1
|
Hong F, Yang Y, Chen B, Li P, Wang G, Jiang Y. Protein kinase C-θ knockout decreases serum IL-10 levels and inhibits insulin secretion from islet β cells. Islets 2021; 13:24-31. [PMID: 33719858 PMCID: PMC8018435 DOI: 10.1080/19382014.2021.1890963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Various subtypes of protein kinase C (PKC) are expressed in islet β cells and regulate β cell proliferation and survival. PKC-θ is distributed in the immune system and promotes the secretion of IL-10, which manifests a critical role in the onset of diabetes, by the immune cells. However, the role of PKC-θ in islets has not been concerned. In the present study, we investigated the role of PKC-θ in the protection of islet β cells and insulin secretion. Fasting glucose and insulin measurement, glucose tolerant test, immunofluorescence, and ELISA were conducted to study the influence of PKC-θ knockout on islet β cell survival and function, and explore the mechanism underlying this regulation. PKC-θ knockout mice at 2 weeks manifested normal serum insulin levels, glucose tolerance, and β cell mass. Knockout mice at 8 weeks show decreased β cell mass, but manifested normal insulin levels and glucose tolerance. Knockout mice at 16 weeks manifested impaired glucose tolerance, β cell mass, and decreased glucose stimulated insulin secretion. Furthermore, knockout mice manifested decreased serum IL-10 level compared with normal mice since 2 weeks. IL-10 injection into knockout mice improved glucose tolerance, serum insulin level, and reduced β cell mass, and IL-10 administration into cultured pancreatic tissue increased glucose stimulated insulin secretion. PKC-θ knockout decreases the secretion of IL-10, reduces β cell mass and insulin secretion in pancreatic islets. The present study illuminates the critical role of PKC-θ in protecting the survival and function of islet β cells.
Collapse
Affiliation(s)
- Feng Hong
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
- Hong Feng School of Preclinical Medicine, Wannan Medical College; No.22 Wenchang West Road, Wuhu 241002, China
| | - Yang Yang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Baiyi Chen
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Peng Li
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Guoguang Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
- CONTACT Yuxin Jiang School of Medicine, Jiaxing University, No.118 Jiahang Road, Jiaxing 341001, China
| | - Yuxin Jiang
- College of Medicine, Jiaxing University, Jiaxing, China
| |
Collapse
|
2
|
Trexler AJ, Taraska JW. Regulation of insulin exocytosis by calcium-dependent protein kinase C in beta cells. Cell Calcium 2017; 67:1-10. [PMID: 29029784 DOI: 10.1016/j.ceca.2017.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022]
Abstract
The control of insulin release from pancreatic beta cells helps ensure proper blood glucose level, which is critical for human health. Protein kinase C has been shown to be one key control mechanism for this process. After glucose stimulation, calcium influx into beta cells triggers exocytosis of insulin-containing dense-core granules and activates protein kinase C via calcium-dependent phospholipase C-mediated generation of diacylglycerol. Activated protein kinase C potentiates insulin release by enhancing the calcium sensitivity of exocytosis, likely by affecting two main pathways that could be linked: (1) the reorganization of the cortical actin network, and (2) the direct phosphorylation of critical exocytotic proteins such as munc18, SNAP25, and synaptotagmin. Here, we review what is currently known about the molecular mechanisms of protein kinase C action on each of these pathways and how these effects relate to the control of insulin release by exocytosis. We identify remaining challenges in the field and suggest how these challenges might be addressed to advance our understanding of the regulation of insulin release in health and disease.
Collapse
Affiliation(s)
- Adam J Trexler
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Justin W Taraska
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
3
|
Niki I, Niwa T, Yu W, Budzko D, Miki T, Senda T. Ca2+Influx Does Not Trigger Glucose-Induced Traffic of the Insulin Granules and Alteration of Their Distribution. Exp Biol Med (Maywood) 2016; 228:1218-26. [PMID: 14610264 DOI: 10.1177/153537020322801019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigated mechanisms by which glucose increases readily releasable secretory granules via acting on preexocytotic steps, i.e., intracellular granule movement and granule access to the plasma membrane using a pancreatic beta-cell line, MIN6. Glucose-induced activation of the movement occurred at a substimulatory concentration with regard to insulin output. Glucose activation of the movement was inhibited by pretreatment with thapsigargin plus acetylcholine to suppress intracellular Ca2+ mobilization. Inhibitors of calmodulin and myosin light chain kinase also suppressed glucose activation of the movement. Simultaneous addition of glucose with Ca2+ channel blockers or the ATP-sensitive K+ channel opener diazoxide failed to suppress the traffic activation, and addition of these substances on top of glucose stimulation resulted in a further increase. Although stimulatory glucose had minimal changes in the intracellular granule distribution, inhibition of Ca2+ influx revealed increases by glucose of the granules in the cell periphery. In contrast, high K+ depolarization decreased the peripheral granules. Glucose-induced granule margination was abolished when the protein kinase C activity was downregulated. These findings indicate that preexocytotic control of insulin release is regulated by distinct mechanisms from Ca2+ influx, which triggers insulin exocytosis. The nature of the regulation by glucose may explain a part of potentiating effects of the hexose independent of the closure of the ATP-sensitive K+ channel.
Collapse
Affiliation(s)
- Ichiro Niki
- Department of Pharmacology, Oita University, Faculty of Medicine, Oita 879-5593, Japan.
| | | | | | | | | | | |
Collapse
|
4
|
Karunakaran D, Kockx M, Owen DM, Burnett JR, Jessup W, Kritharides L. Protein kinase C controls vesicular transport and secretion of apolipoprotein E from primary human macrophages. J Biol Chem 2013; 288:5186-97. [PMID: 23288845 DOI: 10.1074/jbc.m112.428961] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage-specific apolipoprotein E (apoE) secretion plays an important protective role in atherosclerosis. However, the precise signaling mechanisms regulating apoE secretion from primary human monocyte-derived macrophages (HMDMs) remain unclear. Here we investigate the role of protein kinase C (PKC) in regulating basal and stimulated apoE secretion from HMDMs. Treatment of HMDMs with structurally distinct pan-PKC inhibitors (calphostin C, Ro-31-8220, Go6976) and a PKC inhibitory peptide all significantly decreased apoE secretion without significantly affecting apoE mRNA or apoE protein levels. The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated apoE secretion, and both PMA-induced and apoAI-induced apoE secretion were inhibited by PKC inhibitors. PKC regulation of apoE secretion was found to be independent of the ATP binding cassette transporter ABCA1. Live cell imaging demonstrated that PKC inhibitors inhibited vesicular transport of apoE to the plasma membrane. Pharmacological or peptide inhibitor and knockdown studies indicate that classical isoforms PKCα/β and not PKCδ, -ε, -θ, or -ι/ζ isoforms regulate apoE secretion from HMDMs. The activity of myristoylated alanine-rich protein kinase C substrate (MARCKS) correlated with modulation of PKC activity in these cells, and direct peptide inhibition of MARCKS inhibited apoE secretion, implicating MARCKS as a downstream effector of PKC in apoE secretion. Comparison with other secreted proteins indicated that PKC similarly regulated secretion of matrix metalloproteinase 9 and chitinase-3-like-1 protein but differentially affected the secretion of other proteins. In conclusion, PKC regulates the secretion of apoE from primary human macrophages.
Collapse
Affiliation(s)
- Denuja Karunakaran
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
5
|
Reactive oxygen species stimulate insulin secretion in rat pancreatic islets: studies using mono-oleoyl-glycerol. PLoS One 2012; 7:e30200. [PMID: 22272304 PMCID: PMC3260220 DOI: 10.1371/journal.pone.0030200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/12/2011] [Indexed: 11/25/2022] Open
Abstract
Chronic exposure (24–72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic ß-cells and in the clonal pancreatic ß-cell line INS-1 832/13. MOG (25–400 µM) stimulated basal insulin secretion from ß-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant ß-hydroxybutyrate (ß-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS.
