1
|
Wang B, Shi L, Men J, Li Q, Hou X, Wang C, Zhao F. Controlled synchronization of prolactin/STAT5 and AKT1/mTOR in bovine mammary epithelial cells. In Vitro Cell Dev Biol Anim 2020; 56:243-252. [DOI: 10.1007/s11626-020-00432-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/27/2020] [Indexed: 01/01/2023]
|
2
|
Oakes SR, Gallego-Ortega D, Stanford PM, Junankar S, Au WWY, Kikhtyak Z, von Korff A, Sergio CM, Law AMK, Castillo LE, Allerdice SL, Young AIJ, Piggin C, Whittle B, Bertram E, Naylor MJ, Roden DL, Donovan J, Korennykh A, Goodnow CC, O’Bryan MK, Ormandy CJ. A mutation in the viral sensor 2'-5'-oligoadenylate synthetase 2 causes failure of lactation. PLoS Genet 2017; 13:e1007072. [PMID: 29117179 PMCID: PMC5695588 DOI: 10.1371/journal.pgen.1007072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/11/2017] [Indexed: 01/28/2023] Open
Abstract
We identified a non-synonymous mutation in Oas2 (I405N), a sensor of viral double-stranded RNA, from an ENU-mutagenesis screen designed to discover new genes involved in mammary development. The mutation caused post-partum failure of lactation in healthy mice with otherwise normally developed mammary glands, characterized by greatly reduced milk protein synthesis coupled with epithelial cell death, inhibition of proliferation and a robust interferon response. Expression of mutant but not wild type Oas2 in cultured HC-11 or T47D mammary cells recapitulated the phenotypic and transcriptional effects observed in the mouse. The mutation activates the OAS2 pathway, demonstrated by a 34-fold increase in RNase L activity, and its effects were dependent on expression of RNase L and IRF7, proximal and distal pathway members. This is the first report of a viral recognition pathway regulating lactation. Using ENU-mutagenesis in mice we discovered a pedigree with lactation failure. Mammary development through puberty and pregnancy appeared normal in mutant animals, but the activation of lactation failed in the immediate post partum period and no milk reached the pups. Failure of lactation was accompanied by greatly diminished milk protein synthesis, decreased epithelial cell proliferation, increased epithelial cell death and a robust interferon response. A non-synonymous mutation in Oas2 (I405N) in the viral sensor Oas2 was found and expression of mutant Oas2 in mammary cells recapitulated these phenotypes. RNase L, the most proximal effector of OAS2 action, was activated in the mammary glands of mutant mice and in mammary cells expressing mutant Oas2. Knockdown of RNase L, or the distal pathway member IRF7, prevented these effects, indicating that the mutation in OAS2 caused activation of the viral signaling pathway. These results show that viral detection in the mammary gland can prevent lactation.
Collapse
Affiliation(s)
- Samantha R. Oakes
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
- * E-mail:
| | - David Gallego-Ortega
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
| | - Prudence M. Stanford
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Simon Junankar
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
| | - Wendy Wing Yee Au
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Zoya Kikhtyak
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Anita von Korff
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Claudio M. Sergio
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Andrew M. K. Law
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Lesley E. Castillo
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Stephanie L. Allerdice
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Adelaide I. J. Young
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Catherine Piggin
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Belinda Whittle
- Australian Phenomics Facility, The Australian National University, Canberra, ACT, Australia
| | - Edward Bertram
- Australian Phenomics Facility, The Australian National University, Canberra, ACT, Australia
| | - Matthew J. Naylor
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Daniel L. Roden
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
| | - Jesse Donovan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
- Australian Phenomics Facility, The Australian National University, Canberra, ACT, Australia
| | - Moira K. O’Bryan
- The School of Biological Sciences, Monash University, Clayton, Australia
| | - Christopher J. Ormandy
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
| |
Collapse
|
3
|
A model of secreting murine mammary epithelial HC11 cells comprising endogenous Bcrp/Abcg2 expression and function. Cell Biol Toxicol 2015; 31:111-20. [DOI: 10.1007/s10565-015-9298-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/09/2015] [Indexed: 12/30/2022]
|
4
|
Velázquez-Villegas LA, López-Barradas AM, Torres N, Hernández-Pando R, León-Contreras JC, Granados O, Ortíz V, Tovar AR. Prolactin and the dietary protein/carbohydrate ratio regulate the expression of SNAT2 amino acid transporter in the mammary gland during lactation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1157-64. [PMID: 25701231 DOI: 10.1016/j.bbamem.2015.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
Abstract
The sodium coupled neutral amino acid transporter 2 (SNAT2/SAT2/ATA2) is expressed in the mammary gland (MG) and plays an important role in the uptake of alanine and glutamine which are the most abundant amino acids transported into this tissue during lactation. Thus, the aim of this study was to assess the amount and localization of SNAT2 before delivery and during lactation in rat MG, and to evaluate whether prolactin and the dietary protein/carbohydrate ratio might influence SNAT2 expression in the MG, liver and adipose tissue during lactation. Our results showed that SNAT2 protein abundance in the MG increased during lactation and this increase was maintained along this period, while 24 h after weaning it tended to decrease. To study the effect of prolactin on SNAT2 expression, we incubated MG explants or T47D cells transfected with the SNAT2 promoter with prolactin, and we observed in both studies an increase in the SNAT2 expression or promoter activity. Consumption of a high-protein/low carbohydrate diet increased prolactin concentration, with a concomitant increase in SNAT2 expression not only in the MG during lactation, but also in the liver and adipose tissue. There was a correlation between SNAT2 expression and serum prolactin levels depending on the amount of dietary protein/carbohydrate ratio consumed. These findings suggest that prolactin actively supports lactation providing amino acids to the gland through SNAT2 for the synthesis of milk proteins.
Collapse
Affiliation(s)
- Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Adriana M López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Juan Carlos León-Contreras
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Omar Granados
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Victor Ortíz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico.
| |
Collapse
|
5
|
Qian X, Zhao FQ. Collaborative interaction of Oct-2 with Oct-1 in transactivation of lactogenic hormones-induced β-casein gene expression in mammary epithelial cells. Gen Comp Endocrinol 2014; 204:185-94. [PMID: 24861805 DOI: 10.1016/j.ygcen.2014.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 11/27/2022]
Abstract
Octamer-binding transcription factor-1 (Oct-1) is found to mediate lactogenic hormones (prolactin and glucocorticoids, HP)-induced β-casein gene expression in mammary alveolar secretory epithelial cells (MECs). The mammary gland also expresses Oct-2 isoform. In this study, we show that Oct-2 is also involved in HP-induced β-casein expression. Oct-2 endogenously binds to the β-casein promoter in MECs, and HP induce Oct-2 binding activity via mechanisms other than increasing Oct-2 expression or inducing Oct-2 translocation to the nucleus. Oct-2 transactivates HP-induced β-casein gene expression and this function is exchangeable with Oct-1. In MECs, Oct-2 is found to physically interact with Oct-1 regardless of HP treatment. However, HP induce physical interactions of Oct-2 with both signal transducer and activator of transcription 5 (STAT5) and glucocorticoid receptor (GR). These results provided biochemical evidence that Oct-2 may form a heteromer with Oct-1 in induction of β-casein gene expression by HP in MECs.
Collapse
Affiliation(s)
- Xi Qian
- Laboratory of Lactation and Metabolic Physiology, Department of Animal Science, University of Vermont, Burlington, VT 05405, USA
| | - Feng-Qi Zhao
- Laboratory of Lactation and Metabolic Physiology, Department of Animal Science, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
6
|
Wang JH, Du JY, Wu YY, Chen MC, Huang CH, Shen HJ, Lee CF, Lin TH, Lee YJ. Suppression of prolactin signaling by pyrrolidine dithiocarbamate is alleviated by N-acetylcysteine in mammary epithelial cells. Eur J Pharmacol 2014; 738:301-9. [PMID: 24952131 DOI: 10.1016/j.ejphar.2014.05.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/08/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
Prolactin is the key hormone to stimulate milk synthesis in mammary epithelial cells. It signals through the Jak2-Stat5 pathway to induce the expression of β-casein, a milk protein which is often used as a marker for mammary differentiation. Here we examined the effect of pyrrolidine dithiocarbamate (PDTC) on prolactin signaling. Our results show that PDTC downregulates prolactin receptor levels, and inhibits prolactin-induced Stat5 tyrosine phosphorylation and β-casein expression. This is not due to its inhibitory action on NF-κB since application of another NF-κB inhibitor, BAY 11-7082, and overexpression of I-κBα super-repressor do not lead to the same results. Instead, the pro-oxidant activity of PDTC is involved as inclusion of the antioxidant N-acetylcysteine restores prolactin signaling. PDTC triggers great extents of activation of ERK and JNK in mammary epithelial cells. These do not cause suppression of prolactin signaling but confer serine phosphorylation of insulin receptor substrate-1, thereby perturbing insulin signal propagation. As insulin facilitates optimal β-casein expression, blocking insulin signaling by PDTC might pose additional impediment to β-casein expression. Our results thus imply that lactation will be compromised when the cellular redox balance is dysregulated, such as during mastitis.
