1
|
Hylton-McComas HM, Cordes A, Floros KV, Faber AC, Drapkin BJ, Miles WO. Myc family proteins: Molecular drivers of tumorigenesis and resistance in neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189332. [PMID: 40280500 DOI: 10.1016/j.bbcan.2025.189332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Neuroendocrine cancers are a diverse and poorly understood collection of malignancies derived from neuroendocrine cells throughout the body. These cancers uniquely exhibit properties of both the nervous and endocrine systems. Only a limited number of genetic driver mutations have been identified in neuroendocrine cancers, however the mechanisms of how these genetic aberrations alter tumor biology remain elusive. Recent studies have implicated the MYC family of transcription factors as important oncogenic factors in neuroendocrine tumors. We take a systematic approach to understand the roles of the MYC family (c-MYC, n-MYC, l-MYC) in the tumorigenesis of neuroendocrine cancers of the lung, GI tract, pancreas, kidney, prostate, pediatric neuroblastoma, and adrenal glands. Reflecting the complexity of neuroendocrine cancers, we highlight the roles of the MYC family in deregulating the cell cycle and transcriptional networks, invoking cellular plasticity, affecting proliferation capacity, aiding in chromatin remodeling, angiogenesis, metabolic changes, and resistance mechanisms. Depicting the diversity of neuroendocrine cancers, we suggest new approaches in understanding the underlying tumorigenic processes of neuroendocrine cancers from the perspective of MYC.
Collapse
Affiliation(s)
- Hannah M Hylton-McComas
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Alyssa Cordes
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Konstantinos V Floros
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond, VA 23298, USA; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Anthony C Faber
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond, VA 23298, USA; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wayne O Miles
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Quintanilha JC, Wang J, Sibley AB, Xu W, Espin-Garcia O, Jiang C, Etheridge AS, Ratain MJ, Lenz HJ, Bertagnolli M, Kindler HL, Dickler MN, Venook A, Liu G, Owzar K, Lin D, Innocenti F. Genome-wide association studies of survival in 1520 cancer patients treated with bevacizumab-containing regimens. Int J Cancer 2022; 150:279-289. [PMID: 34528705 PMCID: PMC8627468 DOI: 10.1002/ijc.33810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/17/2023]
Abstract
Germline variants might predict cancer progression. Bevacizumab improves overall survival (OS) in patients with advanced cancers. No biomarkers are available to identify patients that benefit from bevacizumab. A meta-analysis of genome-wide association studies (GWAS) was conducted in 1,520 patients from Phase III trials (CALGB 80303, 40503, 80405 and ICON7), where bevacizumab was randomized to treatment without bevacizumab. We aimed to identify genes and single nucleotide polymorphisms (SNPs) associated with survival independently of bevacizumab treatment or through interaction with bevacizumab. A cause-specific Cox model was used to test the SNP-OS association in both arms combined (prognostic), and the effect of SNPs-bevacizumab interaction on OS (predictive) in each study. The SNP effects across studies were combined using inverse variance. Findings were tested for replication in advanced colorectal and ovarian cancer patients from The Cancer Genome Atlas (TGCA). In the GWAS meta-analysis, patients with rs680949 in PRUNE2 experienced shorter OS compared to patients without it (P = 1.02 × 10-7 , hazard ratio [HR] = 1.57, 95% confidence interval [CI] 1.33-1.86), as well as in TCGA (P = .0219, HR = 1.58, 95% CI 1.07-2.35). In the GWAS meta-analysis, patients with rs16852804 in BARD1 experienced shorter OS compared to patients without it (P = 1.40 × 10-5 , HR = 1.51, 95% CI 1.25-1.82) as well as in TCGA (P = 1.39 × 10-4 , HR = 3.09, 95% CI 1.73-5.51). Patients with rs3795897 in AGAP1 experienced shorter OS in the bevacizumab arm compared to the nonbevacizumab arm (P = 1.43 × 10-5 ). The largest GWAS meta-analysis of bevacizumab treated patients identified PRUNE2 and BARD1 (tumor suppressor genes) as prognostic genes of colorectal and ovarian cancer, respectively, and AGAP1 as a potentially predictive gene that interacts with bevacizumab with respect to patient survival.
Collapse
Affiliation(s)
- Julia C.F. Quintanilha
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jin Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexander B. Sibley
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network and Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Osvaldo Espin-Garcia
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network and Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Chen Jiang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Amy S. Etheridge
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark J. Ratain
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Hedy L. Kindler
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| | | | - Alan Venook
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, USA
| | - Geoffrey Liu
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA,Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Danyu Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Federico Innocenti
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Correspondence: Federico Innocenti, MD, PhD. University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Genetic Medicine Bldg. 120 Mason Farm Rd, Campus Box 7361, Chapel Hill, NC 27599-7361, Tel 919-966-9422 Fax 919-966-5863,
| |
Collapse
|
3
|
Bid HK, Phelps DA, Xaio L, Guttridge DC, Lin J, London C, Baker LH, Mo X, Houghton PJ. The Bromodomain BET Inhibitor JQ1 Suppresses Tumor Angiogenesis in Models of Childhood Sarcoma. Mol Cancer Ther 2016; 15:1018-28. [PMID: 26908627 DOI: 10.1158/1535-7163.mct-15-0567] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/04/2016] [Indexed: 02/04/2023]
Abstract
The bromodomain and extra-terminal domain inhibitor JQ1 has marked antitumor activity against several hematologic malignancies as well as solid tumor models. Here, we investigated its activity in vitro and in vivo against models of childhood rhabdomyosarcoma and Ewing sarcoma. In vitro, JQ1 (but not the inactive enantiomer JQ1R) inhibited cell proliferation and increased G1 fraction of cells, although there was no correlation between cell line sensitivity and suppression of c-MYC or MYCN. In vivo, xenografts showed significant inhibition of growth during the period of treatment, and rapid regrowth after treatment was stopped, activity typical of antiangiogenic agents. Furthermore, xenografts derived from cell lines intrinsically resistant or sensitive to JQ1 in vitro had similar sensitivity in vivo as xenografts. Further investigation showed that JQ1 reduced tumor vascularization. This was secondary to both drug-induced downregulation of tumor-derived growth factors and direct effects of JQ1 on vascular elements. JQ1 suppressed VEGF-stimulated vascularization of Matrigel plugs in mice, and in vitro suppressed differentiation, proliferation, and invasion of human umbilical cord vascular endothelial cells (HUVEC). In HUVECs, JQ1 partially suppressed c-MYC levels, but dramatically reduced AP-1 levels and activity through suppression of the AP-1-associated protein FOSL1. Our data suggest that the antitumor activity of JQ1 in these sarcoma models is largely a consequence of its antiangiogenic activity. Mol Cancer Ther; 15(5); 1018-28. ©2016 AACR.
Collapse
Affiliation(s)
- Hemant K Bid
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Doris A Phelps
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Linlin Xaio
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Denis C Guttridge
- Center for Regenerative Medicine, Ohio State University, Columbus, Ohio
| | - Jiayuh Lin
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Cheryl London
- College of Veterinary Medicine, Ohio State University, Columbus, Ohio
| | - Laurence H Baker
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xiaokui Mo
- Center for Biostatistics, Ohio State University, Columbus, Ohio
| | - Peter J Houghton
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio. Greehey Children's Cancer Research Institute, San Antonio, Texas.
| |
Collapse
|
4
|
HSPH1 inhibition downregulates Bcl-6 and c-Myc and hampers the growth of human aggressive B-cell non-Hodgkin lymphoma. Blood 2015; 125:1768-71. [PMID: 25573990 DOI: 10.1182/blood-2014-07-590034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that human B-cell non-Hodgkin lymphomas (B-NHLs) express heat shock protein (HSP)H1/105 in function of their aggressiveness. Here, we now clarify its role as a functional B-NHL target by testing the hypothesis that it promotes the stabilization of key lymphoma oncoproteins. HSPH1 silencing in 4 models of aggressive B-NHLs was paralleled by Bcl-6 and c-Myc downregulation. In vitro and in vivo analysis of HSPH1-silenced Namalwa cells showed that this effect was associated with a significant growth delay and the loss of tumorigenicity when 10(4) cells were injected into mice. Interestingly, we found that HSPH1 physically interacts with c-Myc and Bcl-6 in both Namalwa cells and primary aggressive B-NHLs. Accordingly, expression of HSPH1 and either c-Myc or Bcl-6 positively correlated in these diseases. Our study indicates that HSPH1 concurrently favors the expression of 2 key lymphoma oncoproteins, thus confirming its candidacy as a valuable therapeutic target of aggressive B-NHLs.
Collapse
|
5
|
Watnick RS, Rodriguez RK, Wang S, Blois AL, Rangarajan A, Ince T, Weinberg RA. Thrombospondin-1 repression is mediated via distinct mechanisms in fibroblasts and epithelial cells. Oncogene 2014; 34:2823-35. [PMID: 25109329 DOI: 10.1038/onc.2014.228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/03/2014] [Accepted: 06/21/2014] [Indexed: 12/27/2022]
Abstract
Tumor-associated angiogenesis is postulated to be regulated by the balance between pro- and anti-angiogenic factors. We demonstrate here that the critical step in establishing the angiogenic capability of human tumor cells is the repression of a key secreted anti-angiogenic factor, thrombospondin-1 (Tsp-1). This repression is essential for tumor formation by mammary epithelial cells and kidney cells engineered to express SV40 early region proteins, hTERT, and H-RasV12. In transformed epithelial cells, a signaling pathway leading from Ras to Tsp-1 repression induces the sequential activation of PI3 kinase, Rho and ROCK, leading to activation of Myc through phosphorylation, thereby enabling Myc to repress Tsp-1 transcription. In transformed fibroblasts, however, the repression of Tsp-1 can be achieved by an alternative mechanism involving inactivation of both p53 and pRb. We thus describe novel mechanisms by which the activation of oncogenes in epithelial cells and the inactivation of tumor suppressors in fibroblasts permits angiogenesis and, in turn, tumor formation.
