1
|
Zhang X, Jeong H, Niu J, Holland SM, Rotanz BN, Gordon J, Einarson MB, Childers WE, Thomas GM. Inhibiting acute, axonal DLK palmitoylation is neuroprotective and avoids deleterious effects of cell-wide DLK inhibition. Nat Commun 2025; 16:3031. [PMID: 40180913 PMCID: PMC11968826 DOI: 10.1038/s41467-025-58036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Inhibiting dual leucine-zipper kinase (DLK) could potentially ameliorate diverse neuropathological conditions, but a direct inhibitor of DLK's kinase domain caused unintended side effects in human patients, indicative of neuronal cytoskeletal disruption. We sought a more precise intervention and show here that axon-to-soma pro-degenerative signaling requires acute, axonal palmitoylation of DLK. To identify potential modulators of this modification, we screened >28,000 compounds using a high-content imaging readout of DLK's palmitoylation-dependent subcellular localization. Several hits alter DLK localization in non-neuronal cells, reduce DLK retrograde signaling and protect cultured dorsal root ganglion neurons from neurodegeneration. Mechanistically, the two most neuroprotective compounds selectively prevent DLK's stimulus-dependent palmitoylation and subsequent recruitment to axonal vesicles, but do not affect palmitoylation of other axonal proteins assessed and avoid the cytoskeletal disruption associated with direct DLK inhibition. Our hit compounds also reduce pro-degenerative retrograde signaling in vivo, revealing a previously unrecognized neuroprotective strategy.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Heykyeong Jeong
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Jingwen Niu
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Sabrina M Holland
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Brittany N Rotanz
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - John Gordon
- Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Margret B Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wayne E Childers
- Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Gareth M Thomas
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Ritchie EM, Acar D, Zhong S, Pu Q, Li Y, Zheng B, Jin Y. Translatome analysis reveals cellular network in DLK-dependent hippocampal glutamatergic neuron degeneration. eLife 2025; 13:RP101173. [PMID: 40067879 PMCID: PMC11896613 DOI: 10.7554/elife.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
The conserved MAP3K12/Dual Leucine Zipper Kinase (DLK) plays versatile roles in neuronal development, axon injury and stress responses, and neurodegeneration, depending on cell-type and cellular contexts. Emerging evidence implicates abnormal DLK signaling in several neurodegenerative diseases. However, our understanding of the DLK-dependent gene network in the central nervous system remains limited. Here, we investigated the roles of DLK in hippocampal glutamatergic neurons using conditional knockout and induced overexpression mice. We found that dorsal CA1 and dentate gyrus neurons are vulnerable to elevated expression of DLK, while CA3 neurons appear less vulnerable. We identified the DLK-dependent translatome that includes conserved molecular signatures and displays cell-type specificity. Increasing DLK signaling is associated with disruptions to microtubules, potentially involving STMN4. Additionally, primary cultured hippocampal neurons expressing different levels of DLK show altered neurite outgrowth, axon specification, and synapse formation. The identification of translational targets of DLK in hippocampal glutamatergic neurons has relevance to our understanding of selective neuron vulnerability under stress and pathological conditions.
Collapse
Affiliation(s)
- Erin M Ritchie
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
- Biomedical Sciences Graduate Program, School of Medicine, University of California San DiegoLa JollaUnited States
| | - Dilan Acar
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Siming Zhong
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Qianyi Pu
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Yunbo Li
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San DiegoLa JollaUnited States
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
- Department of Neurosciences, School of Medicine, University of California San DiegoLa JollaUnited States
- Kavli Institute for Brain and Mind, University of California San DiegoLa JollaUnited States
| |
Collapse
|
3
|
Zhang X, Jeong H, Niu J, Holland SM, Rotanz BN, Gordon J, Einarson MB, Childers WE, Thomas GM. Novel inhibitors of acute, axonal DLK palmitoylation are neuroprotective and avoid the deleterious side effects of cell-wide DLK inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590310. [PMID: 38712276 PMCID: PMC11071345 DOI: 10.1101/2024.04.19.590310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dual leucine-zipper kinase (DLK) drives acute and chronic forms of neurodegeneration, suggesting that inhibiting DLK signaling could ameliorate diverse neuropathological conditions. However, direct inhibition of DLK's kinase domain in human patients and conditional knockout of DLK in mice both cause unintended side effects, including elevated plasma neurofilament levels, indicative of neuronal cytoskeletal disruption. Indeed, we found that a DLK kinase domain inhibitor acutely disrupted the axonal cytoskeleton and caused vesicle aggregation in cultured dorsal root ganglion (DRG) neurons, further cautioning against this therapeutic strategy. In seeking a more precise intervention, we found that retrograde (axon-to-soma) pro-degenerative signaling requires acute, axonal palmitoylation of DLK and hypothesized that modulating this post-translational modification might be more specifically neuroprotective than cell-wide DLK inhibition. To address this possibility, we screened >28,000 compounds using a high-content imaging assay that quantitatively evaluates DLK's palmitoylation-dependent subcellular localization. Of the 33 hits that significantly altered DLK localization in non-neuronal cells, several reduced DLK retrograde signaling and protected cultured DRG neurons from DLK-dependent neurodegeneration. Mechanistically, the two most neuroprotective compounds selectively prevent stimulus-dependent palmitoylation of axonal pools of DLK, a process crucial for DLK's recruitment to axonal vesicles. In contrast, these compounds minimally impact DLK localization and signaling in healthy neurons and avoid the cytoskeletal disruption associated with direct DLK inhibition. Importantly, our hit compounds also reduce pro-degenerative retrograde signaling in vivo, suggesting that modulating DLK's palmitoylation-dependent localization could be a novel neuroprotective strategy.
Collapse
|
4
|
Wong HN, Chen T, Wang PJ, Holzman LB. ARF6, a component of intercellular bridges, is essential for spermatogenesis in mice. Dev Biol 2024; 508:46-63. [PMID: 38242343 PMCID: PMC10979378 DOI: 10.1016/j.ydbio.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Male germ cells are connected by intercellular bridges (ICBs) in a syncytium due to incomplete cytokinesis. Syncytium is thought to be important for synchronized germ cell development by interchange of cytoplasmic factors via ICBs. Mammalian ADP-ribosylation factor 6 (ARF6) is a small GTPase that is involved in many cellular mechanisms including but not limited to regulating cellular structure, motility, vesicle trafficking and cytokinesis. ARF6 localizes to ICBs in spermatogonia and spermatocytes in mice. Here we report that mice with global depletion of ARF6 in adulthood using Ubc-CreERT2 display no observable phenotypes but are male sterile. ARF6-deficient males display a progressive loss of germ cells, including LIN28A-expressing spermatogonia, and ultimately develop Sertoli-cell-only syndrome. Specifically, intercellular bridges are lost in ARF6-deficient testis. Furthermore, germ cell-specific inactivation using the Ddx4-CreERT2 results in the same testicular morphological phenotype, showing the germ cell-intrinsic requirement of ARF6. Therefore, ARF6 is essential for spermatogenesis in mice and this function is conserved from Drosophila to mammals.
Collapse
Affiliation(s)
- Hetty N Wong
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tingfang Chen
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Köster KA, Dethlefs M, Duque Escobar J, Oetjen E. Regulation of the Activity of the Dual Leucine Zipper Kinase by Distinct Mechanisms. Cells 2024; 13:333. [PMID: 38391946 PMCID: PMC10886912 DOI: 10.3390/cells13040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The dual leucine zipper kinase (DLK) alias mitogen-activated protein 3 kinase 12 (MAP3K12) has gained much attention in recent years. DLK belongs to the mixed lineage kinases, characterized by homology to serine/threonine and tyrosine kinase, but exerts serine/threonine kinase activity. DLK has been implicated in many diseases, including several neurodegenerative diseases, glaucoma, and diabetes mellitus. As a MAP3K, it is generally assumed that DLK becomes phosphorylated and activated by upstream signals and phosphorylates and activates itself, the downstream serine/threonine MAP2K, and, ultimately, MAPK. In addition, other mechanisms such as protein-protein interactions, proteasomal degradation, dephosphorylation by various phosphatases, palmitoylation, and subcellular localization have been shown to be involved in the regulation of DLK activity or its fine-tuning. In the present review, the diverse mechanisms regulating DLK activity will be summarized to provide better insights into DLK action and, possibly, new targets to modulate DLK function.
Collapse
Affiliation(s)
- Kyra-Alexandra Köster
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
| | - Marten Dethlefs
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
| | - Jorge Duque Escobar
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
- University Center of Cardiovascular Science, Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elke Oetjen
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
- Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Bu H, Li Z, Lu Y, Zhuang Z, Zhen Y, Zhang L. Deciphering the multifunctional role of dual leucine zipper kinase (DLK) and its therapeutic potential in disease. Eur J Med Chem 2023; 255:115404. [PMID: 37098296 DOI: 10.1016/j.ejmech.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023]
Abstract
Dual leucine zipper kinase (DLK, MAP3K12), a serine/threonine protein kinase, plays a key role in neuronal development, as it regulates axon regeneration and degeneration through its downstream kinase. Importantly, DLK is closely related to the pathogenesis of numerous neurodegenerative diseases and the induction of β-cell apoptosis that leads to diabetes. In this review, we summarize the current understanding of DLK function, and then discuss the role of DLK signaling in human diseases. Furthermore, various types of small molecule inhibitors of DLK that have been published so far are described in detail in this paper, providing some strategies for the design of DLK small molecule inhibitors in the future.
Collapse
Affiliation(s)
- Haiqing Bu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhiyao Zhuang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
7
|
Tortosa E, Sengupta Ghosh A, Li Q, Wong WR, Hinkle T, Sandoval W, Rose CM, Hoogenraad CC. Stress-induced vesicular assemblies of dual leucine zipper kinase are signaling hubs involved in kinase activation and neurodegeneration. EMBO J 2022; 41:e110155. [PMID: 35611591 PMCID: PMC9289706 DOI: 10.15252/embj.2021110155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) drive key signaling cascades during neuronal survival and degeneration. The localization of kinases to specific subcellular compartments is a critical mechanism to locally control signaling activity and specificity upon stimulation. However, how MAPK signaling components tightly control their localization remains largely unknown. Here, we systematically analyzed the phosphorylation and membrane localization of all MAPKs expressed in dorsal root ganglia (DRG) neurons, under control and stress conditions. We found that MAP3K12/dual leucine zipper kinase (DLK) becomes phosphorylated and palmitoylated, and it is recruited to sphingomyelin-rich vesicles upon stress. Stress-induced DLK vesicle recruitment is essential for kinase activation; blocking DLK-membrane interaction inhibits downstream signaling, while DLK recruitment to ectopic subcellular structures is sufficient to induce kinase activation. We show that the localization of DLK to newly formed vesicles is essential for local signaling. Inhibition of membrane internalization blocks DLK activation and protects against neurodegeneration in DRG neurons. These data establish vesicular assemblies as dynamically regulated platforms for DLK signaling during neuronal stress responses.