Collapse
Affiliation(s)
- Jen-Hsing Wang
- Department of Obstetrics and Gynecology, Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan, Republic of China
| | - Jyun-Yi Du
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Yi-Ying Wu
- Department of Medical Laboratory Science and Technology, China Medical University and Hospital, Taichung 404, Taiwan, Republic of China
| | - Meng-Chi Chen
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Chun-Hao Huang
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Hsin-Ju Shen
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Chin-Feng Lee
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Yi-Ju Lee
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan, Republic of China.
| |
Collapse
|
7
|
Shao Y, Wellman TL, Lounsbury KM, Zhao FQ. Differential regulation of GLUT1 and GLUT8 expression by hypoxia in mammary epithelial cells. Am J Physiol Regul Integr Comp Physiol 2014; 307:R237-47. [PMID: 24920730 DOI: 10.1152/ajpregu.00093.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glucose is a major substrate for milk synthesis and is taken up from the blood by mammary epithelial cells (MECs) through facilitative glucose transporters (GLUTs). The expression levels of GLUT1 and GLUT8 are upregulated dramatically in the mammary gland from late pregnancy through early lactation stages. This study aimed to test the hypothesis that this increase in GLUT1 and GLUT8 expression involves hypoxia signaling through hypoxia inducible factor-1α (HIF-1α) in MECs. Mouse mammary glands showed significantly more hypoxia in midpregnancy through early lactation stages compared with in the virgin stage, as stained by the hypoxia marker pimonidazole HCl. Treatment with hypoxia (2% O2) significantly stimulated glucose uptake and GLUT1 mRNA and protein expression, but decreased GLUT8 mRNA expression in bovine MECs. In MECs, hypoxia also increased the levels of HIF-1α protein in the nuclei, and siRNA against HIF-1α completely abolished the hypoxia-induced upregulation of GLUT1, while having no effect on GLUT8 expression. A 5'-RCGTG-3' core HIF-1α binding sequence was identified 3.7 kb upstream of the bovine GLUT1 gene, and HIF-1α binding to this site was increased during hypoxia. In conclusion, the mammary glands in pregnant and lactating animals are hypoxic, and MECs respond to this hypoxia by increasing GLUT1 expression and glucose uptake through a HIF-1α-dependent mechanism. GLUT8 expression, however, is negatively regulated by hypoxia through a HIF-1α-independent pathway. The regulation of glucose transporters through hypoxia-mediated gene transcription in the mammary gland may provide an important physiological mechanism for MECs to meet the metabolic demands of mammary development and lactation.
Collapse
Affiliation(s)
- Yong Shao
- Laboratory of Lactation and Metabolic Physiology, Department of Animal Science; and
| | - Theresa L Wellman
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Karen M Lounsbury
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Feng-Qi Zhao
- Laboratory of Lactation and Metabolic Physiology, Department of Animal Science; and
| |
Collapse
|
8
|
Activation of STAT5 contributes to proliferation in U87 human glioblastoma multiforme cells. Mol Med Rep 2014; 10:203-10. [PMID: 24821382 DOI: 10.3892/mmr.2014.2223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 03/25/2014] [Indexed: 11/05/2022] Open
Abstract
Rapid increases in the tyrosine phosphorylation of signal transducers and activators of transcription 5 (STAT5) proteins have been extensively documented in cells stimulated with cytokines and growth factors. However, the mechanisms by which STAT5 translocates to the nucleus and regulates proliferation in human glioblastoma multiforme cells have not been studied in detail. To the best of our knowledge, the present study demonstrated for first time that stimulation of a glioblastoma multiforme (GBM) cell line (U87-MG) with hepatocyte growth factor (HGF) resulted in the phosphorylation of STAT5 at Tyr-694/699 and nuclear translocation of STAT5. In addition, HGF promoted nuclear translocation of STAT5 in a time-dependent manner and increased the proliferation of U87-MG cells. In order to determine the role of STAT5 directly, RNA interference was used to knockdown STAT5 expression in the U87-MG cell line. It was illustrated that small interfering RNA (siRNA) against STAT5 successfully inhibited the protein expression of STAT5 in the U87-MG cell line, leading to a potent suppression of tumor cell proliferation with or without HGF treatment. In order to broaden the investigation and to determine the role of STAT5 in vivo, immunohistochemistry (IHC) was applied to evaluate STAT5 expression in 100 newly diagnosed glioma and 10 non-neoplastic brain tissues. p-STAT5 expression increased according to the histopathological grade of the glioma. However, no p-STAT5 staining was observed in non-neoplastic brain tissues. These findings suggested that inhibition of the STAT5 pathway may be an effective therapeutic strategy for the clinical management of GBM.
Collapse
|
9
|
Kobayashi K, Oyama S, Uejyo T, Kuki C, Rahman MM, Kumura H. Underlying mechanisms involved in the decrease of milk secretion during Escherichia coli endotoxin induced mastitis in lactating mice. Vet Res 2013; 44:119. [PMID: 24308795 PMCID: PMC4028753 DOI: 10.1186/1297-9716-44-119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/19/2013] [Indexed: 12/19/2022] Open
Abstract
Mastitis, the inflammation of mammary glands resulting from bacterial infection, disrupts milk production in lactating mammary glands. In this study, we injected lipopolysaccharide (LPS), one of the endotoxins from Escherichia coli into mouse mammary glands to disrupt milk production, and we investigated the influence of LPS on nutrient uptake, synthesis, and secretion processes for milk component production in alveolar epithelial cells (AEC). The expression of genes relevant to the three-staged milk component production process (nutrient uptake, synthesis, and secretion of milk components) were down-regulated within 12 h after LPS injection in AEC. The internalization of glucose transporter 1 (GLUT-1) from the basolateral membrane to the cytoplasm occurred in accordance with the down-regulation of gene expression 3 h after LPS injection. The abnormal localization of adipophilin and beta-casein was also observed in the LPS-injected mammary glands. SLC7A1, an amino acid transporter, was up-regulated 3 and 6 h after LPS injection. Furthermore, the inactivation of signal transducer and activator of transcription 5 (STAT5) and the activation of STAT3 and nuclear factor-kappa B (NFkappaB) occurred 3 h after LPS injection. These results indicate that the nutrient uptake, synthesis, and secretion of milk components in AEC are rapidly shut down in the lactating mammary glands after LPS injection.
Collapse
Affiliation(s)
- Ken Kobayashi
- Laboratory of Dairy Food Science, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo 060-8589, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Qian X, Zhao FQ. Interactions of the ubiquitous octamer-binding transcription factor-1 with both the signal transducer and activator of transcription 5 and the glucocorticoid receptor mediate prolactin and glucocorticoid-induced β-casein gene expression in mammary epithelial cells. Int J Biochem Cell Biol 2013; 45:724-35. [PMID: 23313770 DOI: 10.1016/j.biocel.2013.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/27/2012] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
Regulation of milk protein gene expression by lactogenic hormones (prolactin and glucocorticoids) provides an attractive model for studying the mechanisms by which protein and steroid hormones synergistically regulate gene expression. β-Casein is one of the major milk proteins and its expression in mammary epithelial cells is stimulated by lactogenic hormones. The signal transducer and activator of transcription 5 and glucocorticoid receptor are essential downstream mediators of prolactin and glucocorticoid signaling, respectively. Previous studies have shown that mutating the octamer-binding site of the β-casein gene proximal promoter dramatically reduces the hormonal induction of the promoter activity. However, little is known about the underlying molecular mechanisms. In this report, we show that lactogenic hormones rapidly induce the binding of octamer-binding transcription factor-1 to the β-casein promoter and this induction is not mediated by either increasing the expression of octamer-binding transcription factor-1 or inducing its translocation to the nucleus. Rather, lactogenic hormones induce physical interactions between the octamer-binding transcription factor-1, signal transducer and activator of transcription 5, and glucocorticoid receptor to form a ternary complex, and these interactions enhance or stabilize the binding of these transcription factors to the promoter. Abolishing these interactions significantly reduces the hormonal induction of β-casein gene transcription. Thus, our study indicates that octamer-binding transcription factor-1 may serve as a master regulator that facilitates the DNA binding of both signal transducer and activator of transcription 5 and glucocorticoid receptor in hormone-induced β-casein expression, and defines a novel mechanism of regulation of tissue-specific gene expression by the ubiquitous octamer-binding transcription factor-1.