Collapse
Affiliation(s)
- R S Watnick
- 1] Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA [2] Department of Surgery, Harvard Medical School, Boston, MA, USA [3] Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - R K Rodriguez
- 1] Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA [2] Department of Surgery, Harvard Medical School, Boston, MA, USA [3] Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - S Wang
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - A L Blois
- 1] Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA [2] Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - A Rangarajan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - T Ince
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - R A Weinberg
- 1] Whitehead Institute for Biomedical Research, Cambridge, MA, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Chua CEL, Chan SN, Tang BL. Non-Cell Autonomous or Secretory Tumor Suppression. J Cell Physiol 2014; 229:1346-52. [DOI: 10.1002/jcp.24574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/03/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry; Yong Loo Lin School of Medicine National University Health System; Singapore Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Shu Ning Chan
- Department of Biochemistry; Yong Loo Lin School of Medicine National University Health System; Singapore Singapore
| | - Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine National University Health System; Singapore Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| |
Collapse
|
7
|
McMorrow JP, Crean D, Gogarty M, Smyth A, Connolly M, Cummins E, Veale D, Fearon U, Tak PP, Fitzgerald O, Murphy EP. Tumor necrosis factor inhibition modulates thrombospondin-1 expression in human inflammatory joint disease through altered NR4A2 activity. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1243-1257. [PMID: 23933487 DOI: 10.1016/j.ajpath.2013.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 01/07/2023]
Abstract
We examined thrombospondin-1 (THBS1, alias TSP-1) expression in human synovial tissue (ST) during the resolution phase of chronic inflammation and elucidated its transcriptional regulation by the orphan receptor 4A2 (NR4A2). In vivo, rheumatoid arthritis (RA) serum and ST revealed altered expression levels and tissue distribution of TSP-1. After anti-tumor necrosis factor therapy, a reciprocal relationship between TSP-1 and NR4A2 expression levels was measured in patients with clinical and ST responses to biological treatment. In vitro, primary RA fibroblast-like synoviocytes (FLSs) expressed minimal TSP-1 mRNA levels with high transcript levels of NR4A2, vascular endothelial growth factor (VEGF), and IL-8 measured. Hypoxic modulation of RA FLSs resulted in inverse expression levels of TSP-1 compared with NR4A2, IL-8, and VEGF. Ectopic NR4A2 expression led to reduced TSP-1 mRNA and protein levels with concomitant increases in proangiogenic mediators. NR4A2 transcriptional activity, independent of DNA binding, repressed the hTSP-1 promoter leading to reduced mRNA and protein release in immortalized K4IM FLSs. Bioinformatic and deletion studies identified a 5' region of the TSP-1 promoter repressed by NR4A2 and proangiogenic transcription factors, including NF-κB and Ets1/2. Stable depletion of NR4A2 levels resulted in a shift in the TSP-1/VEGF expression ratio. Thus, modulation of TSP-1 expression is achieved through anti-tumor necrosis factor therapy effects on specific transcriptional networks, suggesting that enhanced TSP-1 expression may help restore tissue homeostasis during resolution of inflammation.
Collapse
Affiliation(s)
- Jason P McMorrow
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | - Daniel Crean
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | - Martina Gogarty
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | - Aisling Smyth
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | - Mary Connolly
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland; Department of Rheumatology, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Eoin Cummins
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Douglas Veale
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland; Department of Rheumatology, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland; Department of Rheumatology, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Paul P Tak
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Oliver Fitzgerald
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland; Department of Rheumatology, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Evelyn P Murphy
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland; Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland.
| |
Collapse
|
8
|
Thrombospondin-1 in urological cancer: pathological role, clinical significance, and therapeutic prospects. Int J Mol Sci 2013; 14:12249-72. [PMID: 23749112 PMCID: PMC3709784 DOI: 10.3390/ijms140612249] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is an important process for tumor growth and progression of various solid tumors including urological cancers. Thrombospondins (TSPs), especially TSP-1, are representative “anti”-angiogenic molecules and many studies have clarified their pathological role and clinical significance in vivo and in vitro. In fact, TSP-1 expression is associated with clinicopathological features and prognosis in many types of cancers. However, TSP-1 is a multi-functional protein and its biological activities vary according to the specific tumor environments. Consequently, there is no general agreement on its cancer-related function in urological cancers, and detailed information regarding regulative mechanisms is essential for a better understanding of its therapeutic effects and prognostic values. Various “suppressor genes” and “oncogenes” are known to be regulators and TSP-1-related factors under physiological and pathological conditions. In addition, various types of fragments derived from TSP-1 exist in a given tissue microenvironment and TSP-1 derived-peptides have specific activities. However, a detailed pathological function in human cancer tissues is not still understood. This review will focus on the pathological roles and clinical significance of TSP-1 in urological cancers, including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, special attention is paid to TSP-1-derived peptide and TSP-1-based therapy for malignancies.
Collapse
|
9
|
Abstract
Disturbances in gene expression as a result of perturbed transcription or posttranscriptional regulation is one of the main causes of cellular dysfunction that underlies different disease states. Approximately a decade ago, the discovery of microRNAs in mammalian cells has renewed our focus on posttranscriptional regulatory mechanisms during pathogenesis. These tiny posttranscriptional regulators are differentially expressed in almost every disease that has been studied to date and can modulate expression of a gene via specifically binding to its messenger RNA. Because of their capacity to simultaneously target multiple functionally related, genes, they are proving to be potentially powerful therapeutic agents/targets. In this review, we focus on the microRNAs that are differentially regulated in the more common cardiovascular pathologies, their targets, and potential function.
Collapse
Affiliation(s)
- Maha Abdellatif
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
10
|
Neill T, Painter H, Buraschi S, Owens RT, Lisanti MP, Schaefer L, Iozzo RV. Decorin antagonizes the angiogenic network: concurrent inhibition of Met, hypoxia inducible factor 1α, vascular endothelial growth factor A, and induction of thrombospondin-1 and TIMP3. J Biol Chem 2011; 287:5492-506. [PMID: 22194599 DOI: 10.1074/jbc.m111.283499] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Decorin, a small leucine-rich proteoglycan, inhibits tumor growth by antagonizing multiple receptor tyrosine kinases including EGFR and Met. Here, we investigated decorin during normoxic angiogenic signaling. An angiogenic PCR array revealed a profound decorin-evoked transcriptional inhibition of pro-angiogenic genes, such as HIF1A. Decorin evoked a reduction of hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor A (VEGFA) in MDA-231 breast carcinoma cells expressing constitutively-active HIF-1α. Suppression of Met with decorin or siRNA evoked a similar reduction of VEGFA by attenuating downstream β-catenin signaling. These data establish a noncanonical role for β-catenin in regulating VEGFA expression. We found that exogenous decorin induced expression of thrombospondin-1 and TIMP3, two powerful angiostatic agents. In contrast, decorin suppressed both the expression and enzymatic activity of matrix metalloprotease (MMP)-9 and MMP-2, two pro-angiogenic proteases. Our data establish a novel duality for decorin as a suppressor of tumor angiogenesis under normoxia by simultaneously down-regulating potent pro-angiogenic factors and inducing endogenous anti-angiogenic agents.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Sundaram P, Hultine S, Smith LM, Dews M, Fox JL, Biyashev D, Schelter JM, Huang Q, Cleary MA, Volpert OV, Thomas-Tikhonenko A. p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers. Cancer Res 2011; 71:7490-501. [PMID: 22028325 DOI: 10.1158/0008-5472.can-11-1124] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thrombospondin-1 (TSP-1) is an endogenous inhibitor of angiogenesis encoded by the THBS1 gene, whose promoter is activated by p53. In advanced colorectal cancers (CRC), its expression is sustained or even slightly increased despite frequent loss of p53. Here, we determined that in HCT116 CRC cells, p53 activates the THBS1 primary transcript, but fails to boost THBS1 mRNA or protein levels, implying posttranscriptional regulation by microRNAs (miRNA). In a global miRNA gain-of-function screen done in the Dicer-deficient HCT116 variant, several miRNAs negatively regulated THBS1 mRNA and protein levels, one of them being miR-194. Notably, in agreement with published data, p53 upregulated miR-194 expression in THBS1 retrovirus-transduced HCT116 cells, leading to decreased TSP-1 levels. This negative effect was mediated by a single miR-194 complementary site in the THBS1 3'-untranslated region, and its elimination resulted in TSP-1 reactivation, impaired angiogenesis in Matrigel plugs, and reduced growth of HCT116 xenografts. Conversely, transient overexpression of miR-194 in HCT116/THBS1 cells boosted Matrigel angiogenesis, and its stable overexpression in Ras-induced murine colon carcinomas increased microvascular densities and vessel sizes. Although the overall contribution of miR-194 to neoplastic growth is context dependent, p53-induced activation of this GI tract-specific miRNA during ischemia could promote angiogenesis and facilitate tissue repair.
Collapse
Affiliation(s)
- Prema Sundaram
- Division of Cancer Pathobiology, Department of Pathology & Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, PA 19104-4399, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
MicroRNAs (miRNAs) are a class of posttranscriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. There are currently over 10,000 miRNAs that have been identified in a range of species including metazoa, mycetozoa, viridiplantae, and viruses, of which 940, to date, are found in humans. It is estimated that more than 60% of human protein-coding genes harbor miRNA target sites in their 3′ untranslated region and, thus, are potentially regulated by these molecules in health and disease. This review will first briefly describe the discovery, structure, and mode of function of miRNAs in mammalian cells, before elaborating on their roles and significance during development and pathogenesis in the various mammalian organs, while attempting to reconcile their functions with our existing knowledge of their targets. Finally, we will summarize some of the advances made in utilizing miRNAs in therapeutics.
Collapse
Affiliation(s)
- Danish Sayed
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Maha Abdellatif
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| |
Collapse
|
13
|
Chaotic neovascularization induced by aggressive fibrosarcoma cells overexpressing S-adenosylmethionine decarboxylase. Int J Biochem Cell Biol 2011; 43:441-54. [DOI: 10.1016/j.biocel.2010.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/25/2010] [Accepted: 11/30/2010] [Indexed: 12/29/2022]
|
14
|
Ikeda H, Miyatake M, Koshikawa N, Ochiai K, Yamada K, Kiss A, Donlin MJ, Panneton WM, Churchill JD, Green M, Siddiqui AM, Leinweber AL, Crews NR, Ezerskiy LA, Rendell VR, Belcheva MM, Coscia CJ. Morphine modulation of thrombospondin levels in astrocytes and its implications for neurite outgrowth and synapse formation. J Biol Chem 2010; 285:38415-27. [PMID: 20889977 PMCID: PMC2992274 DOI: 10.1074/jbc.m110.109827] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 09/28/2010] [Indexed: 11/06/2022] Open
Abstract
Opioid receptor signaling via EGF receptor (EGFR) transactivation and ERK/MAPK phosphorylation initiates diverse cellular responses that are cell type-dependent. In astrocytes, multiple μ opioid receptor-mediated mechanisms of ERK activation exist that are temporally distinctive and feature different outcomes. Upon discovering that chronic opiate treatment of rats down-regulates thrombospondin 1 (TSP1) expression in the nucleus accumbens and cortex, we investigated the mechanism of action of this modulation in astrocytes. TSP1 is synthesized in astrocytes and is released into the extracellular matrix where it is known to play a role in synapse formation and neurite outgrowth. Acute morphine (hours) reduced TSP1 levels in astrocytes. Chronic (days) opioids repressed TSP1 gene expression and reduced its protein levels by μ opioid receptor and ERK-dependent mechanisms in astrocytes. Morphine also depleted TSP1 levels stimulated by TGFβ1 and abolished ERK activation induced by this factor. Chronic morphine treatment of astrocyte-neuron co-cultures reduced neurite outgrowth and synapse formation. Therefore, inhibitory actions of morphine were detected after both acute and chronic treatments. An acute mechanism of morphine signaling to ERK that entails depletion of TSP1 levels was suggested by inhibition of morphine activation of ERK by a function-blocking TSP1 antibody. This raises the novel possibility that acute morphine uses TSP1 as a source of EGF-like ligands to activate EGFR. Chronic morphine inhibition of TSP1 is reminiscent of the negative effect of μ opioids on EGFR-induced astrocyte proliferation via a phospho-ERK feedback inhibition mechanism. Both of these variations of classical EGFR transactivation may enable opiates to diminish neurite outgrowth and synapse formation.