Collapse
|
6
|
Torres N, Noriega L, Tovar AR. Nutrient modulation of insulin secretion. VITAMINS AND HORMONES 2009; 80:217-44. [PMID: 19251040 DOI: 10.1016/s0083-6729(08)00609-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of different nutrients regulates the beta-cell response to secrete insulin to maintain glucose in the physiological range and appropriate levels of fuels in different organs and tissues. Glucose is the only nutrient secretagogue capable of promoting alone the release of insulin release. The mechanisms of Insulin secretion are dependent or independent of the closure of ATP-sensitive K(+) channels. In addition, insulin secretion in response to glucose and other nutrients is modulated by several hormones as incretins, glucagon, and leptin. Fatty acids (FAs), amino acids, and keto acids influence secretion as well. The exact mechanism for which nutrients induce insulin secretion is complicated because nutrient signaling shows one of the most complex transduction systems, which exists for the reason that nutrient have to be metabolized. FAs in the absence of glucose induce FA oxidation and insulin secretion in a lesser extent. However, FAs in the presence of glucose produce high concentration of malonyl-CoA that repress FA oxidation and increase the formation of LC-CoA amplifying the insulin release. Long-term exposure to fatty acids and glucose results in glucolipotoxicity and decreases in insulin release. The amino acid pattern produced after the consumption of a dietary protein regulates insulin secretion by generating anaplerotic substrates that stimulates ATP synthesis or by activating specific signal transduction mediated by mTOR, AMPK, and SIRT4 or modulating the expression of genes involved in insulin secretion. Finally, dietary bioactive compounds such as isoflavones play an important role in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Vasco de Quiroga, Mexico DF 14000, Mexico
| | | | | |
Collapse
|
7
|
Oyasu M, Fujimiya M, Kashiwagi K, Ohmori S, Imaeda H, Saito N. Immunogold electron microscopic demonstration of distinct submembranous localization of the activated gammaPKC depending on the stimulation. J Histochem Cytochem 2007; 56:253-65. [PMID: 18040079 DOI: 10.1369/jhc.7a7291.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We examined the precise intracellular translocation of gamma subtype of protein kinase C (gammaPKC) after various extracellular stimuli using confocal laser-scanning fluorescent microscopy (CLSM) and immunogold electron microscopy. By CLSM, treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in a slow and irreversible accumulation of green fluorescent protein (GFP)-tagged gammaPKC (gammaPKC-GFP) on the plasma membrane. In contrast, treatment with Ca(2+) ionophore and activation of purinergic or NMDA receptors induced a rapid and transient membrane translocation of gammaPKC-GFP. Although each stimulus resulted in PKC localization at the plasma membrane, electron microscopy revealed that gammaPKC showed a subtle but significantly different localization depending on stimulation. Whereas TPA and UTP induced a sustained localization of gammaPKC-GFP on the plasma membrane, Ca(2+) ionophore and NMDA rapidly translocated gammaPKC-GFP to the plasma membrane and then restricted gammaPKC-GFP in submembranous area (<500 nm from the plasma membrane). These results suggest that Ca(2+) influx alone induced the association of gammaPKC with the plasma membrane for only a moment and then located this enzyme at a proper distance in a touch-and-go manner, whereas diacylglycerol or TPA tightly anchored this enzyme on the plasma membrane. The distinct subcellular targeting of gammaPKC in response to various stimuli suggests a novel mechanism for PKC activation.
Collapse
Affiliation(s)
- Miho Oyasu
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Kunishima S, Sako M, Yamazaki T, Hamaguchi M, Saito H. Molecular genetic analysis of a variant Bernard?Soulier syndrome due to compound heterozygosity for two novel glycoprotein Ib? mutations. Eur J Haematol 2006; 77:501-12. [PMID: 16978236 DOI: 10.1111/j.0902-4441.2006.t01-1-ejh2817.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bernard-Soulier syndrome (BSS) is a rare bleeding disorder characterized by giant platelets, thrombocytopenia, and prolonged bleeding time. It is caused by abnormalities in the glycoprotein (GP) Ib/IX/V complex, the receptor for von Willebrand factor (vWF). Most cases of BSS described so far involve quantitative rather than qualitative defects in the complex. In this study, we investigated the effects of two naturally occurring mutations in the GPIbbeta gene, C122S and 443delG, on the expression of the GPIb/IX complex identified in a variant type of BSS in which the platelets had severely reduced GPIbalpha ( approximately 10%) and less markedly reduced GPIbbeta and GPIX ( approximately 20%) expression. Immunoblot analysis showed the absence of non-reduced GPIb (GPIbalpha/GPIbbeta) in the patient's platelets. Transient transfection experiments in 293T cells revealed the expression of GPIbbeta Ser122 polypeptide and absence of GPIbbeta 443delG polypeptide. Although no disulfide-linked association was observed between GPIbbeta Ser122 and GPIbalpha, GPIbbeta Ser122 was non-covalently associated with both GPIbalpha and GPIX subunits on the cell surface when cotransfected with wild-type GPIbalpha and GPIX. Chinese hamster ovary cells stably expressing GPIbalpha/Ibbeta Ser122/IX had the ability to bind soluble vWF and to aggregate in the presence of ristocetin. These results suggest that despite disruption of the disulfide linkage between GPIbalpha and GPIbbeta, GPIb/IX is formed, but its stability may be impaired, resulting in low levels of the complex on the platelet membranes.
Collapse
Affiliation(s)
- Shinji Kunishima
- Department of Hemostasis and Thrombosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
9
|
MacDonald PE, Joseph JW, Rorsman P. Glucose-sensing mechanisms in pancreatic beta-cells. Philos Trans R Soc Lond B Biol Sci 2006; 360:2211-25. [PMID: 16321791 PMCID: PMC1569593 DOI: 10.1098/rstb.2005.1762] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The appropriate secretion of insulin from pancreatic beta-cells is critically important to the maintenance of energy homeostasis. The beta-cells must sense and respond suitably to postprandial increases of blood glucose, and perturbation of glucose-sensing in these cells can lead to hypoglycaemia or hyperglycaemias and ultimately diabetes. Here, we review beta-cell glucose-sensing with a particular focus on the regulation of cellular excitability and exocytosis. We examine in turn: (i) the generation of metabolic signalling molecules; (ii) the regulation of beta-cell membrane potential; and (iii) insulin granule dynamics and exocytosis. We further discuss the role of well known and putative candidate metabolic signals as regulators of insulin secretion.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Duke University Medical Center Sarah W. Stedman Nutrition and Metabolism Center Durham, NC 27704, USA.
| | | | | |
Collapse
|
10
|
Kwan EP, Xie L, Sheu L, Nolan CJ, Prentki M, Betz A, Brose N, Gaisano HY. Munc13-1 deficiency reduces insulin secretion and causes abnormal glucose tolerance. Diabetes 2006; 55:1421-9. [PMID: 16644700 DOI: 10.2337/db05-1263] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Munc13-1 is a diacylglycerol (DAG) receptor that is essential for synaptic vesicle priming. We recently showed that Munc13-1 is expressed in rodent and human islet beta-cells and that its levels are reduced in islets of type 2 diabetic humans and rat models, suggesting that Munc13-1 deficiency contributes to the abnormal insulin secretion in diabetes. To unequivocally demonstrate the role of Munc13-1 in insulin secretion, we studied heterozygous Munc13-1 knockout mice (+/-), which exhibited elevated glucose levels during intraperitoneal glucose tolerance tests with corresponding lower serum insulin levels. Munc13-1(+/-) mice exhibited normal insulin tolerance, indicating that a primary islet beta-cell secretory defect is the major cause of their hyperglycemia. Consistently, glucose-stimulated insulin secretion was reduced 50% in isolated Munc13-1(+/-) islets and was only partially rescued by phorbol ester potentiation. The corresponding alterations were minor in mice expressing one allele of a Munc13-1 mutant variant, which does not bind DAG (H567K/+). Capacitance measurements of Munc13-1(+/-) and Munc13-1(H567k/+) islet beta-cells revealed defects in granule priming, including the initial size and refilling of the releasable pools, which become accentuated by phorbol ester potentiation. We conclude that Munc13-1 plays an important role in glucose-stimulated insulin secretion and that Munc13-1 deficiency in the pancreatic islets as occurs in diabetes can reduce insulin secretion sufficient to cause abnormal glucose homeostasis.
