for at least 9 months before blood collection (Steady-state Group). Serum cytokine concentrations were determined by ELISA. IL-10 levels were significantly reduced, while IL-6 levels were increased in VOC compared to Steady-state groups; serum TNFα levels were comparable between both groups. There was enrichment of low IL-10, but high IL-6 and TNFα quartiles in VOC Group, which translated into increased VOC risk. In contrast, high IL-10, but low IL-6 and TNFα quartiles were seen in Steady-state Group. Correlation analysis demonstrated significant association between reduced IL-10 levels and the frequency, type, severity, and duration of VOC and requirement for hydroxyurea treatment, while IL-6 correlated with duration of VOC episodes. Our data support strong association of reduced IL-10 and increased IL-6 levels with VOC, and their modulation of VOC-related parameters.
Collapse
Affiliation(s)
- Sameh Sarray
- Department of Medical Biochemistry, Arabian Gulf University, Manama, Bahrain.
| | - Layal R Saleh
- Department of Medical Biochemistry, Arabian Gulf University, Manama, Bahrain
| | - F Lisa Saldanha
- Department of Medical Biochemistry, Arabian Gulf University, Manama, Bahrain
| | - Hebah H Al-Habboubi
- Department of Medical Biochemistry, Arabian Gulf University, Manama, Bahrain
| | - Najat Mahdi
- Department of Pediatrics, Salmaniya Medical Complex, Manama, Bahrain
| | - Wassim Y Almawi
- Department of Medical Biochemistry, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
15
|
Zhu YP, Brown JR, Sag D, Zhang L, Suttles J. Adenosine 5'-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. THE JOURNAL OF IMMUNOLOGY 2014; 194:584-94. [PMID: 25512602 DOI: 10.4049/jimmunol.1401024] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AMP-activated protein kinase (AMPK) is a conserved serine/threonine kinase with a critical function in the regulation of metabolic pathways in eukaryotic cells. Recently, AMPK has been shown to play an additional role as a regulator of inflammatory activity in leukocytes. Treatment of macrophages with chemical AMPK activators, or forced expression of a constitutively active form of AMPK, results in polarization to an anti-inflammatory phenotype. In addition, we reported previously that stimulation of macrophages with anti-inflammatory cytokines such as IL-10, IL-4, and TGF-β results in rapid activation of AMPK, suggesting that AMPK contributes to the suppressive function of these cytokines. In this study, we investigated the role of AMPK in IL-10-induced gene expression and anti-inflammatory function. IL-10-stimulated wild-type macrophages displayed rapid activation of PI3K and its downstream targets Akt and mammalian target of rapamycin complex (mTORC1), an effect that was not seen in macrophages generated from AMPKα1-deficient mice. AMPK activation was not impacted by treatment with either the PI3K inhibitor LY294002 or the JAK inhibitor CP-690550, suggesting that IL-10-mediated activation of AMPK is independent of PI3K and JAK activity. IL-10 induced phosphorylation of both Tyr(705) and Ser(727) residues of STAT3 in an AMPKα1-dependent manner, and these phosphorylation events were blocked by inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase β, an upstream activator of AMPK, and by the mTORC1 inhibitor rapamycin, respectively. The impaired STAT3 phosphorylation in response to IL-10 observed in AMPKα1-deficient macrophages was accompanied by reduced suppressor of cytokine signaling 3 expression and an inadequacy of IL-10 to suppress LPS-induced proinflammatory cytokine production. Overall, our data demonstrate that AMPKα1 is required for IL-10 activation of the PI3K/Akt/mTORC1 and STAT3-mediated anti-inflammatory pathways regulating macrophage functional polarization.
Collapse
Affiliation(s)
- Yanfang Peipei Zhu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40292
| | - Jonathan R Brown
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40292
| | - Duygu Sag
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40292
| | - Lihua Zhang
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40292
| | - Jill Suttles
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40292
| |
Collapse
|
16
|
Interleukin 10 antioxidant effect decreases leukocytes/endothelial interaction induced by tumor necrosis factor α. Shock 2013; 39:83-8. [PMID: 23247124 DOI: 10.1097/shk.0b013e318278ae36] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Little is known about the endothelial mechanisms involved in the anti-inflammatory effects of interleukin 10 (IL-10). The goal of this study was to evaluate the effects of IL-10 on endothelial oxidative stress and endothelial inflammation induced by tumor necrosis factor α (TNF-α). Production of reactive oxygen species (ROS) in perfused human umbilical vein endothelial cells (HUVECs) was studied by fluorescent microscopy using dichlorodihydrofluorescein diacetate. Tumor necrosis factor α (1 ng/mL) was added to the perfusion medium in the absence and presence of IL-10 (1 ng/mL). The role of phosphatidylinositol 3-kinase (PI3-kinase) was assessed using wortmannin and LY 2940002 (inhibitors of PI3-kinase). Specific inhibition of p110 α and p110 γ/δ PI3-kinase subunits was studied using A66 and TG100-115. As well, levels of ceramide and intercellular adhesion molecule 1 (ICAM-1) expression were measured. Finally, the effect of IL-10 on TNF-α-induced leukocyte/endothelium interaction was examined using an ex vivo perfused vessel model. Interleukin 10 significantly reduced dichlorodihydrofluorescein diacetate fluorescence induced by TNF-α in HUVECs (12.5% ± 3.2% vs. 111.7% ± 21.6% at 60 min). Pretreatment by LY2940002 or wortmannin restored ROS production induced by TNF-α in the presence of IL-10. In HUVECs treated by TNF-α + IL-10, inhibition of p110 α PI3-kinase subunit significantly increased ROS production, whereas p110 γ/δ inhibition did not have a significant effect. Pretreatment with IL-10 significantly decreased TNF-α-induced increased levels of ceramide (TNF-α vs. TNF-α + IL-10: 6,278 ± 1,013 vs. 1,440 ± 130 pmol/mg prot), as well as ICAM-1 expression and leukocyte adhesion (TNF-α vs. TNF-α + IL-10: 26.8 ± 2.6 vs. 6.7 ± 0.4 adherent leukocytes/field at 15 min). Interleukin 10 decreases the level of inflammation induced by TNF-α in endothelial cells by reducing the TNF-α-induced ROS production, ICAM-1 expression, and leukocyte adhesion to the endothelium. The antioxidant effect of IL-10 is mediated through PI3-kinase and is paralleled by a decrease in ceramide synthesis induced by TNF-α.
Collapse
|
17
|
Mumm JB, Oft M. Pegylated IL-10 induces cancer immunity: the surprising role of IL-10 as a potent inducer of IFN-γ-mediated CD8(+) T cell cytotoxicity. Bioessays 2013; 35:623-31. [PMID: 23666891 DOI: 10.1002/bies.201300004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recently, the development of several strategies based on immunotherapy has raised hopes for a more promising way to treat cancer patients. Here, we describe how interleukin (IL)-10, a seemingly unlikely candidate, stimulates the immune system in a particularly efficacious way. IL-10, an omnipotent anti-inflammatory cytokine, delivers an equally potent immune stimulation in the context of CD8(+) T cells and tumor immunity. By activation of tumor-resident, tumor-specific CD8(+) T cells, pegylated IL-10 can induce rejection of large and metastasizing tumors in mice. Here, we summarize the mechanisms of action of IL-10, the reasons why the mechanisms may be crucial for the treatment of cancer patients, and the rationale for applying pegylated IL-10 in the clinic.