Collapse
Affiliation(s)
- Hiroko Ikeda
- From the E. A. Doisy Department of Biochemistry and Molecular Biology
- the Departments of Pharmacology and
| | - Mayumi Miyatake
- From the E. A. Doisy Department of Biochemistry and Molecular Biology
| | | | - Kuniyasu Ochiai
- Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Kiyoshi Yamada
- Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Alexi Kiss
- From the E. A. Doisy Department of Biochemistry and Molecular Biology
| | - Maureen J. Donlin
- From the E. A. Doisy Department of Biochemistry and Molecular Biology
- Molecular Microbiology and Immunology
| | | | | | | | | | | | - Nicholas R. Crews
- From the E. A. Doisy Department of Biochemistry and Molecular Biology
| | - Lubov A. Ezerskiy
- From the E. A. Doisy Department of Biochemistry and Molecular Biology
| | | | | | - Carmine J. Coscia
- From the E. A. Doisy Department of Biochemistry and Molecular Biology
| |
Collapse
|
15
|
Zhou L, Picard D, Ra YS, Li M, Northcott PA, Hu Y, Stearns D, Hawkins C, Taylor MD, Rutka J, Der SD, Huang A. Silencing of thrombospondin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res 2010; 70:8199-210. [PMID: 20876797 DOI: 10.1158/0008-5472.can-09-4562] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mechanisms by which c-Myc (Myc) amplification confers aggressive medulloblastoma phenotypes are poorly defined. Here, we show using orthotopic models that high Myc expression promotes cell migration/invasion and induces metastatic tumors, which recapitulate aggressive histologic features of Myc-amplified primary human medulloblastoma. Using ChIP-chip analysis, we identified cell migration and adhesion genes, including Tsp-1/THBS1, ING4, PVRL3, and PPAP2B, as Myc-bound loci in medulloblastoma cells. Expression of Tsp-1 was most consistently and robustly diminished in medulloblastoma cell lines and primary human tumors with high Myc expression (n = 101, P = 0.032). Strikingly, stable Tsp-1 expression significantly attenuated in vitro transformation and invasive/migratory properties of high Myc-expressing medulloblastoma cells without altering cell proliferation, whereas RNA interference-mediated Myc knockdown was consistently accompanied by increased Tsp-1 levels and reduced cell migration and invasion in medulloblastoma cells. Chromatin immunoprecipitation (ChIP) assays revealed colocalization of Myc and obligate partner Max and correlated diminished RNA polymerase II occupancy (∼3-fold decrease, P < 0.01) with increased Myc binding at a core Tsp-1 promoter. Reporter gene and/or gel shift assays confirmed direct repression of Tsp-1 transcription by Myc and also identified JPO2, a Myc interactor associated with metastatic medulloblastoma, as a cofactor in Myc-mediated Tsp-1 repression. These findings indicate the Myc-regulatory network targets Tsp-1 via multiple mechanisms in medulloblastoma transformation, and highlight a novel critical role for Tsp-1 in Myc-mediated aggressive medulloblastoma phenotypes.
Collapse
Affiliation(s)
- Limei Zhou
- Sonia and Arthur Labatt Brain Tumor Research Centre, Hospital for Sick Children, University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tarkkonen K, Ruohola J, Härkönen P. Fibroblast growth factor 8 induced downregulation of thrombospondin 1 is mediated by the MEK/ERK and PI3K pathways in breast cancer cells. Growth Factors 2010; 28:256-67. [PMID: 20370578 DOI: 10.3109/08977191003745480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Expression of fibroblast growth factor 8 (FGF-8) is increased in several forms of hormonal cancer. It was previously shown to regulate expression of thrombospondin 1 (TSP-1), an inhibitor of angiogenesis, in S115 breast cancer cells. Here, we studied the FGF-8-activated signalling pathways mediating TSP-1 repression in S115 cells and in non-tumorigenic MCF10A cells. Inhibition of FGF receptors or of MEK1/2 and PI3K with specific inhibitors (PD173074, U0126 or LY294002, respectively) restored TSP-1 mRNA expression in the presence of FGF-8 in S115 cells. Furthermore, U0126 and LY294002 increased TSP-1 mRNA expression in S115 cells over-expressing FGF-8. In MCF10A cells, FGF-8 treatment also decreased TSP-1 expression and the effect was dependent on active MEK1/2. In conclusion, FGF-8 suppresses TSP-1 expression through two independent pathways, MEK1/2 and PI3K. Repression of TSP-1 may be an important mechanism involved in induction of an angiogenic phenotype and growth of FGF-8-expressing breast cancer.
Collapse
Affiliation(s)
- Kati Tarkkonen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, 20520, Turku, Finland.
| | | | | |
Collapse
|
17
|
Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis. Blood 2010; 115:4605-13. [PMID: 20086246 DOI: 10.1182/blood-2009-09-242065] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The sequential events leading to tumor progression include a switch to the angiogenic phenotype, dependent on a shift in the balance between positive and negative angiogenic regulators produced by tumor and stromal cells. Although the biologic properties of many angiogenesis regulatory proteins have been studied in detail, the mechanisms of their transport and delivery in vivo during pathologic angiogenesis are not well understood. Here, we demonstrate that expression of one of the most potent angiogenesis inhibitors, thrombospondin-1, is up-regulated in the platelets of tumor-bearing mice. We establish that this up-regulation is a consequence of both increased levels of thrombospondin-1 mRNA in megakaryocytes, as well as increased numbers of megakaryocytes in the bone marrow of tumor-bearing mice. Through the use of mouse tumor models and bone marrow transplantations, we show that platelet-derived thrombospondin-1 is a critical negative regulator during the early stages of tumor angiogenesis. Collectively, our data suggest that the production and delivery of the endogenous angiogenesis inhibitor thrombospondin-1 by platelets may be a critical host response to suppress tumor growth through inhibiting tumor angiogenesis. Further, this work implicates the use of thrombospondin-1 levels in platelets as an indicator of tumor growth and regression.
Collapse
|
18
|
Kang SY, Halvorsen OJ, Gravdal K, Bhattacharya N, Lee JM, Liu NW, Johnston BT, Johnston AB, Haukaas SA, Aamodt K, Yoo S, Akslen LA, Watnick RS. Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1. Proc Natl Acad Sci U S A 2009; 106:12115-20. [PMID: 19581582 PMCID: PMC2715504 DOI: 10.1073/pnas.0903120106] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Indexed: 02/06/2023] Open
Abstract
Metastatic tumors can prepare a distant site for colonization via the secretion of factors that act in a systemic manner. We hypothesized that non- or weakly metastatic human tumor cells may act in an opposite fashion by creating a microenvironment in distant tissues that is refractory to colonization. By comparing cell lines with different metastatic potential, we have identified a tumor-secreted inhibitor of metastasis, prosaposin (Psap), which functions in a paracrine and endocrine fashion by stimulating the expression of thrombospondin-1 (Tsp-1) in fibroblasts present in both primary tumors and distant organs, doing so in a p53-dependent manner. Introduction of Psap in highly metastatic cells significantly reduced the occurrence of metastases, whereas inhibition of Psap production by tumor cells was associated with increased metastatic frequency. In human prostate cancer, decreased Psap expression was significantly associated with metastatic tumors. Our findings suggest that prosaposin, or other agents that stimulate p53 activity in the tumor stroma, may be an effective therapy by inhibition of the metastatic process.
Collapse
Affiliation(s)
- Soo-Young Kang
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Ole J. Halvorsen
- The Gade Institute, Section for Pathology, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Karsten Gravdal
- The Gade Institute, Section for Pathology, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Nandita Bhattacharya
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Jung Min Lee
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, MA 02115
| | - Nathan W. Liu
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, MA 02115
| | - Brian T. Johnston
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, MA 02115
| | - Adam B. Johnston
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, MA 02115
- Department of Biochemical Sciences, Harvard College, Cambridge, MA 02138; and
| | - Svein A. Haukaas
- Department of Surgery, Section of Urology, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Kristie Aamodt
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, MA 02115
| | - Sun Yoo
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, MA 02115
| | - Lars A. Akslen
- The Gade Institute, Section for Pathology, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Randolph S. Watnick
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
19
|
Angiostatin regulates the expression of antiangiogenic and proapoptotic pathways via targeted inhibition of mitochondrial proteins. Blood 2009; 114:1987-98. [PMID: 19465692 DOI: 10.1182/blood-2008-12-197236] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Angiostatin, a proteolytic fragment of plasminogen, is a potent endogenous antiangiogenic agent. The molecular mechanisms governing angiostatin's antiangiogenic and antitumor effects are not well understood. Here, we report the identification of mitochondrial compartment as the ultimate target of angiostatin. After internalization of angiostatin into the cell, at least 2 proteins within the mitochondria bind this molecule: malate dehydrogenase, a member of Krebs cycle, and adenosine triphosphate synthase. In vitro and in vivo studies revealed differential regulation of key prosurvival and angiogenesis-related proteins in angiostatin-treated tumors and tumor-endothelium. Angiostatin induced apoptosis via down-regulation of mitochondrial BCL-2. Angiostatin treatment led to down-regulation of c-Myc and elevated levels of another key antiangiogenic protein, thrombospondin-1, reinforcing its antitumor and antiangiogenic effects. Further evidence is provided for reduced recruitment and infiltration of bone marrow-derived macrophages in angiostatin-treated tumors. The observed effects of angiostatin were restricted to the tumor site and were not observed in other major organs of the mice, indicating unique tumor specific bioavailability. Together, our data suggest mitochondria as a novel target for antiangiogenic therapy and provide mechanistic insights to the antiangiogenic and antitumor effects of angiostatin.