Collapse
Affiliation(s)
- Edwin P Kwan
- Department of Physiology, University of Toronto, Medical Sciences Building Rm. 7226, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Warwar N, Efendic S, Ostenson CG, Haber EP, Cerasi E, Nesher R. Dynamics of glucose-induced localization of PKC isoenzymes in pancreatic beta-cells: diabetes-related changes in the GK rat. Diabetes 2006; 55:590-9. [PMID: 16505220 DOI: 10.2337/diabetes.55.03.06.db05-0001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucose metabolism affects most major signal pathways in pancreatic beta-cells. Multiple protein kinases, including protein kinase C (PKC) isoenzymes, are involved in these effects; however, their role is poorly defined. Moreover, the dynamics of kinase isoenzyme activation in reference to the biphasic insulin secretion is unknown. In perfused pancreas of Wistar rats, PKCalpha staining was strongly associated with insulin staining, jointly accumulating in the vicinity of the plasma membrane during early first-phase insulin response. The signal declined before the onset of second phase and reappeared during second-phase insulin release as foci, only weekly associated with insulin staining; this signal persisted for at least 15 min after glucose stimulation. In the GK rat, glucose had minimal effect on beta-cell PKCalpha. In control beta-cells, PKCdelta stained as granulated foci with partial association with insulin staining; however, no glucose-dependent translocation was observed. In the GK rat, only minimal staining for PKCdelta was observed, increasing exclusively during early first-phase secretion. In Wistar beta-cells, PKCepsilon concentrated near the nucleus, strongly associated with insulin staining, with dynamics resembling that of biphasic insulin response, but persisting for 15 min after cessation of stimulation. In GK rats, PKCepsilon staining lacked glucose-dependent changes or association with insulin. PKCzeta exhibited bimodal dynamics in control beta-cells: during early first phase, accumulation near the cell membrane was observed, dispersing thereafter. This was followed by a gradual accumulation near the nucleus; 15 min after glucose stimulus, clear PKCzeta staining was observed within the nucleus. In the GK rat, a similar response was only occasionally observed. In control beta-cells, glucose stimulation led to a transient recruitment of PKCtheta, associated with first-phase insulin release, not seen in GK beta-cell. Data from this and related studies support a role for PKCalpha in glucose-induced insulin granule recruitment for exocytosis; a role for PKCepsilon in activation of insulin granules for exocytosis and/or in the glucose-generated time-dependent potentiation signal for insulin release; and a dual function for PKCzeta in initiating insulin release and in a regulatory role in the transcriptional machinery. Furthermore, diminished levels and/or activation of PKCalpha, PKCepsilon, PKCtheta, and PKCzeta could be part of the defective signals downstream to glucose metabolism responsible for the deranged insulin secretion in the GK rat.
Collapse
Affiliation(s)
- Nasim Warwar
- Endocrinology and Metabolism Service, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
12
|
Haber EP, Procópio J, Carvalho CRO, Carpinelli AR, Newsholme P, Curi R. New Insights into Fatty Acid Modulation of Pancreatic β‐Cell Function. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:1-41. [PMID: 16487789 DOI: 10.1016/s0074-7696(06)48001-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Insulin resistance states as found in type 2 diabetes and obesity are frequently associated with hyperlipidemia. Both stimulatory and detrimental effects of free fatty acids (FFA) on pancreatic beta cells have long been recognized. Acute exposure of the pancreatic beta cell to both high glucose concentrations and saturated FFA results in a substantial increase of insulin release, whereas a chronic exposure results in desensitization and suppression of secretion. Reduction of plasma FFA levels in fasted rats or humans severely impairs glucose-induced insulin release but palmitate can augment insulin release in the presence of nonstimulatory concentrations of glucose. These results imply that changes in physiological plasma levels of FFA are important for regulation of beta-cell function. Although it is widely accepted that fatty acid (FA) metabolism (notably FA synthesis and/or formation of LC-acyl-CoA) is necessary for stimulation of insulin secretion, the key regulatory molecular mechanisms controlling the interplay between glucose and fatty acid metabolism and thus insulin secretion are not well understood but are now described in detail in this review. Indeed the correct control of switching between FA synthesis or oxidation may have critical implications for beta-cell function and integrity both in vivo and in vitro. LC-acyl-CoA (formed from either endogenously synthesized or exogenous FA) controls several aspects of beta-cell function including activation of certain types of PKC, modulation of ion channels, protein acylation, ceramide- and/or NO-mediated apoptosis, and binding to and activating nuclear transcriptional factors. The present review also describes the possible effects of FAs on insulin signaling. We have previously reported that acute exposure of islets to palmitate up-regulates some key components of the intracellular insulin signaling pathway in pancreatic islets. Another aspect considered in this review is the potential source of fatty acids for pancreatic islets in addition to supply in the blood. Lipids can be transferred from leukocytes (macrophages) to pancreatic islets in coculture. This latter process may provide an additional source of FAs that may play a significant role in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Esther P Haber
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
13
|
Zhang H, Nagasawa M, Yamada S, Mogami H, Suzuki Y, Kojima I. Bimodal role of conventional protein kinase C in insulin secretion from rat pancreatic beta cells. J Physiol 2004; 561:133-47. [PMID: 15388777 PMCID: PMC1665327 DOI: 10.1113/jphysiol.2004.071241] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The present study was conducted to evaluate the role of conventional protein kinase C (PKC) in calcium-evoked insulin secretion. In rat beta cells transfected with green fluorescent protein-tagged PKC-alpha (PKC-alpha-EGFP), a depolarizing concentration of potassium induced transient elevation of cytoplasmic free calcium ([Ca(2)(+)](c)), which was accompanied by transient translocation of PKC-alpha-EGFP from the cytosol to the plasma membrane. Potassium also induced transient translocation of PKC-theta-EGFP, the C1 domain of PKC-gamma and PKC-epsilon-GFP. A high concentration of glucose induced repetitive elevation of [Ca(2)(+)](c) and repetitive translocation of PKC-alpha-EGFP. Diazoxide completely blocked both elevation of [Ca(2)(+)](c) and translocation of PKC-alpha-EGFP. We then studied the role of conventional PKC in calcium-evoked insulin secretion using rat islets. When islets were incubated for 10 min with high potassium, Go-6976, an inhibitor of conventional PKC, and PKC-alpha pseudosubstrate fused to antennapedia peptide (Antp-PKC(19-31)) increased potassium induced secretion. Similarly, insulin release induced by high glucose for 10 min was enhanced by Gö-6976 and Antp-PKC(19-31). However, when islets were stimulated for 60 min with high glucose, both Gö-6976 and Antp-PKC(19-31) reduced glucose-induced insulin secretion. Similar results were obtained by transfection of dominant-negative PKC-alpha using adenovirus vector. Taken together, PKC-alpha is activated when cells are depolarized by a high concentration of potassium or glucose. Conventional PKC is inhibitory on depolarization-induced insulin secretion per se, but it also augments glucose-induced secretion.
Collapse
Affiliation(s)
- Hui Zhang
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Carpenter L, Mitchell CJ, Xu ZZ, Poronnik P, Both GW, Biden TJ. PKC alpha is activated but not required during glucose-induced insulin secretion from rat pancreatic islets. Diabetes 2004; 53:53-60. [PMID: 14693697 DOI: 10.2337/diabetes.53.1.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The role of protein kinase C (PKC) in glucose-stimulated insulin secretion (GSIS) is controversial. Using recombinant adenoviruses for overexpression of PKC alpha and PKC delta, in both wild-type (WT) and kinase-dead (KD) forms, we here demonstrate that activation of these two PKCs is neither necessary nor sufficient for GSIS from batch-incubated, rat pancreatic islets. In contrast, responses to the pharmacologic activator 12-O-tetradecanoylphorbol-13-acetate (TPA) were reciprocally modulated by overexpression of the PKC alpha WT or PKC alpha KD but not the corresponding PKC delta adenoviruses. The kinetics of the secretory response to glucose (monitored by perifusion) were not altered in either cultured islets overexpressing PKC alpha KD or freshly isolated islets stimulated in the presence of the conventional PKC (cPKC) inhibitor Go6976. However, the latter did inhibit the secretory response to TPA. Using phosphorylation state-specific antisera for consensus PKC phosphorylation sites, we also showed that (compared with TPA) glucose causes only a modest and transient functional activation of PKC (maximal at 2-5 min). However, glucose did promote a prolonged (15 min) phosphorylation of PKC substrates in the presence of the phosphatase inhibitor okadaic acid. Overall, the results demonstrate that glucose does stimulate PKC alpha in pancreatic islets but that this makes little overall contribution to GSIS.