Collapse
Affiliation(s)
- Xi Qian
- Laboratory of Lactation and Metabolic Physiology, Department of Animal Science, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
11
|
Milani ES, Brinkhaus H, Dueggeli R, Klebba I, Mueller U, Stadler M, Kohler H, Smalley MJ, Bentires-Alj M. Protein tyrosine phosphatase 1B restrains mammary alveologenesis and secretory differentiation. Development 2013; 140:117-25. [DOI: 10.1242/dev.082941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tyrosine phosphorylation plays a fundamental role in mammary gland development. However, the role of specific tyrosine phosphatases in controlling mammary cell fate remains ill defined. We have identified protein tyrosine phosphatase 1B (PTP1B) as an essential regulator of alveologenesis and lactogenesis. PTP1B depletion increased the number of luminal mammary progenitors in nulliparous mice, leading to enhanced alveoli formation upon pregnancy. Mechanistically, Ptp1b deletion enhanced the expression of progesterone receptor and phosphorylation of Stat5, two key regulators of alveologenesis. Furthermore, glands from Ptp1b knockout mice exhibited increased expression of milk proteins during pregnancy due to enhanced Stat5 activation. These findings reveal that PTP1B constrains the number of mammary progenitors and thus prevents inappropriate onset of alveologenesis in early pregnancy. Moreover, PTP1B restrains the expression of milk proteins during pregnancy and thus prevents premature lactogenesis. Our work has implications for breast tumorigenesis because Ptp1b deletion has been shown to prevent or delay the onset of mammary tumors.
Collapse
Affiliation(s)
- Emanuela S. Milani
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
- University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Heike Brinkhaus
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Regula Dueggeli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Ina Klebba
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Urs Mueller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Michael Stadler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff CF1 3AX, UK
| | - Mohamed Bentires-Alj
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| |
Collapse
|
12
|
Smit LS, Meyer DJ, Argetsinger LS, Schwartz J, Carter‐Su C. Molecular Events in Growth Hormone–Receptor Interaction and Signaling. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Stat5a serine 725 and 779 phosphorylation is a prerequisite for hematopoietic transformation. Blood 2010; 116:1548-58. [PMID: 20508164 DOI: 10.1182/blood-2009-12-258913] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stat5 transcription factors are essential gene regulators promoting proliferation, survival, and differentiation of all hematopoietic cell types. Mutations or fusions of oncogenic tyrosine kinases often result in constitutive Stat5 activation. We have modeled persistent Stat5 activity by using an oncogenic Stat5a variant (cS5). To analyze the hitherto unrecognized role of Stat5 serine phosphorylation in this context, we have generated cS5 constructs with mutated C-terminal serines 725 and 779, either alone or in combination. Genetic complementation assays in primary Stat5(null/null) mast cells and Stat5(DeltaN) T cells demonstrated reconstitution of proliferation with these mutants. Similarly, an in vivo reconstitution experiment of transduced Stat5(null/null) fetal liver cells transplanted into irradiated wild-type recipients revealed that these mutants exhibit biologic activity in lineage differentiation. By contrast, the leukemogenic potential of cS5 in bone marrow transplants decreased dramatically in cS5 single-serine mutants or was completely absent upon loss of both serine phosphorylation sites. Our data suggest that Stat5a serine phosphorylation is a prerequisite for cS5-mediated leukemogenesis. Hence, interference with Stat5a serine phosphorylation might provide a new therapeutic option for leukemia and myeloid dysplasias without affecting major functions of Stat5 in normal hematopoiesis.
Collapse
|
14
|
Liao Z, Lutz J, Nevalainen MT. Transcription factor Stat5a/b as a therapeutic target protein for prostate cancer. Int J Biochem Cell Biol 2009; 42:186-92. [PMID: 19914392 DOI: 10.1016/j.biocel.2009.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Prostate cancer is the most common non-cutaneous cancer in Western males. The majority of prostate cancer fatalities are caused by development of castration-resistant growth and metastatic spread of the primary tumor. The average duration of the response of primary prostate cancer to hormonal ablation is less than 3 years, and 75% of prostate cancers in the United States progress to castration-resistant disease. The existing pharmacological therapies for metastatic and/or castration-resistant prostate cancer do not provide significant survival benefit. This review summarizes the importance of transcription factor Stat5 signaling in the pathogenesis of prostate cancer and discusses the molecular basis of Stat5a/b inhibition as a therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Zhiyong Liao
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
15
|
Insulin, a key regulator of hormone responsive milk protein synthesis during lactogenesis in murine mammary explants. Funct Integr Genomics 2009; 10:87-95. [DOI: 10.1007/s10142-009-0140-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/27/2009] [Accepted: 09/11/2009] [Indexed: 11/25/2022]
|
16
|
|
17
|
Tan SH, Nevalainen MT. Signal transducer and activator of transcription 5A/B in prostate and breast cancers. Endocr Relat Cancer 2008; 15:367-90. [PMID: 18508994 PMCID: PMC6036917 DOI: 10.1677/erc-08-0013] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinase signaling pathways, such as Janus kinase 2-Signal transducer and activator of transcription 5A/B (JAK2-STAT5A/B), are of significant interest in the search for new therapeutic strategies in both breast and prostate cancers. In prostate cancer, the components of the JAK2-STAT5A/B signaling pathway provide molecular targets for small-molecule inhibition of survival and growth signals of the cells. At the same time, new evidence suggests that the STAT5A/B signaling pathway is involved in the transition of organ-confined prostate cancer to hormone-refractory disease. This implies that the active JAK2-STAT5A/B signaling pathway potentially provides the means for pharmacological intervention of clinical prostate cancer progression. In addition, active STAT5A/B may serve as a prognostic marker for identification of those primary prostate cancers that are likely to progress to aggressive disease. In breast cancer, the role of STAT5A/B is more complex. STAT5A/B may have a dual role in the regulation of malignant mammary epithelium. Data accumulated from mouse models of breast cancer suggest that in early stages of breast cancer STAT5A/B may promote malignant transformation and enhance growth of the tumor. This is in contrast to established breast cancer, where STAT5A/B may mediate the critical cues for maintaining the differentiation of mammary epithelium. In addition, present data suggest that activation of STAT5A/B in breast cancer predicts favorable clinical outcome. The dual nature of STAT5A/B action in breast cancer makes the therapeutic use of STAT5 A/B more complex.
Collapse
Affiliation(s)
- Shyh-Han Tan
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB 309, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
18
|
Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ. Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13:13-28. [PMID: 18219564 DOI: 10.1007/s10911-008-9069-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022] Open
Abstract
Mammary morphogenesis is orchestrated with other reproductive events by pituitary-driven changes to the systemic hormone environment, initiating the formation of a mammary ductal network during puberty and the addition of secretory alveoli during pregnancy. Prolactin is the major driver of development during pregnancy via regulation of ovarian progesterone production (in many species) and direct effects on mammary epithelial cells (in all species). Together these hormones regulate two aspects of development that are the subject of intense interest: (1) a genomic regulatory network that integrates many additional spatial and temporal cues to control gene expression and (2), the activity of a stem and progenitor cell hierarchy. Amalgamation of these two aspects will increase our understanding of cell proliferation and differentiation within the mammary gland, with clear application to our attempts to control breast cancer. Here we focus on providing an over-view of prolactin action during development of the model murine mammary gland.
Collapse
Affiliation(s)
- Samantha R Oakes
- Development group, Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | | | | | | |
Collapse
|
19
|
Sultan AS, Brim H, Sherif ZA. Co-overexpression of Janus kinase 2 and signal transducer and activator of transcription 5a promotes differentiation of mammary cancer cells through reversal of epithelial-mesenchymal transition. Cancer Sci 2008; 99:272-9. [PMID: 18271926 PMCID: PMC11159878 DOI: 10.1111/j.1349-7006.2007.00685.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Signal transducer and activator of transcription (Stat) 5 appears to play a vital role in prolactin (PRL)-induced cell differentiation and normal mammary gland development. We previously showed that PRL-activated Stat5a induced expression of E-cadherin-beta-catenin complex in vitro and in xenotransplant tumors in vivo led to inhibition of breast cancer invasion. In the present study, we show that human breast cancer cells co-overexpressing Stat5a and its tyrosine kinase (Jak) 2 cultured in three-dimensional (3D) Matrigel culture demonstrate changes consistent with induction of mesenchymal-epithelial redifferentiation. Jak2 and Stat5a-co-overexpressing cells treated with cocktail (PRL, dexamethasone, and insulin), effectively reverse epithelial-mesenchymal transition by stimulating 3D organoids more reminiscent of the acinar growth of normal mammary epithelial cells, compared with cells overexpressing only Stat5a or Jak2. In contrast, dominant-negative dominant-negative-Stat5 blocks 3D organoid formation, causing cells to grow in layers instead. Hyperactivation of Jak2 and Stat5a in T-47D cells induces alveolar-like structures, mamospheres, with marked lumen formation through central apoptosis and restores a polarized epithelial phenotype. However, Jak2 and Stat5a overexpression in BT-20 cells induces partially differentiated 3D organoids with no central lumen, but effectively re-expresses estrogen receptor alpha. Jak2 and Stat5a-induced 3D differentiated organoids are accompanied by increased expression of E-cadherin, zonula occludens-1, and cytokeratins 8 and 18, and decreased levels of vimentin and Snail, indicating a shift from a mesenchymal phenotype toward an epithelial phenotype. Collectively, Jak2 and Stat5a co-overexpression cooperatively reverses epithelial-mesenchymal transition and promotes differentiation in human breast cancer cells, which may provide a mechanism to explain the invasive suppressor role of PRL-activated Stat5a in mammary cancer cells.