Collapse
|
20
|
Xu B, Liu P, Li J, Lu H. All-trans retinoic acid induces Thrombospondin-1 expression in acute promyelocytic leukemia cells though down-regulation of its transcription repressor, c-MYC oncoprotein. Biochem Biophys Res Commun 2009; 382:790-4. [PMID: 19324018 DOI: 10.1016/j.bbrc.2009.03.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/20/2009] [Indexed: 10/21/2022]
Abstract
Thrombospondin-1 (TSP-1) was found to mediate the therapeutic effects of all-trans retinoic acid (ATRA) for leukemia. The aim of the present study was to evaluate the role of c-MYC, a key transcription factor that contributes to the genesis of many human tumors, in TSP-1 induction by ATRA in acute promyelocytic leukemia (APL). ATRA treatment markedly increased TSP-1 level and inhibited c-MYC expression in NB4 APL leukemic cells compared with controls. Promoter assays indicated that c-MYC responsive element is functional relevant to the induction of TSP-1 promoter activity by ATRA. c-MYC recruitment to TSP-1 promoter was dramatically decreased in NB4 cells following ATRA treatment. shRNA-mediated inhibition of c-MYC resulted in a marked up-regulation of endogenous TSP-1 expression. Moreover, transient over-expression of c-MYC totally abolished TSP-1 induction by ATRA in NB4 cells. Collectively, our results indicate that ATRA induces TSP-1 expression in APL cells though down-regulation of its transcription repressor, c-MYC oncoprotein.
Collapse
Affiliation(s)
- Bei Xu
- Department of Internal Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | | | | | | |
Collapse
|
21
|
Zhao HY, Ooyama A, Yamamoto M, Ikeda R, Haraguchi M, Tabata S, Furukawa T, Che XF, Iwashita KI, Oka T, Fukushima M, Nakagawa M, Ono M, Kuwano M, Akiyama SI. Down regulation of c-Myc and induction of an angiogenesis inhibitor, thrombospondin-1, by 5-FU in human colon cancer KM12C cells. Cancer Lett 2008; 270:156-63. [DOI: 10.1016/j.canlet.2008.04.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 02/02/2008] [Accepted: 04/29/2008] [Indexed: 10/21/2022]
|
22
|
Abstract
Metastasis suppressor genes (MSGs) are defined by their ability to inhibit overt metastasis in a secondary organ without affecting tumor growth at the primary site. Over 20 MSGs have been confirmed in vivo. This class of genes is only unified by their capacity to suppress metastasis, as they encode for proteins with a wide range of biochemical activities that are components of a variety of signaling pathways. In addition, metastasis suppressors impinge upon different stages of the metastatic cascade to manifest their suppressive effects. The MSGs KISS1, KAI1, MKK4/7 and Nm23-H1 promote tumor dormancy at the metastatic site, since tumor cells with induced expression of these MSGs disseminate, but do not form overt metastases in the secondary organ throughout the duration of a metastasis assay. Evidence suggests that KISS1 triggers dormancy in solitary, metastatic tumor cells by causing growth arrest of solitary cells at the secondary site. KAI1 induces growth arrest prior to extravasation by binding a vascular endothelial cell surface marker. MKK4, MKK7 and Nm23-H1 appear to promote dormancy of micrometastatic colonies, after disseminated tumor cells have undergone several rounds of proliferation. Other MSGs may also function in tumor dormancy, but so far their role has not been fully elucidated. Therapeutic approaches that either mimic the effects of MSGs or re-establish MSG expression in metastatic lesions may hold promise for the establishment or maintenance of dormancy.
Collapse
Affiliation(s)
- Christine E Horak
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
23
|
Yekkala K, Baudino TA. Inhibition of intestinal polyposis with reduced angiogenesis in ApcMin/+ mice due to decreases in c-Myc expression. Mol Cancer Res 2008; 5:1296-303. [PMID: 18171987 DOI: 10.1158/1541-7786.mcr-07-0232] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The c-myc oncogene plays an important role in tumorigenesis and is frequently deregulated in many human cancers, including gastrointestinal cancers. In humans, mutations of the adenomatous polyposis coli (Apc) tumor suppressor gene occur in most colorectal cancers. Mutation of Apc leads to stabilization of beta-catenin and increases in beta-catenin target gene expression (c-myc and cyclin D1), whose precise functional significance has not been examined using genetic approaches. Apc(Min/+) mice are a model of familial adenomatous polyposis and are heterozygous for an Apc truncation mutation. We have developed a model for examining the role of c-Myc in Apc-mediated tumorigenesis. We crossed c-myc(+/-) mice to Apc(Min/+) to generate Apc(Min/+) c-myc(+/-) animals. The compound Apc(Min/+) c-myc(+/-) mice were used to evaluate the effect of c-myc haploinsufficiency on the Apc(Min/+) phenotype. We observed a significant reduction in tumor numbers in the small intestine of Apc(Min/+) c-myc(+/-) mice compared with control Apc(Min/+) c-myc(+/+) mice. In addition, we observed one to three polyps per colon in Apc(Min/+) c-myc(+/+) mice, whereas only two lesions were observed in the colons of Apc(Min/+) mice that were haploinsufficient for c-myc. Moreover, reduction in c-myc levels resulted in a significant increase in the survival of these animals. Finally, we observed marked decreases in vascular endothelial growth factor, EphA2, and ephrin-B2 expression as well as marked decreases in angiogenesis in intestinal polyps in Apc(Min/+) c-myc(+/-) mice. This study shows that c-Myc is critical for Apc-dependent intestinal tumorigenesis in mice and provides a potential therapeutic target in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Krishna Yekkala
- Department of Cell and Developmental Biology and Anatomy, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Building #1, C-57, Columbia, SC 29209, USA
| | | |
Collapse
|
24
|
Coller HA, Forman JJ, Legesse-Miller A. "Myc'ed messages": myc induces transcription of E2F1 while inhibiting its translation via a microRNA polycistron. PLoS Genet 2007; 3:e146. [PMID: 17784791 PMCID: PMC1959363 DOI: 10.1371/journal.pgen.0030146] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The recent revelation that there are small, noncoding RNAs that regulate the expression of many other genes has led to an exciting, emerging body of literature defining the biological role for these molecules within signaling networks. In a flurry of recent papers, a microRNA polycistron induced by the oncogenic transcription factor c-myc has been found to be involved in an unusually structured network of interactions. This network includes the seemingly paradoxical transcriptional induction and translational inhibition of the same molecule, the E2F1 transcription factor. This microRNA cluster has been implicated in inhibiting proliferation, as well as inhibiting apoptosis, and promoting angiogenesis. Consistent with its seemingly paradoxical functions, the region of the genome in which it is encoded is deleted in some tumors and overexpressed in others. We consider the possibility that members of this polycistronic microRNA cluster help cells to integrate signals from the environment and decide whether a signal should be interpreted as proliferative or apoptotic.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America.
| | | | | |
Collapse
|
25
|
Potikyan G, Savene ROV, Gaulden JM, France KA, Zhou Z, Kleinerman ES, Lessnick SL, Denny CT. EWS/FLI1 Regulates Tumor Angiogenesis in Ewing's Sarcoma via Suppression of Thrombospondins. Cancer Res 2007; 67:6675-84. [PMID: 17638877 DOI: 10.1158/0008-5472.can-06-4140] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Suppression of the expression of antiangiogenic factors has been closely associated with multiple malignancies. Thrombospondins 1 and 2 are members of a family of angiogenic inhibitors that are regulated by several oncogenes. In this study, we investigate the role of thrombospondins in Ewing's sarcoma and their regulation by EWS/ETS fusion oncoproteins. We show that the EWS/FLI1 fusion suppresses the expression of thrombospondins in both NIH3T3 fibroblasts and Ewing's sarcoma tumor-derived cell lines. This regulation depends on an intact EWS/FLI1 DNA-binding domain and may involve direct interactions between EWS/FLI1 and thrombospondin promoter regions. Forced expression of thrombospondins in Ewing's sarcoma cell lines inhibited the rate of tumor formation in vivo and markedly decreased the number of microvessels present in the tumors. These findings suggest that thrombospondins play a biologically significant role in tumor vascularization in Ewing's sarcoma and suggest potential therapeutic strategies for future therapeutic intervention.
Collapse
Affiliation(s)
- Gary Potikyan
- Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90024, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Teodoro JG, Evans SK, Green MR. Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med (Berl) 2007; 85:1175-86. [PMID: 17589818 DOI: 10.1007/s00109-007-0221-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/04/2007] [Accepted: 05/08/2007] [Indexed: 12/22/2022]
Abstract
The p53 tumor suppressor protein has long been recognized as the central factor protecting humans from cancer. It has been famously dubbed "the guardian of the genome" due to its ability to respond to genotoxic stress, such as DNA damage and other stress signals, and to protect the genome by inducing a variety of biological responses including DNA repair, cell cycle arrest, and apoptosis. However, the tumor suppressive effects of p53 go far beyond its roles in mediating these three processes. There is growing evidence that p53 also exerts its effects on multiple aspects of tumor formation, including suppression of metastasis and, as summarized in this review, inhibition of new blood vessel development (angiogenesis). The p53 protein has been shown to limit angiogenesis by at least three mechanisms: (1) interfering with central regulators of hypoxia that mediate angiogenesis, (2) inhibiting production of proangiogenic factors, and (3) directly increasing the production of endogenous angiogenesis inhibitors. The combination of these effects allows p53 to efficiently shut down the angiogenic potential of cancer cells. Inactivation of p53, which occurs in approximately half of all tumors, reverses these effects; as a consequence, tumors carrying p53 mutations appear more vascularized and are often more aggressive and correlate with poor prognosis for treatment. Thus, the loss of functional p53 during tumorigenesis likely represents an essential step in the switch to an angiogenic phenotype that is displayed by aggressive tumors.