Collapse
Affiliation(s)
- Lee Carpenter
- Garvan Institute of Medical Research, St. Vincents Hospital, and Department of Medicine, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Han Y, Nurden A, Combrié R, Pasquet JM. Redistribution of glycoprotein Ib within platelets in response to protease-activated receptors 1 and 4: roles of cytoskeleton and calcium. J Thromb Haemost 2003; 1:2206-15. [PMID: 14521606 DOI: 10.1046/j.1538-7836.2003.00436.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thrombin activates human platelets by hydrolyzing the protease-activated receptors PAR-1 and PAR-4, exposing new N-terminal sequences which act as tethered ligands, and binding to glycoprotein (GP) Ib, whose surface accessibility transiently decreases when platelets are stimulated by the enzyme. In an attempt to better understand this latter process, we used the peptides SFLLRNPNDKYEPF (PAR-1-AP or TRAP) and AYPGKF (PAR-4-AP) to study whether hydrolysis of both PAR receptors leads to GPIb redistribution. Both peptides induced surface clearance of GPIb with a maximum at 2 min and 5 min for PAR-1-AP and PAR-4-AP, respectively, followed by a slow return to the surface with levels normalizing between 30 and 60 min. Translocation was associated with the formation of clusters of GPIb as revealed by fluorescence microscopy. This transient redistribution of GPIb was blocked by cytochalasin D and in large part by the membrane permeable Ca2+ chelator, BAPTA. The inhibitor of phosphatidylinositol 3-kinase and myosin light chain kinase, wortmannin, did not significantly modify internalization of GPIb, although its return to the surface was delayed for PAR-1-AP. PAR receptor-mediated association of GPIb to the insoluble cytoskeleton was blocked by cytochalasin D, while BAPTA alone increased and stabilized the presence of GPIb. Globally, immunoprecipitation experiments and analysis of the cytoskeleton confirmed that GPIb translocation is powered by a contractile mechanism involving Ca2+ mobilization, actin polymerization, and myosin incorporation into the cytoskeleton and that both PAR-1 and PAR-4 can activate this process.
Collapse
Affiliation(s)
- Y Han
- UMR 5533 CNRS, Hôpital Cardiologique du Haut-Lévêque, Avenue Magellan, Pessac, France
| | | | | | | |
Collapse
|
16
|
Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia 2003; 46:1297-312. [PMID: 13680127 DOI: 10.1007/s00125-003-1207-4] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 07/14/2003] [Indexed: 01/16/2023]
Abstract
Increases in glucose or fatty acids affect metabolism via changes in long-chain acyl-CoA formation and chronically elevated fatty acids increase total cellular CoA. Understanding the response of pancreatic beta cells to increased amounts of fuel and the role that altered insulin secretion plays in the development and maintenance of obesity and Type 2 diabetes is important. Data indicate that the activated form of fatty acids acts as an effector molecule in stimulus-secretion coupling. Glucose increases cytosolic long-chain acyl-CoA because it increases the "switch" compound malonyl-CoA that blocks mitochondrial beta-oxidation, thus implementing a shift from fatty acid to glucose oxidation. We present arguments in support of the following: (i) A source of fatty acid either exogenous or endogenous (derived by lipolysis of triglyceride) is necessary to support normal insulin secretion; (ii) a rapid increase of fatty acids potentiates glucose-stimulated secretion by increasing fatty acyl-CoA or complex lipid concentrations that act distally by modulating key enzymes such as protein kinase C or the exocytotic machinery; (iii) a chronic increase of fatty acids enhances basal secretion by the same mechanism, but promotes obesity and a diminished response to stimulatory glucose; (iv) agents which raise cAMP act as incretins, at least in part, by stimulating lipolysis via beta-cell hormone-sensitive lipase activation. Furthermore, increased triglyceride stores can give higher rates of lipolysis and thus influence both basal and stimulated insulin secretion. These points highlight the important roles of NEFA, LC-CoA, and their esterified derivatives in affecting insulin secretion in both normal and pathological states.
Collapse
Affiliation(s)
- G C Yaney
- Boston University School of Medicine, Obesity Research Center, 650 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
17
|
Sheu L, Pasyk EA, Ji J, Huang X, Gao X, Varoqueaux F, Brose N, Gaisano HY. Regulation of insulin exocytosis by Munc13-1. J Biol Chem 2003; 278:27556-63. [PMID: 12871971 DOI: 10.1074/jbc.m303203200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The slower kinetics of insulin release from pancreatic islet beta cells, as compared with other regulated secretory processes such as chromaffin granule secretion, can in part be explained by the small number of the insulin granules that are docked to the plasma membrane and readily releasable. In type-2 diabetes, the kinetics of insulin secretion become grossly distorted, and, to therapeutically correct this, it is imperative to elucidate the mechanisms that regulate priming and secretion of insulin secretory granules. Munc13-1, a synaptic protein that regulates SNARE complex assembly, is the major protein determining the priming of synaptic vesicles. Here, we demonstrate the presence of Munc13-1 in human, rat, and mouse pancreatic islet beta cells. Expression of Munc13-1, along with its cognate partners, syntaxin 1a and Munc18a, is reduced in the pancreatic islets of type-2 diabetes non-obese Goto-Kakizaki and obese Zucker fa/fa rats. In insulinoma cells, overexpressed Munc13-1-enhanced green fluorescent protein is translocated to the plasma membrane in a temperature-dependent manner. This, in turn, greatly amplifies insulin exocytosis as determined by patch clamp capacitance measurements and radioimmunoassay of the insulin released. The potentiation of exocytosis by Munc13-1 is dependent on endogenously produced diacylglycerol acting on the overexpressed Munc13-1 because it is blocked by a phospholipase C inhibitor (U73122) and abrogated when the diacylglycerol binding-deficient Munc13-1H567K mutant is expressed instead of the wild type protein. Our data demonstrate that Munc13-mediated vesicle priming is not restricted to neurotransmitter release but is also functional in insulin secretion, where it is subject to regulation by the diacylglycerol second messenger pathway. In view of our findings, Munc13-1 is a potential drug target for therapeutic optimization of insulin secretion in diabetes.
Collapse
Affiliation(s)
- Laura Sheu
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Recent in vivo studies have highlighted the dynamic and complex nature of platelet thrombus growth and the requirement for multiple adhesive receptor-ligand interactions in this process. In particular, the importance of von Willebrand factor (VWF) in promoting both primary adhesion and aggregation under high shear conditions is now well established. In general, the efficiency with which platelets adhere and aggregate at sites of vessel wall injury is dependent on the synergistic action of various adhesive and soluble agonist receptors, with the contribution of each of the individual receptors dependent on the prevailing blood flow conditions. In this review, we will discuss the major platelet adhesive interactions regulating platelet thrombus formation under high shear, with specific focus on the VWF (GPIb and integrin alphaIIbbeta3) and collagen receptors (GPVI and integrin alpha2beta1). We will also discuss the signaling mechanisms utilized by these receptors to induce platelet activation with specific emphasis on the role of cytosolic calcium flux in regulating platelet adhesion dynamics. The role of soluble agonists in promoting thrombus growth will be highlighted and a model to explain the synergistic requirement for adhesive and soluble stimuli for efficient platelet aggregation will be discussed.