Collapse
|
18
|
Almer G, Frascione D, Pali-Schöll I, Vonach C, Lukschal A, Stremnitzer C, Diesner SC, Jensen-Jarolim E, Prassl R, Mangge H. Interleukin-10: an anti-inflammatory marker to target atherosclerotic lesions via PEGylated liposomes. Mol Pharm 2012; 10:175-86. [PMID: 23176185 PMCID: PMC3558023 DOI: 10.1021/mp300316n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Atherosclerosis (AS) causes cardiovascular disease, which leads to fatal clinical end points like myocardial infarction or stroke, the most prevalent causes of death in developed countries. An early, noninvasive method of detection and diagnosis of atherosclerotic lesions is necessary to prevent and treat these clinical end points. Working toward this goal, we examined recombinant interleukin-10 (IL-10), stealth liposomes with nanocargo potency for NMRI relevant contrast agents, and IL-10 coupled to stealth liposomes in an ApoE-deficient mouse model using confocal laser-scanning microscopy (CLSM). Through ex vivo incubation and imaging with CLSM, we showed that fluorescently labeled IL-10 is internalized by AS plaques, and a low signal is detected in both the less injured aortic surfaces and the arteries of wild-type mice. In vivo experiments included intravenous injections of (i) fluorescent IL-10, (ii) IL-10 targeted carboxyfluorescin (CF-) labeled stealth liposomes, and (iii) untargeted CF-labeled stealth liposomes. Twenty-four hours after injection the arteries were dissected and imaged ex vivo. Compared to free IL-10, we observed a markedly stronger fluorescence intensity with IL-10 targeted liposomes at AS plaque regions. Moreover, untargeted CF-labeled liposomes showed only weak, unspecific binding. Neither free IL-10 nor IL-10 targeted liposomes showed significant immune reaction when injected into wild-type mice. Thus, the combined use of specific anti-inflammatory proteins, high payloads of contrast agents, and liposome particles should enable current imaging techniques to better recognize and visualize AS plaques for research and prospective therapeutic strategies.
Collapse
Affiliation(s)
- Gunter Almer
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Science, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
BACKGROUND Interleukin-10 is a pleiotropic cytokine, whose main function is limitation and ultimately termination of immune responses. This is especially true for environmental interfaces such as the gastrointestinal tract. IL-10 acts as a key mediator for maintaining gut homeostasis. IL-10 knockout mice are well established as a genetic model for inflammatory bowel disease (IBD), and sequence variants in the IL-10 locus contribute to ulcerative colitis (UC). DESIGN This review covers the significance of IL-10 signalling in the intestinal immune response both in health and disease. It explains the biological role of IL-10, its deregulation in IBD and its contribution to intestinal inflammation via endoplasmic reticulum stress response. RESULTS Many IBD susceptibility genes have been discovered in the past years, linking fundamental biological systems, like innate and adaptive immunity, stress responses, autophagy and mucosal barrier to the pathogenesis of Crohn's disease (CD) and UC. IL-10 has long been known for its substantial role in regulating gut immunity, but its contribution to IBD was somewhat elusive. A recent study identified mutations in either IL-10 receptor subunits that are associated with early-onset enterocolitis, a severe phenotype of IBD. Other than genetic variants of IL-10 receptors, IL-10 and STAT3 genes are also associated with IBD, emphasizing the involvement of the IL-10 signalling cascade in the pathogenesis of CD and UC. CONCLUSIONS The discovery of inherited deregulations in the IL-10 signalling cascade is not only considered the missing link between IL-10 and intestinal homeostasis, but also demonstrates how findings made in animal models help explaining human disease.
Collapse
Affiliation(s)
- Gregor Paul
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
20
|
Qin D, Feng N, Fan W, Ma X, Yan Q, Lv Z, Zeng Y, Zhu J, Lu C. Activation of PI3K/AKT and ERK MAPK signal pathways is required for the induction of lytic cycle replication of Kaposi's sarcoma-associated herpesvirus by herpes simplex virus type 1. BMC Microbiol 2011; 11:240. [PMID: 22032493 PMCID: PMC3215226 DOI: 10.1186/1471-2180-11-240] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/27/2011] [Indexed: 12/14/2022] Open
Abstract
Background Kaposi's sarcoma-associated herpesvirus (KSHV) is causally linked to several acquired immunodeficiency syndrome-related malignancies, including Kaposi's sarcoma (KS), primary effusion lymphoma (PEL) and a subset of multicentric Castleman's disease. Regulation of viral lytic replication is critical to the initiation and progression of KS. Recently, we reported that herpes simplex virus type 1 (HSV-1) was an important cofactor that activated lytic cycle replication of KSHV. Here, we further investigated the possible signal pathways involved in HSV-1-induced reactivation of KSHV. Results By transfecting a series of dominant negative mutants and protein expressing constructs and using pharmacologic inhibitors, we found that either Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) or JAK1/STAT6 signaling failed to regulate HSV-1-induced KSHV replication. However, HSV-1 infection of BCBL-1 cells activated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, also called AKT) pathway and inactivated phosphatase and tensin homologue deleted on chromosome ten (PTEN) and glycogen synthase kinase-3β (GSK-3β). PTEN/PI3K/AKT/GSK-3β pathway was found to be involved in HSV-1-induced KSHV reactivation. Additionally, extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinase (MAPK) pathway also partially contributed to HSV-1-induced KSHV replication. Conclusions HSV-1 infection stimulated PI3K/AKT and ERK MAPK signaling pathways that in turn contributed to KSHV reactivation, which provided further insights into the molecular mechanism controlling KSHV lytic replication, particularly in the context of HSV-1 and KSHV co-infection.
Collapse
Affiliation(s)
- Di Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Francisco V, Figueirinha A, Neves BM, García-Rodríguez C, Lopes MC, Cruz MT, Batista MT. Cymbopogon citratus as source of new and safe anti-inflammatory drugs: bio-guided assay using lipopolysaccharide-stimulated macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:818-827. [PMID: 21075192 DOI: 10.1016/j.jep.2010.11.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/30/2010] [Accepted: 11/03/2010] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aqueous extracts of Cymbopogon citratus (Cy) leaves are used in traditional medicine for the treatment of inflammatory conditions, however, little is known about their mechanism of action. AIM OF THE STUDY The aim of this study is to explore the anti-inflammatory properties of Cymbopogon citratus leaves and their polyphenol-rich fractions (PFs), as well its mechanism of action in murine macrophages. MATERIALS AND METHODS A lipid- and essential oil-free infusion of Cy leaves was prepared (Cy extract) and fractionated by column chromatography. Anti-inflammatory properties of Cy extract (1.115 mg/ml) and its PFs, namely phenolic acids (530 μg/ml), flavonoids (97.5 μg/ml) and tannins (78 μg/ml), were investigated using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages as in vitro model. As inflammatory parameters, nitric oxide (NO) production was evaluated by Griess reaction, as well as effects on cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS) expression and on intracellular signaling pathways activation, which were analyzed by Western blot using specific antibodies. RESULTS Cy extract inhibited iNOS expression, NO production and various LPS-induced pathways like p38 mitogen-activated protein kinase (MAPK), c-jun NH(2)-terminal kinase (JNK) 1/2 and the transcription nuclear factor (NF)-κB. The extracellular signal-regulated kinase (ERK) 1/2 and the phosphatidylinositol-3-kinase (PI3K)/Akt activation were not affected by Cy extract. Both phenolic acid- and tannin-rich fractions significantly inhibited NF-κB activation, iNOS expression and NO production but none of the PFs modulated MAPKs or PI3K/Akt activation. Neither Cy extract nor PFs affected LPS-induced COX-2 expression but LPS-induced PGE(2) production is inhibited by Cy extract and by phenolic acid-rich fraction. CONCLUSIONS Our data provide evidence that support the usage of Cymbopogon citratus leaves extract in traditional medicine, and suggest that Cy, in particular its polyphenolic compounds, could constitute a natural source of a new and safe anti-inflammatory drug.