Collapse
Affiliation(s)
- Jose G Teodoro
- McGill Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
27
|
Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006; 38:1060-5. [PMID: 16878133 PMCID: PMC2669546 DOI: 10.1038/ng1855] [Citation(s) in RCA: 818] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 06/29/2006] [Indexed: 12/18/2022]
Abstract
Human adenocarcinomas commonly harbor mutations in the KRAS and MYC proto-oncogenes and the TP53 tumor suppressor gene. All three genetic lesions are potentially pro-angiogenic, as they sustain production of vascular endothelial growth factor (VEGF). Yet Kras-transformed mouse colonocytes lacking p53 formed indolent, poorly vascularized tumors, whereas additional transduction with a Myc-encoding retrovirus promoted vigorous vascularization and growth. In addition, VEGF levels were unaffected by Myc, but enhanced neovascularization correlated with downregulation of anti-angiogenic thrombospondin-1 (Tsp1) and related proteins, such as connective tissue growth factor (CTGF). Both Tsp1 and CTGF are predicted targets for repression by the miR-17-92 microRNA cluster, which was upregulated in colonocytes coexpressing K-Ras and c-Myc. Indeed, miR-17-92 knockdown with antisense 2'-O-methyl oligoribonucleotides partly restored Tsp1 and CTGF expression; in addition, transduction of Ras-only cells with a miR-17-92-encoding retrovirus reduced Tsp1 and CTGF levels. Notably, miR-17-92-transduced cells formed larger, better-perfused tumors. These findings establish a role for microRNAs in non-cell-autonomous Myc-induced tumor phenotypes.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Line, Transformed
- Cell Transformation, Viral
- Cells, Cultured
- Connective Tissue Growth Factor
- Culture Media, Conditioned/analysis
- Gene Expression Regulation, Neoplastic
- Genetic Vectors
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- In Vitro Techniques
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- MicroRNAs/metabolism
- Neoplasms/blood supply
- Neoplasms/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Oligonucleotides, Antisense/pharmacology
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/physiology
- RNA, Neoplasm/metabolism
- Retroviridae/genetics
- Stem Cells/cytology
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Transplantation, Homologous
- Vascular Endothelial Growth Factor A/analysis
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Michael Dews
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mattila MM, Tarkkonen KM, Seppänen JA, Ruohola JK, Valve EM, Härkönen PL. Androgen and fibroblast growth factor 8 (FGF8) downregulation of thrombospondin 1 (TSP1) in mouse breast cancer cells. Mol Cell Endocrinol 2006; 253:36-43. [PMID: 16723184 DOI: 10.1016/j.mce.2006.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/12/2006] [Accepted: 04/15/2006] [Indexed: 02/04/2023]
Abstract
In the search for androgen target genes responsible for malignant growth in S115 mouse mammary tumor cells we found that thrombospondin 1 (TSP1) expression was strongly downregulated by testosterone (Te). Experiments with cycloheximide suggested that Te repression of TSP1 was dependent on de novo protein synthesis. TSP1 repression by Te was preceded by the induction of fibroblast growth factor 8 (FGF8) expression. FGF8 has previously been shown to mediate androgen effects on proliferation of S115 cells by autocrine/paracrine mechanisms. It has also been shown to increase breast cancer cell growth as tumors in nude mice and to stimulate tumor angiogenesis. We studied here the possibility that FGF8 belonged to the Te-induced de novo synthesized proteins that mediate the effect of Te on TSP1 expression in these cells. We found that addition of FGF8b to in vitro cultures or ectopic expression of FGF8b in S115 cells repressed TSP1 expression at mRNA and protein levels even in the absence of Te. FGF2, another angiogenic member of FGF family, also downregulated TSP1 mRNA level in the in vitro cultures of S115 cells. The antisense oligonucleotides for FGF8 did not, however, prevent Te-repression of TSP1 mRNA expression and a neutralizing anti-FGF8b antibody only partially opposed Te induced downregulation of TSP1. These results suggest that both androgen and FGF8 inhibit TSP1 expression independently. They also suggest that opposite to many other androgen-induced responses in S115 cells, the effect of Te on the expression TSP1 is not mediated by FGF8.
Collapse
Affiliation(s)
- Mirjami M Mattila
- Institute of Biomedicine, Department of Anatomy, University of Turku, 20520 Turku, Finland
| | | | | | | | | | | |
Collapse
|
29
|
Li Z, Wang C, Jiao X, Lu Y, Fu M, Quong AA, Dye C, Yang J, Dai M, Ju X, Zhang X, Li A, Burbelo P, Stanley ER, Pestell RG. Cyclin D1 regulates cellular migration through the inhibition of thrombospondin 1 and ROCK signaling. Mol Cell Biol 2006; 26:4240-56. [PMID: 16705174 PMCID: PMC1489104 DOI: 10.1128/mcb.02124-05] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclin D1 is overexpressed in human tumors, correlating with cellular metastasis, and is induced by activating Rho GTPases. Herein, cyclin D1-deficient mouse embryo fibroblasts (MEFs) exhibited increased adhesion and decreased motility compared with wild-type MEFs. Retroviral transduction of cyclin D1 reversed these phenotypes. Mutational analysis of cyclin D1 demonstrated that its effects on cellular adhesion and migration were independent of the pRb and p160 coactivator binding domains. Genomewide expression arrays identified a subset of genes regulated by cyclin D1, including Rho-activated kinase II (ROCKII) and thrombospondin 1 (TSP-1). cyclin D1(-/-) cells showed increased Rho GTP and ROCKII activity and signaling, with increased phosphorylation of LIM kinase, cofilin (Ser3), and myosin light chain 2 (Thr18/Ser19). Cyclin D1 repressed ROCKII and TSP-1 expression, and the migratory defect of cyclin D1(-/-) cells was reversed by ROCK inhibition or TSP-1 immunoneutralizing antibodies. cyclin E knockin to the cyclin D1(-/-) MEFs rescued the DNA synthesis defect of cyclin D1(-/-) MEFs but did not rescue either the migration defect or the abundance of ROCKII. Cyclin D1 promotes cellular motility through inhibiting ROCK signaling and repressing the metastasis suppressor TSP-1.
Collapse
Affiliation(s)
- Zhiping Li
- Thomas Jefferson University, Department of Cancer Biology, Kimmel Cancer Center, Bluemle Building, Rm 1050, 233 South 10th St, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ioachim E, Michael MC, Salmas M, Damala K, Tsanou E, Michael MM, Malamou-Mitsi V, Stavropoulos NE. Thrombospondin-1 expression in urothelial carcinoma: prognostic significance and association with p53 alterations, tumour angiogenesis and extracellular matrix components. BMC Cancer 2006; 6:140. [PMID: 16732887 PMCID: PMC1538616 DOI: 10.1186/1471-2407-6-140] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 05/29/2006] [Indexed: 12/18/2022] Open
Abstract
Background Thrombospondin-1 (TSP-1) is an extracellular matrix component glycoprotein, which is known to be a potent inhibitor of angiogenesis and may be important in cancer invasiveness. We examined the TSP-1 expression in correlation with conventional clinicopathological parameters to clarify its prognostic significance in bladder cancer. In addition, the possible correlation of TSP-1 expression with microvessel count, VEGF expression, p53 expression as well as with the expression of the extracellular matrix components was studied to explore its implication in vascularization and tumour stroma remodeling. Methods The immunohistochemical expression of TSP-1 in tumour cells and in the tumour stroma was studied in 148 formalin-fixed paraffin-embedded urothelial cell carcinoma tissue samples. Results TSP-1 was detected in perivascular tissue, at the epithelial-stromal junction, in the stroma and in tumour cells in the majority of the cases. In tumour cells, low TSP-1 expression was observed in 43% of the cases, moderate and high in 7%, while 50% showed absence of TSP expression. A higher TSP-1 immunoreactivity in well and moderately differentiated tumours compared to poorly differentiated was noted. PT1 tumours showed decreased TSP-1 expression in comparison to pTa and pT2–4 tumours. Increased tumour cell TSP-1 expression was related to increased microvessel density. In the tumour stroma, 37% of the cases showed small amount of TSP-1 expression, 7.5% moderate and high, while 55% of the cases showed absence of TSP-1 stromal immunoreactivity. Stromal TSP-1 expression was inversely correlated with tumour stage and tumour size. This expression was also positively correlated with microvessel density, VEGF expression and extracellular matrix components tenascin and fibronectin. Using univariate and multivariate analysis we didn't find any significant correlation of TSP-1 expression in superficial tumours in both tumour cells and tumour stroma in terns of the risk of recurrence and disease progression Conclusion Our data suggest that both tumour and stromal TSP-1 expression may play a role in tumour aggressiveness and angiogenesis. In addition, the correlation of stromal TSP-1 expression with extracellular matrix components fibronectin and tenascin indicate its possible implication in tumour stroma remodeling.
Collapse
Affiliation(s)
- E Ioachim
- Departments of Pathology and Cytology, University Hospital of Ioannina, Ioannina, Greece
| | - MC Michael
- Departments of Pathology and Cytology, University Hospital of Ioannina, Ioannina, Greece
| | - M Salmas
- Department of Anatomy, University of Athens, Athens, Greece
| | - K Damala
- Departments of Pathology and Cytology, University Hospital of Ioannina, Ioannina, Greece
| | - E Tsanou
- Departments of Pathology and Cytology, University Hospital of Ioannina, Ioannina, Greece
| | - MM Michael
- Red Cross Hospital (I.C.U.) Athens, Greece
| | - V Malamou-Mitsi
- Departments of Pathology and Cytology, University Hospital of Ioannina, Ioannina, Greece
| | - NE Stavropoulos
- Department of Urology, 'G. Hatzikosta' General Hospital, Ioannina, Greece
| |
Collapse
|
31
|
Kleine-Kohlbrecher D, Adhikary S, Eilers M. Mechanisms of transcriptional repression by Myc. Curr Top Microbiol Immunol 2006; 302:51-62. [PMID: 16620025 DOI: 10.1007/3-540-32952-8_3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Myc proteins are nuclear proteins that exert their biological functions at least in part through the transcriptional regulation of large sets of target genes. Recent microarray analyses show that several percent of all genes may be directly regulated by Myc. A large body of data shows that Myc proteins both positively and negatively affect transcription. The basic mechanism underlying Myc's activation of transcription is well understood, but the mechanisms through which Myc negatively regulates or represses transcription are far less understood. In this chapter, we will review our current knowledge about this less-well-understood topic.
Collapse
Affiliation(s)
- D Kleine-Kohlbrecher
- Institute for Molecular Biology and Tumor Research, University of Marburg, 35033 Marburg, Germany
| | | | | |
Collapse
|
32
|
Hasina R, Pontier AL, Fekete MJ, Martin LE, Qi XM, Brigaudeau C, Pramanik R, Cline EI, Coignet LJ, Lingen MW. NOL7 is a nucleolar candidate tumor suppressor gene in cervical cancer that modulates the angiogenic phenotype. Oncogene 2006; 25:588-98. [PMID: 16205646 DOI: 10.1038/sj.onc.1209070] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cervical cancer is associated with human papilloma virus infection. However, this infection is insufficient to induce transformation and progression. Loss of heterozygosity analyses suggest the presence of a tumor suppressor gene (TSG) on chromosome 6p21.3-p25. Here we report the cloning NOL7, its mapping to chromosome band 6p23, and localization of the protein to the nucleolus. Fluorescence in situ hybridization analysis demonstrated an allelic loss of an NOL7 in cultured tumor cells and human tumor samples. Transfection of NOL7 into cervical carcinoma cells inhibited their growth in mouse xenografts, confirming its in vivo tumor suppressor activity. The induction of tumor dormancy correlated with an angiogenic switch caused by a decreased production of vascular endothelial growth factor and an increase in the production of the angiogenesis inhibitor thrombospondin-1. These data suggest that NOL7 may function as a TSG in part by modulating the expression of the angiogenic phenotype.