Collapse
Affiliation(s)
- Ahmed S Sultan
- Department of Oncology, Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
20
|
Abstract
The aims of this review are three-fold: first, to collate what is known about the production and activities of phosphorylated prolactin (PRL), the latter largely, but not exclusively, as illustrated through the use of the molecular mimic, S179D PRL; second, to apply this and related knowledge to produce an updated model of prolactin-receptor interactions that may apply to other members of this cytokine super-family; and third, to promote a shift in the current paradigm for the development of clinically important growth antagonists. This third aim explains the title since, based on results with S179D PRL, it is proposed that agents which signal to antagonistic ends may be better therapeutics than pure antagonists-hence antagonistic agony. Since S179D PRL is not a pure antagonist, we have proposed the term selective prolactin receptor modulator (SPeRM) for this and like molecules.
Collapse
Affiliation(s)
- Ameae M Walker
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
21
|
Weaver AM, Silva CM. S731 in the transactivation domain modulates STAT5b activity. Biochem Biophys Res Commun 2007; 362:1026-30. [PMID: 17822672 PMCID: PMC2041903 DOI: 10.1016/j.bbrc.2007.08.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/17/2007] [Indexed: 12/25/2022]
Abstract
As mediators of cytokine and growth factor signaling, signal transducers and activators of transcription (STATs) transmit signals from the membrane and cytoplasm to the nucleus. While Y699 phosphorylation is required for STAT5b transcriptional activity, our previous studies show that mutation of two tyrosines in the transactivation domain of STAT5b (Y740/743F) increases Y699 phosphorylation leading to increased transcriptional activity and DNA synthesis in breast cancer cells [A.M. Weaver, C.M. Silva, Modulation of signal transducer and activator of transcription 5b activity in breast cancer cells by mutation of tyrosines within the transactivation domain, Molecular Endocrinology 20 (2006) 2392-2405]. In many instances, phosphorylation of serines in the transactivation domain also modulates STAT5b activity. Here, we demonstrate for the first time that EGF stimulation enhances S731 phosphorylation. Furthermore, we show that the increased activity of the Y740/743F STAT5b mutant requires S731. As STAT5b is implicated in several cancers, understanding how its activity is regulated through tyrosine and serine phosphorylation is vital for the development of potential novel cancer therapeutics.
Collapse
Affiliation(s)
- Amanda M Weaver
- Department of Medicine and the Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
22
|
Sakamoto K, Creamer BA, Triplett AA, Wagner KU. The Janus Kinase 2 Is Required for Expression and Nuclear Accumulation of Cyclin D1 in Proliferating Mammary Epithelial Cells. Mol Endocrinol 2007; 21:1877-92. [PMID: 17519353 DOI: 10.1210/me.2006-0316] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractUsing a conditional knockout approach, we previously demonstrated that the Janus kinase 2 (Jak2) is crucial for prolactin (PRL) signaling and normal mammary gland development. PRL is suggested to synchronously activate multiple signaling cascades that emerge on the PRL receptor (PRLR). This study demonstrates that Jak2 is essential for the activation of the signal transducer and activator of transcription 5 (Stat5) and expression of Cish (cytokine-inducible SH2-containing protein), a Stat5-responsive negative regulator of Jak/Stat signaling. However, Jak2 is dispensable for the PRL-induced activation of c-Src, focal adhesion kinase, and the MAPK pathway. Despite activation of these kinases that are commonly associated with proliferative responses, the ablation of Jak2 reduces the multiplication of immortalized mammary epithelial cells (MECs). Our studies show that signaling through Jak2 controls not only the transcriptional activation of the Cyclin D1 gene, but, more importantly, it regulates the accumulation of the Cyclin D1 protein in the nucleus by altering the activity of signal transducers that mediate the phosphorylation and subsequent nuclear export of Cyclin D1. In particular, the levels of activated Akt (protein kinase B) and inactive glycogen synthase kinase-3β (i.e. a kinase that regulates the nuclear export and degradation of Cyclin D1) are reduced in MECs lacking Jak2. The proliferation of Jak2-deficient MECs can be rescued by expressing of a mutant form of Cyclin D1 that cannot be phosphorylated by glycogen synthase kinase-3β and therefore constitutively resides in the nucleus. Besides discriminating Jak2-dependent and Jak2-independent signaling events emerging from the PRLR, our observations provide a possible mechanism for phenotypic similarities between Cyclin D1 knockouts and females lacking individual members of the PRLR signaling cascade, in particular the PRLR, Jak2, and Stat5.
Collapse
Affiliation(s)
- Kazuhito Sakamoto
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | |
Collapse
|
23
|
Granillo AR, Boffi JC, Barañao L, Kordon E, Pecci A, Guberman A. STAT5 transcriptional activity is impaired by LIF in a mammary epithelial cell line. Biochem Biophys Res Commun 2007; 356:727-32. [PMID: 17382296 DOI: 10.1016/j.bbrc.2007.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 03/07/2007] [Indexed: 11/29/2022]
Abstract
Gene regulation mediated by STAT factors has been implicated in cellular functions with relevance to a variety of processes. Particularly, STAT5 and STAT3 play a crucial role in mammary epithelium displaying reciprocal activation kinetics during pregnancy, lactation and involution. Here, we show that LIF treatment of mammary epithelial HC11 cells reduces the phosphorylation levels and transcriptional activity of p-STAT5 in correlation with STAT3 phosphorylation. We have also found that STAT5 activity is negatively modulated by this cytokine, both on a gene whose expression is induced, as well as on a promoter repressed by STAT5. Besides, our results show that lactogenic hormones increase LIF effect on gene induction without modifying STAT3 phosphorylation state. Our findings strongly suggest that there is crosstalk between STAT5 and STAT3 pathways that could modulate their ability to regulate gene expression.
Collapse
Affiliation(s)
- Agustina Rodriguez Granillo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Piso 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
24
|
Galbaugh T, Cerrito MG, Jose CC, Cutler ML. EGF-induced activation of Akt results in mTOR-dependent p70S6 kinase phosphorylation and inhibition of HC11 cell lactogenic differentiation. BMC Cell Biol 2006; 7:34. [PMID: 16984645 PMCID: PMC1590014 DOI: 10.1186/1471-2121-7-34] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 09/19/2006] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND HC11 mouse mammary epithelial cells differentiate in response to lactogenic hormone resulting in expression of milk proteins including beta-casein. Previous studies have shown that epidermal growth factor (EGF) blocks differentiation not only through activation of the Ras/Mek/Erk pathway but also implicated phosphatidylinositol-3-kinase (PI-3-kinase) signaling. The current study analyzes the mechanism of the PI-3-kinase pathway in an EGF-induced block of HC11 lactogenic differentiation. RESULTS HC11 and HC11-luci cells, which contain luciferase gene under the control of a beta-casein promotor, were treated with specific chemical inhibitors of signal transduction pathways or transiently infected/transfected with vectors encoding dominant negative-Akt (DN-Akt) or conditionally active-Akt (CA-Akt). The expression of CA-Akt inhibited lactogenic differentiation of HC11 cells, and the infection with DN-Akt adenovirus enhanced beta-casein transcription and rescued beta-casein promotor-regulated luciferase activity in the presence of EGF. Treatment of cells with Rapamycin, an inhibitor of mTOR, blocked the effects of EGF on beta-casein promotor driven luciferase activity as effectively as PI-3-kinase inhibitors. While expression of CA-Akt caused a constitutive activation of p70S6 kinase (p70S6K) in HC11 cells, the inhibition of either PI-3-kinase or mTOR abolished the activation of p70S6K by EGF. The activation of p70S6K by insulin or EGF resulted in the phosphorylation of ribosomal protein S6 (RPS6), elongation initiation factor 4E (elF4E) and 4E binding protein1 (4E-BP1). But lower levels of PI-3-K and mTOR inhibitors were required to block insulin-induced phosphorylation of RPS6 than EGF-induced phosphorylation, and insulin-induced phosphorylation of elF4E and 4E-BP1 was not completely mTOR dependent suggesting some diversity of signaling for EGF and insulin. In HC11 cells undergoing lactogenic differentiation the phosphorylation of p70S6K completely diminished by 12 hours, and this was partly attributable to dexamethasone, a component of lactogenic hormone mix. However, p70S6K phosphorylation persisted in the presence of lactogenic hormone and EGF, but the activation could be blocked by a PI-3-kinase inhibitor. CONCLUSION PI-3-kinase signaling contributes to the EGF block of lactogenic differentiation via Akt and p70S6K. The EGF-induced activation of PI-3-kinase-Akt-mTOR regulates phosphorylation of molecules including ribosomal protein S6, eIF4E and 4E-BP1 that influence translational control in HC11 cells undergoing lactogenic differentiation.