Collapse
Affiliation(s)
- Elena Tortosa
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | | | - Qingling Li
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Weng Ruh Wong
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Trent Hinkle
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Christopher M Rose
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | | |
Collapse
|
8
|
Wan W, Liu G, Li X, Liu Y, Wang Y, Pan H, Hu J. MiR-191-5p alleviates microglial cell injury by targeting Map3k12 (mitogen-activated protein kinase kinase kinase 12) to inhibit the MAPK (mitogen-activated protein kinase) signaling pathway in Alzheimer's disease. Bioengineered 2021; 12:12678-12690. [PMID: 34818971 PMCID: PMC8810200 DOI: 10.1080/21655979.2021.2008638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Multiple reports have elucidated that microRNAs are promising biomarkers for AD diagnosis and treatment. Herein, the effect of miR-191-5p on microglial cell injury and the underlying mechanism were explored. APP/PS1 transgenic mice were utilized to establish mouse model of AD. Amyloid-β protein 1-42 (Aβ1-42)-treated microglia were applied to establish in vitro cell model of AD. MiR-191-5p expression in hippocampus and microglia was measured by reverse transcription quantitative polymerase chain reaction. The viability and apoptosis of microglia were evaluated by Cell Counting Kit-8 assays and flow cytometry analyses, respectively. The binding relationship between miR-191-5p and its downstream target mitogen-activated protein kinase kinase kinase 12 (Map3k12) was determined by luciferase reporter assays. Pathological degeneration of hippocampus was tested using hematoxylin-eosin staining and Nissl staining. Aβ expression in hippocampus was examined via immunohistochemistry. In this study, miR-191-5p was downregulated in Aβ1-42-stimulated microglia and hippocampal tissues of APP/PS1 mice. MiR-191-5p overexpression facilitated cell viability and inhibited apoptosis rate of Aβ1-42-treated microglia. Mechanically, miR-191-5p targeted Map3k12 3'-untranslated region to downregulate Map3k12 expression. MiR-191-5p inhibited Aβ1-42-induced microglial cell injury and inactivated the MAPK signaling by downregulating Map3k12. Overall, miR-191-5p alleviated Aβ1-42-induced microglia cell injury by targeting Map3k12 to inhibit the MAPK signaling pathway in microglia.
Collapse
Affiliation(s)
- Wenjun Wan
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ganzhe Liu
- Department of Neurology, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Li
- Department of Ultrasound Imaging, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yu Liu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Ying Wang
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haisong Pan
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Jun Hu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
9
|
Duque Escobar J, Kutschenko A, Schröder S, Blume R, Köster KA, Painer C, Lemcke T, Maison W, Oetjen E. Regulation of dual leucine zipper kinase activity through its interaction with calcineurin. Cell Signal 2021; 82:109953. [PMID: 33600948 DOI: 10.1016/j.cellsig.2021.109953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022]
Abstract
Hyperglycemia enhancing the intracellular levels of reactive oxygen species (ROS) contributes to dysfunction and progressive loss of beta cells and thereby to diabetes mellitus. The oxidation sensitive calcium/calmodulin dependent phosphatase calcineurin promotes pancreatic beta cell function and survival whereas the dual leucine zipper kinase (DLK) induces apoptosis. Therefore, it was studied whether calcineurin interferes with DLK action. In a beta cell line similar concentrations of H2O2 decreased calcineurin activity and activated DLK. DLK interacted via its φLxVP motif (aa 362-365) with the interface of the calcineurin subunits A and B. Mutation of the Val prevented this protein protein interaction, hinting at a distinct φLxVP motif. Indeed, mutational analysis revealed an ordered structure of DLK's φLxVP motif whereby Val mediates the interaction with calcineurin and Leu maintains an enzymatically active conformation. Overexpression of DLK wild-type but not the DLK mutant unable to bind calcineurin diminished calcineurin-induced nuclear localisation of the nuclear factor of activated T-cells (NFAT), suggesting that both, DLK and NFAT compete for the substrate binding site of calcineurin. The calcineurin binding-deficient DLK mutant exhibited increased DLK activity measured as phosphorylation of the downstream c-Jun N-terminal kinase, inhibition of CRE-dependent gene transcription and induction of apoptosis. These findings show that calcineurin interacts with DLK; and inhibition of calcineurin increases DLK activity. Hence, this study demonstrates a novel mechanism regulating DLK action. These findings suggest that ROS through inhibition of calcineurin enhance DLK activity and thereby lead to beta cell dysfunction and loss and ultimately diabetes mellitus.
Collapse
Affiliation(s)
- J Duque Escobar
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; DZHK Standort Hamburg, Kiel, Lübeck, Germany
| | - Anna Kutschenko
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Sabine Schröder
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Roland Blume
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Kyra-Alexandra Köster
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; DZHK Standort Hamburg, Kiel, Lübeck, Germany
| | - Christina Painer
- Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany
| | - Thomas Lemcke
- Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany
| | - Wolfgang Maison
- Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany
| | - Elke Oetjen
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; DZHK Standort Hamburg, Kiel, Lübeck, Germany; Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany; Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany.
| |
Collapse
|
10
|
Jin Y, Zheng B. Multitasking: Dual Leucine Zipper-Bearing Kinases in Neuronal Development and Stress Management. Annu Rev Cell Dev Biol 2020; 35:501-521. [PMID: 31590586 DOI: 10.1146/annurev-cellbio-100617-062644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dual leucine zipper-bearing kinase (DLK) and leucine zipper-bearing kinase (LZK) are evolutionarily conserved MAPKKKs of the mixed-lineage kinase family. Acting upstream of stress-responsive JNK and p38 MAP kinases, DLK and LZK have emerged as central players in neuronal responses to a variety of acute and traumatic injuries. Recent studies also implicate their function in astrocytes, microglia, and other nonneuronal cells, reflecting their expanding roles in the multicellular response to injury and in disease. Of particular note is the potential link of these kinases to neurodegenerative diseases and cancer. It is thus critical to understand the physiological contexts under which these kinases are activated, as well as the signal transduction mechanisms that mediate specific functional outcomes. In this review we first provide a historical overview of the biochemical and functional dissection of these kinases. We then discuss recent findings on regulating their activity to enhance cellular protection following injury and in disease, focusing on but not limited to the nervous system.
Collapse
Affiliation(s)
- Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; .,VA San Diego Healthcare System, San Diego, California 92161, USA
| |
Collapse
|
11
|
Goodwani S, Fernandez C, Acton PJ, Buggia-Prevot V, McReynolds ML, Ma J, Hu CH, Hamby ME, Jiang Y, Le K, Soth MJ, Jones P, Ray WJ. Dual Leucine Zipper Kinase Is Constitutively Active in the Adult Mouse Brain and Has Both Stress-Induced and Homeostatic Functions. Int J Mol Sci 2020; 21:ijms21144849. [PMID: 32659913 PMCID: PMC7402291 DOI: 10.3390/ijms21144849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 01/15/2023] Open
Abstract
Dual leucine zipper kinase (DLK, Map3k12) is an axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). In peripheral nerves DLK is generally inactive until induced by injury, after which it transmits signals to the nucleus via retrograde transport. Here we report that in contrast to this mode of regulation, in the uninjured adult mouse cerebellum, DLK constitutively drives nuclear p-c-Jun in cerebellar granule neurons, whereas in the forebrain, DLK is similarly expressed and active, but nuclear p-c-Jun is undetectable. When neurodegeneration results from mutant human tau in the rTg4510 mouse model, p-c-Jun then accumulates in neuronal nuclei in a DLK-dependent manner, and the extent of p-c-Jun correlates with markers of synaptic loss and gliosis. This regional difference in DLK-dependent nuclear p-c-Jun accumulation could relate to differing levels of JNK scaffolding proteins, as the cerebellum preferentially expresses JNK-interacting protein-1 (JIP-1), whereas the forebrain contains more JIP-3 and plenty of SH3 (POSH). To characterize the functional differences between constitutive- versus injury-induced DLK signaling, RNA sequencing was performed after DLK inhibition in the cerebellum and in the non-transgenic and rTg4510 forebrain. In all contexts, DLK inhibition reduced a core set of transcripts that are associated with the JNK pathway. Non-transgenic forebrain showed almost no other transcriptional changes in response to DLK inhibition, whereas the rTg4510 forebrain and the cerebellum exhibited distinct differentially expressed gene signatures. In the cerebellum, but not the rTg4510 forebrain, pathway analysis indicated that DLK regulates insulin growth factor-1 (IGF1) signaling through the transcriptional induction of IGF1 binding protein-5 (IGFBP5), which was confirmed and found to be functionally relevant by measuring signaling through the IGF1 receptor. Together these data illuminate the complex multi-functional nature of DLK signaling in the central nervous system (CNS) and demonstrate its role in homeostasis as well as tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- Sunil Goodwani
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Celia Fernandez
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Paul J. Acton
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Virginie Buggia-Prevot
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Morgan L. McReynolds
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Jiacheng Ma
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Cheng Hui Hu
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Mary E. Hamby
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Yongying Jiang
- Institute for Applied Cancer Science, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (Y.J.); (K.L.); (M.J.S.); (P.J.)
| | - Kang Le
- Institute for Applied Cancer Science, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (Y.J.); (K.L.); (M.J.S.); (P.J.)
| | - Michael J. Soth
- Institute for Applied Cancer Science, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (Y.J.); (K.L.); (M.J.S.); (P.J.)
| | - Philip Jones
- Institute for Applied Cancer Science, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (Y.J.); (K.L.); (M.J.S.); (P.J.)