Collapse
Affiliation(s)
- R Hasina
- Departments of Pathology,, The University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ren B, Yee KO, Lawler J, Khosravi-Far R. Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta Rev Cancer 2005; 1765:178-88. [PMID: 16406676 DOI: 10.1016/j.bbcan.2005.11.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/27/2005] [Accepted: 11/28/2005] [Indexed: 01/11/2023]
Abstract
Angiogenesis plays a critical role in the growth and metastasis of tumors. Thrombospondin-1 (TSP-1) is a potent angiogenesis inhibitor, and down-regulation of TSP-1 has been suggested to alter tumor growth by modulating angiogenesis in a variety of tumor types. Expression of TSP-1 is up-regulated by the tumor suppressor gene, p53, and down-regulated by oncogenes such as Myc and Ras. TSP-1 inhibits angiogenesis by inhibiting endothelial cell migration and proliferation and by inducing apoptosis. In addition, activation of transforming growth factor beta (TGF-beta) by TSP-1 plays a crucial role in the regulation of tumor progression. An understanding of the molecular basis of TSP-1-mediated inhibition of angiogenesis and tumor progression will aid in the development of novel therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Ren
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
34
|
Soula-Rothhut M, Coissard C, Sartelet H, Boudot C, Bellon G, Martiny L, Rothhut B. The tumor suppressor PTEN inhibits EGF-induced TSP-1 and TIMP-1 expression in FTC-133 thyroid carcinoma cells. Exp Cell Res 2005; 304:187-201. [PMID: 15707585 DOI: 10.1016/j.yexcr.2004.10.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Revised: 10/29/2004] [Accepted: 10/30/2004] [Indexed: 11/26/2022]
Abstract
Thrombospondin-1 (TSP-1) is a multidomain extracellular macromolecule that was first identified as natural modulator of angiogenesis and tumor growth. In the present study, we found that epidermal growth factor (EGF) up-regulated TSP-1 expression in FTC-133 (primary tumor) but not in FTC-238 (lung metastasis) thyroid cancer cells. Both EGF and TSP-1 induced expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. In FTC-133 cells, EGF induced proliferation in a TSP-1- and TIMP-1-dependent manner. In addition, we determined that re-expression of the tumor suppressor protein PTEN induced cell death, an effect that correlated with a block of Akt kinase phosphorylation. EGF-induced TSP-1 and TIMP-1 promoter activity and protein expression were inhibited in FTC-133 cells stably expressing wtPTEN but not in cells expressing mutant PTEN. Furthermore, we found that wtPTEN inhibited EGF--but not TSP-1--stimulated FTC-133 cell migration and also inhibited invasion induced by EGF and by TSP-1. Finally, an antibody against TSP-1 reversed EGF-stimulated FTC-133 cell invasion as well as the constitutive invasive potential of FTC-238 cells. Overall, our results suggest that PTEN can function as an important modulator of extracellular matrix proteins in thyroid cancer. Therefore, analyzing differential regulation of TSP-1 by growth factors such as EGF can be helpful in understanding thyroid cancer development.
Collapse
Affiliation(s)
- Mahdhia Soula-Rothhut
- Unité Matrice Extracellulaire et Régulations Cellulaires, CNRS UMR 6198, Laboratory of Biochemistry, University of Reims Champagne-Ardenne, Moulin de la Housse, 51687 Reims Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Howell BG, Wang B, Freed I, Mamelak AJ, Watanabe H, Sauder DN. Microarray analysis of UVB-regulated genes in keratinocytes: downregulation of angiogenesis inhibitor thrombospondin-1. J Dermatol Sci 2004; 34:185-94. [PMID: 15113588 DOI: 10.1016/j.jdermsci.2004.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Revised: 01/13/2004] [Accepted: 01/15/2004] [Indexed: 11/21/2022]
Abstract
BACKGROUND Ultraviolet (UV) B light is an environmental mutagen that induces changes in cutaneous gene expression leading to immune suppression and carcinogenesis. Keratinocytes are a primary target for UVB. OBJECTIVE To further delineate UVB-induced gene expression changes in keratinocytes. METHODS cDNA microarray technology was utilized to examine gene expression in normal human KC (NHKC) following 20 mJcm(-2) UVB irradiation. Data was confirmed by semi-quantitative RT-PCR. RESULTS Microarray analysis revealed 57 genes were upregulated, and 27 genes were downregulated, by at least two-fold following UVB. One downregulated gene was the endogenous angiogenesis inhibitor thrombospondin-1 (TSP-1). Semi-quantitative RT-PCR confirmed persistent downregulation of TSP-1 up to 18h following UVB. Microarray analysis also revealed upregulation of platelet-derived endothelial cell growth factor (PD-ECGF)--an angiogenesis activator. CONCLUSION Our results suggest a gene expression mechanism by which UVB induces an angiogenic switch in keratinocytes. This may represent an important early event promoting neovascularization and growth of cutaneous neoplasms.
Collapse
Affiliation(s)
- B G Howell
- Department of Dermatology, Johns Hopkins Outpatient Center, Johns Hopkins University, 601 N. Caroline Street, Room 6068, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
36
|
Knies-Bamforth UE, Fox SB, Poulsom R, Evan GI, Harris AL. c-Myc interacts with hypoxia to induce angiogenesis in vivo by a vascular endothelial growth factor-dependent mechanism. Cancer Res 2004; 64:6563-70. [PMID: 15374969 DOI: 10.1158/0008-5472.can-03-3176] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The proto-oncogene c-myc is involved in the regulation of cell proliferation, differentiation, and apoptosis. In this study, we used an inducible transgenic mouse model in which c-Myc was targeted to the epidermis and, after activation, gave rise to hyperplastic and dysplastic skin lesions and to dermal angiogenesis, involving both vascular endothelial growth factor (VEGF) receptor-1 and VEGF receptor-2. After c-Myc activation, VEGF mRNA was expressed in postmitotic keratinocytes where it colocalized with transgene expression and areas of tissue hypoxia, suggesting a role of hypoxia in VEGF induction. In vitro, c-Myc activation alone was able to induce VEGF protein release and in conjunction with hypoxia, c-Myc activation further increased VEGF protein. Blocking VEGF signaling in vivo significantly reduced dermal angiogenesis, demonstrating the importance of VEGF as a mediating factor for the c-Myc-induced angiogenic phenotype.
Collapse
Affiliation(s)
- Ulrike E Knies-Bamforth
- Molecular Oncology Laboratory, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Swarbrick A, Akerfeldt MC, Lee CSL, Sergio CM, Caldon CE, Hunter LJK, Sutherland RL, Musgrove EA. Regulation of cyclin expression and cell cycle progression in breast epithelial cells by the helix–loop–helix protein Id1. Oncogene 2004; 24:381-9. [PMID: 15489884 DOI: 10.1038/sj.onc.1208188] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The helix-loop-helix protein Id1 has been implicated in regulating mammary epithelial cell proliferation and differentiation but the underlying molecular mechanisms are not well characterized. Under low serum conditions, ectopic expression of Id1, but not Id2, allowed continued proliferation of immortalized mammary epithelial cells and breast cancer cells. Conversely, downregulation of Id1 impaired proliferation. The effects of short interfering RNA (siRNA)-mediated downregulation of Id1 were the same as those following downregulation of c-Myc: decreased expression of cyclins D1 and E, reduced phosphorylation of pRb at Ser780 (a site targeted by cyclin D1-Cdk4) and reduced cyclin E-Cdk2 activity. Decreased cyclin D1 expression was an early response to Id1 antisense oligonucleotide treatment. Inhibition of c-Myc function by siRNA, antisense oligonucleotides or a dominant repressor resulted in downregulation of Id1, while ectopic expression of c-Myc resulted in rapid induction of Id1, suggesting that Id1 may be downstream of c-Myc. These data indicate that in mammary epithelial cells, Id1 has cell cycle regulatory functions that are similar to those of c-Myc, and suggest that cyclin D1 may be involved in Id1 regulation of cell cycle progression.
Collapse
Affiliation(s)
- Alexander Swarbrick
- Cancer Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Thomas-Tikhonenko A, Viard-Leveugle I, Dews M, Wehrli P, Sevignani C, Yu D, Ricci S, el-Deiry W, Aronow B, Kaya G, Saurat JH, French LE. Myc-transformed epithelial cells down-regulate clusterin, which inhibits their growth in vitro and carcinogenesis in vivo. Cancer Res 2004; 64:3126-36. [PMID: 15126350 DOI: 10.1158/0008-5472.can-03-1953] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effective treatment of malignant carcinomas requires identification of proteins regulating epithelial cell proliferation. To this end, we compared gene expression profiles in murine colonocytes and their c-Myc-transformed counterparts, which possess enhanced proliferative potential. A surprisingly short list of deregulated genes included the cDNA for clusterin, an extracellular glycoprotein without a firmly established function. We had previously demonstrated that in organs such as skin, clusterin expression is restricted to differentiating but not proliferating cell layers, suggesting a possible negative role in cell division. Indeed, its transient overexpression in Myc-transduced colonocytes decreased cell accumulation. Furthermore, clusterin was down-regulated in rapidly dividing human keratinocytes infected with a Myc-encoding adenovirus. Its knockdown via antisense RNA in neoplastic epidermoid cells enhanced proliferation. Finally, recombinant human clusterin suppressed, in a dose-dependent manner, DNA replication in keratinocytes and other cells of epithelial origin. Thus, clusterin appears to be an inhibitor of epithelial cell proliferation in vitro. To determine whether it also affects neoplastic growth in vivo, we compared wild-type and clusterin-null mice with respect to their sensitivity to 7, 12-dimethylbenz(a)anthracene /12-Otetradecanoylphorbol-13-acetate (DMBA/TPA)-induced skin carcinogenesis. We observed that the mean number of papillomas/mouse was higher in clusterin-null animals. Moreover, these papillomas did not regress as readily as in wild-type mice and persisted beyond week 35. The rate of progression toward squamous cell carcinoma was not altered, although those developing in clusterin-null mice were on average better differentiated. These data suggest that clusterin not only suppresses epithelial cell proliferation in vitro but also interferes with the promotion stage of skin carcinogenesis.