Collapse
Affiliation(s)
- Vera Francisco
- Centro de Estudos Farmacêuticos-Faculdade de Farmácia, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
22
|
Antoniv TT, Ivashkiv LB. Interleukin-10-induced gene expression and suppressive function are selectively modulated by the PI3K-Akt-GSK3 pathway. Immunology 2011; 132:567-77. [PMID: 21255011 DOI: 10.1111/j.1365-2567.2010.03402.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Interleukin-10 (IL-10) is an immunosuppressive cytokine that inhibits inflammatory gene expression. Phosphatidylinositol 3-kinase (PI3K) -mediated signalling regulates inflammatory responses and can induce IL-10 production, but a role for PI3K signalling in cellular responses to IL-10 is not known. In this study we investigated the involvement of the PI3K-Akt-GSK3 signalling pathway in IL-10-induced gene expression and IL-10-mediated suppression of Toll-like receptor-induced gene expression in primary human macrophages. A combination of loss and gain of function approaches using kinase inhibitors, expression of constitutively active Akt, and RNA interference in primary human macrophages showed that expression of a subset of IL-10-inducible genes was dependent on PI3K-Akt signalling. The effects of PI3K-Akt signalling on IL-10 responses were mediated at least in part by glycogen synthase kinase 3 (GSK3). In accordance with a functional role for PI3K pathways in contributing to the suppressive actions of IL-10, PI3K signalling augmented IL-10-mediated inhibition of lipopolysaccharide-induced IL-1, IL-8 and cyclo-oxygenase-2 expression. The PI3K signalling selectively modulated IL-10 responses, as it was not required for inhibition of tumour necrosis factor expression or for induction of certain IL-10-inducible genes such as SOCS3. These findings identify a new mechanism by which PI3K-mediated signalling can suppress inflammation by regulating IL-10-mediated gene induction and anti-inflammatory function.
Collapse
Affiliation(s)
- Taras T Antoniv
- Arthritis and Tissue Degeneration Program, Department of Medicine, Hospital for Special Surgery, New York, NY 10021, USA
| | | |
Collapse
|
23
|
Park HJ, Lee SJ, Kim SH, Han J, Bae J, Kim SJ, Park CG, Chun T. IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway. Mol Immunol 2010; 48:720-7. [PMID: 21095008 DOI: 10.1016/j.molimm.2010.10.020] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 10/25/2010] [Accepted: 10/25/2010] [Indexed: 11/16/2022]
Abstract
Autophagy is an important process which maintains cellular homeostasis under stressful conditions such as starvation and pathogenic invasion. Previous observations have indicated that several cytokines are important regulators of the autophagic process. Among the various cytokines, IL-10 has a unique property which functions to suppress overall immunity. However, the functional role of IL-10 during the autophagic process has not been studied. In this study, we examined the effect of IL-10 during starvation induced autophagy of murine macrophages (J774). The results clearly indicated that IL-10 and IL-10 receptor signaling inhibits autophagy induction of murine macrophage. Further experiments revealed that IL-10 activates the class I phosphatidylinositol 3-kinase (PI3K) pathway, which results in the phosphorylation of p70S6K through the activation of Akt and a mammalian target of the rapamycin complex 1 (mTORC 1). These results will advance our understanding of the physiological function of IL-10 during the autophagic process of macrophage.
Collapse
Affiliation(s)
- Hun-Jung Park
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sabat R, Grütz G, Warszawska K, Kirsch S, Witte E, Wolk K, Geginat J. Biology of interleukin-10. Cytokine Growth Factor Rev 2010; 21:331-44. [PMID: 21115385 DOI: 10.1016/j.cytogfr.2010.09.002] [Citation(s) in RCA: 777] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Robert Sabat
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, University Hospital Charité, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ramos MV, Fernández GC, Brando RJF, Panek CA, Bentancor LV, Landoni VI, Isturiz MA, Palermo MS. Interleukin-10 and interferon-gamma modulate surface expression of fractalkine-receptor (CX(3)CR1) via PI3K in monocytes. Immunology 2009; 129:600-9. [PMID: 20102414 DOI: 10.1111/j.1365-2567.2009.03181.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The membrane-anchored form of the chemokine fractalkine (CX(3)CL1) has been identified as a novel adhesion molecule that interacts with its specific receptor (CX(3)CR1) expressed in monocytes, T cells and natural killer cells to induce adhesion. In addition, CX(3)CL1 can be cleaved from the cell membrane to induce chemotaxis of CX(3)CR1-expressing leucocytes. Recently, marked variations in CX(3)CR1 monocyte expression have been observed during several pathological conditions. Regulation of CX(3)CR1 in monocytes during basal or inflammatory/anti-inflammatory conditions is poorly understood. The aim of this study was therefore to examine CX(3)CR1 expression during monocyte maturation and the effect of soluble mediators on this process. We found that basal expression of CX(3)CR1 in fresh monocytes was reduced during culture, and that lipopolysacchairde accelerated this effect. In contrast, interleukin-10 and interferon-gamma treatment abrogated CX(3)CR1 down-modulation, through a phosphatidylinositol 3 kinase-dependent pathway. Most importantly, CX(3)CR1 membrane expression correlated with monocyte CX(3)CL1-dependent function. Taken together, our data demonstrate that CX(3)CR1 expression in monocytes can be modulated, and suggest that alterations in their environment are able to influence CX(3)CL1-dependent functions, such as chemotaxis and adhesion, leading to changes in the kinetics, composition and/or functional status of the leucocyte infiltrate.
Collapse
Affiliation(s)
- María V Ramos
- División Inmunología, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Simmonds RE, Lali FV, Smallie T, Small PLC, Foxwell BM. Mycolactone inhibits monocyte cytokine production by a posttranscriptional mechanism. THE JOURNAL OF IMMUNOLOGY 2009; 182:2194-202. [PMID: 19201873 DOI: 10.4049/jimmunol.0802294] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The virulence and immunosuppressive activity of Mycobacterium ulcerans is attributed to mycolactone, a macrolide toxin synthesized by the bacteria. We have explored the consequence and mechanism of mycolactone pretreatment of primary human monocytes activated by a wide range of TLR ligands. The production of cytokines (TNF, IL-1beta, IL-6, IL-10, and IFN-gamma-inducible protein-10), chemokines (IL-8), and intracellular effector molecules (exemplified by cyclooxygenase-2) was found to be powerfully and dose dependently inhibited by mycolactone, irrespective of the stimulating ligand. However, mycolactone had no effect on the activation of signaling pathways that are known to be important in inducing these genes, including the MAPK and NF-kappaB pathways. Unexpectedly, LPS-dependent transcription of TNF, IL-6, and cyclooxygenase-2 mRNA was found not to be inhibited, implying that mycolactone has a novel mechanism of action and must function posttranscriptionally. We propose that mycolactone mediates its effects by inhibiting the translation of a specific subset of proteins in primary human monocytes. This mechanism is distinct from rapamycin, another naturally occurring immunosuppressive lactone. The current findings also suggest that monocyte-derived cytokine transcript and protein levels may not correlate in Buruli ulcer lesions, and urge caution in the interpretation of RT-PCR data obtained from patient biopsy samples.