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
- Correspondence: ; Tel.: +1-713-794-4558
| |
Collapse
|
12
|
Sheu ML, Chiang CY, Su HL, Chen CJ, Sheehan J, Pan HC. Intrathecal Injection of Dual Zipper Kinase shRNA Alleviating the Neuropathic Pain in a Chronic Constrictive Nerve Injury Model. Int J Mol Sci 2018; 19:2421. [PMID: 30115872 PMCID: PMC6121272 DOI: 10.3390/ijms19082421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 12/20/2022] Open
Abstract
Dual leucine zipper kinase (DLK) is a member of mitogen-activated protein kinase kinase kinase (MAP3K) family mainly involved in neuronal degeneration. However, the role of DLK signaling in the neuropathic pain has not yet been fully determined. Chronic constrictive injury (CCI) was conducted by four 3-0 chromic gut ligatures loosely ligated around the sciatic nerve. Escalated DLK expression over the dorsal root ganglion was observed from one to four rings of CCI. Remarkable expression of DLK was observed in primary dorsal root ganglion cells culture subjected to electrical stimulation and attenuated by DLK short hairpin RNA (shRNA) treatment. Intrathecal injection of DLK shRNA attenuates the expression of DLK over the dorsal root ganglion and hippocampus neurons and increased the threshold of mechanical allodynia and decreased thermal hyperalgesia. In CatWalk gait analysis, significant decreases of print area, maximum contact maximum intensity, stand phase, single stance, and regular index by CCI were alleviated by the DLK shRNA administration. In conclusion, the expression of DLK was up-regulated in chronic constrictive injury and attenuated by the administration of DLK shRNA, which paralleled the improvement of neurobehavior of neuropathic pain. The modulation of DLK expression is a potential clinic treatment option for neuropathic pain.
Collapse
Affiliation(s)
- Meei-Ling Sheu
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 40244, Taiwan.
| | - Chien-Yi Chiang
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung 40754, Taiwan.
| | - Hong-Lin Su
- Department Life Sciences, Agriculture Biotechnology Center, National Chung Hsing University, Taichung 40244, Taiwan.
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40754, Taiwan.
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22901, USA.
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung 40754, Taiwan.
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 11257, Taiwan.
| |
Collapse
|
13
|
Siu M, Sengupta Ghosh A, Lewcock JW. Dual Leucine Zipper Kinase Inhibitors for the Treatment of Neurodegeneration. J Med Chem 2018; 61:8078-8087. [PMID: 29863360 DOI: 10.1021/acs.jmedchem.8b00370] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dual leucine zipper kinase (DLK, MAP3K12) is an essential driver of the neuronal stress response that regulates neurodegeneration in models of acute neuronal injury and chronic neurodegenerative diseases such as Alzheimer's, Parkinson's, and ALS. In this review, we provide an overview of DLK signaling mechanisms and describe selected small molecules that have been utilized to inhibit DLK kinase activity in vivo. These compounds represent valuable tools for understanding the role of DLK signaling and evaluating the potential for DLK inhibition as a therapeutic strategy to prevent neuronal degeneration.
Collapse
Affiliation(s)
- Michael Siu
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | | | - Joseph W Lewcock
- Denali Therapeutics , 151 Oyster Point Boulevard , South San Francisco , California 94080 , United States
| |
Collapse
|
14
|
Le Pichon CE, Meilandt WJ, Dominguez S, Solanoy H, Lin H, Ngu H, Gogineni A, Sengupta Ghosh A, Jiang Z, Lee SH, Maloney J, Gandham VD, Pozniak CD, Wang B, Lee S, Siu M, Patel S, Modrusan Z, Liu X, Rudhard Y, Baca M, Gustafson A, Kaminker J, Carano RAD, Huang EJ, Foreman O, Weimer R, Scearce-Levie K, Lewcock JW. Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci Transl Med 2018; 9:9/403/eaag0394. [PMID: 28814543 DOI: 10.1126/scitranslmed.aag0394] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/23/2016] [Accepted: 03/27/2017] [Indexed: 12/16/2022]
Abstract
Hallmarks of chronic neurodegenerative disease include progressive synaptic loss and neuronal cell death, yet the cellular pathways that underlie these processes remain largely undefined. We provide evidence that dual leucine zipper kinase (DLK) is an essential regulator of the progressive neurodegeneration that occurs in amyotrophic lateral sclerosis and Alzheimer's disease. We demonstrate that DLK/c-Jun N-terminal kinase signaling was increased in mouse models and human patients with these disorders and that genetic deletion of DLK protected against axon degeneration, neuronal loss, and functional decline in vivo. Furthermore, pharmacological inhibition of DLK activity was sufficient to attenuate the neuronal stress response and to provide functional benefit even in the presence of ongoing disease. These findings demonstrate that pathological activation of DLK is a conserved mechanism that regulates neurodegeneration and suggest that DLK inhibition may be a potential approach to treat multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Claire E Le Pichon
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Sara Dominguez
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hilda Solanoy
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Han Lin
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hai Ngu
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alvin Gogineni
- Department of Biomedical Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Zhiyu Jiang
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Seung-Hye Lee
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janice Maloney
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vineela D Gandham
- Department of Biomedical Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christine D Pozniak
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bei Wang
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sebum Lee
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael Siu
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Snahel Patel
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xingrong Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - York Rudhard
- In Vitro Pharmacology, Evotec AG, Manfred Eigen Campus, 22419 Hamburg, Germany
| | - Miriam Baca
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Amy Gustafson
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Josh Kaminker
- Department of Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Richard A D Carano
- Department of Biomedical Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.,Pathology Service 113B, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Oded Foreman
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robby Weimer
- Department of Biomedical Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kimberly Scearce-Levie
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph W Lewcock
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
15
|
Yin C, Huang GF, Sun XC, Guo Z, Zhang JH. DLK silencing attenuated neuron apoptosis through JIP3/MA2K7/JNK pathway in early brain injury after SAH in rats. Neurobiol Dis 2017; 103:133-143. [PMID: 28396258 PMCID: PMC5493044 DOI: 10.1016/j.nbd.2017.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Dual leucine zipper kinase (DLK/MA3K12) has been reported involved in apoptosis and neuronal degeneration during neural development and traumatic brain injury. This study was designed to investigate the role of DLK with its adaptor protein JNK interacting protein-3 (JIP3), and its downstream MA2K7/JNK signaling pathway in early brain injury (EBI) after subarachnoid hemorrhage (SAH) in a rat model. DESIGN Controlled in vivo laboratory study. SETTING Animal research laboratory. SUBJECTS Two hundred and twenty-three adult male Sprague-Dawley rats weighing 280-320g. INTERVENTIONS SAH was induced by endovascular perforation in rats. The SAH grade, neurological score, and brain water content were measured at 24 and 72h after SAH. Immunofluorescence staining was used to detect the cells that expressed DLK. The terminal deoxynucleotid transferase-deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) was used to detect the neuronal apoptosis. In mechanism research, the expression of DLK, JIP3, phosphorylated-JNK (p-JNK)/JNK, and cleaved caspase-3 (CC-3) were analyzed by western blot at 24h after SAH. The DLK small interfering RNA (siRNA), JIP3 siRNA, MA2K7 siRNA and recombinant DLK protein which injected intracerebroventricularly were given as the interventions. MEASUREMENTS AND MAIN RESULTS The DLK expression was increased in the left cortex neurons and peaked at 24h after SAH. DLK siRNA attenuated brain edema, reduced neuronal apoptosis, and improved the neurobehavioral functions after SAH, but the recombinant DLK protein deteriorated neurobehavioral functions and brain edema. DLK siRNA decreased and recombinant DLK protein increased the expression of MA2K7/p-JNK/CC-3 at 24h after SAH. The JIP3 siRNA reduced the level of JIP3/MA2K7/p-JNK/CC-3, combined DLK siRNA and JIP3 siRNA further decreased the expression of DLK/MA2K7/p-JNK/CC-3, and MA2K7 siRNA lowered the amount of MA2K7/p-JNK/CC-3 at 24h after SAH. CONCLUSIONS As a negative role, DLK was involved in EBI after SAH, possibly mediated by its adaptor protein JIP3 and MA2K7/JNK signaling pathways. To reduce the level of DLK may be a new target as intervention for SAH.