Collapse
Affiliation(s)
- Traci Galbaugh
- Department of Pathology, United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Maria Grazia Cerrito
- Department of Pathology, United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Cynthia C Jose
- Department of Pathology, United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Mary Lou Cutler
- Department of Pathology, United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
25
|
Litterst CM, Kliem S, Lodrini M, Pfitzner E. Coactivators in Gene Regulation by STAT5. VITAMINS & HORMONES 2005; 70:359-86. [PMID: 15727811 DOI: 10.1016/s0083-6729(05)70012-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Signal transducer and activator of transcription 5 (STAT5) is a member of the STAT family of transcription factors that relay the effect of diverse cytokines, hormones, and growth factors by regulating the transcription of distinct target genes. This function is emphasized by its crucial role in the development of the mammary gland and the hematopoietic system. Cytokine receptor-associated Janus kinases (JAKs) induce dimerization, nuclear translocation, and DNA binding through tyrosine phosphorylation of STAT5. STAT5 regulates the expression of cytokine target genes by binding to gamma interferon-activated sequence (GAS) motifs. Transcriptional activation requires the contact of STAT5 to coactivators and components of the transcription machinery. Another important point in transcriptional activation is the cooperation with other transcription factors that bind in close vicinity to the target gene promoters and enhancers. Their concerted action can result in an enhanced binding to the promoters or in cooperative recruitment of coactivators. In addition, cross-talk with other signaling pathways as well as secondary modifications of STAT5 have been described to affect transactivation function.
Collapse
Affiliation(s)
- Claudia M Litterst
- Georg-Speyer-Haus, Institute for Biomedical Research, D-60596 Frankfurt, Germany
| | | | | | | |
Collapse
|
26
|
Cerrito MG, Galbaugh T, Wang W, Chopp T, Salomon D, Cutler ML. Dominant negative Ras enhances lactogenic hormone-induced differentiation by blocking activation of the Raf-Mek-Erk signal transduction pathway. J Cell Physiol 2004; 201:244-58. [PMID: 15334659 PMCID: PMC1586098 DOI: 10.1002/jcp.20077] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidermal growth factor (EGF) and Ras mitogenic signal transduction pathways are frequently activated in breast carcinoma and inhibit mammary differentiation and apoptosis. HC11 mouse mammary epithelial cells, which differentiate and synthesize beta-casein following growth to confluency and stimulation with lactogenic hormones, were used to study EGF-dependent signaling during differentiation. Blocking Mek-Erk or phosphotidylinositol-3-kinase (PI-3 kinase) signaling with specific chemical inhibitors enhanced beta-casein promotor-driven luciferase activity. Because EGF stimulation of HC11 cells resulted in the activation of Ras, the effect of activated Ras (RasV12) or dominant negative (DNRasN17) on lactogen induced differentiation was examined. HC11 cell lines expressing RasV12 or DNRasN17 under the control of a tetracycline (tet)-responsive promotor were constructed. Activated RasV12 expression resulted in reduced tyrosine phosphorylation of Stat5 and a delay in beta-casein expression in response to prolactin. However, the expression of tet-regulated DNRasN17 and adenovirus-encoded DNRasN17 enhanced Stat5 tyrosine phosphorylation, Stat5 DNA binding, and beta-casein transcription. The expression of DNRasN17 blocked the activation of the Mek-Erk pathway by EGF but did not prevent the phosphorylation of AKT, a measure of activation of the PI-3-kinase pathway. Moreover, the expression of DNRasN17 prevented the block to lactogenic differentiation induced by EGF. Stimulation of HC11 cells with prolactin resulted in the association of the SHP2 phosphatase with Stat5, and this association was prevented by DNRasN17 expression. These results demonstrate that in HC11 cells DNRas inhibits the Mek-Erk pathway and enhances lactogenic hormone-induced differentiation. This occurs, in part, by inhibiting the association of the SHP2 phosphatase with Stat5.
Collapse
Affiliation(s)
- Maria Grazia Cerrito
- Department of Pathology and United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD. 20814
| | - Traci Galbaugh
- Department of Pathology and United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD. 20814
| | - Weihan Wang
- Department of Pathology and United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD. 20814
| | - Treasa Chopp
- Department of Pathology and United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD. 20814
| | - David Salomon
- Tumor Growth Factor Section, Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD. 20892
| | - Mary Lou Cutler
- Department of Pathology and United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD. 20814
- * Corresponding author: address: Department of Pathology, B3122, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, Phone : 301-295-3453, Fax: 301-295-1640,
| |
Collapse
|
27
|
Ding W, Bellusci S, Shi W, Warburton D. Genomic structure and promoter characterization of the human Sprouty4 gene, a novel regulator of lung morphogenesis. Am J Physiol Lung Cell Mol Physiol 2004; 287:L52-9. [PMID: 14977631 DOI: 10.1152/ajplung.00430.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of Sprouty4 (Spry4), an intracellular FGF receptor antagonist, shows a temporally and spatially restricted pattern in embryonic lung and is induced by ERK signaling. To clarify the molecular mechanisms regulating Spry4 transcription, the genomic structure of the human Sprouty4 (hSpry4) gene was first determined by using the GenomeWalker kit. The hSpry4 gene spans > 14 kb and is organized in three exons and two introns. Multiple transcription start sites were subsequently mapped by 5'-rapid amplification of cDNA ends. Analysis of up to 4 kb of sequence in the 5'-flanking region of the gene showed the presence of multiple potential transcription factor binding sites but no TATA or CAAT boxes. Transient transfection using luciferase reporter gene constructs with progressive deletions of the hSpry4 5'-flanking region revealed that the core promoter activity is located within the proximal 0.4-kb region, whereas the minimal ERK-inducible promoter activity is between -69 and -31. Homology analysis further showed that the core promoter region of the hSpry4 gene exhibits significant similarity to the 5'-flanking region of the mouse gene.
Collapse
Affiliation(s)
- Wei Ding
- Developmental Biology Program, Saban Research Institute, Childrens Hospital Los Angeles, and Department of Pediatric Surgery, University of Southern California Keck School of Medicine and School of Dentistry, 90027, USA.
| | | | | | | |
Collapse
|
28
|
Gewinner C, Hart G, Zachara N, Cole R, Beisenherz-Huss C, Groner B. The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5. J Biol Chem 2003; 279:3563-72. [PMID: 14597631 DOI: 10.1074/jbc.m306449200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signal transducer and activator of transcription (Stat) gene family comprises seven members with similarities in their domain structure and a common mode of activation. Members of this gene family mediate interferon induction of gene transcription and the response to a large number of growth factors and hormones. Extracellular ligand binding to transmembrane receptors causes the intracellular activation of associated tyrosine kinases, phosphorylation of Stat molecules, dimerization, and translocation to the nucleus. Prolactin-induced phosphorylation of Stat5 is a key event in the development and differentiation of mammary epithelial cells. In addition to the crucial phosphorylation at tyrosine 694, we have identified an O-linked N-acetylglucosamine (O-GlcNAc) as another secondary modification essential for the transcriptional induction by Stat5. This modification was only found on nuclear Stat5 after cytokine activation. Similar observations were made with Stat1, Stat3, and Stat6. Glycosylation of Stat5, however, does not seem to be a prerequisite for nuclear translocation. Mass spectrometric analysis revealed a glycosylated peptide in the N-terminal region of Stat5. Replacement of threonine 92 by an alanine residue (Stat5a-T92A) strongly reduced the prolactin induction of Stat5a glycosylation and abolished transactivation of a target gene promoter. Only the glycosylated form of Stat5 was able to bind the coactivator of transcription CBP, an essential interaction for Stat5-mediated gene transcription.
Collapse
Affiliation(s)
- Christina Gewinner
- Georg-Speyer-Haus, Institute for Biomedical Research, Paul-Ehrlich Strasse 42-44, D-60596 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Paukku K, Yang J, Silvennoinen O. Tudor and nuclease-like domains containing protein p100 function as coactivators for signal transducer and activator of transcription 5. Mol Endocrinol 2003; 17:1805-14. [PMID: 12819296 DOI: 10.1210/me.2002-0256] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Signal transducer and activator of transcription 5 (Stat5) plays a critical role in prolactin (PRL)-induced transcription of several milk protein genes. Stat5-mediated gene regulation is modulated by cooperation of Stat5 with cell type- and promoter-specific transcription factors as well as by interaction with transcriptional coregulators. Recently, the expression of a tudor and staphylococcal nuclease-like domains containing protein p100 was found to be increased in mammary epithelial cells during lactation in response to lactogenic hormones. p100 was initially identified as a transcriptional coactivator of the Epstein-Barr virus nuclear antigen 2. In this study we investigated the potential role of p100 in PRL-induced Stat5-mediated transcriptional activation. PRL stimulation increased the p100 protein levels in HC11 mouse mammary epithelial cells. p100 did not affect the early activation events of Stat5, but p100 enhanced the Stat5-dependent transcriptional activation in HC11 cells. p100 associated with Stat5 both in vivo and in vitro, and the interaction was mediated by both the tudor and staphylococcal nuclease-like domains of p100. Together these results suggest that p100 functions as a transcriptional coactivator for Stat5-dependent gene regulation and the existence of a positive regulatory loop in PRL-induced transcription, in which PRL stabilizes p100 protein, which in turn can cooperate with Stat5 in transcriptional activation.