Collapse
Affiliation(s)
- Rachel E Simmonds
- Cytokine and Signal Transduction Laboratory, Kennedy Institute of Rheumatology Division, London, United Kingdom.
| | | | | | | | | |
Collapse
|
27
|
Gruber SG, Luciani MG, Grundtner P, Zdanov A, Gasche C. Differential signaling of cmvIL-10 through common variants of the IL-10 receptor 1. Eur J Immunol 2008; 38:3365-75. [PMID: 19016528 PMCID: PMC9019573 DOI: 10.1002/eji.200837718] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human IL-10 (hIL-10) signaling is mediated by receptors consisting of two subunits, IL-10 receptor 1 (IL-10R1) and IL-10 receptor 2. Two common variants of the IL-10R1 (Ser 138 Gly (single-nucleotide polymorphism 3, SNP3) and Gly 330 Arg (SNP4)) are associated with diverse disease phenotypes. Viral homologs to hIL-10, such as cmvIL-10, utilize the same IL-10 receptor complex as part of viral immune evasion strategies. For the present study we hypothesized that IL-10R1 variants alter the ability of viral IL-10 to utilize the IL-10R1 signaling pathway. HeLa cell clones expressing different IL-10R1 haplotypes (WT or any variant) were incubated with hIL-10 or cmvIL-10. In cells expressing IL-10R1-WT, cmvIL-10 (both non-glycosylated- and HeLa-expressed) resulted in equal or slightly stronger STAT3 phosphorylation compared with hIL-10. In clones expressing IL-10R1-SNP3, IL-10R1-SNP4 or IL-10R1-SNP3+4, the cmvIL-10 showed significantly less STAT3 phosphorylation, especially when HeLa-expressed cytokines were used. Time course experiments demonstrated a slower kinetic of cmvIL-10 STAT3 activation through the variant IL-10R1. Similarly, IL-10R1 variants decreased the cmvIL-10-induced SOCS3 and signaling lymphocytic activation molecule mRNA expression. These data suggest that the IL-10R1 variants differentially reduce the signaling activity of cmvIL-10 and thereby may affect CMV's ability to escape from the host's immune surveillance.
Collapse
Affiliation(s)
- Sabine G. Gruber
- Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Maria Gloria Luciani
- Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Paul Grundtner
- Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Alexander Zdanov
- Macromolecular Crystallography Laboratory, NCI, Frederick, MD, USA
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Mohamed SGK, Sugiyama E, Shinoda K, Taki H, Hounoki H, Abdel-Aziz HO, Maruyama M, Kobayashi M, Ogawa H, Miyahara T. Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells. Bone 2007; 41:592-602. [PMID: 17627913 DOI: 10.1016/j.bone.2007.05.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 05/21/2007] [Accepted: 05/25/2007] [Indexed: 12/19/2022]
Abstract
Interleukin-10 (IL-10), an anti-inflammatory cytokine, has been shown to inhibit osteoclast formation and bone resorption in rat and mouse systems. However, the precise intracellular mechanism(s) of this action remains unclear. The aim of this study was to clarify the role of IL-10 in the regulation of critical transcription factors involved in osteoclastogenesis. A RAW264.7 macrophage cell line, which constitutively expressed IL-10 receptor, was differentiated to osteoclasts with stimulation of receptor activator of nuclear factor kappaB ligand (RANKL). IL-10 inhibited the RANKL-induced osteoclastogenesis. IL-10 potently reduced the RANKL-induced expression of NFATc1, c-Jun and c-Fos, which are known to be essential for osteoclastogenesis, in time- and dose-dependent manners. The IL-10-induced inhibition of these transcription factors was observed in the system of mouse bone marrow precursors. Besides these transcription factors, IL-10 also decreased the RANKL-induced expression of NF-kappaB p50 and phosphorylation of JNK. To determine which signaling was critical for the IL-10 effect, we examined the effect of overexpression of NFATc1, c-Fos, and c-Jun on the IL-10-induced inhibition of osteoclastogenesis. As expected, overexpression of NFATc1 abrogated the IL-10-induced inhibition of osteoclastogenesis. Interestingly, overexpression of either c-Fos or c-Jun partially rescued the reduction of RANKL-induced expression of NFATc1 and osteoclastogenesis by IL-10. These data suggest that IL-10 may down-regulate osteoclastogenesis mainly through inhibition of the expression of NFATc1, c-Fos and c-Jun. These findings provide new insight into the inhibitory action of IL-10 on RANKL-mediated osteoclastogenesis.
Collapse
Affiliation(s)
- Saad Gad-Kamel Mohamed
- Department of Internal Medicine 1, Faculty of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Haase MG, Klawitter A, Geyer P, Baretton GB. Expression of the immunomodulator IL-10 in type I pneumocytes of the rat: alterations of IL-10 expression in radiation-induced lung damage. J Histochem Cytochem 2007; 55:1167-72. [PMID: 17679732 PMCID: PMC3957526 DOI: 10.1369/jhc.7a7173.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fibrosing alveolitis is a disease with inflammatory, proliferative, and fibrotic components. In different models, it has been shown that the cytokine interleukin-10 (IL-10) plays a conflicting role in inflammation-associated fibrotic processes, inasmuch as it is an anti-inflammatory cytokine but also a TH2 cytokine with inherent pro-fibrotic effects. IL-10 is produced primarily by inflammatory cells. In this report, we show in a rat model of radiation-induced fibrosing alveolitis that IL-10 is also produced by type I alveolar epithelial cells in both normal and fibrotic lungs. The total amount of IL-10 in the lung is increased after irradiation, but type I pneumoyctes contain less IL-10. The R3/1 permanent type I pneumocyte cell line also contains IL-10, which is reduced after irradiation. Whereas in the normal lung, the entire alveolar surface is covered by IL-10-producing pneumocytes, this continuity is interrupted in fibrotic lungs, because type I pneumocytes lack full differentiation and thus full spreading over the alveolar surface. The exposure of the IL-10-negative epithelial basal membrane may allow for an easier attachment of inflammatory cells such as alveolar macrophages. These cells have the potential to act in a pro-inflammatory way by tumor necrosis factor alpha and also in a pro-fibrotic way by activating TH2 cytokines.
Collapse
Affiliation(s)
- Michael G Haase
- OncoRay Center for Radiation Research in Oncology, Medical Faculty, Dresden University of Technology, Dresden, Germany.
| | | | | | | |
Collapse
|
30
|
Williams LM, Sarma U, Willets K, Smallie T, Brennan F, Foxwell BMJ. Expression of constitutively active STAT3 can replicate the cytokine-suppressive activity of interleukin-10 in human primary macrophages. J Biol Chem 2007; 282:6965-75. [PMID: 17194701 DOI: 10.1074/jbc.m609101200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is general agreement that signal transducer and activation of transcription 3 (STAT3) is required to mediate the anti-inflammatory activities of interleukin (IL)-10. However, STAT3 is activated by multiple factors that do not share the anti-inflammatory activity of IL-10. The question remains whether STAT3 is sufficient for the anti-inflammatory effects or whether there are other signals required, as had been suggested previously. We set out to map the human IL-10 receptor and to identify the key elements involved in transducing the cytokine-suppressive effects of IL-10. We were able to show an absolute requirement for both of the tyrosine residues found within the YXXQ-STAT3-docking site within the IL-10 receptor 1 and that no other signals appeared to be required. We used a constitutively active STAT3 to determine whether expression of this factor could suppress lipopolysaccharide-induced tumor necrosis factor and IL-6 production. Our data show that STAT3 activity can suppress both IL-6 and tumor necrosis factor production in lipopolysaccharide-stimulated macrophages. However, in synovial fibroblasts, STAT3 did not suppress IL-6 production, suggesting that the cellular environment plays an important role in dictating whether STAT3 drives a pro- or anti-inflammatory response.