Collapse
Affiliation(s)
- S P Jackson
- Australian Center for Blood Diseases, Department of Medicine, Monash Medical School, Box Hill Hospital, Box Hill, Victoria, Australia.
| | | | | |
Collapse
|
19
|
Long chain acyl-CoA esters and acyl-CoA binding protein (ACBP) in cell function. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)33008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Haber EP, Ximenes HMA, Procópio J, Carvalho CRO, Curi R, Carpinelli AR. Pleiotropic effects of fatty acids on pancreatic beta-cells. J Cell Physiol 2003; 194:1-12. [PMID: 12447984 DOI: 10.1002/jcp.10187] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hyperlipidemia is frequently associated with insulin resistance states as found in type 2 diabetes and obesity. Effects of free fatty acids (FFA) on pancreatic beta-cells have long been recognized. Acute exposure of the pancreatic beta-cell to FFA results in an increase of insulin release, whereas a chronic exposure results in desensitization and suppression of secretion. We recently showed that palmitate augments insulin release in the presence of non-stimulatory concentrations of glucose. Reduction of plasma FFA levels in fasted rats or humans severely impairs glucose-induced insulin release. These results imply that physiological plasma levels of FFA are important for beta-cell function. Although, it has been accepted that fatty acid oxidation is necessary for its stimulation of insulin secretion, the possible mechanisms by which fatty acids (FA) affect insulin secretion are discussed in this review. Long-chain acyl-CoA (LC-CoA) controls several aspects of the beta-cell function including activation of certain types of protein kinase C (PKC), modulation of ion channels, protein acylation, ceramide- and/or nitric oxide (NO)-mediated apoptosis, and binding to nuclear transcriptional factors. The present review also describes the possible effects of FA on insulin signaling. We showed for the first time that acute exposure of islets to palmitate upregulates the intracellular insulin-signaling pathway in pancreatic islets. Another aspect considered in this review is the source of FA for pancreatic islets. In addition to be exported to the medium, lipids can be transferred from leukocytes (macrophages) to pancreatic islets in co-culture. This process consists an additional source of FA that may plays a significant role to regulate insulin secretion.
Collapse
Affiliation(s)
- E P Haber
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
21
|
Li J, Hellmich MR, Greeley GH, Townsend CM, Evers BM. Phorbol ester-mediated neurotensin secretion is dependent on the PKC-alpha and -delta isoforms. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1197-206. [PMID: 12381534 DOI: 10.1152/ajpgi.00177.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurotensin (NT) plays an important role in gastrointestinal secretion, motility, and growth. The mechanisms regulating NT secretion are not entirely known. Our purpose was to define the role of the PKC signaling pathway in secretion of NT from BON cells, a human pancreatic carcinoid cell line that produces and secretes NT peptide. We demonstrated expression of all 11 PKC isoforms at varying levels in untreated BON cells. Expression of PKC-alpha, -beta2, -delta, and -mu isoforms was most pronounced. Immunofluorescent staining showed PKC-alpha and -mu expression throughout the cytoplasm and in the membrane. Also, significant fluorescence of PKC-delta was noted in the nucleus and cytoplasm. Treatment with PMA induced translocation of PKC-alpha, -delta, and -mu from cytosol to membrane. Activation of PKC-alpha, -delta, and -mu was further confirmed by kinase assays. Addition of PKC-alpha inhibitor Gö-6976 at a nanomolar concentration, other PKC inhibitors Gö-6983 and GF-109203X, or PKC-delta-specific inhibitor rottlerin significantly inhibited PMA-mediated NT release. Overexpression of either PKC-alpha or -delta increased PMA-mediated NT secretion compared with control cells. We demonstrated that PMA-mediated NT secretion in BON cells is associated with translocation and activation of PKC-alpha, -delta, and -mu. Furthermore, inhibition of PKC-alpha and -delta blocked PMA-stimulated NT secretion, suggesting a critical role for these isoforms in NT release.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555-0536, USA
| | | | | | | | | |
Collapse
|
22
|
Yaney GC, Fairbanks JM, Deeney JT, Korchak HM, Tornheim K, Corkey BE. Potentiation of insulin secretion by phorbol esters is mediated by PKC-alpha and nPKC isoforms. Am J Physiol Endocrinol Metab 2002; 283:E880-8. [PMID: 12376314 DOI: 10.1152/ajpendo.00474.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Culturing clonal beta-cells (HIT-T15) overnight in the presence of phorbol ester [phorbol myristate acetate (PMA)] enhanced insulin secretion while causing downregulation of some protein kinase C (PKC) isoforms and most PKC activity. We show here that this enhanced secretion required the retention of PMA in the cell. Hence, it could not be because of long-lived phosphorylation of cellular substrates by the isoforms that were downregulated, namely PKC-alpha, -betaII, and -epsilon, but could be because of the continued activation of the two remaining diacylglycerol-sensitive isoforms delta and mu. The enhanced secretion did not involve changes in glucose metabolism, cell membrane potential, or intracellular Ca2+ handling, suggesting a distal effect. PMA washout caused the loss of the enhanced response, but secretion was then stimulated by acute readdition of PMA or bombesin. The magnitude of this restimulation appeared dependent on the mass of PKC-alpha, which was rapidly resynthesized during PMA washout. Therefore, stimulation of insulin secretion by PMA, and presumably by endogenous diacylglycerol, involves the activation of PKC isoforms delta and/or mu, and also PKC-alpha.
Collapse
Affiliation(s)
- Gordon C Yaney
- Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Pinton P, Tsuboi T, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA. Dynamics of glucose-induced membrane recruitment of protein kinase C beta II in living pancreatic islet beta-cells. J Biol Chem 2002; 277:37702-10. [PMID: 12149258 DOI: 10.1074/jbc.m204478200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms by which glucose may affect protein kinase C (PKC) activity in the pancreatic islet beta-cell are presently unclear. By developing adenovirally expressed chimeras encoding fusion proteins between green fluorescent protein and conventional (betaII), novel (delta), or atypical (zeta) PKCs, we show that glucose selectively alters the subcellular localization of these enzymes dynamically in primary islet and MIN6 beta-cells. Examined by laser scanning confocal or total internal reflection fluorescence microscopy, elevated glucose concentrations induced oscillatory translocations of PKCbetaII to spatially confined regions of the plasma membrane. Suggesting that increases in free cytosolic Ca(2+) concentrations ([Ca(2+)](c)) were primarily responsible, prevention of [Ca(2+)](c) increases with EGTA or diazoxide completely eliminated membrane recruitment, whereas elevation of cytosolic [Ca(2+)](c) with KCl or tolbutamide was highly effective in redistributing PKCbetaII both to the plasma membrane and to the surface of dense core secretory vesicles. By contrast, the distribution of PKCdelta.EGFP, which binds diacylglycerol but not Ca(2+), was unaffected by glucose. Measurement of [Ca(2+)](c) immediately beneath the plasma membrane with a ratiometric "pericam," fused to synaptic vesicle-associated protein-25, revealed that depolarization induced significantly larger increases in [Ca(2+)](c) in this domain. These data demonstrate that nutrient stimulation of beta-cells causes spatially and temporally complex changes in the subcellular localization of PKCbetaII, possibly resulting from the generation of Ca(2+) microdomains. Localized changes in PKCbetaII activity may thus have a role in the spatial control of insulin exocytosis.
Collapse
Affiliation(s)
- Paolo Pinton
- Henry Wellcome Signalling Laboratories and the Department of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Donelan MJ, Morfini G, Julyan R, Sommers S, Hays L, Kajio H, Briaud I, Easom RA, Molkentin JD, Brady ST, Rhodes CJ. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis. J Biol Chem 2002; 277:24232-42. [PMID: 11978799 DOI: 10.1074/jbc.m203345200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.
Collapse
Affiliation(s)
- Matthew J Donelan
- Pacific Northwest Research Institute and Department of Pharmacology, University of Washington, Seattle, Washington 98112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Deeney JT, Köhler M, Kubik K, Brown G, Schultz V, Tornheim K, Corkey BE, Berggren PO. Glucose-induced metabolic oscillations parallel those of Ca(2+) and insulin release in clonal insulin-secreting cells. A multiwell approach to oscillatory cell behavior. J Biol Chem 2001; 276:36946-50. [PMID: 11481328 DOI: 10.1074/jbc.m105056200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin secretion from glucose-stimulated pancreatic beta-cells is oscillatory, and this is thought to result from oscillations in glucose metabolism. One of the primary metabolic stimulus-secretion coupling factors is the ATP/ADP ratio, which can oscillate as a result of oscillations in glycolysis. Using a novel multiwell culture plate system, we examined oscillations in insulin release and the ATP/ADP ratio in the clonal insulin-secreting cell lines HIT T-15 and INS-1. Insulin secretion from HIT cells grown in multiwell plates oscillated with a period of 4 min, similar to that seen previously in perifusion experiments. Oscillations in the ATP/ADP ratio in cells grown under the same conditions also occurred with a period of 4 min, as did oscillations in [Ca(2+)](i) monitored by fluorescence microscopy. In INS-1 cells oscillations in insulin secretion, the ATP/ADP ratio, and [Ca(2+)](i) were also seen, but with a shorter period of about 1.5 min. These observations of oscillations in the ATP/ADP ratio are consistent with their proposed role in driving the oscillations in [Ca(2+)](i) and insulin secretion. Furthermore, these data show that, at least in the clonal beta-cell lines, cell contact or even circulatory connection is not necessary for synchronous oscillations induced by a rise in glucose.