Collapse
Affiliation(s)
- Kirsi Paukku
- Department of Virology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
30
|
Wu W, Coss D, Lorenson MY, Kuo CB, Xu X, Walker AM. Different biological effects of unmodified prolactin and a molecular mimic of phosphorylated prolactin involve different signaling pathways. Biochemistry 2003; 42:7561-70. [PMID: 12809512 DOI: 10.1021/bi034217s] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous work has shown that naturally phosphorylated prolactin antagonizes the growth-promoting activities of unmodified prolactin (U-PRL) and that this effect is duplicated by a molecular mimic, S179D PRL. At the same time, the S179D PRL is a superagonist with regard to expression of some PRL-regulated genes. We have asked whether the different activities of U-PRL and S179D PRL are the result of differential signaling. HC11 cells (a normal mouse mammary cell line) were grown to confluence, primed with hydrocortisone, and then exposed to the PRLs. A 15 min incubation of PRL-naive cells led to substantial tyrosine phosphorylation of Jak 2 and Stat 5a by U-PRL and an essentially equivalent Jak 2 activation by S179D PRL. The latter, however, was accompanied by reduced tyrosine phosphorylation of Stat 5a. EMSA analysis using a Stat 5 binding site showed both PRLs to cause equivalent binding of nuclear proteins and that most of what bound was complexed through Stat 5a. Phosphoamino acid analysis of Stat 5 showed S179D PRL to double the amount of serine phosphorylation versus that seen with U-PRL. Analysis of the MAP kinase pathway showed U-PRL capable of activation of ERKs 1 and 2 but that signaling via ERKs 1 and 2 was greater with S179D PRL. A 7-day incubation in either PRL increased beta-casein mRNA levels, but S179D PRL caused a 2-fold increase over that seen with U-PRL. The increase, over that seen with U-PRL, was blocked by the MAP kinase inhibitor, PD98059. After 7 days of treatment with S179D PRL, expression of the short PRL receptor was doubled, and signaling showed a greater dependence on the MAP kinase pathway (2.9-fold increase in ERK 1 and 2 activation). We conclude that although both PRLs use both pathways to some extent, U-PRL signals primarily through Jak 2-Stat 5 whereas S179D PRL signals primarily through the MAP kinase pathway especially after prolonged exposure. This is the first demonstration of differential involvement of signaling pathways by different forms of PRL.
Collapse
Affiliation(s)
- Wei Wu
- Division of Biomedical Sciences, University of California, Riverside, California 92521-0121, USA
| | | | | | | | | | | |
Collapse
|
31
|
Bolander FF. The mechanisms by which nitric oxide affects mammary epithelial growth and differentiation. Biochem Biophys Res Commun 2003; 304:425-30. [PMID: 12711333 DOI: 10.1016/s0006-291x(03)00598-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nitric oxide (NO) enhances prolactin-stimulated DNA synthesis and inhibits prolactin-induced differentiation in mouse mammary epithelium. The molecular pathways used by NO were determined by employing specific inhibitors of the transducers utilized by NO. Inhibitors of the Jun N-terminal kinase (JNK) blocked the effect of NO on DNA synthesis, although this appeared to involve a protein kinase G (PKG)-independent pathway. In contrast, inhibitors of the extracellular signal-regulated kinase (ERK) prevented NO from suppressing alpha-lactalbumin accumulation and this effect was PKG-dependent. NO can also elevate cAMP through the inhibition of phosphodiesterase 3 and cAMP mimicks the actions of NO on both DNA synthesis and differentiation. However, suppression of cAMP levels did not prevent the effects of NO. Therefore, NO uses two separate pathways to affect mammary epithelium: it stimulates growth via JNK and inhibits differentiation through ERK.
Collapse
Affiliation(s)
- Franklyn F Bolander
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
32
|
Groner B, Shemanko C. Cooperation of nuclear transcription factors regulated by steroid and peptide hormones. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2003:213-31. [PMID: 12355718 DOI: 10.1007/978-3-662-04660-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- B Groner
- Institute for Biomedical Research, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt/Main, Germany.
| | | |
Collapse
|
33
|
Hovey RC, Harris J, Hadsell DL, Lee AV, Ormandy CJ, Vonderhaar BK. Local insulin-like growth factor-II mediates prolactin-induced mammary gland development. Mol Endocrinol 2003; 17:460-71. [PMID: 12554791 DOI: 10.1210/me.2002-0214] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prolactin (PRL) is a major determinant of mammary epithelial cell proliferation during alveolar development in sexually mature and pregnant mice. To date, it has not been clear whether PRL effects these responses alone or by also invoking the action of autocrine/paracrine growth factors. In this study, we provide evidence that part of the effect of PRL on mammary gland growth is mediated by IGF-II. During sexual maturity and in early pregnancy, the level of IGF-II mRNA in the mammary gland was increased concurrent with increased PRL receptor expression. The level of IGF-II mRNA was reduced in mammary tissue from PRL receptor-/- mice during early pregnancy, and explants of mouse mammary gland and HC11 mammary epithelial cells both increased their expression of IGF-II after exposure to PRL in vitro. These findings coincided with the demonstration that IGF-II stimulated alveolar development in mammary glands in whole organ culture. PRL was most efficacious in stimulating IGF-II gene transcription from promoter 3 of the mouse IGF-II gene in vitro. Insight into the mechanism by which PRL induced IGF-II expression was provided by the fact that it was blocked by the Jak2 inhibitor AG490 and the MAPK inhibitor PD98059. Finally, induction of insulin receptor substrate (IRS)-1 in the mammary glands of PRL-treated mice and induction of IRS-1 and IRS-2 after treatment with PRL plus progesterone indicates that these molecules are induced by PRL as potential signaling intermediates downstream from IGF-I/insulin receptors. Together, these data demonstrate a role for IGF-II as a mediator of PRL action in the mouse mammary gland during ductal branching and alveolar development.
Collapse
Affiliation(s)
- Russell C Hovey
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1402, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Park DS, Lee H, Frank PG, Razani B, Nguyen AV, Parlow AF, Russell RG, Hulit J, Pestell RG, Lisanti MP. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol Biol Cell 2002; 13:3416-30. [PMID: 12388746 PMCID: PMC129955 DOI: 10.1091/mbc.02-05-0071] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Revised: 06/20/2002] [Accepted: 07/16/2002] [Indexed: 01/01/2023] Open
Abstract
It is well established that mammary gland development and lactation are tightly controlled by prolactin signaling. Binding of prolactin to its cognate receptor (Prl-R) leads to activation of the Jak-2 tyrosine kinase and the recruitment/tyrosine phosphorylation of STAT5a. However, the mechanisms for attenuating the Prl-R/Jak-2/STAT5a signaling cascade are just now being elucidated. Here, we present evidence that caveolin-1 functions as a novel suppressor of cytokine signaling in the mammary gland, akin to the SOCS family of proteins. Specifically, we show that caveolin-1 expression blocks prolactin-induced activation of a STAT5a-responsive luciferase reporter in mammary epithelial cells. Furthermore, caveolin-1 expression inhibited prolactin-induced STAT5a tyrosine phosphorylation and DNA binding activity, suggesting that caveolin-1 may negatively regulate the Jak-2 tyrosine kinase. Because the caveolin-scaffolding domain bears a striking resemblance to the SOCS pseudosubstrate domain, we examined whether Jak-2 associates with caveolin-1. In accordance with this homology, we demonstrate that Jak-2 cofractionates and coimmunoprecipitates with caveolin-1. We next tested the in vivo relevance of these findings using female Cav-1 (-/-) null mice. If caveolin-1 normally functions as a suppressor of cytokine signaling in the mammary gland, then Cav-1 null mice should show premature development of the lobuloalveolar compartment because of hyperactivation of the prolactin signaling cascade via disinhibition of Jak-2. In accordance with this prediction, Cav-1 null mice show accelerated development of the lobuloalveolar compartment, premature milk production, and hyperphosphorylation of STAT5a (pY694) at its Jak-2 phosphorylation site. In addition, the Ras-p42/44 MAPK cascade is hyper-activated. Because a similar premature lactation phenotype is observed in SOCS1 (-/-) null mice, we conclude that caveolin-1 is a novel suppressor of cytokine signaling.