Collapse
Affiliation(s)
- Lynn M Williams
- Kennedy Institute of Rheumatology Division, Imperial College London, ARC Building, 1 Aspenlea Road, London W6 8LH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
31
|
Spencer JV. The cytomegalovirus homolog of interleukin-10 requires phosphatidylinositol 3-kinase activity for inhibition of cytokine synthesis in monocytes. J Virol 2007; 81:2083-6. [PMID: 17121792 PMCID: PMC1797587 DOI: 10.1128/jvi.01655-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 11/13/2006] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (CMV) has evolved numerous strategies for evading host immune defenses, including piracy of cellular cytokines. A viral homolog of interleukin-10, designated cmvIL-10, binds to the cellular IL-10 receptor and effects potent immune suppression. The signaling pathways employed by cmvIL-10 were investigated, and the classic IL-10R/JAK1/Stat3 pathway was found to be activated in monocytes. However, inhibition of JAK1 had little effect on cmvIL-10-mediated suppression of tumor necrosis factor alpha (TNF-alpha) production. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway had a more significant impact on TNF-alpha levels but did not completely relieve the immune suppression, demonstrating that cmvIL-10 stimulates multiple signaling pathways to modulate cell function.
Collapse
Affiliation(s)
- Juliet V Spencer
- Department of Biology, University of San Francisco, 2130 Fulton St., San Francisco, CA 94117, USA.
| |
Collapse
|
32
|
Brennan FM, Foey AD, Feldmann M. The importance of T cell interactions with macrophages in rheumatoid cytokine production. Curr Top Microbiol Immunol 2006; 305:177-94. [PMID: 16724806 DOI: 10.1007/3-540-29714-6_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The analysis of suppression of cytokines in rheumatoid synovial tissue and fluid pioneered the studies of human cytokines in diseased tissue due to the relative ease of staining samples, even at the height of the inflammatory process. These studies led to the study of synovial cytokine regulation, and the identification of TNF as a therapeutic target, which has been amply validated in clinical trials and now routine therapy. The next key question was how is TNF disregulated in synovium. Are there differences between the mechanisms of synovial TNF production compared to the production of protective TNF during an immune response? Are there differences between the induction of the pro-inflammatory TNF and the anti inflammatory IL-10? The analysis of the interaction of the two most abundant synovial cells, T lymphocytes and macrophages has provided interesting clues to new therapeutic approaches based on disrupting T-macrophage interaction.
Collapse
Affiliation(s)
- F M Brennan
- Imperial College of Science, Technology and Medicine, Kennedy Institute of Rheumatology Division, Faculty of Medicine, London, UK.
| | | | | |
Collapse
|
33
|
Ward C, Murray J, Clugston A, Dransfield I, Haslett C, Rossi AG. Interleukin-10 inhibits lipopolysaccharide-induced survival and extracellular signal-regulated kinase activation in human neutrophils. Eur J Immunol 2005; 35:2728-37. [PMID: 16106368 DOI: 10.1002/eji.200425561] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lipopolysaccharide (LPS) induces a marked delay in human neutrophil apoptosis that is reversed by the anti-inflammatory cytokine IL-10. The effect of IL-10 is specific since other agents that delay neutrophil apoptosis are not affected. To investigate mechanisms underlying the actions of IL-10, we examined signaling pathways activated by LPS per se and in response to IL-10. The MAPK kinase (MEK) 1 inhibitor PD098059, the protein kinase C (PKC) inhibitor Ro31,8220, and the phosphatidylinositol-3 kinase (PI3-K) inhibitor LY294002 all partially reversed LPS-mediated retardation of neutrophil apoptosis, but the p38 MAPK inhibitor SB203850 did not. LPS activates the transcription factor NF-kappaB, however, IL-10 did not affect the ability of LPS to activate NF-kappaB as assessed by IkappaB-alpha proteolysis. Although IL-10 did not alter activation of ERK by GM-CSF or TNF-alpha, it did inhibit activation induced by LPS. Thus our data illustrate that LPS-induced neutrophil survival is regulated by the MAPK, PKC and PI3-K pathways as well as NF-kappaB, and can be reversed by IL-10, through a mechanism involving inhibition of ERK activation. Because of the specific nature of this inhibition, we conclude that IL-10 interferes with an ERK activation pathway, which is not involved in GM-CSF or TNF-alpha signaling.
Collapse
Affiliation(s)
- Carol Ward
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
34
|
Rahimi AAR, Gee K, Mishra S, Lim W, Kumar A. STAT-1 mediates the stimulatory effect of IL-10 on CD14 expression in human monocytic cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:7823-32. [PMID: 15944287 DOI: 10.4049/jimmunol.174.12.7823] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-10, an anti-inflammatory cytokine, has been shown to exhibit stimulatory functions including CD14 up-regulation on human monocytic cells. CD14-mediated signaling following LPS stimulation of monocytic cells results in the synthesis of proinflammatory cytokines. Our results show that LPS-induced CD14 expression on monocytic cells may be mediated by endogenously produced IL-10. To investigate the molecular mechanism by which IL-10 enhances CD14 expression, both human monocytes and the promyelocytic HL-60 cells were used as model systems. IL-10 induced the phosphorylation of PI3K and p42/44 ERK MAPK. By using specific inhibitors for PI3K (LY294002) and ERK MAPKs (PD98059), we demonstrate that LY294002 either alone or in conjunction with PD98059 inhibited IL-10-induced phosphorylation of STAT-1 and consequently CD14 expression. However, IL-10-induced STAT-3 phosphorylation remained unaffected under these conditions. Finally, STAT-1 interfering RNA inhibited IL-10-induced CD14 expression. Taken together, these results suggest that IL-10-induced CD14 up-regulation in human monocytic cells may be mediated by STAT-1 activation through the activation of PI3K either alone or in concert with the ERK MAPK.
Collapse
Affiliation(s)
- Ali Akbar Rahim Rahimi
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
35
|
Dobbelaere DAE, Küenzi P. The strategies of the Theileria parasite: a new twist in host-pathogen interactions. Curr Opin Immunol 2005; 16:524-30. [PMID: 15245750 DOI: 10.1016/j.coi.2004.05.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Theileria parasites infect and transform cells of the ruminant immune system. Continuous proliferation and survival of Theileria-transformed cells involves the well-orchestrated activation of several host-cell signalling pathways. Constitutive NF-kappa B (nuclear factor kappa B) activation is accomplished by recruiting the IKK (I kappa B kinase) complex, a central regulator of NF-kappa B pathways, to the surface of the transforming schizont, where it becomes permanently activated. Constitutive activation of the PI-3K-PKB [phosphoinositide 3-kinase-(Akt) protein kinase B] pathway is likely to be indirect and is essential for continuous proliferation. Theileria-transformed T cells express a range of anti-apoptotic proteins that can be expected to provide protection against apoptosis induced by death receptors, as well as cellular control mechanisms that are mobilised to eliminate cells that entered a cycle of uncontrolled proliferation.
Collapse
Affiliation(s)
- Dirk A E Dobbelaere
- Division of Molecular Pathology, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland.
| | | |
Collapse
|
36
|
Robertshaw HJ, Brennan FM. Release of tumour necrosis factor alpha (TNFalpha) by TNFalpha cleaving enzyme (TACE) in response to septic stimuli in vitro. Br J Anaesth 2004; 94:222-8. [PMID: 15556967 DOI: 10.1093/bja/aei021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tumour necrosis factor alpha (TNFalpha), in its soluble form (solTNF), has been well described as an important cytokine in inflammatory states including sepsis. The transmembrane precursor of solTNF, membrane-bound TNFalpha (memTNF), is cleaved by TNFalpha cleaving enzyme (TACE), the regulation of which is poorly understood. We hypothesized that the diversity of clinical features seen with sepsis caused by different organisms may be a result of differential regulation of TACE. Therefore, we measured these proteins in models of sepsis using flow cytometric methods that we have developed. METHODS Surface protein expression of memTNF and TACE, and TACE catalytic activity were measured in human monocytes by flow cytometry following cell stimulation by lipopolysaccharide (LPS), zymosan (a yeast cell wall product) or heat-inactivated Neisseria meninigitidis. RESULTS Unstimulated human monocytes express memTNF on the cell surface (mean fluorescence intensity, MFI 131) and this is down-regulated initially in response to LPS (MFI 57) but then recovers to exceed the resting protein expression (MFI 614). TACE protein is also present on the surface of resting cells (MFI 389) but is catalytically inactive until cell stimulation. Stimulation of monocytes with LPS, zymosan and Neisseria meningitidis produced different patterns of TACE activation with time. CONCLUSIONS The regulation of memTNF by TACE on monocytes is an important regulatory event in the pro-inflammatory cytokine cascade. As monocytes are important in the inflammatory cascade, we suggest that the control of memTNF and TACE activity on monocytes may play a role in the pathophysiology of sepsis.