Collapse
Affiliation(s)
- J T Deeney
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institute, S-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Suga S, Wu J, Ogawa Y, Takeo T, Kanno T, Wakui M. Phorbol ester impairs electrical excitation of rat pancreatic beta-cells through PKC-independent activation of KATP channels. BMC Pharmacol 2001; 1:3. [PMID: 11560763 PMCID: PMC55693 DOI: 10.1186/1471-2210-1-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Accepted: 08/16/2001] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Phorbol 12-myristate 13-acetate (PMA) is often used as an activating phorbol ester of protein kinase C (PKC) to investigate the roles of the kinase in cellular functions. Accumulating lines of evidence indicate that in addition to activating PKC, PMA also produces some regulatory effects in a PKC-independent manner. In this study, we investigated the non-PKC effects of PMA on electrical excitability of rat pancreatic beta-cells by using patch-clamp techniques. RESULTS In current-clamp recording, PMA (80 nM) reversibly inhibited 15 mM glucose-induced action potential spikes superimposed on a slow membrane depolarization and this inhibition can not be prevented by pre-treatment of the cell with a specific PKC inhibitor, bisindolylmaleimide (BIM, 1 microM). In the presence of a subthreshold concentration (5.5 mM) of glucose, PMA hyperpolarized beta-cells in a concentration-dependent manner (0.8-240 nM), even in the presence of BIM. Based on cell-attached single channel recordings, PMA increased ATP-sensitive K+ channel (KATP) activity. Based on inside-out patch-clamp recordings, PMA had little effect on KATP activity if no ATP was in the bath, while PMA restored KATP activity that was suppressed by 10 microM ATP in the bath. In voltage-clamp recording, PMA enhanced tolbutamide-sensitive membrane currents elicited by repetitive ramp pulses from -90 to -50 mV in a concentration-dependent manner, and this potentiation could not be prevented by pre-treatment of cell with BIM. 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, mimicked the effect of PMA on both current-clamp and voltage-clamp recording configurations. With either 5.5 or 16.6 mM glucose in the extracellular solution, PMA (80 nM) increased insulin secretion from rat islets. However, in islets pretreated with BIM (1 microM), PMA did not increase, but rather reduced insulin secretion. CONCLUSION In rat pancreatic beta-cells, PMA modulates insulin secretion through a mixed mechanism: increases insulin secretion by activation of PKC, and meanwhile decrease insulin secretion by impairing beta-cell excitability in a PKC-independent manner. The enhancement of KATP activity by reducing sensitivity of KATP to ATP seems to underlie the PMA-induced impairment of beta-cells electrical excitation in response to glucose stimulation.
Collapse
Affiliation(s)
- Sechiko Suga
- Department of Physiology, Hirosaki University School of Medicine, Hirosaki, 036-8562, Japan
| | - Jie Wu
- Devision of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013-4496, USA
| | - Yoshiji Ogawa
- The Third Department of Internal Medicine, Hirosaki University School of Medicine, Hirosaki, 036-8562, Japan
| | - Teruko Takeo
- Department of Physiology, Hirosaki University School of Medicine, Hirosaki, 036-8562, Japan
| | - Takahiro Kanno
- Department of Physiology, Hirosaki University School of Medicine, Hirosaki, 036-8562, Japan
| | - Makoto Wakui
- Department of Physiology, Hirosaki University School of Medicine, Hirosaki, 036-8562, Japan
| |
Collapse
|
27
|
Schaefer M, Albrecht N, Hofmann T, Gudermann T, Schultz G. Diffusion-limited translocation mechanism of protein kinase C isotypes. FASEB J 2001; 15:1634-6. [PMID: 11427510 DOI: 10.1096/fj.00-0824fje] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M Schaefer
- Institut für Pharmakologie, Freie Universität Berlin, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
28
|
Bihlmayer A, Ammon HP, Wahl MA. Distribution and stimulation by gastrin-releasing peptide of protein kinase C subfamilies in insulin-secreting cells. Neuroendocrinology 2001; 73:352-7. [PMID: 11399908 DOI: 10.1159/000054652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of the different isoforms of protein kinase C (PKC) in modulating insulin secretion is still widely unknown. The aim of our studies was to investigate which isoforms are influenced by gastrin-releasing peptide (GRP), a neuropeptide which has been shown to modulate insulin secretion by activating PKC. Presence of PKC isoforms alpha, beta, gamma, delta, epsilon and zeta was tested by immunoblot analysis in whole pancreatic islets of mouse and rat and in the insulinoma cell line RINm5F. Effects of GRP, the truncated peptide GRP1-16 and KCl were also measured on translocation of PKC isoforms. In pancreatic islets of mouse and rat, the PKC isoforms alpha, beta, gamma, delta, epsilon and zeta could be detected. No PKCgamma activity was present in the pancreatic tumor cell line RINm5F. Incubation of mouse or rat islets or of RINm5F cells with GRP induced translocation of the PKC isoforms alpha, beta and zeta. The N-terminal portion of the peptide GRP1-16 induced partial translocation only of the PKC isoforms alpha, beta and zeta in mouse and rat islets in 4 out of 10 cases, but failed to show any effect on PKC isoforms in RINm5F cells. Depolarization of the islets by KCl did not translocate any tested PKC isoform. However, incubation with GRP followed by depolarization with KCl led to translocation of the PKC isoforms alpha, beta and zeta. It is suggested that PKC alpha, beta and/or zeta may play a role in the modulation of insulin secretion by GRP.
Collapse
Affiliation(s)
- A Bihlmayer
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Eberhard-Karls University, Tübingen, Germany
| | | | | |
Collapse
|
29
|
Efanov AM, Zaitsev SV, Mest HJ, Raap A, Appelskog IB, Larsson O, Berggren PO, Efendic S. The novel imidazoline compound BL11282 potentiates glucose-induced insulin secretion in pancreatic beta-cells in the absence of modulation of K(ATP) channel activity. Diabetes 2001; 50:797-802. [PMID: 11289044 DOI: 10.2337/diabetes.50.4.797] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The insulinotropic activity of the novel imidazoline compound BL11282 was investigated. Intravenous administration of BL11282 (0.3 mg x kg(-1) x min(-1)) to anesthetized rats did not change blood glucose and insulin levels under basal conditions, but produced a higher increase in blood insulin levels and a faster glucose removal from the blood after glucose infusion. Similarly, in isolated Wistar rat pancreatic islets, 0.1-100 micromol/l BL11282 potently stimulated glucose-induced insulin secretion but did not modulate basal insulin secretion. Unlike previously described imidazolines, BL11282 did not block ATP-dependent K+ channels. Furthermore, the compound stimulated insulin secretion in islets depolarized with high concentrations of KCl or permeabilized with electric shock. Insulinotropic activity of BL11282 was dependent on activity of protein kinases A and C. In pancreatic islets from spontaneously diabetic GK rats, the imidazoline compound restored the impaired insulin response to glucose. In conclusion, the imidazoline BL11282 constitutes a new class of insulinotropic compounds that exerts an exclusive glucose-dependent insulinotropic activity in pancreatic islets by stimulating insulin exocytosis.
Collapse
Affiliation(s)
- A M Efanov
- Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Efanov AM, Zaitsev SV, Berggren PO, Mest HJ, Efendic S. Imidazoline RX871024 raises diacylglycerol levels in rat pancreatic islets. Biochem Biophys Res Commun 2001; 281:1070-3. [PMID: 11243843 DOI: 10.1006/bbrc.2001.4483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Imidazoline compound RX871024 and carbamylcholine (CCh) stimulate insulin secretion in isolated rat pancreatic islets. Combination of CCh and RX871024 induces a synergetic effect on insulin secretion. RX871024 and CCh produce twofold increases in diacylglycerol (DAG) concentration. The combination of two compounds has an additive effect on DAG concentration. Effects of RX871024 on insulin secretion and DAG concentration are not dependent on the presence of D609, an inhibitor of phosphatidylcholine-specific phospholipase C. It is concluded that as in case with CCh the increase in DAG concentration induced by imidazoline RX871024 contributes to the insulinotropic activity of the compound.