Collapse
Affiliation(s)
- Andrei Thomas-Tikhonenko
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6051, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hurlin PJ, Dezfouli S. Functions of myc:max in the control of cell proliferation and tumorigenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:183-226. [PMID: 15364199 DOI: 10.1016/s0074-7696(04)38004-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deregulation and elevated expression of members of the Myc family of bHLHZip transcription factors are observed in a high percentage of tumors. This close association with human cancers has led to a tremendous effort to define their biological and biochemical activities. Although Myc family proteins have the capacity to elicit a wide range of cell behaviors, their principal function appears to be to drive cells into the cell cycle and to keep them there. However, forced expression of Myc profoundly sensitizes normal cells to apoptosis. Therefore, tumor formation caused by deregulated Myc expression requires cooperating events that disrupt pathways that mediate apoptosis. Myc-dependent tumor formation may also be impeded by a set of related bHLHZip proteins with the demonstrated potential to act as Myc antagonists in cell culture experiments. In this review, we examine the complex activities of Myc family proteins and how their actions might be regulated in the context of a network of bHLHZip proteins.
Collapse
Affiliation(s)
- Peter J Hurlin
- Portland Shriners Hospitals for Children and Department of Cell and Developmental Biology Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
40
|
Arango D, Mariadason JM, Wilson AJ, Yang W, Corner GA, Nicholas C, Aranes MJ, Augenlicht LH. c-Myc overexpression sensitises colon cancer cells to camptothecin-induced apoptosis. Br J Cancer 2003; 89:1757-65. [PMID: 14583781 PMCID: PMC2394410 DOI: 10.1038/sj.bjc.6601338] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proto-oncogene c-Myc is overexpressed in 70% of colorectal tumours and can modulate proliferation and apoptosis after cytotoxic insult. Using an isogenic cell system, we demonstrate that c-Myc overexpression in colon carcinoma LoVo cells resulted in sensitisation to camptothecin-induced apoptosis, thus identifying c-Myc as a potential marker predicting response of colorectal tumour cells to camptothecin. Both camptothecin exposure and c-Myc overexpression in LoVo cells resulted in elevation of p53 protein levels, suggesting a role of p53 in the c-Myc-imposed sensitisation to the apoptotic effects of camptothecin. This was confirmed by the ability of PFT-α, a specific inhibitor of p53, to attenuate camptothecin-induced apoptosis. p53 can induce the expression of p21Waf1/Cip1, an antiproliferative protein that can facilitate DNA repair and drug resistance. Importantly, although camptothecin treatment markedly increased p21Waf1/Cip1 levels in parental LoVo cells, this effect was abrogated in c-Myc-overexpressing derivatives. Targeted inactivation of p21Waf1/Cip1 in HCT116 colon cancer cells resulted in significantly increased levels of apoptosis following treatment with camptothecin, demonstrating the importance of p21Waf1/Cip1 in the response to this agent. Finally, cDNA microarray analysis was used to identify genes that are modulated in expression by c-Myc upregulation that could serve as additional markers predicting response to camptothecin. Thirty-four sequences were altered in expression over four-fold in two isogenic c-Myc-overexpressing clones compared to parental LoVo cells. Moreover, the expression of 10 of these genes was confirmed to be significantly correlated with response to camptothecin in a panel of 30 colorectal cancer cell lines.
Collapse
Affiliation(s)
- D Arango
- Albert Einstein Cancer Center, Montefiore Medical Center, Oncology Department, 111 East 210th St, Bronx, NY 10467, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang YW, Su Y, Volpert OV, Woude GFV. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci U S A 2003; 100:12718-23. [PMID: 14555767 PMCID: PMC240684 DOI: 10.1073/pnas.2135113100] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF), acting through the Met receptor, plays an important role in most human solid tumors, and inappropriate expression of this ligand-receptor pair is often associated with poor prognosis. The molecular basis for the malignant potential of the HGF/SF-Met signal in cancer cells has mostly been attributed to its mitogenic and invasive properties. However, HGF/SF also induces angiogenesis, but the signaling mechanism has not been fully explained, nor has this activity been directly associated with HGF/SF-Met-mediated tumorigenesis. It is known that HGF/SF induces in vitro expression of vascular endothelial growth factor (VEGF), a key agonist of tumor angiogenesis; by contrast, thrombospondin 1 (TSP-1) is a negative regulator of angiogenesis. Here, we show that, in the very same tumor cells, in addition to inducing VEGF expression, HGF/SF dramatically down-regulates TSP-1 expression. We show that TSP-1 shut-off plays an important, extrinsic role in HGF/SF-mediated tumor development, because ectopic expression of TSP-1 markedly inhibits tumor formation through the suppression of angiogenesis. Interestingly, although VEGF-induced expression is sensitive to inhibitors of several pathways, including mitogen-activated protein kinase, phosphoinositide 3-kinase, and signal transducer and activator of transcription 3, TSP-1 shut-off by HGF/SF is prevented solely by inhibiting mitogen-activated protein kinase activation. These studies identify HGF/SF as a key switch for turning on angiogenesis. They suggest that TSP-1 is a useful antagonist to tumor angiogenesis and that it may have therapeutic value when used in conjunction with inhibitors of VEGF.
Collapse
Affiliation(s)
- Yu-Wen Zhang
- Laboratory of Molecular Oncology, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503; and Department of Microbiology–Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, 320 East Superior Street, Chicago, IL 60611
| | - Yanli Su
- Laboratory of Molecular Oncology, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503; and Department of Microbiology–Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, 320 East Superior Street, Chicago, IL 60611
| | - Olga V. Volpert
- Laboratory of Molecular Oncology, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503; and Department of Microbiology–Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, 320 East Superior Street, Chicago, IL 60611
| | - George F. Vande Woude
- Laboratory of Molecular Oncology, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503; and Department of Microbiology–Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, 320 East Superior Street, Chicago, IL 60611
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 2003; 3:219-31. [PMID: 12676581 DOI: 10.1016/s1535-6108(03)00030-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumor angiogenesis is postulated to be regulated by the balance between pro- and anti-angiogenic factors. We demonstrate that the critical step in establishing the angiogenic capability of human cells is the repression of the critical anti-angiogenic factor, thrombospondin-1 (Tsp-1). This repression is essential for tumor formation by mammary epithelial cells and kidney cells engineered to express SV40 early region proteins, hTERT, and H-RasV12. We have uncovered the signaling pathway leading from Ras to Tsp-1 repression. Ras induces the sequential activation of PI3 kinase, Rho, and ROCK, leading to activation of Myc through phosphorylation; phosphorylation of Myc via this mechanism enables it to repress Tsp-1 expression. We thus describe a novel mechanism by which the cooperative activity of the oncogenes, ras and myc, leads directly to angiogenesis and tumor formation.
Collapse
|
43
|
Volpert OV, Pili R, Sikder HA, Nelius T, Zaichuk T, Morris C, Shiflett CB, Devlin MK, Conant K, Alani RM. Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2002; 2:473-83. [PMID: 12498716 DOI: 10.1016/s1535-6108(02)00209-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Id proteins are helix-loop-helix transcription factors that regulate tumor angiogenesis. In order to identify downstream effectors of Id1 involved in the regulation of angiogenesis, we performed PCR-select subtractive hybridization on wild-type and Id1 knockout mouse embryo fibroblasts (MEFs). Here we demonstrate that thrombospondin-1 (TSP-1), a potent inhibitor of angiogenesis, is a target of transcriptional repression by Id1. We also show that Id1-null MEFs secrete an inhibitor of endothelial cell migration, which is completely inactivated by depletion of TSP-1. Furthermore, in vivo studies revealed decreased neovascularization in matrigel assays in Id1-null mice compared to their wild-type littermates. This decrease was completely reversed by a TSP-1 neutralizing antibody. We conclude that TSP-1 is a major target for Id1 effects on angiogenesis.
Collapse
Affiliation(s)
- Olga V Volpert
- Department of Urology and RH Lurie Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH, White EL, Davis AC, Ihle JN, Cleveland JL. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 2002; 16:2530-43. [PMID: 12368264 PMCID: PMC187450 DOI: 10.1101/gad.1024602] [Citation(s) in RCA: 384] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
c-Myc promotes cell growth and transformation by ill-defined mechanisms. c-myc(-/-) mice die by embryonic day 10.5 (E10.5) with defects in growth and in cardiac and neural development. Here we report that the lethality of c-myc(-/-) embryos is also associated with profound defects in vasculogenesis and primitive erythropoiesis. Furthermore, c-myc(-/-) embryonic stem (ES) and yolk sac cells are compromised in their differentiative and growth potential. These defects are intrinsic to c-Myc, and are in part associated with a requirement for c-Myc for the expression of vascular endothelial growth factor (VEGF), as VEGF can partially rescue these defects. However, c-Myc is also required for the proper expression of other angiogenic factors in ES and yolk sac cells, including angiopoietin-2, and the angiogenic inhibitors thrombospondin-1 and angiopoietin-1. Finally, c-myc(-/-) ES cells are dramatically impaired in their ability to form tumors in immune-compromised mice, and the small tumors that sometimes develop are poorly vascularized. Therefore, c-Myc function is also necessary for the angiogenic switch that is indispensable for the progression and metastasis of tumors. These findings support the model wherein c-Myc promotes cell growth and transformation, as well as vascular and hematopoietic development, by functioning as a master regulator of angiogenic factors.
Collapse
Affiliation(s)
- Troy A Baudino
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The activated product of the myc oncogene deregulates both cell growth and death check points and, in a permissive environment, rapidly accelerates the affected clone through the carcinogenic process. Advances in understanding the molecular mechanism of Myc action are highlighted in this review. With the revolutionary developments in molecular diagnostic technology, we have witnessed an unprecedented advance in detecting activated myc in its deregulated, oncogenic form in primary human cancers. These improvements provide new opportunities to appreciate the tumor subtypes harboring deregulated Myc expression, to identify the essential cooperating lesions, and to realize the therapeutic potential of targeting Myc. Knowledge of both the breadth and depth of the numerous biological activities controlled by Myc has also been an area of progress. Myc is a multifunctional protein that can regulate cell cycle, cell growth, differentiation, apoptosis, transformation, genomic instability, and angiogenesis. New insights into Myc's role in regulating these diverse activities are discussed. In addition, breakthroughs in understanding Myc as a regulator of gene transcription have revealed multiple mechanisms of Myc activation and repression of target genes. Moreover, the number of reported Myc regulated genes has expanded in the past few years, inspiring a need to focus on classifying and segregating bona fide targets. Finally, the identity of Myc-binding proteins has been difficult, yet has exploded in the past few years with a plethora of novel interactors. Their characterization and potential impact on Myc function are discussed. The rapidity and magnitude of recent progress in the Myc field strongly suggests that this marvelously complex molecule will soon be unmasked.