Collapse
Affiliation(s)
- Cheng Yin
- Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Affiliated Hospital of the University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, China
| | - Guang-Fu Huang
- Department of Neurosurgery, Affiliated Hospital of the University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - John H Zhang
- Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
16
|
Hao Y, Frey E, Yoon C, Wong H, Nestorovski D, Holzman LB, Giger RJ, DiAntonio A, Collins C. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK. eLife 2016; 5. [PMID: 27268300 PMCID: PMC4896747 DOI: 10.7554/elife.14048] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
A broadly known method to stimulate the growth potential of axons is to elevate intracellular levels of cAMP, however the cellular pathway(s) that mediate this are not known. Here we identify the Dual Leucine-zipper Kinase (DLK, Wnd in Drosophila) as a critical target and effector of cAMP in injured axons. DLK/Wnd is thought to function as an injury ‘sensor’, as it becomes activated after axonal damage. Our findings in both Drosophila and mammalian neurons indicate that the cAMP effector kinase PKA is a conserved and direct upstream activator of Wnd/DLK. PKA is required for the induction of Wnd signaling in injured axons, and DLK is essential for the regenerative effects of cAMP in mammalian DRG neurons. These findings link two important mediators of responses to axonal injury, DLK/Wnd and cAMP/PKA, into a unified and evolutionarily conserved molecular pathway for stimulating the regenerative potential of injured axons. DOI:http://dx.doi.org/10.7554/eLife.14048.001 Adult mammals typically cannot repair damage to the nerve fibers in their brain or spinal cord. This is because these nerve cells cannot generally grow new nerve fibers. However this inability to regenerate nerve fibers is not set in stone. Instead, it can be unlocked by a second injury in nerves elsewhere in the body, the so-called “peripheral nervous system”. This process relies on an enzyme called DLK, which becomes activated in damaged nerve fibers. But how does DLK ‘sense’ damage to nerve fibers? Injuring the peripheral nervous system causes the levels of a molecule called cAMP to increase in the damaged nerve cells, and the elevated cAMP levels stimulate the nerve fibers to regenerate. However, it was not known if cAMP activates DLK, or if the two act independently of each other. By looking at the regeneration of damaged nerve fibers in fruit fly larvae, Hao et al. now show that the cAMP and DLK signaling pathways are clearly linked. Further experiments with nerve cells from mice and human cells revealed more detail about this link. Together the results showed that another enzyme called PKA activates DLK directly when cAMP levels are high. These findings reveal a unified pathway that is the key to unlocking the regenerative potential of injured nerve fibers, which has been conserved for hundreds of millions of years of evolution. Further work could now ask if the DLK enzyme is involved in the other known roles of cAMP signaling in nerve cells; or if cAMP and PKA activate DLK in other forms of nerve damage, including injuries where nerve fibers normally fail to regenerate. DOI:http://dx.doi.org/10.7554/eLife.14048.002
Collapse
Affiliation(s)
- Yan Hao
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Erin Frey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Choya Yoon
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Hetty Wong
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Douglas Nestorovski
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Lawrence B Holzman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Catherine Collins
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
17
|
Yin C, Huang GF, Sun XC, Guo Z, Zhang JH. Tozasertib attenuates neuronal apoptosis via DLK/JIP3/MA2K7/JNK pathway in early brain injury after SAH in rats. Neuropharmacology 2016; 108:316-23. [PMID: 27084696 DOI: 10.1016/j.neuropharm.2016.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND PURPOSE Since tozasertib is neuroprotective for injured optic nerve, this study is intended to test whether tozasertib reduces early brain injury after subarachnoid hemorrhage (SAH) in a rat model. METHODS Two hundred sixteen (216) male Sprague-Dawley rats were randomly subjected to endovascular perforation model of SAH and sham group. SAH grade, neurological score, and brain water content were measured at 24 and 72 h after SAH. Dual leucine zipper kinase (DLK) and its downstream factors, JNK-interacting protein 3 (JIP3), MA2K7, p-JNK/JNK (c-Jun N-terminal kinase), and apoptosis related proteins cleaved caspase-3 (CC-3), Bim, Bcl-2, and cleaved caspase-9 (CC-9) were analyzed by western blot at 24 h after SAH. Apoptotic cells were detected by terminal deoxynucleotid transferase-deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL). DLK small interfering RNA (siRNA), JIP3 siRNA and MA2K7 siRNA, the JNK, p38MAPK, and MEK inhibitors SP600125, SB203580, and PD98059 were used for intervention. RESULTS Tozasertib reduced neuronal apoptosis, attenuated brain edema and improved neurobehavioral deficits 24 and 72 h after SAH. At 24 h After SAH, DLK/JIP3/MA2K7/p-JNK/CC-3 expressions were elevated markedly and tozasertib reduced DLK, MA2K7/p-JNK/CC-3 expressions but enhanced JIP3 expression. In the presence of tozasertib, DLK/JIP3/MA2K7 siRNA and SP600125, SB203580 and PD98059 deteriorated the neurobehavioral deficits, brain edema and increased the expression of CC-3. SAH potentiated the expression of Bim, CC-9, and CC-3 but reduced Bcl-2, while tozasertib reduced expression of Bim, CC-9, and CC-3 but enhanced Bcl-2. CONCLUSIONS Tozasertib reduced neuronal apoptosis and improved outcome possibly via DLK/JIP3/MA2K7/JNK pathways after SAH.
Collapse
Affiliation(s)
- Cheng Yin
- Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Hospital of the University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, China
| | - Guang-Fu Huang
- Department of Neurosurgery, Hospital of the University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - John H Zhang
- Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
18
|
Oetjen E, Lemcke T. Dual leucine zipper kinase (MAP3K12) modulators: a patent review (2010–2015). Expert Opin Ther Pat 2016; 26:607-16. [DOI: 10.1517/13543776.2016.1170810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Wallbach M, Duque Escobar J, Babaeikelishomi R, Stahnke MJ, Blume R, Schröder S, Kruegel J, Maedler K, Kluth O, Kehlenbach RH, Miosge N, Oetjen E. Distinct functions of the dual leucine zipper kinase depending on its subcellular localization. Cell Signal 2016; 28:272-83. [PMID: 26776303 DOI: 10.1016/j.cellsig.2016.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/20/2015] [Accepted: 01/04/2016] [Indexed: 01/09/2023]
Abstract
The dual leucine zipper kinase DLK induces β-cell apoptosis by inhibiting the transcriptional activity conferred by the β-cell protective transcription factor cAMP response element binding protein CREB. This action might contribute to β-cell loss and ultimately diabetes. Within its kinase domain DLK shares high homology with the mixed lineage kinase (MLK) 3, which is activated by tumor necrosis factor (TNF) α and interleukin (IL)-1β, known prediabetic signals. In the present study, the regulation of DLK in β-cells by these cytokines was investigated. Both, TNFα and IL-1β induced the nuclear translocation of DLK. Mutations within a putative nuclear localization signal (NLS) prevented basal and cytokine-induced nuclear localization of DLK and binding to the importin receptor importin α, thereby demonstrating a functional NLS within DLK. DLK NLS mutants were catalytically active as they phosphorylated their down-stream kinase c-Jun N-terminal kinase to the same extent as DLK wild-type but did neither inhibit CREB-dependent gene transcription nor transcription conferred by the promoter of the anti-apoptotic protein BCL-xL. In addition, the β-cell apoptosis-inducing effect of DLK was severely diminished by mutation of its NLS. In a murine model of prediabetes, enhanced nuclear DLK was found. These data demonstrate that DLK exerts distinct functions, depending on its subcellular localization and thus provide a novel level of regulating DLK action. Furthermore, the prevention of the nuclear localization of DLK as induced by prediabetic signals with consecutive suppression of β-cell apoptosis might constitute a novel target in the therapy of diabetes mellitus.
Collapse
Affiliation(s)
- Manuel Wallbach
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Jorge Duque Escobar
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Rohollah Babaeikelishomi
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Marie-Jeannette Stahnke
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Roland Blume
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Sabine Schröder
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Jenny Kruegel
- Department of Prothetics, Faculty of Medicine, Georg-August-University, GZMB, Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Kathrin Maedler
- Center for Biomolecular Interactions Bremen, Leobener Str. Im NW2, 28359 Bremen, Germany
| | - Oliver Kluth
- German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University, GZMB, Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nicolai Miosge
- Department of Prothetics, Faculty of Medicine, Georg-August-University, GZMB, Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Elke Oetjen
- Department of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany.
| |
Collapse
|
20
|
Palmitoylation controls DLK localization, interactions and activity to ensure effective axonal injury signaling. Proc Natl Acad Sci U S A 2015; 113:763-8. [PMID: 26719418 DOI: 10.1073/pnas.1514123113] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dual leucine-zipper kinase (DLK) is critical for axon-to-soma retrograde signaling following nerve injury. However, it is unknown how DLK, a predicted soluble kinase, conveys long-distance signals and why homologous kinases cannot compensate for loss of DLK. Here, we report that DLK, but not homologous kinases, is palmitoylated at a conserved site adjacent to its kinase domain. Using short-hairpin RNA knockdown/rescue, we find that palmitoylation is critical for DLK-dependent retrograde signaling in sensory axons. This functional importance is because of three novel cellular and molecular roles of palmitoylation, which targets DLK to trafficking vesicles, is required to assemble DLK signaling complexes and, unexpectedly, is essential for DLK's kinase activity. By simultaneously controlling DLK localization, interactions, and activity, palmitoylation ensures that only vesicle-bound DLK is active in neurons. These findings explain how DLK specifically mediates nerve injury responses and reveal a novel cellular mechanism that ensures the specificity of neuronal kinase signaling.
Collapse
|
21
|
RPM-1 uses both ubiquitin ligase and phosphatase-based mechanisms to regulate DLK-1 during neuronal development. PLoS Genet 2014; 10:e1004297. [PMID: 24810406 PMCID: PMC4014440 DOI: 10.1371/journal.pgen.1004297] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 02/21/2014] [Indexed: 01/06/2023] Open
Abstract
The Pam/Highwire/RPM-1 (PHR) proteins are key regulators of neuronal development that function in axon extension and guidance, termination of axon outgrowth, and synapse formation. Outside of development, the PHR proteins also regulate axon regeneration and Wallerian degeneration. The PHR proteins function in part by acting as ubiquitin ligases that degrade the Dual Leucine zipper-bearing Kinase (DLK). Here, we show that the Caenorhabditis elegans PHR protein, Regulator of Presynaptic Morphology 1 (RPM-1), also utilizes a phosphatase-based mechanism to regulate DLK-1. Using mass spectrometry, we identified Protein Phosphatase Magnesium/Manganese dependent 2 (PPM-2) as a novel RPM-1 binding protein. Genetic, transgenic, and biochemical studies indicated that PPM-2 functions coordinately with the ubiquitin ligase activity of RPM-1 and the F-box protein FSN-1 to negatively regulate DLK-1. PPM-2 acts on S874 of DLK-1, a residue implicated in regulation of DLK-1 binding to a short, inhibitory isoform of DLK-1 (DLK-1S). Our study demonstrates that PHR proteins function through both phosphatase and ubiquitin ligase mechanisms to inhibit DLK. Thus, PHR proteins are potentially more accurate and sensitive regulators of DLK than originally thought. Our results also highlight an important and expanding role for the PP2C phosphatase family in neuronal development. The molecular mechanisms that govern formation of functional synaptic connections are central to brain development and function. We have used the nematode C. elegans to explore the mechanism of how the intracellular signaling protein RPM-1 regulates neuronal development. Using a combination of proteomic, genetic, transgenic, and biochemical approaches we have shown that RPM-1 functions through a PP2C phosphatase, PPM-2, to regulate the activity of a MAP3 kinase, DLK-1. Our results indicate that a combination of PPM-2 phosphatase activity and RPM-1 ubiquitin ligase activity inhibit DLK-1.