Collapse
Affiliation(s)
- A M Efanov
- Karolinska Institutet, Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Hospital, Stockholm, S-171 76, Sweden
| | | | | | | | | |
Collapse
|
31
|
Abstract
Glucose-induced insulin secretion is pulsatile. Glucose metabolism generates oscillations in the ATP/ADP ratio which lead to opening and closing of ATP-sensitive K(+)-channels producing subsequent oscillations in membrane potential, cytoplasmic calcium and insulin release. Metabolic signals derived from glucose can also stimulate insulin release independent of their effects on ATP-sensitive K(+)-channels. The ATP/ADP ratio may mediate both ATP-sensitive K(+)-channel-dependent and -independent pathways of secretion. Glucose metabolism also results in an increase in long-chain acyl-CoA, which is proposed to act as an effector molecule in the beta -cell. Long-chain acyl-CoA has a variety of effects in the beta -cell that may effect insulin secretion including opening ATP-sensitive K(+)-channels, activating endoplasmic reticulum Ca(2+)-ATPases and stimulating classical protein kinase C activity. In addition to stimulating insulin release, nutrients also effect gene expression, protein synthesis and beta -cell proliferation. Gene expression is effected by nutrient induction of a variety of immediate early response genes. Glucose stimulates proinsulin biosynthesis both at the translational and transcriptional level. beta -cell proliferation, as a result of insulin-like growth factor and growth hormone mitogenic pathways, is also glucose dependent. Thus, many beta -cell functions in addition to secretion are controlled by nutrient metabolism.
Collapse
Affiliation(s)
- J T Deeney
- Obesity Research Center, Evans Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | | | | |
Collapse
|
32
|
Deeney JT, Gromada J, Høy M, Olsen HL, Rhodes CJ, Prentki M, Berggren PO, Corkey BE. Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J Biol Chem 2000; 275:9363-8. [PMID: 10734079 DOI: 10.1074/jbc.275.13.9363] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Non-insulin-dependent diabetes mellitus is associated with, in addition to impaired insulin release, elevated levels of free fatty acids (FFA) in the blood. Insulin release is stimulated when beta-cells are acutely exposed to FFA, whereas chronic exposure may inhibit glucose-induced insulin secretion. In the present study we investigated the direct effects of long chain acyl-CoA (LC-CoA), the active intracellular form of FFA, on insulin exocytosis. Palmitoyl-CoA stimulated both insulin release from streptolysin-O-permeabilized HIT cells and fusion of secretory granules to the plasma membrane of mouse pancreatic beta-cells, as measured by cell capacitance. The LC-CoA effect was chain length-dependent, requiring chain lengths of at least 14 carbons. LC-CoA needed to be present to stimulate insulin release, and consequently there was no effect following its removal. The stimulatory effect was observed after inhibition of protein kinase activity and in the absence of ATP, even though both kinases and ATP, themselves, modulate exocytosis. The effect of LC-CoA was inhibited by cerulenin, which has been shown to block protein acylation. The data suggest that altered LC-CoA levels, resulting from FFA or glucose metabolism, may act directly on the exocytotic machinery to stimulate insulin release by a mechanism involving LC-CoA protein binding.
Collapse
Affiliation(s)
- J T Deeney
- Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Togo T, Alderton JM, Bi GQ, Steinhardt RA. The mechanism of facilitated cell membrane resealing. J Cell Sci 1999; 112 ( Pt 5):719-31. [PMID: 9973606 DOI: 10.1242/jcs.112.5.719] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of the plasma membrane evokes an exocytotic response that is required for rapid membrane resealing. We show here in Swiss 3T3 fibroblasts that a second disruption at the same site reseals more rapidly than the initial wound. This facilitated response of resealing was inhibited by both low external Ca2+ concentration and specific protein kinase C (PKC) inhibitors, bisindolylmaleimide I (BIS) and Go-6976. In addition, activation of PKC by phorbol ester facilitated the resealing of a first wound. BIS and Go-6976 suppressed the effect of phorbol ester on resealing rate. Fluorescent dye loss from a FM1-43 pre-labeled endocytotic compartment was used to investigate the relationship between exocytosis, resealing and the facilitation of resealing. Exocytosis of endocytotic compartments near the wounding site was correlated with successful resealing. The destaining did not occur when exocytosis and resealing were inhibited by low external Ca2+ concentration or by injected tetanus toxin. When the dye loaded cells were wounded twice, FM1-43 destaining at the second wound was less than at the first wound. Less destaining was also observed in cells pre-treated with phorbol ester, suggesting newly formed vesicles, which were FM1-43 unlabeled, were exocytosed in the resealing at repeated woundings. Facilitation was also blocked by brefeldin A (BFA), a fungal metabolite that inhibits vesicle formation at the Golgi apparatus. Lowering the temperature below 20 degrees C also blocked facilitation as expected from a block of Golgi function. BFA had no effect on the resealing rate of an initial wound. The facilitation of the resealing by phorbol ester was blocked by pre-treatment with BFA. These results suggest that at first wounding the cell used the endocytotic compartment to add membrane necessary for resealing. At a second wounding, PKC, activated by Ca2+ entry at the first wound, stimulated vesicle formation from the Golgi apparatus, resulting in more rapid resealing of the second membrane disruption. Since vesicle pools were implicated in both membrane resealing and facilitation of membrane resealing, we reasoned that artificial decreases in membrane surface tension would have the same result. Decreases in surface tension induced by the addition of a surfactant (Pluronic F68 NF) or cytochalasin D facilitated resealing at first wounding. Furthermore, Pluronic F68 NF restored resealing when exocytosis was blocked by tetanus toxin. These results suggest that membrane resealing requires a decrease in surface tension and under natural conditions this is provided by Ca2+-dependent exocytosis of new membrane near the site of disruption.
Collapse
Affiliation(s)
- T Togo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | |
Collapse
|
34
|
Abstract
In single, superfused, FURA-2AM loaded insulin producing HIT-T15 cells, gastrin releasing peptide (GRP) induced a peak in cytoplasmnic Cu2+ ([Ca2+]i) followed by a sustained (high GRP concentrations) or oscillatory (low GRP concentrations) [Ca2+]i pattern. The GRP (25-50 microM)-induced [Ca2+]i oscillations ceased upon removal of glucose or addition of thapsigargin (1 microM), EGTA (2 mM), or diazoxide (200 microM), whereas nifedipine (10 microM) reduced their amplitude (by 35%). Both protein kinase C (PKC)-activation or PKC-inhibition disrupted GRP induced [Ca2+]i oscillations. GRP induced [Ca2+]i oscillations in insulin producing cells therefore rely on intracellular Ca2+ mobilization, voltage-dependent and voltage-independent Ca2+ entry mechanisms and the integrity of protein kinase C.
Collapse
Affiliation(s)
- S Karlsson
- Department of Medicine, Lund University, Malmö University Hospital, Sweden
| | | |
Collapse
|
35
|
Cui L, Yu WP, Pallen CJ. Insulin secretagogues activate the secretory granule receptor-like protein-tyrosine phosphatase IAR. J Biol Chem 1998; 273:34784-91. [PMID: 9857003 DOI: 10.1074/jbc.273.52.34784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the potential role of protein-tyrosine phosphatases (PTPs) in regulated secretion, cellular PTP activity was measured in pancreatic beta cell lines after exposure to insulin secretagogues. A peak of elevated PTP activity was detected in whole cell lysates after 15-20 min of treatment of the cells with high KCl, glucose, or TPA, which did not appear upon treatment with control compounds. Neither was it detected in cells that do not undergo regulated secretion. The PTP activation was transient, SDS-resistant, and localized to the cytoskeleton fraction of cells. The cytoskeletal localization of IAR, a receptor-like PTP associated with secretory granules of neuroendocrine cells, suggested the possibility that IAR is the secretagogue-activated PTP. The transient expression of human IAR in betaTC3 and HIT-T15 beta cells, followed by treatment with secretagogues or control compounds and immunoprecipitation of human IAR, showed that immunoprecipitates from the secretagogue-treated cells contained an elevated PTP activity. The secretagogue-induced activation of IAR had identical kinetics to that of the endogenous PTP. Although ectopic IAR was present in membrane and cytoskeletal fractions from the cells, only the cytoskeleton-associated IAR could be activated. Thus IAR represents the endogenous secretagogue-responsive PTP, or at least a component of it, and is one of the few receptor-like PTPs for which enzymatic activation has been demonstrated. Insulin secretion is detected prior to IAR activation, suggesting that IAR is not required for immediate secretion but likely plays a role in events downstream of insulin secretion or in another pathway related to the specialized function of secretory cells.