Collapse
Affiliation(s)
- Sara K Oster
- Division of Cellular and Molecular Biology, Ontario Cancer Institute, Princess Margaret Hospital, University of Toronto
| | | | | | | |
Collapse
|
46
|
Qian X, Rothman VL, Nicosia RF, Tuszynski GP. Expression of thrombospondin-1 in human pancreatic adenocarcinomas: role in matrix metalloproteinase-9 production. Pathol Oncol Res 2002; 7:251-9. [PMID: 11882904 DOI: 10.1007/bf03032381] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human pancreatic adenocarcinoma, an aggressive malignant disease, shows a strong desmoplastic reaction characterized by a remarkable proliferation of interstitial connective tissues. Thrombospondin-1 (TSP-1), a 450 kDa platelet and matrix glycoprotein, has been implicated in tumor invasion, angiogenesis and metastasis. TSP-1 and MMP-9 expression in pancreatic adenocarcinoma and control pancreas tissues was measured by immunohistochemistry. TSP-1 expression in pancreatic carcinoma cell lines, fibroblasts, and endothelial cells was measured by a competitive TSP-1 enzyme linked immunosorbent assay (ELISA). The effect of TSP-1 on MMP-9 production in pancreatic carcinoma cell lines was measured by zymography and Western blot analysis. Eighty five per cent (23/27) of cases of pancreatic adenocarcinoma showed increased TSP-1 staining in the desmoplastic stroma adjacent to tumor cells. No specific positive staining for TSP-1 was observed in the normal pancreatic tissues and the inflammatory areas. TSP-1 localized in tumor stroma surrounding the tumor cells expressing MMP-9. Using TSP-1 competitive ELISA, the secretion of TSP-1 by different pancreatic cancer cell lines into culture medium varied from 11.45 plus minus 14.08 to 275.82 plus minus 45.56 ng/10 6 cells/24 hours. The amounts of TSP-1 detected in both culture media and cell extracts from fibroblasts or endothelial cells were at least 2-3 fold higher than those from pancreatic cancer cells. TSP-1 augmented the production of matrix metalloproteinase-9, a matrix degrading enzyme, in pancreatic cancer cells in vitro. Stromally-derived TSP-1 up-regulates the production of MMP-9 by pancreatic adenocarcinoma. These data are consistent with the conclusion that TSP-1-rich stroma is involved in regulating matrix remodeling in tumor invasion.
Collapse
Affiliation(s)
- X Qian
- MCP Hahnemann University, Department of Pathology, Philadelphia, PA 19102-1192, USA
| | | | | | | |
Collapse
|
47
|
Okamoto M, Ono M, Uchiumi T, Ueno H, Kohno K, Sugimachi K, Kuwano M. Up-regulation of thrombospondin-1 gene by epidermal growth factor and transforming growth factor beta in human cancer cells--transcriptional activation and messenger RNA stabilization. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:24-34. [PMID: 11955611 DOI: 10.1016/s0167-4781(01)00345-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thrombospondin-1 (TSP-1), a multifunctional matrix protein, affects tumor growth through modulation of angiogenesis and other stromal biological functions. In several of nine human cancer cell lines derived from liver, brain, pancreas, and bone, expression of TSP-1 was up-regulated in response to the two most representative growth factors, epidermal growth factor (EGF) and transforming growth factor beta1 (TGFbeta1). Expression of TSP-1 was markedly enhanced in hepatic HuH-7 cells by EGF but not by TGFbeta1. In contrast, expression of TSP-1 was markedly enhanced by TGFbeta1, but not by EGF, in osteosarcoma MG63 cells. EGF induced activation of TSP-1 promoter-driven luciferase activity in HuH-7 cells, and the elements between -267 and -71 on the 5' region of TSP-1 gene containing two GC boxes to which Sp1 bound, were found to be responsible for the promoter activation by EGF. However, EGF did not alter TSP-1 mRNA stability in hepatic cells. On the other hand, no such enhancement of the TSP-1 promoter activity by TGFbeta1 appeared in MG63 cells. Enhanced expression of TSP-1 by TGFbeta1 in MG63 cells was partially blocked by exogenous addition of SB203580, an inhibitor of p38 mitogen-activated protein kinase. TGFbeta was found to induce marked elongation of TSP-1 mRNA longevity in osteosarcoma cells when mRNA degradation was assayed in the presence of alpha-amanitin. The up-regulation of TSP-1 by EGF and TGFbeta might play a critical role in modulation of angiogenesis and formation of matrices in tumor stroma.
Collapse
Affiliation(s)
- Masahiro Okamoto
- Department of Medical Biochemistry, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Vikhanskaya F, Bani MR, Borsotti P, Ghilardi C, Ceruti R, Ghisleni G, Marabese M, Giavazzi R, Broggini M, Taraboletti G. p73 Overexpression increases VEGF and reduces thrombospondin-1 production: implications for tumor angiogenesis. Oncogene 2001; 20:7293-300. [PMID: 11704858 DOI: 10.1038/sj.onc.1204896] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2001] [Revised: 08/01/2001] [Accepted: 08/07/2001] [Indexed: 11/09/2022]
Abstract
Tumor neovascularization is controlled by a balance between positive and negative effectors, whose production can be regulated by oncogenes and tumor suppressor genes. The aim of this study was to investigate whether the angiogenic potential of tumors could also be controlled by p73, a gene homologous to the tumor suppressor p53, whose involvement in tumor angiogenesis is known. We have studied the production of proangiogenic (VEGF, FGF-2, PIGF and PDGF) and antiangiogenic (TSP-1) factors in two p73 overexpressing clones obtained from the human ovarian carcinoma cells A2780. TSP-1 was downregulated in both clones compared to mock transfected cells, both at mRNA and protein level. Conversely, both clones showed an increased production of VEGF mRNA and protein. For both TSP-1 and VEGF, regulation of expression was partially due to modulation of the promoter activity, and was dependent on p53 status. Production of the other angiogenic factors FGF-2, PIGF and PDGF-B was also increased in p73 overexpressing clones. The two clones were more angiogenic than parental cells, as shown in vitro by their increased chemotactic activity for endothelial cells, and in vivo by the generation of more vascularized tumors. These findings suggest a potential role of p73 in tumor angiogenesis.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Carcinoma/pathology
- Chemotaxis/drug effects
- Culture Media, Conditioned/chemistry
- Culture Media, Conditioned/pharmacology
- Culture Media, Serum-Free
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Endothelial Growth Factors/biosynthesis
- Endothelial Growth Factors/genetics
- Endothelium, Vascular/cytology
- Enzyme-Linked Immunosorbent Assay
- Female
- Fibroblast Growth Factor 2/biosynthesis
- Fibroblast Growth Factor 2/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genes, p53
- Humans
- Lymphokines/biosynthesis
- Lymphokines/genetics
- Membrane Proteins
- Mice
- Mice, Nude
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Transplantation
- Neoplasms, Experimental/blood supply
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Ovarian Neoplasms/pathology
- Platelet-Derived Growth Factor/biosynthesis
- Platelet-Derived Growth Factor/genetics
- Promoter Regions, Genetic
- Protein Biosynthesis
- Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Recombinant Fusion Proteins/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Thrombospondin 1/biosynthesis
- Thrombospondin 1/genetics
- Transfection
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Protein p73
- Tumor Suppressor Protein p53/physiology
- Tumor Suppressor Proteins
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- F Vikhanskaya
- Department of Oncology, Mario Negri Institute for Pharmacological Research, 20157 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The thrombospondins (TSPs) are a family of five secreted proteins that are widely distributed in the extracellular matrix of numerous tissues. TSPs are multimodular and each domain specifies a distinct biological function through interaction with a specific receptor. TSP1 and TSP2 have anti-angiogenic activity, which, at least for TSP1, involves interaction with the microvascular endothelial cell receptor CD36. Expression of TSP1 and TSP2 is modulated by hypoxia and by oncogenes. In several tumors (thyroid, colon, bladder carcinomas), TSP1 expression is inversely correlated with tumor grade and survival rate, whereas in others (e.g. breast carcinomas), it is correlated with the stromal response and is of little prognostic value. Recent studies suggest that TSPs or TSP-derived peptides retaining biological activity could be developed into promising new therapeutic strategies for the anti-angiogenic treatment of solid tumors.
Collapse
Affiliation(s)
- F de Fraipont
- INSERM EMI 0105, Dept of Molecular and Structural Biology, Commissariat à l'Energie Atomique, Grenoble, France
| | | | | | | |
Collapse
|
50
|
Filleur S, Volpert OV, Degeorges A, Voland C, Reiher F, Clézardin P, Bouck N, Cabon F. In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Genes Dev 2001; 15:1373-82. [PMID: 11390357 PMCID: PMC312711 DOI: 10.1101/gad.193501] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thrombospondin 1 (TSP1) is a multifunctional protein able to activate TGFbeta and to inhibit angiogenesis in vivo. Although usually thought of as an inhibitor of tumor growth, TSP1 may sometimes be present at high levels during tumor progression, suggesting that tumors can eventually overcome their anti-tumor effects. Using a tet-repressible expression system, we demonstrate that murine TSP1 delayed the onset of tumor growth when produced in the tumor bed by rat fibrosarcoma tumor cells or by stromal fibroblasts coinjected with unmodified C6 glioma tumor cells. Yet upon prolonged exposure to TSP1, tumors came to grow at the same rate in the presence as in the absence of TSP1 and transplantation experiments showed that they had become insensitive to inhibition by TSP1 in both syngeneic and immune compromised hosts. Tumor resistance to TSP1 developed as a result of the in vivo outgrowth of pre-existing tumor cell variants that (1) secreted increased amounts of angiogenic factors that counterbalanced the inhibitory effect of TSP1 on neovascularization and (2) grew more efficiently in the presence of TSP1-activated TGFbeta. These results indicate that prolonged and continuous local delivery of a single multifunctional angiogenesis inhibitor like TSP1 to fast-growing tumors can lead to tumor resistance in vivo by fostering the outgrowth of subpopulations that are a by-product of the genetic instability of the tumor cells themselves.
Collapse
Affiliation(s)
- S Filleur
- Institut André Lwoff, Centre National de la Recherche Scientifique UPR 9079, 94801 Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|