Collapse
Affiliation(s)
- H J Robertshaw
- Anaesthesia and Intensive Care Medicine, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| | | |
Collapse
|
37
|
Grütz G. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol 2004; 77:3-15. [PMID: 15522916 DOI: 10.1189/jlb.0904484] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Interleukin-10 (IL-10) is an important immunomodulatory cytokine, which has attracted much attention because of its anti-inflammatory properties. It reduces antigen presentation and inhibits T cell activation. IL-10-treated myeloid cells lose their ability to respond toward the endotoxin lipopolysaccharide (LPS) with the production of several proinflammatory mediators. Thereby, IL-10 limits excessive inflammatory reactions in response to endotoxin as it occurs in colitis or endotoxin shock. Mice can be tolerized toward endotoxin shock when pretreated with a sublethal dose of LPS. This can be mimicked in vitro as LPS desensitization, resulting in a similar LPS hyporesponsiveness as observed with IL-10 pretreatment. However, an early block in LPS signaling characterizes LPS desensitization, whereas IL-10 seems to target late events. Controversial reports have been published where IL-10 would interfere with the induction of proinflammatory mediators, and little is known about the molecular mechanisms behind the anti-inflammatory activities of IL-10. Some recent publications have tried to gain more insight into the molecular mechanism of IL-10 by gene-expression profiling and functional studies in myeloid-derived cells. These results are reviewed here and compared with the progress that has been made to understand the induction of endotoxin tolerance by LPS itself.
Collapse
Affiliation(s)
- Gerald Grütz
- Charité Berlin, Institute of Medical Immunology, Luisenstr. 6-8, Berlin, Germany.
| |
Collapse
|
38
|
Williams LM, Ricchetti G, Sarma U, Smallie T, Foxwell BMJ. Interleukin-10 suppression of myeloid cell activation--a continuing puzzle. Immunology 2004; 113:281-92. [PMID: 15500614 PMCID: PMC1782589 DOI: 10.1111/j.1365-2567.2004.01988.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 08/19/2004] [Indexed: 12/13/2022] Open
Abstract
Efforts to identify the signal transduction pathways used by interleukin-10 (IL-10) have resulted in limited success. The anti-inflammatory effects elicited by IL-10, and the mechanisms by which these are mediated, are still relatively unknown. Understanding the signalling mechanisms behind the suppression of cytokine expression by IL-10 could be of potential therapeutic interest. Although the consensus is that the Janus kinase, Jak1, as well as the signal transducer and activator of transcription STAT3 are central, much controversy exists about the participation and roles of many other signalling pathways targeted by IL-10. The mechanisms of cytokine suppression proposed by various groups have included transcriptional, post-transcriptional and post-translational regulation of IL-10 target genes; nevertheless no unifying model has emerged thus far. Here we would like to highlight novel findings and discuss their implications in the context of current understanding of IL-10 signalling.
Collapse
Affiliation(s)
- Lynn M Williams
- The Kennedy Institute of Rheumatology Division, Imperial College, London, UK.
| | | | | | | | | |
Collapse
|
39
|
Ricchetti GA, Williams LM, Foxwell BMJ. Heme oxygenase 1 expression induced by IL-10 requires STAT-3 and phosphoinositol-3 kinase and is inhibited by lipopolysaccharide. J Leukoc Biol 2004; 76:719-26. [PMID: 15240748 DOI: 10.1189/jlb.0104046] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heme-oxygenase 1 (HO-1) is a stress-response protein with anti-inflammatory activity. This study has examined the regulation of HO-1 expression by the anti-inflammatory factor, interleukin (IL)-10 and whether HO-1 could account for the function of the cytokine. IL-10-induced expression of HO-1 required the activation of signal transducer and activator of transcription (STAT)-3 but not p38 mitogen-activated protein kinase. However, expression of HO-1 also required the activation of the phosphatidylinositol-3 kinase pathway, a signaling mechanism not required for the anti-inflammatory activity of IL-10. Moreover, induction of HO-1 expression was not restricted to IL-10, as IL-6, a cytokine known to activate STAT-3, could also induce the protein. In human macrophages, lipopolysaccharide inhibited HO-1 expression induced by IL-10. Also, inhibition of HO-1 activity by the specific inhibitor zinc-II-protoporphyrin-IX had no effect on the anti-inflammatory function of IL-10. In summary, although IL-10 does regulate HO-1 expression, it does not appear to play a significant role in the anti-inflammatory activity of the cytokine.
Collapse
Affiliation(s)
- Giuseppe A Ricchetti
- Kennedy Institute of Rheumatology Division, Imperial College London, Hammersmith, UK
| | | | | |
Collapse
|
40
|
Williams L, Bradley L, Smith A, Foxwell B. Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. THE JOURNAL OF IMMUNOLOGY 2004; 172:567-76. [PMID: 14688368 DOI: 10.4049/jimmunol.172.1.567] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The signaling mechanism by which the anti-inflammatory cytokine IL-10 mediates suppression of proinflammatory cytokine synthesis remains largely unknown. Macrophage-specific STAT3-null mice have demonstrated that STAT3 plays a critical role in the suppression of LPS-induced TNF-alpha release, although the mechanism by which STAT3 mediates this inhibition is still not clear. Using an adenoviral system, we have expressed a dominant negative (DN) STAT3 in human macrophages to broaden the investigation to determine the role of STAT3 in IL-10-mediated anti-inflammatory signaling and gene expression. Overexpression of STAT3 DN completely inhibited IL-10-induced suppressor of cytokine signaling 3, tissue inhibitor of MMP-1, TNF receptor expression, and the recently identified IL-10-inducible genes, T cell protein tyrosine phosphatase and signaling lymphocyte activation molecule. STAT3 DN also blocked IL-10-mediated inhibition of MHC class II and COX2 expression. In agreement with the studies in STAT3-null mice, overexpression of the STAT3 DN completely reversed the ability of IL-10 to inhibit LPS-mediated TNF-alpha and IL-6 production. However, real-time PCR analysis showed that STAT3 DN expression did not affect immediate suppression of TNF-alpha mRNA, but did reverse the suppression observed at later time points, suggesting a biphasic regulation of TNF-alpha mRNA levels by IL-10. In conclusion, although STAT3 does appear to be the dominant mediator of the majority of IL-10 functions, there are elements of its anti-inflammatory activity that are STAT3 independent.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Cells, Cultured
- DNA/antagonists & inhibitors
- DNA/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Genetic Vectors
- Glycoproteins/antagonists & inhibitors
- Glycoproteins/biosynthesis
- Glycoproteins/genetics
- Histocompatibility Antigens Class II/biosynthesis
- Humans
- Immune Sera/pharmacology
- Immunoglobulins/biosynthesis
- Immunoglobulins/genetics
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/immunology
- Inflammation Mediators/physiology
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/immunology
- Interleukin-10/physiology
- Interleukin-6/antagonists & inhibitors
- Interleukin-6/biosynthesis
- Lipopolysaccharides/antagonists & inhibitors
- Lipopolysaccharides/pharmacology
- Macrophages/immunology
- Macrophages/metabolism
- Phosphorylation
- Protein Binding/genetics
- Protein Biosynthesis
- Protein Tyrosine Phosphatase, Non-Receptor Type 2
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/biosynthesis
- Protein Tyrosine Phosphatases/genetics
- Proteins/physiology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Receptors, Cell Surface