Collapse
Affiliation(s)
- David S Park
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
St-Pierre B, Flock G, Zacksenhaus E, Egan SE. Stra13 homodimers repress transcription through class B E-box elements. J Biol Chem 2002; 277:46544-51. [PMID: 12297495 DOI: 10.1074/jbc.m111652200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mammalian basic helix-loop-helix protein known variably as Stra13, Sharp2, and Dec1 has been implicated in cell activation, proliferation, and differentiation. Indeed, Stra13 null mice develop age-induced autoimmunity as a result of impaired T-lymphocyte activation, leading ultimately to the accumulation of autoreactive T-cells and B-cells. Stra13 is expressed in embryonic as well as adult tissues derived from neuroectoderm, mesoderm, and endoderm and has been associated with response to hypoxia, suggesting a complex role for this protein and the highly related Sharp1/Dec2 protein in homeostatic regulation. Whereas Stra13 is known to regulate many important cellular functions and is known to cross-regulate biological responses to other basic helix-loop-helix containing transcription factors, including c-Myc and USF, it is unclear if this protein binds directly to DNA. Indeed, the basic domain of Stra13 contains a proline residue at an unprecedented position. Herein, we have determined that Stra13 binds with high affinity to CACGTG class B E-box elements as a homodimer with preference for elements preceded by T and/or followed by A residues. In addition, transient transfection experiments reveal that Stra13 represses transcription when bound to these and related sites. Our data suggest that Stra13 regulates cellular functions through antagonism of E-box activator proteins and also through active repression from E-box elements.
Collapse
Affiliation(s)
- Benoit St-Pierre
- Programs in Cancer Research and Developmental Biology, The Hospital for Sick Children, Toronto, Ontario M5G-1X8, Canada
| | | | | | | |
Collapse
|
36
|
Faisal A, el-Shemerly M, Hess D, Nagamine Y. Serine/threonine phosphorylation of ShcA. Regulation of protein-tyrosine phosphatase-pest binding and involvement in insulin signaling. J Biol Chem 2002; 277:30144-52. [PMID: 12052829 DOI: 10.1074/jbc.m203229200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine phosphorylation of the ShcA signaling molecule has been reported recently. In this work, we have identified 12-O-tetradecanoylphorbol-13-acetate (TPA)- and growth factor-induced serine/threonine phosphorylation sites in p52(Shc) and p66(Shc). Among them, Ser(29) in p52(Shc) (equivalent to Ser(138) in p66(Shc)) was phosphorylated only after TPA stimulation. Phosphorylation of this site together with the intact phosphotyrosine-binding domain was essential for ShcA binding to the protein-tyrosine phosphatase PTP-PEST. TPA-induced ShcA phosphorylation at this site (and hence, its association with PTP-PEST) was inhibited by a protein kinase C-specific inhibitor and was induced by overexpression of constitutively active mutants of protein kinase Calpha, -epsilon, and -delta isoforms. Insulin also induced ShcA/PTP-PEST association, although to a lesser extent than TPA. Overexpression of a PTP-PEST binding-defective mutant of p52(Shc) (S29A) enhanced insulin-induced ERK activation in insulin receptor-overexpressing HIRc-B cells. Consistent with this, p52(Shc) S29A was more tyrosine-phosphorylated than wild-type p52(Shc) after insulin stimulation. Thus, we have identified a new mechanism whereby serine phosphorylation of ShcA controls the ability of its phosphotyrosine-binding domain to bind PTP-PEST, which is responsible for the dephosphorylation and down-regulation of ShcA after insulin stimulation.
Collapse
Affiliation(s)
- Amir Faisal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|
37
|
Abstract
Extracellular hormones, growth factors or cytokines relay their effects on the transcription of genes through the recognition of specific receptors and intracellular signaling molecules. Stat (signal transducers and activators of transcription) have been recognized as crucial intracellular signaling molecules. The cytokine receptor associated Jak kinases convert the latent monomeric form of the Stat molecules to the activated dimeric form through tyrosine phosphorylation. The dimers bind to specific DNA response elements and are able to induce transcription. The transcription factor Stat5 is a central determinant of mammary gland development and function. It is activated during pregnancy by prolactin and contributes to the growth and alveolar differentiation of the epithelial cells. During lactation it governs milk protein gene expression and contributes to cell survival. Negative regulatory potential is exerted by the expression of the short form of the molecule, lacking the transactivation domain, but associating with nuclear co-repressors. This form is activated through tyrosine phosphorylation and dimerisation similarly to the full-length form, but is impeded in dephosphorylation and co-activator recruitment. Positive enhancement of Stat5 transactivation potential is provided by the glucocorticoid receptor (GR). Ligand activation of the receptor causes complex formation with Stat5 and deviation to the Stat5 DNA binding site. An additional regulatory loop is provided by the reactivation of the short form of Stat5 through GR association.
Collapse
Affiliation(s)
- Bernd Groner
- Georg Speyer Haus, Institute for Biomedical Research, Paul Ehrlich Street 42-44, D-60596 Frankfurt, Germany.
| |
Collapse
|
38
|
Bianco C, Normanno N, De Luca A, Maiello MR, Wechselberger C, Sun Y, Khan N, Adkins H, Sanicola M, Vonderhaar B, Cohen B, Seno M, Salomon D. Detection and localization of Cripto-1 binding in mouse mammary epithelial cells and in the mouse mammary gland using an immunoglobulin-cripto-1 fusion protein. J Cell Physiol 2002; 190:74-82. [PMID: 11807813 DOI: 10.1002/jcp.10037] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human Cripto-1 (CR-1), a member of the epidermal growth factor-CFC (EGF-CFC) family of peptides, is expressed in the developing mouse mammary gland and can modulate mammary epithelial cell migration, branching morphogenesis and milk protein expression in vitro. In order to screen for a CR-1 receptor and to identify potential CR-1 target tissues, we constructed a fusion protein comprising the EGF-like domain of CR-1 and the Fc domain of a human IgG1. The recombinant CR-1 fusion protein (CR-1-Fc) was biologically active as it was able to activate the ras/raf/mitogen activated protein kinase (MAPK) pathway and to inhibit transcription of the milk protein beta-casein in NMuMG and HC-11 mouse mammary epithelial cells. By using immunocytochemistry and by an in situ enzyme-linked immunosorbent assay (ELISA), CR-1-Fc was found to specifically bind to NMuMG and HC-11 cells. Finally, immunohistochemical analysis using CR-1-Fc showed a specific localization of CR-1 binding to tissue sections from mouse mammary gland. In particular, more than 60% of the epithelial cells were intensely stained with the CR-1-Fc fusion protein in the lactating mouse mammary gland, whereas approximately 25% of the mammary epithelial cells were stained in the gland from pregnant mouse. Since expression of mouse cripto-1 (Cr-1) in the pregnant and lactating mouse mammary gland as well as its presence in milk has been previously demonstrated, these data strongly suggest that an autocrine pathway involving Cr-1 and its putative receptor is operating in the mouse mammary gland during pregnancy and lactation.
Collapse
Affiliation(s)
- Caterina Bianco
- Tumor Growth Factor Section, Basic Research Laboratory, National Cancer Institute/NIH,, Bldg 10, Rm 5B39, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Park DS, Lee H, Riedel C, Hulit J, Scherer PE, Pestell RG, Lisanti MP. Prolactin negatively regulates caveolin-1 gene expression in the mammary gland during lactation, via a Ras-dependent mechanism. J Biol Chem 2001; 276:48389-97. [PMID: 11602600 DOI: 10.1074/jbc.m108210200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caveolin-1 is a 22-kDa integral membrane protein that has been suggested to function as a negative regulator of mitogen-stimulated proliferation in a variety of cell types, including mammary epithelial cells. Because much of our insight into caveolin-1 function has come from the study of human breast tumor-derived cell lines in culture, the normal physiological regulators of caveolin-1 expression in the mammary gland remain unknown. Here, we examine caveolin-1 expression in mice at different stages of mammary gland development. We show that caveolin-1 expression is significantly down-regulated during late pregnancy and lactation. Upon weaning, mammary gland expression of caveolin-1 rapidly returns to non-pregnant "steady-state" levels. Injection of virgin mice with a battery of hormones normally up-regulated during lactation demonstrates that prolactin is the main mediator of caveolin-1 down-regulation. Virtually identical results were obtained with human mammary epithelial cells (hTERT-HME1) in culture. In addition, we demonstrate that prolactin-mediated down-regulation of caveolin-1 expression occurs at the level of transcriptional control and via a Ras-dependent mechanism. Interestingly, in the mammary gland, both mammary epithelial cells and the surrounding mammary adipocytes show prolactin-mediated down-regulation of caveolin-1. This hormone-dependent regulation of caveolin-1 expression is specific to the mammary fat pad. Finally, we employed HC11 cells, a well-established model of mammary epithelial cell differentiation, to study the possible functional effects of caveolin-1 expression. In the presence of lactogenic hormones, recombinant expression of caveolin-1 in HC11 cells dramatically suppresses the induction of the promoter activity and the synthesis of beta-casein, an established reporter of lactogenic differentiation and milk production. These findings may explain why caveolin-1 levels are normally down-regulated during lactation. This report is the first demonstration that caveolin-1 levels are down-regulated during a normal physiological event in vivo, i.e. lactation, because previous reports have only documented that down-regulation of caveolin-1 occurs during cell transformation and tumorigenesis.