Collapse
|
22
|
Pozniak CD, Sengupta Ghosh A, Gogineni A, Hanson JE, Lee SH, Larson JL, Solanoy H, Bustos D, Li H, Ngu H, Jubb AM, Ayalon G, Wu J, Scearce-Levie K, Zhou Q, Weimer RM, Kirkpatrick DS, Lewcock JW. Dual leucine zipper kinase is required for excitotoxicity-induced neuronal degeneration. ACTA ACUST UNITED AC 2013; 210:2553-67. [PMID: 24166713 PMCID: PMC3832926 DOI: 10.1084/jem.20122832] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Loss of dual leucine zipper kinase results in attenuated JNK/c-Jun stress response pathway activation and reduced neuronal degeneration after kainic acid–induced excitotoxic seizures. Excessive glutamate signaling is thought to underlie neurodegeneration in multiple contexts, yet the pro-degenerative signaling pathways downstream of glutamate receptor activation are not well defined. We show that dual leucine zipper kinase (DLK) is essential for excitotoxicity-induced degeneration of neurons in vivo. In mature neurons, DLK is present in the synapse and interacts with multiple known postsynaptic density proteins including the scaffolding protein PSD-95. To examine DLK function in the adult, DLK-inducible knockout mice were generated through Tamoxifen-induced activation of Cre-ERT in mice containing a floxed DLK allele, which circumvents the neonatal lethality associated with germline deletion. DLK-inducible knockouts displayed a modest increase in basal synaptic transmission but had an attenuation of the JNK/c-Jun stress response pathway activation and significantly reduced neuronal degeneration after kainic acid–induced seizures. Together, these data demonstrate that DLK is a critical upstream regulator of JNK-mediated neurodegeneration downstream of glutamate receptor hyper-activation and represents an attractive target for the treatment of indications where excitotoxicity is a primary driver of neuronal loss.
Collapse
Affiliation(s)
- Christine D Pozniak
- Department of Neuroscience, 2 Department of Biomedical Imaging, 3 Department of Bioinformatics and Computational Biology, 4 Department of Protein Chemistry, 5 Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dual leucine zipper kinase as a therapeutic target for neurodegenerative conditions. Future Med Chem 2013; 5:1923-34. [DOI: 10.4155/fmc.13.150] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dual leucine zipper kinase (DLK) is a serine/threonine protein kinase that is a member of the mixed lineage kinase subfamily. Mixed lineage kinases are upstream MAP3Ks that activate the JNK pathway. DLK is primarily responsible for activating JNK and mediating the apoptotic stress response in various cell types, specifically neurons. Inhibition and knockdown of DLK has been demonstrated to have neuroprotective effects in cellular and animal models of Alzheimer’s disease, glaucoma, Parkinson’s disease and other neurodegenerative conditions. Several series of ATP-binding site inhibitors have been identified through profiling efforts providing launch points for future medicinal chemistry programs.
Collapse
|
24
|
Huntwork-Rodriguez S, Wang B, Watkins T, Ghosh AS, Pozniak CD, Bustos D, Newton K, Kirkpatrick DS, Lewcock JW. JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. ACTA ACUST UNITED AC 2013; 202:747-63. [PMID: 23979718 PMCID: PMC3760612 DOI: 10.1083/jcb.201303066] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neuronal injury induces JNK phosphorylation of DLK, which reduces DLK ubiquitination and creates a positive feedback loop to enhance JNK signaling and increase apoptosis. Neurons are highly polarized cells that often project axons a considerable distance. To respond to axonal damage, neurons must transmit a retrograde signal to the nucleus to enable a transcriptional stress response. Here we describe a mechanism by which this signal is propagated through injury-induced stabilization of dual leucine zipper-bearing kinase (DLK/MAP3K12). After neuronal insult, specific sites throughout the length of DLK underwent phosphorylation by c-Jun N-terminal kinases (JNKs), which have been shown to be downstream targets of DLK pathway activity. These phosphorylation events resulted in increased DLK abundance via reduction of DLK ubiquitination, which was mediated by the E3 ubiquitin ligase PHR1 and the de-ubiquitinating enzyme USP9X. Abundance of DLK in turn controlled the levels of downstream JNK signaling and apoptosis. Through this feedback mechanism, the ubiquitin–proteasome system is able to provide an additional layer of regulation of retrograde stress signaling to generate a global cellular response to localized external insults.
Collapse
Affiliation(s)
- Sarah Huntwork-Rodriguez
- Department of Neuroscience, 2 Department of Microchemical Proteomics, and 3 Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yan D, Jin Y. Regulation of DLK-1 kinase activity by calcium-mediated dissociation from an inhibitory isoform. Neuron 2013; 76:534-48. [PMID: 23141066 DOI: 10.1016/j.neuron.2012.08.043] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2012] [Indexed: 01/19/2023]
Abstract
MAPKKK dual leucine zipper-bearing kinases (DLKs) are regulators of synaptic development and axon regeneration. The mechanisms underlying their activation are not fully understood. Here, we show that C. elegans DLK-1 is activated by a Ca(2+)-dependent switch from inactive heteromeric to active homomeric protein complexes. We identify a DLK-1 isoform, DLK-1S, that shares identical kinase and leucine zipper domains with the previously described long isoform DLK-1L but acts to inhibit DLK-1 function by binding to DLK-1L. The switch between homo- or heteromeric DLK-1 complexes is influenced by Ca(2+) concentration. A conserved hexapeptide in the DLK-1L C terminus is essential for DLK-1 activity and is required for Ca(2+) regulation. The mammalian DLK-1 homolog MAP3K13 contains an identical C-terminal hexapeptide and can functionally complement dlk-1 mutants, suggesting that the DLK activation mechanism is conserved. The DLK activation mechanism is ideally suited for rapid and spatially controlled signal transduction in response to axonal injury and synaptic activity.
Collapse
Affiliation(s)
- Dong Yan
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
26
|
Chen L, Chisholm AD. Axon regeneration mechanisms: insights from C. elegans. Trends Cell Biol 2011; 21:577-84. [PMID: 21907582 DOI: 10.1016/j.tcb.2011.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 11/28/2022]
Abstract
Understanding the mechanisms of axon regeneration is of great importance to the development of therapeutic treatments for spinal cord injury or stroke. Axon regeneration has long been studied in diverse vertebrate and invertebrate models, but until recently had not been analyzed in the genetically tractable model organism Caenorhabditis elegans. The small size, simple neuroanatomy, and transparency of C. elegans allows single fluorescently labeled axons to be severed in live animals using laser microsurgery. Many neurons in C. elegans are capable of regenerative regrowth, and can in some cases re-establish functional connections. Large-scale genetic screens have begun to elucidate the genetic basis of axon regrowth.
Collapse
Affiliation(s)
- Lizhen Chen
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
27
|
Phu DT, Wallbach M, Depatie C, Fu A, Screaton RA, Oetjen E. Regulation of the CREB coactivator TORC by the dual leucine zipper kinase at different levels. Cell Signal 2011; 23:344-53. [DOI: 10.1016/j.cellsig.2010.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 10/25/2022]
|
28
|
Xiong X, Wang X, Ewanek R, Bhat P, Diantonio A, Collins CA. Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. ACTA ACUST UNITED AC 2010; 191:211-23. [PMID: 20921142 PMCID: PMC2953441 DOI: 10.1083/jcb.201006039] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regenerative responses to axonal injury involve changes in gene expression; however, little is known about how such changes can be induced from a distant site of injury. In this study, we describe a nerve crush assay in Drosophila melanogaster to study injury signaling and regeneration mechanisms. We find that Wallenda (Wnd), a conserved mitogen-activated protein kinase (MAPK) kinase kinase homologous to dual leucine zipper kinase, functions as an upstream mediator of a cell-autonomous injury signaling cascade that involves the c-Jun NH(2)-terminal kinase MAPK and Fos transcription factor. Wnd is physically transported in axons, and axonal transport is required for the injury signaling mechanism. Wnd is regulated by a conserved E3 ubiquitin ligase, named Highwire (Hiw) in Drosophila. Injury induces a rapid increase in Wnd protein concomitantly with a decrease in Hiw protein. In hiw mutants, injury signaling is constitutively active, and neurons initiate a faster regenerative response. Our data suggest that the regulation of Wnd protein turnover by Hiw can function as a damage surveillance mechanism for responding to axonal injury.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
29
|
Yan D, Wu Z, Chisholm AD, Jin Y. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell 2009; 138:1005-18. [PMID: 19737525 PMCID: PMC2772821 DOI: 10.1016/j.cell.2009.06.023] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 05/07/2009] [Accepted: 06/11/2009] [Indexed: 11/28/2022]
Abstract
Growth cone guidance and synaptic plasticity involve dynamic local changes in proteins at axons and dendrites. The Dual-Leucine zipper Kinase MAPKKK (DLK) has been previously implicated in synaptogenesis and axon outgrowth in C. elegans and other animals. Here we show that in C. elegans DLK-1 regulates not only proper synapse formation and axon morphology but also axon regeneration by influencing mRNA stability. DLK-1 kinase signals via a MAPKAP kinase, MAK-2, to stabilize the mRNA encoding CEBP-1, a bZip protein related to CCAAT/enhancer-binding proteins, via its 3'UTR. Inappropriate upregulation of cebp-1 in adult neurons disrupts synapses and axon morphology. CEBP-1 and the DLK-1 pathway are essential for axon regeneration after laser axotomy in adult neurons, and axotomy induces translation of CEBP-1 in axons. Our findings identify the DLK-1 pathway as a regulator of mRNA stability in synapse formation and maintenance and also in adult axon regeneration.
Collapse
Affiliation(s)
- Dong Yan
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093
| | - Zilu Wu
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093
| | - Andrew D. Chisholm
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Yishi Jin
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
30
|
Role of the JNK-interacting protein 1/islet brain 1 in cell degeneration in Alzheimer disease and diabetes. Brain Res Bull 2009; 80:274-81. [PMID: 19616077 DOI: 10.1016/j.brainresbull.2009.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 01/09/2023]
Abstract
Numerous epidemiological studies and some pharmacological clinical trials show the close connection between Alzheimer disease (AD) and type 2 diabetes (T2D) and thereby, shed more light into the existence of possible similar pathogenic mechanisms between these two diseases. Diabetes increases the risk of developing AD and sensitizers of insulin currently used as diabetes drugs can efficiently slow cognitive decline of the neurological disorder. Deposits of amyloid aggregate and hyperphosphorylation of tau, which are hallmarks of AD, have been also found in degenerating pancreatic islets beta-cells of patients with T2D. These events may have a causal role in the pathogenesis of the two diseases. Increased c-Jun NH(2)-terminal kinase (JNK) activity is found in neurofibrillary tangles (NFT) of AD and promotes programmed cell death of beta-cells exposed to a diabetic environment. The JNK-interacting protein 1 (JIP-1), also called islet brain 1 (IB1) because it is mostly expressed in the brain and islets, is a key regulator of the JNK pathway in neuronal and beta-cells. JNK, hyperphosphorylated tau and IB1/JIP-1 all co-localize with amyloids deposits in NFT and islets of AD and patients with T2D. This review discusses the role of the IB1/JIP-1 and the JNK pathway in the molecular pathogenesis of AD and T2D.