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/biosynthesis
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type II
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/biosynthesis
- STAT3 Transcription Factor
- Signal Transduction/genetics
- Signal Transduction/immunology
- Signaling Lymphocytic Activation Molecule Family Member 1
- Suppressor of Cytokine Signaling 3 Protein
- Suppressor of Cytokine Signaling Proteins
- Tissue Inhibitor of Metalloproteinase-1/antagonists & inhibitors
- Tissue Inhibitor of Metalloproteinase-1/biosynthesis
- Tissue Inhibitor of Metalloproteinase-1/metabolism
- Trans-Activators/antagonists & inhibitors
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/biosynthesis
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology Division, Imperial College London, ARC Building, 1 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom
| | | | | | | |
Collapse
|
41
|
Li H, Cheung W, Choo HH, Chan JHP, Lai PS, Fred Wong WS. IL-10 synergistically enhances GM-CSF-induced CCR1 expression in myelomonocytic cells. Biochem Biophys Res Commun 2003; 304:417-24. [PMID: 12711332 DOI: 10.1016/s0006-291x(03)00612-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CC chemokine receptor 1 (CCR1) has been implicated in inflammation. The present study examined the signaling mechanisms that mediate GM-CSF/IL-10-induced synergistic CCR1 protein expression in monocytic U937 cells. GM-CSF alone markedly increased both the mRNA and protein expression of CCR1. IL-10 augmented GM-CSF-induced CCR1 protein expression with no effect on mRNA expression. PD098059 and U0126 (two MEK inhibitors), and LY294002 (a PI3K inhibitor) inhibited GM-CSF/IL-10-induced CCR1 gene and protein expression. PD098059, U0126, and LY294002 also attenuated chemotaxis of GM-CSF/IL-10-primed U937 cells in response to MIP-1alpha. Immunoblotting studies show that GM-CSF alone induced ERK2 phosphorylation; whereas, IL-10 alone induced p70(S6k) phosphorylation in U937 cells. Neither cytokine when used alone induced PKB/Akt phosphorylation. Combined GM-CSF/IL-10 treatment of U937 cells induced phosphorylation of ERK2, p70(S6k), and PKB/Akt. PD098059 and U0126 completely abrogated ERK2 phosphorylation; whereas, LY294002 completely blocked PKB/Akt and p70(S6k) phosphorylation. Our findings indicate that IL-10 may potentiate GM-CSF-induced CCR1 protein expression in U937 cells via activation of PKB/Akt and p70(S6k).
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
42
|
Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E. VEGF expression in human macrophages is NF-kappaB-dependent: studies using adenoviruses expressing the endogenous NF-kappaB inhibitor IkappaBalpha and a kinase-defective form of the IkappaB kinase 2. J Cell Sci 2003; 116:665-74. [PMID: 12538767 DOI: 10.1242/jcs.00286] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is the most endothelial cell-specific angiogenic factor characterised to date, and it is produced by a variety of cell types. In macrophages, VEGF has been shown to be upregulated by the inflammatory mediator lipopolysaccharide (LPS) and by engagement of CD40 by CD40 ligand (CD40L). Because LPS and CD40L activate nuclear factor-kappaB (NF-kappaB) in monocytes, we investigated in this study whether VEGF production in macrophages, when stimulated with either LPS or CD40L, is NF-kappaB-dependent. We used adenoviral constructs over-expressing either IkappaBalpha (AdvIkappaBalpha), the endogenous inhibitor of NF-kappaB, or a kinase-defective mutant of IKK-2 (AdvIKK-2dn), an upstream activator of IkappaBalpha, to infect normal human monocyte-derived macrophages. We observed that LPS-induced production of VEGF in human macrophages was almost completely inhibited (>90%) following adenoviral transfer of IkappaBalpha. In addition, we observed significant inhibition of the CD40L-induced VEGF production in macrophages following infection with AdvIkappaBalpha. Expression of IKK-2dn in macrophages decreased VEGF production in response to LPS or CD40L by approximately 50%, suggesting that in addition to IKK-2, other kinases might be involved in NF-kappaB activation. These results show for the first time that VEGF production in human macrophages is NF-kappaB dependent. NF-kappaB regulates many of the genes involved in immune and inflammatory responses, and our study adds the angiogenic cytokine VEGF to the list of NF-kappaB-dependent cytokines.
Collapse
Affiliation(s)
- Serafim Kiriakidis
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London W6 8LH, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Williams L, Jarai G, Smith A, Finan P. IL‐10 expression profiling in human monocytes. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.4.800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology, London, United Kingdom; and
| | - Gabor Jarai
- Novartis Horsham Research Centre, West Sussex, United Kingdom
| | - Alexandra Smith
- Novartis Horsham Research Centre, West Sussex, United Kingdom
| | - Peter Finan
- Novartis Horsham Research Centre, West Sussex, United Kingdom
| |
Collapse
|
44
|
Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld JC. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J Biol Chem 2002; 277:33676-82. [PMID: 12087100 DOI: 10.1074/jbc.m204204200] [Citation(s) in RCA: 395] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IL (interleukin)-22 is an IL-10-related cytokine; its main biological activity known thus far is the induction of acute phase reactants in liver and pancreas. IL-22 signals through a receptor that is composed of two chains from the class II cytokine receptor family: IL-22R (also called ZcytoR11/CRF2-9) and IL-10Rbeta (CRF2-4), which is also involved in IL-10 signaling. In this report, we analyzed the signal transduction pathways activated in response to IL-22 in a rat hepatoma cell line, H4IIE. We found that IL-22 induces activation of JAK1 and Tyk2 but not JAK2, as well as phosphorylation of STAT1, STAT3, and STAT5 on tyrosine residues, extending the similarities between IL-22 and IL-10. However our results unraveled some differences between IL-22 and IL-10 signaling. Using antibodies specific for the phosphorylated form of MEK1/2, ERK1/2, p90RSK, JNK, and p38 kinase, we showed that IL-22 activates the three major MAPK pathways. IL-22 also induced serine phosphorylation of STAT3 on Ser(727). This effect, which is not shared with IL-10, was only marginally affected by MEK1/2 inhibitors, indicating that other pathways might be involved. Finally, by overexpressing a STAT3 S727A mutant, we showed that serine phosphorylation is required to achieve maximum transactivation of a STAT responsive promoter upon IL-22 stimulation.
Collapse
Affiliation(s)
- Diane Lejeune
- Ludwig Institute for Cancer Research, Brussels Branch, Experimental Medicine Unit, Université de Louvain, avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The mechanisms underlying the action of the potent anti-inflammatory interleukin-10 (IL-10) are poorly understood. Here we show that, in murine macrophages, IL-10 induces expression of heme oxygenase-1 (HO-1), a stress-inducible protein with potential anti-inflammatory effect, via a p38 mitogen-activated protein kinase-dependent pathway. Inhibition of HO-1 protein synthesis or activity significantly reversed the inhibitory effect of IL-10 on production of tumor necrosis factor-alpha induced by lipopolysaccharide (LPS). Additional experiments revealed the involvement of carbon monoxide, one of the products of HO-1-mediated heme degradation, in the anti-inflammatory effect of IL-10 in vitro. Induction of HO-1 by IL-10 was also evident in vivo. IL-10-mediated protection against LPS-induced septic shock in mice was significantly attenuated by cotreatment with the HO inhibitor, zinc protoporphyrin. The identification of HO-1 as a downstream effector of IL-10 provides new possibilities for improved therapeutic approaches for treating inflammatory diseases.