Collapse
Affiliation(s)
- L Cui
- Cell Regulation Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | |
Collapse
|
36
|
Williams BY, Dion SB, Schonbrunn A. Role of receptor and protein kinase C activation in the internalization of the gastrin-releasing peptide receptor. Mol Pharmacol 1998; 54:889-98. [PMID: 9804624 DOI: 10.1124/mol.54.5.889] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms regulating receptor internalization are not well understood and vary among different G protein-coupled receptors. The bombesin (Bn)/gastrin-releasing peptide receptor GRP-R, which is coupled to phospholipase C via the Gq family of transducing proteins, is internalized rapidly after Bn binding. Agonist stimulation leads to rapid receptor phosphorylation, as does activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate (PMA). However, agonist- and PMA-induced phosphorylation occur at different receptor sites. Here, we examined the role of PKC in GRP-R internalization after agonist and antagonist binding. We synthesized [D-Tyr6]Bn(6-13)propylamide ([D-Tyr6]Bn(6-13)PA) and found that it potently inhibited Bn-stimulated insulin release and [125I-Tyr4]Bn binding (Ki = 4.72 nM) in the HIT-T15 pancreatic cell line. The radiolabeled antagonist peptide, [125I-D-Tyr6]Bn(6-13)PA, bound with high affinity (KD = 0.29 nM at 4 degrees) to a single class of receptor sites, and competition binding studies exhibited the analog specificity expected for the GRP-R subtype. Although the agonist [125I-Tyr4]Bn was internalized rapidly at 37 degrees and subsequently degraded, [125I-D-Tyr6]Bn(6-13)PA was not internalized and was released into the medium mainly as intact peptide. The lysosomal inhibitor chloroquine (200 microM) increased the intracellular accumulation of [125I-Tyr4]Bn but had no effect on the subcellular distribution of [125I-D-Tyr6]Bn(6-13)PA. Consistent with these observations, the treatment of cells with 100 nM Bn at 37 degrees reduced cell surface receptors within minutes, whereas [D-Tyr6]Bn(6-13)PA had no effect. The addition of PMA did not induce the internalization of antagonist-occupied receptors, but pharmacological inhibition of PKC decreased the rate of agonist-induced receptor internalization. These results therefore demonstrate that although PKC contributes to agonist-induced internalization of the GRP-R, it does not elicit receptor internalization of the antagonist-occupied receptor.
Collapse
Affiliation(s)
- B Y Williams
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77225, USA
| | | | | |
Collapse
|
37
|
Vaughan PF, Walker JH, Peers C. The regulation of neurotransmitter secretion by protein kinase C. Mol Neurobiol 1998; 18:125-55. [PMID: 10065877 DOI: 10.1007/bf02914269] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effect of protein kinase C (PKC) on the release of neurotransmitters from a number preparations, including sympathetic nerve endings, brain slices, synaptosomes, and neuronally derived cell lines, is considered. A comparison is drawn between effects of activation of PKC on neurotransmitter release from small synaptic vesicles and large dense-cored vesicles. The enhancement of neurotransmitter release is discussed in relation to the effect of PKC on: 1. Rearrangement of the F-actin-based cytoskeleton, including the possible role of MARCKS in this process, to allow access of large dense-cored vesicles to release sites on the plasma membrane. 2. Phosphorylation of key components in the SNAP/SNARE complex associated with the docking and fusion of vesicles at site of secretion. 3. Ion channel activity, particularly Ca2+ channels.
Collapse
Affiliation(s)
- P F Vaughan
- Institute for Cardiovascular Research, University of Leeds, UK
| | | | | |
Collapse
|
38
|
Jones PM, Persaud SJ. Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic beta-cells. Endocr Rev 1998; 19:429-61. [PMID: 9715374 DOI: 10.1210/edrv.19.4.0339] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- P M Jones
- Biomedical Sciences Division, King's College London, United Kingdom.
| | | |
Collapse
|
39
|
Ozawa K, Fukano Y, Azuma T, Masumoto Y, Hayashi H, Tamura A, Miyazaki JI, Masujima T. Simultaneous analysis of membrane potential and calcium mobilization in a pancreatic ß-cell line MIN6 by use of a double-probe imaging microscope-system. Anal Chim Acta 1998. [DOI: 10.1016/s0003-2670(97)00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Smith C, Moser T, Xu T, Neher E. Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron 1998; 20:1243-53. [PMID: 9655511 DOI: 10.1016/s0896-6273(00)80504-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recovery from depletion of the readily releasable pool of vesicles (RRP) in adrenal chromaffin cells was studied at differing basal [Ca2+]i or following protein kinase C (PKC) activation by phorbol esters. Following depletion, the pool size was estimated at varied times from cell capacitance jumps in response to paired depolarizations. The experimentally observed RRP recovery time course and steady-state size could be predicted from the measured [Ca2+]i signal assuming a Michaelis-Menten-type regulation of the vesicle supply by Ca2+. An elevated recruitment activity was observed at increased [Ca2+]i even when protein kinase C was blocked, but maximum effects could be obtained only after stimulation of PKC by phorbol esters or by prolonged elevations in [Ca2+]i. We suggest that, in chromaffin cells, elevated cytosolic Ca2+ modulates exocytotic plasticity via PKC-dependent and -independent pathways.
Collapse
Affiliation(s)
- C Smith
- Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | |
Collapse
|
41
|
Zawalich WS, Bonnet-Eymard M, Zawalich KC, Yaney GC. Chronic exposure to TPA depletes PKC alpha and augments Ca-dependent insulin secretion from cultured rat islets. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1388-96. [PMID: 9612227 DOI: 10.1152/ajpcell.1998.274.5.c1388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The insulin secretory responses of rat islets to glucose (15 mM), 12-O-tetradecanoylphorbol 13-acetate (TPA; 500 nM), and potassium (30 mM) were determined from perifused islets cultured for 22-24 h in CMRL-1066 medium (control cultured) or islets cultured in the additional presence of 500 nM TPA. Islet content of protein kinase C alpha (PKC alpha) and serine and threonine phosphoprotein patterns were also monitored after the culture period. Compared with freshly isolated islets, culturing alone had no adverse effect on the capacity of TPA or 30 mM potassium to stimulate secretion or on the islet content of PKC alpha. In agreement with previous studies, culturing in TPA reduced the islet content of immunoreactive PKC alpha by > 95% and abolished the capacity of the phorbol ester to stimulate secretion during a subsequent dynamic perifusion. Culturing in TPA slightly improved the insulin secretory response to 15 mM glucose compared with control-cultured islets; however, sustained rates of 15 mM glucose-induced secretion from these islets were significantly less than the responses of freshly isolated islets. Islets cultured in TPA responded to 30 mM potassium with a markedly amplified insulin secretory response that was abolished by nitrendipine. Enhanced phosphorylation of several islet proteins was also observed in TPA-cultured islets compared with control-cultured islets. These findings demonstrate that culturing alone impairs glucose-induced secretion, a response that is improved but still subnormal compared with freshly isolated islet responses, if TPA is included in the culture medium. Sustained phosphorylation of several islet proteins in TPA-cultured islets may account, at least in part, for augmented calcium-dependent secretion.
Collapse
Affiliation(s)
- W S Zawalich
- Yale University School of Nursing, New Haven, Connecticut 06536-0740, USA
| | | | | | | |
Collapse
|