Collapse
|
31
|
Hammarlund M, Nix P, Hauth L, Jorgensen EM, Bastiani M. Axon regeneration requires a conserved MAP kinase pathway. Science 2009; 323:802-6. [PMID: 19164707 PMCID: PMC2729122 DOI: 10.1126/science.1165527] [Citation(s) in RCA: 353] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regeneration of injured neurons can restore function, but most neurons regenerate poorly or not at all. The failure to regenerate in some cases is due to a lack of activation of cell-intrinsic regeneration pathways. These pathways might be targeted for the development of therapies that can restore neuron function after injury or disease. Here, we show that the DLK-1 mitogen-activated protein (MAP) kinase pathway is essential for regeneration in Caenorhabditis elegans motor neurons. Loss of this pathway eliminates regeneration, whereas activating it improves regeneration. Further, these proteins also regulate the later step of growth cone migration. We conclude that after axon injury, activation of this MAP kinase cascade is required to switch the mature neuron from an aplastic state to a state capable of growth.
Collapse
Affiliation(s)
- Marc Hammarlund
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | | | | | | | |
Collapse
|
32
|
The mixed-lineage kinase DLK undergoes Src-dependent tyrosine phosphorylation and activation in cells exposed to vanadate or platelet-derived growth factor (PDGF). Cell Signal 2008; 21:577-87. [PMID: 19146952 DOI: 10.1016/j.cellsig.2008.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 02/02/2023]
Abstract
Some data in the literature suggest that serine/threonine phosphorylation is required for activation of the mixed-lineage kinases (MLKs), a subgroup of mitogen-activated protein kinase kinase kinases (MAPKKKs). In this report, we demonstrate that the MLK family member DLK is activated and concurrently tyrosine-phosphorylated in cells exposed to the protein tyrosine phosphatase inhibitor vanadate. Tyrosine phosphorylation appears crucial for activation as incubation of vanadate-activated DLK molecules with a tyrosine phosphatase substantially reduced DLK enzymatic activity. Interestingly, the effects of vanadate on DLK are completely blocked by treatment with a Src family kinase inhibitor, PP2, or the expression of short hairpin RNA (shRNA) directed against Src. DLK also fails to undergo vanadate-stimulated tyrosine phosphorylation and activation in fibroblasts which lack expression of Src, Yes and Fyn, but reintroduction of wild-type Src or Fyn followed by vanadate treatment restores this response. In addition to vanadate, stimulation of cells with platelet-derived growth factor (PDGF) also induces tyrosine phosphorylation and activation of DLK by a Src-dependent mechanism. DLK seems important for PDGF signaling because its depletion by RNA interference substantially reduces PDGF-stimulated ERK and Akt kinase activation. Thus, our findings suggest that Src-dependent tyrosine phosphorylation of DLK may be important for regulation of its activity, and they support a role for DLK in PDGF signaling.
Collapse
|
33
|
Plaumann S, Blume R, Börchers S, Steinfelder HJ, Knepel W, Oetjen E. Activation of the dual-leucine-zipper-bearing kinase and induction of beta-cell apoptosis by the immunosuppressive drug cyclosporin A. Mol Pharmacol 2008; 73:652-9. [PMID: 18042735 DOI: 10.1124/mol.107.040782] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Post-transplant diabetes is an untoward effect often observed under immunosuppressive therapy with cyclosporin A. Besides the development of peripheral insulin resistance and a decrease in insulin gene transcription, a beta-cell toxic effect has been described. However, its molecular mechanism remains unknown. In the present study, the effect of cyclosporin A and the dual leucine-zipper-bearing kinase (DLK) on beta-cell survival was investigated. Cyclosporin A decreased the viability of the insulin-producing pancreatic islet cell line HIT in a time- and concentration-dependent manner. Upon exposure to the immunosuppressant fragmentation of DNA, the activation of the effector caspase-3 and a decrease of full-length caspase-3 and Bcl(XL) were observed in HIT cells and in primary mature murine islets, respectively. Cyclosporin A and tacrolimus, both potent inhibitors of the calcium/calmodulin-dependent phosphatase calcineurin, stimulated the enzymatic activity of cellular DLK in an in vitro kinase assay. Immunocytochemistry revealed that the overexpression of DLK but not its kinase-dead mutant induced apoptosis and enhanced cyclosporin A-induced apoptosis to a higher extent than the drug alone. Moreover, in the presence of DLK, the effective concentration for cyclosporin A-caused apoptosis was similar to its known IC(50) value for the inhibition of calcineurin activity in beta cells. These data suggest that cyclosporin A through inhibition of calcineurin activates DLK, thereby leading to beta-cell apoptosis. This action may thus be a novel mechanism through which cyclosporin A precipitates post-transplant diabetes.
Collapse
Affiliation(s)
- Silke Plaumann
- Molecular Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron 2008; 56:456-71. [PMID: 17988630 DOI: 10.1016/j.neuron.2007.08.020] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 06/15/2007] [Accepted: 08/27/2007] [Indexed: 12/30/2022]
Abstract
Synaptic activity induces changes in the number of dendritic spines. Here, we report a pathway of regulated endocytosis triggered by arcadlin, a protocadherin induced by electroconvulsive and other excitatory stimuli in hippocampal neurons. The homophilic binding of extracellular arcadlin domains activates TAO2beta, a splice variant of the thousand and one amino acid protein kinase 2, cloned here by virtue of its binding to the arcadlin intracellular domain. TAO2beta is a MAPKKK that activates the MEK3 MAPKK, which phosphorylates the p38 MAPK. Activation of p38 feeds-back on TAO2beta, phosphorylating a key serine required for triggering endocytosis of N-cadherin at the synapse. Arcadlin knockout increases the number of dendritic spines, and the phenotype is rescued by siRNA knockdown of N-cadherin. This pathway of regulated endocytosis of N-cadherin via protocadherin/TAO2beta/MEK3/p38 provides a molecular mechanism for transducing neuronal activity into changes in synaptic morphologies.
Collapse
|
35
|
Neph1 cooperates with nephrin to transduce a signal that induces actin polymerization. Mol Cell Biol 2007; 27:8698-712. [PMID: 17923684 DOI: 10.1128/mcb.00948-07] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While the mechanisms that regulate actin dynamics in cellular motility are intensively studied, relatively little is known about signaling events that transmit outside-in signals and direct assembly and regulation of actin polymerization complexes at the cell membrane. The kidney podocyte provides a unique model for investigating these mechanisms since deletion of Nephrin or Neph1, two interacting components of the specialized podocyte intercellular junction, results in abnormal podocyte morphogenesis and junction formation. We provide evidence that extends the existing model by which the Nephrin-Neph1 complex transduces phosphorylation-mediated signals that assemble an actin polymerization complex at the podocyte intercellular junction. Upon engagement, Neph1 is phosphorylated on specific tyrosine residues by Fyn, which results in the recruitment of Grb2, an event that is necessary for Neph1-induced actin polymerization at the plasma membrane. Importantly, Neph1 and Nephrin directly interact and, by juxtaposing Grb2 and Nck1/2 at the membrane following complex activation, cooperate to augment the efficiency of actin polymerization. These data provide evidence for a mechanism reminiscent of that employed by vaccinia virus and other pathogens, by which a signaling complex transduces an outside-in signal that results in actin filament polymerization at the plasma membrane.
Collapse
|
36
|
Handley ME, Rasaiyaah J, Chain BM, Katz DR. Mixed lineage kinases (MLKs): a role in dendritic cells, inflammation and immunity? Int J Exp Pathol 2007; 88:111-26. [PMID: 17408454 PMCID: PMC2517295 DOI: 10.1111/j.1365-2613.2007.00531.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review summarizes current knowledge about the mixed lineage kinases (MLKs) and explores their potential role in inflammation and immunity. MLKs were identified initially as signalling molecules in the nervous system. They were also shown to play a role in the cell cycle. Further studies documented three groups of MLKs, and showed that they may be activated via the c-Jun NH(2) terminal kinase (JNK) pathway, and by Rho GTPases. The biochemistry of the MLKs has been investigated in considerable detail. Homodimerization and heterodimerization can occur, and both autophosphorylation and autoinhibition are seen. The interaction between MLKs and JNK interacting protein (JIP) scaffolds, and the resultant effects on mitogen activated protein kinases, have been identified. Clearly, there is some redundancy within the MLK pathway(s), since mice which lack the MLK3 molecule are not abnormal. However, using a combination of biochemical analysis and pharmacological inhibitors, several recent studies in vitro have suggested that MLKs are not only expressed in cells of the immune system (as well as in the nervous system), but also may be implicated selectively in the signalling pathway that follows on toll-like receptor ligation in innate sentinel cells, such as the dendritic cell.
Collapse
Affiliation(s)
- Matthew E Handley
- Department of Immunology and Molecular Pathology, University College London, London, UK
| | | | | | | |
Collapse
|
37
|
Daviau A, Proulx R, Robitaille K, Di Fruscio M, Tanguay RM, Landry J, Patterson C, Durocher Y, Blouin R. Down-regulation of the Mixed-lineage Dual Leucine Zipper-bearing Kinase by Heat Shock Protein 70 and Its Co-chaperone CHIP. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84059-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Collins CA, Wairkar YP, Johnson SL, DiAntonio A. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 2006; 51:57-69. [PMID: 16815332 DOI: 10.1016/j.neuron.2006.05.026] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/25/2006] [Accepted: 05/30/2006] [Indexed: 11/23/2022]
Abstract
Highwire is an extremely large, evolutionarily conserved E3 ubiquitin ligase that negatively regulates synaptic growth at the Drosophila NMJ. Highwire has been proposed to restrain synaptic growth by downregulating a synaptogenic signal. Here we identify such a downstream signaling pathway. A screen for suppressors of the highwire synaptic overgrowth phenotype yielded mutations in wallenda, a MAP kinase kinase kinase (MAPKKK) homologous to vertebrate DLK and LZK. wallenda is both necessary for highwire synaptic overgrowth and sufficient to promote synaptic overgrowth, and synaptic levels of Wallenda protein are controlled by Highwire and ubiquitin hydrolases. highwire synaptic overgrowth requires the MAP kinase JNK and the transcription factor Fos. These results suggest that Highwire controls structural plasticity of the synapse by regulating gene expression through a MAP kinase signaling pathway. In addition to controlling synaptic growth, Highwire promotes synaptic function through a separate pathway that does not require wallenda.