Collapse
Affiliation(s)
- Tzong-Shyuan Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, and Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
46
|
Brennan P, Mehl AM, Jones M, Rowe M. Phosphatidylinositol 3-kinase is essential for the proliferation of lymphoblastoid cells. Oncogene 2002; 21:1263-71. [PMID: 11850846 DOI: 10.1038/sj.onc.1205182] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2001] [Revised: 11/13/2001] [Accepted: 11/13/2001] [Indexed: 12/14/2022]
Abstract
B-cell lymphoma, which is increasing world wide, includes such varied conditions as post-transplant lymphoproliferative disease (PTLD) and Burkitt's lymphoma. This study has characterized a role for the signalling molecule phosphatidylinositol 3-kinase, PI3K, in the regulation of growth and survival of immortalized B-lymphocytes. Burkitt's lymphoma cells die rapidly following inhibition of PI3K with LY294002, a chemical inhibitor. Furthermore, Epstein-Barr virus (EBV) immortalized B-cells, lymphoblastoid cell lines, which are a model of PTLD, do not die but are growth inhibited. This growth inhibition is due to an accumulation at G1 phase of the cell cycle and is paralleled by a loss of E2F transcriptional activity, which is essential for cell cycle entry. An active form of PI3K promotes E2F transcriptional activity in lymphoblastoid cell lines. Treatment of LCL with LY294002 causes a reduction of the expression of both cyclin D2 and cyclin D3, two key cyclins required for cell cycle progression but does not affect the expression of the EBV latent genes, EBNA2A or LMP-1. LY294002 also causes an increase in p27kip1, a cyclin dependent kinase inhibitor and results in the dephosphorylation of members of the pocket protein family. These data describe a mechanism by which PI3K plays a role in B-lymphocyte growth and suggests that a pathway from PI3K to D-type cyclin expression may provide diagnostic or treatment opportunities.
Collapse
Affiliation(s)
- Paul Brennan
- Section of Infection and Immunity, Tenovus Building, University of Wales College of Medicine, Heath Park, Cardiff, CF14 4XX Wales, UK.
| | | | | | | |
Collapse
|
47
|
Foey A, Green P, Foxwell B, Feldmann M, Brennan F. Cytokine-stimulated T cells induce macrophage IL-10 production dependent on phosphatidylinositol 3-kinase and p70S6K: implications for rheumatoid arthritis. ARTHRITIS RESEARCH 2002; 4:64-70. [PMID: 11879539 PMCID: PMC64854 DOI: 10.1186/ar385] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Revised: 08/29/2001] [Accepted: 09/06/2001] [Indexed: 11/10/2022]
Abstract
IL-10 is an anti-inflammatory cytokine produced in the joint in rheumatoid arthritis by macrophages and infiltrating blood lymphocytes. Regulation of its expression is poorly understood, but previous findings have suggested that physical interactions with T cells may play a role. This report investigates signalling mechanisms involved in the production of macrophage IL-10 upon interaction with fixed, cytokine-stimulated T cells (Tck). Elutriated monocytes were differentiated to macrophages by macrophage-colony-stimulating factor (M-CSF) and co-cultured with fixed T cells chronically stimulated in a cytokine cocktail of IL-2/IL-6/tumour necrosis factor (TNF)-alpha in the presence or absence of wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase (PI3K), or of rapamycin, an inhibitor of p70 S6-kinase (p70S6K). Spontaneous IL-10 production by rheumatoid arthritis synovial-membrane mononuclear cells (RA-SMCs) and co-cultures of rheumatoid arthritis T cells (RA-Ts) and macrophages was also assessed. RA-T and Tck induction of macrophage IL-10 production was suppressed by cell separation and inhibition of PI3K and p70S6K. PI3K involvement was also shown by phosphorylation of the downstream effector protein kinase B. Spontaneous IL-10 production by RA-SMCs was also inhibited by LY294002 and depletion of the nonadherent (T-cell-enriched) fraction of the cell population. IL-10 production in RA-SMCs and M-CSF-primed macrophages, activated by interaction with Tck, is PI3K- and p70S6K-dependent.
Collapse
Affiliation(s)
- Andrew Foey
- Kennedy Institute of Rheumatology Division, Imperial College School of Medicine, Hammersmith, London, W6 8LH, UK.
| | | | | | | | | |
Collapse
|
48
|
Strle K, Zhou JH, Broussard SR, Venters HD, Johnson RW, Freund GG, Dantzer R, Kelley KW. IL-10 promotes survival of microglia without activating Akt. J Neuroimmunol 2002; 122:9-19. [PMID: 11777539 DOI: 10.1016/s0165-5728(01)00444-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
IL-10 is an anti-inflammatory cytokine that has recently been shown to promote survival of neurons and glia. Here we establish that IL-10 induces phosphorylation of Stat3 on Tyr(705) and serves as a survival factor for N13 microglial cells. Recombinant IL-10 (10 ng/ml) decreases growth factor withdrawal-induced apoptosis by 50%, as assessed by TUNEL. In contrast to IL-10, IGF-I increases enzymatic activity of PI 3-kinase and causes phosphorylation on serine(473) of Akt but does not prevent microglial apoptosis. These data establish that IL-10 activates Stat3 and inhibits the mitochondrial pathway of cell death without activating the Akt cell survival pathway.
Collapse
Affiliation(s)
- Klemen Strle
- Laboratory of Immunophysiology, Department of Animal Sciences, University of Illinois, 207 ERML, 1201 W. Gregory Dr., Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Brennan F, Foey A. Cytokine regulation in RA synovial tissue: role of T cell/macrophage contact-dependent interactions. ARTHRITIS RESEARCH 2002; 4 Suppl 3:S177-82. [PMID: 12110137 PMCID: PMC3240132 DOI: 10.1186/ar556] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Accepted: 03/05/2002] [Indexed: 11/22/2022]
Abstract
Several groups have documented the expression of cytokines in rheumatoid arthritis synovial tissue over the past 15 years or so. These studies have indicated that most cytokines examined are expressed at the mRNA levels at least, and many other cytokines are found in abundance as proteins. Our attention has recently focused on the mechanisms that induce and regulate tumour necrosis factor and IL-10. Other workers and ourselves have found that cell-cell contact is an important signal for the induction of cytokines, and our work has demonstrated that tumour necrosis factor and IL-10 production in rheumatoid arthritis synovial joint cells cultures is dependent on T cell/macrophage interaction. In this chapter, we review recent advances in this area and also highlight areas where new therapeutic intervention opportunities arise.
Collapse
Affiliation(s)
- Fionula Brennan
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, UK.
| | | |
Collapse
|
50
|
Abstract
Epstein-Barr virus (EBV) uses many different strategies to induce lymphocyte proliferation and survival. In the different states of EBV infection and latency, several genes play specific roles in the induction of cell growth and cell survival proteins. EBNA2A, EBNA-LP and EBNA3C all modulate early events in the G1 phase of the cell cycle. Furthermore, interleukin-6 and interleukin-10, which are induced following EBV infection, appear to be important for growth. They activate signalling pathways that have been shown to link directly to proliferation. Latent membrane protein 1 (LMP1) induces a number of anti-apoptotic proteins via NF- kappa B, and LMP2A also appears to contribute to lymphocyte survival. This paper describes some of the many cellular pathways modulated by EBV that interact with the signalling machinery and thus make lymphocytes survive and grow.
Collapse
Affiliation(s)
- P Brennan
- Infection & Immunity, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK. paul.brennanlab.net
| |
Collapse
|