Collapse
Affiliation(s)
- Catherine A Collins
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
39
|
Daviau A, Proulx R, Robitaille K, Di Fruscio M, Tanguay RM, Landry J, Patterson C, Durocher Y, Blouin R. Down-regulation of the mixed-lineage dual leucine zipper-bearing kinase by heat shock protein 70 and its co-chaperone CHIP. J Biol Chem 2006; 281:31467-77. [PMID: 16931512 DOI: 10.1074/jbc.m607612200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dual leucine zipper-bearing kinase (DLK) is a mixed-lineage kinase family member that acts as an upstream activator of the c-Jun N-terminal kinases. As opposed to other components of this pathway, very little is currently known regarding the mechanisms by which DLK is regulated in mammalian cells. Here we identify the stress-inducible heat shock protein 70 (Hsp70) as a negative regulator of DLK expression and activity. Support for this notion derives from data showing that Hsp70 induces the proteasomal degradation of DLK when both proteins are co-expressed in COS-7 cells. Hsp70-mediated degradation occurs with expression of wild-type DLK, which functions as a constitutively activated protein in these cells but not kinase-defective DLK. Interestingly, the Hsp70 co-chaperone CHIP, an E3 ubiquitin ligase, seems to be indispensable for this process since Hsp70 failed to induce DLK degradation in COS-7 cells expressing a CHIP mutant unable to catalyze ubiquitination or in immortalized fibroblasts derived from CHIP knock-out mice. Consistent with these data, we have found that endogenous DLK becomes sensitive to CHIP-dependent proteasomal degradation when it is activated by okadaic acid and that down-regulation of Hsp70 levels with an Hsp70 antisense attenuates this sensitivity. Therefore, our studies suggest that Hsp70 contributes to the regulation of activated DLK by promoting its CHIP-dependent proteasomal degradation.
Collapse
Affiliation(s)
- Alex Daviau
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Verma R, Kovari I, Soofi A, Nihalani D, Patrie K, Holzman LB. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J Clin Invest 2006; 116:1346-59. [PMID: 16543952 PMCID: PMC1401486 DOI: 10.1172/jci27414] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 02/07/2006] [Indexed: 12/21/2022] Open
Abstract
A properly established and maintained podocyte intercellular junction, or slit diaphragm, is a necessary component of the selective permeability barrier of the kidney glomerulus. The observation that mutation or deletion of the slit diaphragm transmembrane protein nephrin results in failure of podocyte foot process morphogenesis and concomitant proteinuria first suggested the hypothesis that nephrin serves as a component of a signaling complex that directly integrates podocyte junctional integrity with cytoskeletal dynamics. The observations made herein provide the first direct evidence to our knowledge for a phosphorylation-mediated signaling mechanism by which this integrative function is derived. Our data support the model that during podocyte intercellular junction formation, engagement of the nephrin ectodomain induces transient Fyn catalytic activity that results in nephrin phosphorylation on specific nephrin cytoplasmic domain tyrosine residues. We found that this nephrin phosphorylation event resulted in recruitment of the SH2-SH3 domain-containing adapter protein Nck and assembly of actin filaments in an Nck-dependent fashion. Considered in the context of the role of nephrin family proteins in other organisms and the integral relationship of actin dynamics and junction formation, these observations establish a function for nephrin in regulating actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Rakesh Verma
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Iulia Kovari
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Abdul Soofi
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Deepak Nihalani
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Kevin Patrie
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Lawrence B. Holzman
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Suenaga J, Cui DF, Yamamoto I, Ohno S, Hirai SI. Developmental changes in the expression pattern of the JNK activator kinase MUK/DLK/ZPK and active JNK in the mouse cerebellum. Cell Tissue Res 2006; 325:189-95. [PMID: 16520976 DOI: 10.1007/s00441-006-0164-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 01/09/2006] [Indexed: 10/24/2022]
Abstract
JNK is one of the key molecules regulating cell differentiation and migration in a variety of cell types, including cerebral cortical neurons. MUK/DLK/ZPK belongs to the MAP kinase-kinase-kinase class of protein kinases for the JNK pathway and is expressed predominantly in neural tissue. We have determined the expression pattern of MUK/DLK/ZPK and active JNK in the cerebellum at different stages of postnatal development. Quantitative analysis by Western blotting has showed that high expression levels of MUK/DLK/ZPK and active JNK are maintained during the postnatal development of the cerebellum, and that these levels decrease in the adult cerebellum. Immunohistochemical staining has revealed, however, that their distribution in the developing cerebellum is considerably different. Although active JNK is highly concentrated in the premigratory zone of the external germinal layer (EGL), high expression of MUK/DLK/ZPK has been observed in the molecular layer and in the premigratory zone. Neither the active JNK nor MUK protein has been detected in the proliferative zone of the EGL. These observations suggest that during the postnatal development of the cerebellum, the MUK-JNK signaling pathway contributes to the regulation of granule cell differentiation and migration; further, the activity of MUK/DLK/ZPK is tightly regulated by posttranslational mechanisms and by its expression level.
Collapse
Affiliation(s)
- Jun Suenaga
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | |
Collapse
|
42
|
Oetjen E, Lechleiter A, Blume R, Nihalani D, Holzman L, Knepel W. Inhibition of membrane depolarisation-induced transcriptional activity of cyclic AMP response element binding protein (CREB) by the dual-leucine-zipper-bearing kinase in a pancreatic islet beta cell line. Diabetologia 2006; 49:332-42. [PMID: 16369771 DOI: 10.1007/s00125-005-0087-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 09/07/2005] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS The activation of the transcription factor cyclic AMP response element binding protein (CREB) by protein kinase A is inhibited by the human orthologue of the mitogen-activated protein kinase, dual-leucine-zipper-bearing kinase (DLK) in teratocarcinoma cells. However, pancreatic beta cells are electrically excitable and a major pathway regulating CREB in these cells is membrane depolarisation, leading to calcium influx and activation of the calcium/calmodulin-dependent protein phosphatase calcineurin. Therefore, the effect of DLK on CREB activity induced by membrane depolarisation was investigated in the beta cell line HIT. MATERIALS AND METHODS Reporter gene assays and biochemical techniques were used. RESULTS RT-PCR, Western blot analysis and immunohistochemistry demonstrated the expression of DLK in HIT cells and primary mouse islets. In transient transfection experiments, DLK inhibited both GAL4-CREB activity induced by membrane depolarisation, and transcription directed by the CREB binding site, the cyclic AMP response element. Furthermore, DLK inhibited the transcriptional activity conferred by the CREB coactivator, CREB binding protein, both under basal conditions and after membrane depolarisation. DLK was also effective in response to glucose, the most potent physiological stimulus and known to cause membrane depolarisation of beta cells. Inhibition of calcineurin enhanced DLK activity, whereas overexpression of calcineurin reduced the inhibition by DLK of transcription directed by cyclic AMP response element after membrane depolarisation. CONCLUSIONS/INTERPRETATION These results demonstrate a calcineurin-sensitive inhibition by DLK of CREB activity after membrane depolarisation in pancreatic islet beta cells. This inhibition may, at least partially, be mediated at the coactivator level. The results thus suggest that DLK plays a role in the regulation of beta cell function, including insulin gene transcription and beta cell apoptosis.
Collapse
Affiliation(s)
- E Oetjen
- Molecular Pharmacology, University of Göttingen, Robert-Koch Strasse 40, 37099 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Cha H, Dangi S, Machamer CE, Shapiro P. Inhibition of mixed-lineage kinase (MLK) activity during G2-phase disrupts microtubule formation and mitotic progression in HeLa cells. Cell Signal 2006; 18:93-104. [PMID: 15923109 PMCID: PMC2835151 DOI: 10.1016/j.cellsig.2005.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 03/18/2005] [Accepted: 03/18/2005] [Indexed: 10/25/2022]
Abstract
The mixed-lineage kinases (MLK) are serine/threonine protein kinases that regulate mitogen-activated protein (MAP) kinase signaling pathways in response to extracellular signals. Recent studies indicate that MLK activity may promote neuronal cell death through activation of the c-Jun NH2-terminal kinase (JNK) family of MAP kinases. Thus, inhibitors of MLK activity may be clinically useful for delaying the progression of neurodegenerative diseases, such as Parkinson's. In proliferating non-neuronal cells, MLK may have the opposite effect of promoting cell proliferation. In the current studies we examined the requirement for MLK proteins in regulating cell proliferation by examining MLK function during G2 and M-phase of the cell cycle. The MLK inhibitor CEP-11004 prevented HeLa cell proliferation by delaying mitotic progression. Closer examination revealed that HeLa cells treated with CEP-11004 during G2-phase entered mitosis similar to untreated G2-phase cells. However, CEP-11004 treated cells failed to properly exit mitosis and arrested in a pro-metaphase state. Partial reversal of the CEP-11004 induced mitotic arrest could be achieved by overexpression of exogenous MLK3. The effects of CEP-11004 treatment on mitotic events included the inhibition of histone H3 phosphorylation during prophase and prior to nuclear envelope breakdown and the formation of aberrant mitotic spindles. These data indicate that MLK3 might be a unique target to selectively inhibit transformed cell proliferation by disrupting mitotic spindle formation resulting in mitotic arrest.
Collapse
Affiliation(s)
- Hyukjin Cha
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
44
|
Xu Z, Kukekov NV, Greene LA. Regulation of apoptotic c-Jun N-terminal kinase signaling by a stabilization-based feed-forward loop. Mol Cell Biol 2005; 25:9949-59. [PMID: 16260609 PMCID: PMC1280282 DOI: 10.1128/mcb.25.22.9949-9959.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A sequential kinase cascade culminating in activation of c-Jun N-terminal kinases (JNKs) plays a fundamental role in promoting apoptotic death in many cellular contexts. The mechanisms by which this pathway is engaged in response to apoptotic stimuli and suppressed in viable cells are largely unknown. Here, we show that apoptotic stimuli increase endogenous cellular levels of pathway components, including POSH, mixed lineage kinases (MLKs), and JNK interacting protein 1, and that this effect occurs through protein stabilization and requires the presence of POSH as well as activation of MLKs and JNKs. Our findings suggest a self-amplifying, feed-forward loop mechanism by which apoptotic stimuli promote the stabilization of JNK pathway components, thereby contributing to cell death.
Collapse
Affiliation(s)
- Zhiheng Xu
- Department of Pathology and Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, New York 10032, USA.
| | | | | |
Collapse
|
45
|
Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm AD, Jin Y. Regulation of a DLK-1 and p38 MAP Kinase Pathway by the Ubiquitin Ligase RPM-1 Is Required for Presynaptic Development. Cell 2005; 120:407-20. [PMID: 15707898 DOI: 10.1016/j.cell.2004.12.017] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 10/19/2004] [Accepted: 12/14/2004] [Indexed: 10/25/2022]
Abstract
Synapses display a stereotyped ultrastructural organization, commonly containing a single electron-dense presynaptic density surrounded by a cluster of synaptic vesicles. The mechanism controlling subsynaptic proportion is not understood. Loss of function in the C. elegans rpm-1 gene, a putative RING finger/E3 ubiquitin ligase, causes disorganized presynaptic cytoarchitecture. RPM-1 is localized to the presynaptic periactive zone. We report that RPM-1 negatively regulates a p38 MAP kinase pathway composed of the dual leucine zipper-bearing MAPKKK DLK-1, the MAPKK MKK-4, and the p38 MAP kinase PMK-3. Inactivation of this pathway suppresses rpm-1 loss of function phenotypes, whereas overexpression or constitutive activation of this pathway causes synaptic defects resembling rpm-1(lf) mutants. DLK-1, like RPM-1, is localized to the periactive zone. DLK-1 protein levels are elevated in rpm-1 mutants. The RPM-1 RING finger can stimulate ubiquitination of DLK-1. Our data reveal a presynaptic role of a previously unknown p38 MAP kinase cascade.
Collapse
Affiliation(s)
- Katsunori Nakata
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Yu X, Bloem LJ. Effect of C-terminal truncations on MLK7 catalytic activity and JNK activation. Biochem Biophys Res Commun 2003; 310:452-7. [PMID: 14521931 DOI: 10.1016/j.bbrc.2003.09.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixed lineage kinase 7 (MLK7) is a MAPKKK with enriched expression in heart and skeletal muscle that functions to activate JNK and p38. The MLKs have several conserved domains, including a leucine zipper that in other family members mediates oligomerization critical for catalytic activity and JNK activation. Nested C-terminal deletion mutants of MLK7 from 436 to 286 as well as a mutant lacking only the leucine zipper (delLZ) were generated to determine the role of these domains in catalytic activity and JNK activation. Specific activity of MLK7366 was 75% full length while 436, 322, and delLZ retained approximately 25% and 286, 4% of the full-length catalytic function, demonstrating that the leucine zipper, while not absolutely necessary for catalytic activity, is required to reach full catalytic function of the enzyme. Co-transfection studies of JNK with the MLK7 mutants demonstrated full JNK activation with MLK7, 436, and delLZ, marginal activation for 1-400 or 1-366, and no activation for 1-322, demonstrating that the leucine zipper is not required for JNK activation and that sequence contained in C-terminal residue 322-436 is necessary for full pathway activation by MLK7.
Collapse
Affiliation(s)
- Xiaohong Yu
- Cardiovascular Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | |
Collapse
|
47
|
Nihalani D, Wong HN, Holzman LB. Recruitment of JNK to JIP1 and JNK-dependent JIP1 phosphorylation regulates JNK module dynamics and activation. J Biol Chem 2003; 278:28694-702. [PMID: 12756254 DOI: 10.1074/jbc.m304212200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
JIP1 is a scaffold protein that assembles and facilitates the activation of the mixed lineage kinase-dependent JNK module. Results of earlier work led us to propose a model for JIP1-JNK complex regulation that predicts that under basal conditions, JIP1 maintains DLK in a monomeric, unphosphorylated, and catalytically inactive state. Upon appropriate module stimulation, JNK-JIP1 binding affinity increases and DLK-JIP1 affinity decreases. Dissociation of DLK from JIP1 results in subsequent DLK oligomerization, autophosphorylation, and ultimately module activation. Our previous published results suggested the hypothesis that recruitment of JNK to JIP1 and phosphorylation of JIP1 by JNK is prerequisite for activation of the JNK module (Nihalani, D., Meyer, D., Pajni, S., and Holzman, L. B. (2001) EMBO J. 20, 3447-3458). The present study corroborated this hypothesis by demonstrating that JNK binding to JIP1 is necessary for stimulus-induced dissociation of DLK from JIP1, for DLK oligomerization, and for JNK activation. After mapping JNK-dependent JIP1 phosphorylation sites and testing their functional significance, it was observed that phosphorylation by JNK of JIP1 on Thr-103 and not other phosphorylated JIP1 residues is necessary for the regulation of DLK association with JIP1, DLK activation, and subsequent module activation. A refined model of JIP1-JNK module regulation is presented in which JNK phosphorylation of JIP1 is necessary prior to module activation.
Collapse
Affiliation(s)
- Deepak Nihalani
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0676, USA
| | | | | |
Collapse
|
48
|
Verma R, Wharram B, Kovari I, Kunkel R, Nihalani D, Wary KK, Wiggins RC, Killen P, Holzman LB. Fyn binds to and phosphorylates the kidney slit diaphragm component Nephrin. J Biol Chem 2003; 278:20716-23. [PMID: 12668668 DOI: 10.1074/jbc.m301689200] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent investigations have focused on characterizing the molecular components of the podocyte intercellular junction, because several of these components, including Nephrin, are functionally necessary for development of normal podocyte structure and filter integrity. Accumulating evidence suggests that the Nephrin-associated protein complex is a signaling nexus. As such, Nephrin-dependent signaling might be mediated in part through Nephrin phosphorylation. Described are biochemical and mouse genetics experiments demonstrating that membrane-associated Nephrin is tyrosine-phosphorylated by the Src family kinase Fyn. Nephrin fractionated in detergent-resistant glomerular membrane fractions with Fyn and Yes. Fyn directly bound Nephrin via its SH3 domain, and Fyn directly phosphorylated Nephrin. Glomeruli in which Fyn, Yes, or Fyn and Yes were genetically deleted in mice were characterized to explore the relationship between these kinases and Nephrin. Fyn deletion resulted in coarsening of podocyte foot processes and marked attenuation of Nephrin phosphorylation in isolated glomerular detergent-resistant membrane fractions. Yes deletion had no identifiable effect on podocyte morphology but dramatically increased Nephrin phosphorylating activity. Similar to Fyn deletion, simultaneous deletion of Fyn and Yes reduced Nephrin phosphorylating activity. These results demonstrate that endogenous Fyn catalyzes Nephrin phosphorylation in podocyte detergent-resistant membrane fractions. Although Yes appears to effect the regulation of Nephrin phosphorylation, the mechanism by which this occurs requires investigation.
Collapse
Affiliation(s)
- Rakesh Verma
- Department of Veterans Affairs, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Masaki M, Ikeda A, Shiraki E, Oka S, Kawasaki T. Mixed lineage kinase LZK and antioxidant protein-1 activate NF-kappaB synergistically. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:76-83. [PMID: 12492477 DOI: 10.1046/j.1432-1033.2003.03363.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Leucine zipper-bearing kinase (LZK) is a novel member of the mixed lineage kinase (MLK) family [Sakuma, H., Ikeda, A., Oka, S., Kozutsumi, Y., Zanetta, J. P., and Kawasaki, T. (1997) J. Biol. Chem.272, 28622-28629]. We have previously shown that LZK activates the c-Jun-NH2 terminal kinase (JNK) pathway, but not the extracellular signal-related kinase (ERK) pathway, by acting as a mitogen-activated protein kinase kinase kinase (MAPKKK) [Ikeda, A., Hasegawa, K., Masaki, M., Moriguchi, T., Nishida, E., Kozutsumi, Y., Oka, S., and Kawasaki, T. (2001) J. Biochem.130, 773-781]. However, the mode of activation of LZK remains largely unknown. By means of a yeast two-hybrid screening system, we have identified a molecule localized to mitochondria, antioxidant protein-1 (AOP-1), that binds to LZK and which acts as a modulator of LZK activity. Recently, several MAPKKKs involved in the JNK pathway, such as MEKK1, TAK1 and MLK3, were shown, using over-expression assay systems, to activate a transcription factor, NF-kappaB, through activation of the IKK complex. Using similar assay systems, we demonstrated that LZK activated NF-kappaB-dependent transcription through IKK activation only weakly, but this was reproducible, and that AOP-1 enhanced the LZK-induced NF-kappaB activation. We also provided evidence that LZK was associated directly with the IKK complex through the kinase domain, and that AOP-1 was recruited to the IKK complex through the binding to LZK.
Collapse
Affiliation(s)
- Megumi Masaki
- Department of Biological Chemistry and CREST (Core Research for Educational Science and Technology) Project, Japan Science and Technology Corporation, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
50
|
Abstract
Mixed-lineage kinases (MLKs) are serine/threonine protein kinases that regulate signalling by the c-Jun amino-terminal kinase (JNK) and p38 mitogen-activated-protein kinase (MAPK) pathways. MLKs are represented in the genomes of both Caenorhabditis elegans and Drosophila melanogaster. The Drosophila MLK Slipper regulates JNK to control dorsal closure during embryonic morphogenesis. In mammalian cells, MLKs are implicated in the control of apoptosis and are potential drug targets for many neurodegenerative diseases.
Collapse
Affiliation(s)
- Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|