Collapse
Affiliation(s)
- D S Park
- Department of Molecular Pharmacology, The Albert Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Horsch K, Schaller MD, Hynes NE. The protein tyrosine phosphatase-PEST is implicated in the negative regulation of epidermal growth factor on PRL signaling in mammary epithelial cells. Mol Endocrinol 2001; 15:2182-96. [PMID: 11731619 DOI: 10.1210/mend.15.12.0743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Treatment of HC11 mammary epithelial cells with the lactogenic hormone PRL promotes differentiation and induction of milk protein gene expression via stimulation of the Janus kinase (JAK)/signal transducer and activator of transcription pathway. We have previously shown that autocrine activation of epidermal growth factor (EGF) receptor interferes with normal PRL-induced differentiation. Here we show that PRL activation of JAK2 was dramatically reduced in HC11 cells pretreated with EGF, demonstrating that the target of EGF receptor activation is JAK2 kinase. Using an in-gel protein tyrosine phosphatase (PTP) assay, we observed that the activity of a 125-kDa PTP was up-regulated in HC11 cells in response to EGF. A specific antiserum was used to demonstrate that the 125-kDa PTP was PTP-PEST and to show that EGF treatment of HC11 cells led to an increase in the level of PTP-PEST. In intact HC11 cells, PTP-PEST was constitutively associated with JAK2, and in response to EGF treatment there was an increased level of PTP-PEST in JAK2 complexes. An in vitro phosphatase assay, using PRL-activated JAK2 as the substrate and lysates from HC11 cells as the source of PTP-PEST, revealed that JAK2 could serve as a PTP-PEST substrate. However, in intact cells the regulation of JAK2 by PTP-PEST was complex, since transient overexpression of PTP-PEST had a negligible effect on PRL-induced JAK2 activation. EGF's negative influence on JAK2 activity was blocked by actinomycin D treatment of HC11 cells, suggesting that EGF induced a protein that mediated the effects of PTP-PEST on JAK2. In support of this model, PTP-PEST-containing lysates from EGF-treated HC11 cells dephosphorylated JAK2 to a greater extent than lysates prepared from control cells.
Collapse
Affiliation(s)
- K Horsch
- Friedrich Miescher Institute, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
41
|
Jolivet G, Meusnier C, Chaumaz G, Houdebine LM. Extracellular matrix regulates alpha s1-casein gene expression in rabbit primary mammary cells and CCAAT enhancer binding protein (C/EBP) binding activity. J Cell Biochem 2001; 82:371-86. [PMID: 11500914 DOI: 10.1002/jcb.1166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous studies have shown that both the signal transducer and activator of transcription 5 (STAT5) and the CCAAT enhancer binding proteins (C/EBPs) are involved in the regulation of casein gene expression by mammary epithelial cells. Prolactin (Prl) activation of STAT5 is necessary for casein gene expression. The extracellular matrix (ECM) regulates also casein gene expression. Here, we have investigated whether ECM regulates C/EBPs activity in primary rabbit mammary epithelial cells. Isolated primary mammary cells were cultured on plastic or on floating collagen I gel. Prolactin induced alphas 1-casein gene expression when cells were cultured on collagen but not on plastic. It is noteworthy that activated STAT5 was detected in both culture conditions. Several STAT5 isoforms (STAT5a, STAT5b, and other STAT5 related isoforms, some with lower molecular weight than the full-length STAT5a and STAT5b) were detected under the different culture conditions. However, their presence was not related to the expression of alphas 1-casein gene. The binding of nuclear factors to a C/EBP specific binding site and the protein level of C/EBPbeta differed in cells cultured on plastic or on collagen but these parameters were not modified by Prl. This suggests that C/EBP binding activity was regulated by ECM and not by Prl. Interestingly, these modifications were correlated to the expression of the alphas 1-casein gene. Hence, the activation of the alphas 1-casein gene expression depends on two independent signals, one delivered by Prl via the activation of STAT5, the other delivered by ECM via C/EBP.
Collapse
Affiliation(s)
- G Jolivet
- Biologie du Développement et Biotechnologies, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France.
| | | | | | | |
Collapse
|
42
|
Beisenherz-Huss C, Mundt M, Herrala A, Vihko P, Schubert A, Groner B. Specific DNA binding and transactivation potential of recombinant, purified Stat5. Mol Cell Endocrinol 2001; 183:101-12. [PMID: 11604230 DOI: 10.1016/s0303-7207(01)00588-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The signal transducers and activators of transcriptions (Stats) are central mediators of cytokine responses especially in hematopoietic cells. The detailed molecular mechanisms of Stat activation, particularly the role of post-translational modifications and co-operation with cellular transcription factors are subject to intense investigation. The phosphorylation of a tyrosine residue in the carboxyl terminal domain is a common characteristic for the biologically active state of all known Stats. We studied the biological potential of purified recombinant murine Stat5a and Stat5b. These proteins were expressed in Sf9 insect cells upon infection with Stat5 encoding baculoviruses. We also obtained the tyrosine phosphorylated, activated forms of the Stat5 proteins by expressing the tyrosine kinase Janus kinase2 (Jak) in the same cells through co-infection with a kinase encoding virus. After purification, only the tyrosine phosphorylated form was able to bind specifically in vitro to the Stat5 DNA response element. This activated form of Stat5 is also able to support specific cell free in vitro transcription of a gene with a Stat5 response element in its promoter region. The recombinant purified Stat5 proteins were treated with the tyrosine specific protein phosphatase or with potato acidic phosphatase, which removes phosphate groups from serine and tyrosine residues. Phosphatase treatment resulted in the loss of specific DNA binding ability. This property could be restored by an in vitro reaction with recombinant, purified EGF or PDGF receptor kinases. Tyrosine rephosphorylation in vitro also restored the transactivation potential of Stat5. This modification is, therefore, a sufficient prerequisite for transcriptional induction by Stat5.
Collapse
Affiliation(s)
- C Beisenherz-Huss
- Institute for Anatomy, University of Freiburg, Albertstr. 23, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Gowri PM, Ganguly TC, Cao J, Devalaraja MN, Groner B, Vore M. Conversion of threonine 757 to valine enhances Stat5a transactivation potential. J Biol Chem 2001; 276:10485-91. [PMID: 11133982 DOI: 10.1074/jbc.m007156200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The growth hormone family of cytokines transduces intracellular signals through the Jak2-Stat5 pathway to activate the transcription of target genes. Amino acids within the C termini of Stats constitute the transactivation domain but also regulate the time course of tyrosine phosphorylation and extent of DNA binding. We mutated Thr(757) in the C-terminal of Stat5a (Thr-Stat5) to Val (Val-Stat5) and Asp (Asp-Stat5) and examined the effect on nuclear translocation, DNA binding, and prolactin-induced transcriptional activation of a Stat5-responsive luciferase reporter gene. Val-Stat5 produced a 5-fold higher increase in transcriptional activity relative to Thr-Stat5; Asp-Stat5 produced a similar response to Thr-Stat5. The increased transactivation was ligand induced and was not due to differences in basal expression of Val-Stat5 or to a constitutively activated Stat5 protein. Similar rates of loss of DNA binding ability and phosphorylation of Val- and Thr-Stat5 were observed following a single pulse of prolactin, indicating that the dephosphorylation pathways were unaltered. The serine-threonine kinase inhibitor H7 inhibited the transactivation potential of Thr-, Val-, and Asp-Stat5 to a similar extent, eliminating phosphorylation of Thr(757) as a regulatory mechanism. The results suggest that Thr(757) modulates the transactivation potential of Stat5 by a mechanism(s) that is dependent on the formation of Stat5 dimers and/or their nuclear translocation.
Collapse
Affiliation(s)
- P M Gowri
- Graduate Center for Toxicology, University of Kentucky, Lexington 40536-0305, USA
| | | | | | | | | | | |
Collapse
|
44
|
Somasiri A, Howarth A, Goswami D, Dedhar S, Roskelley CD. Overexpression of the integrin-linked kinase mesenchymally transforms mammary epithelial cells. J Cell Sci 2001; 114:1125-36. [PMID: 11228156 DOI: 10.1242/jcs.114.6.1125] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signals generated by the interaction of (β)1 integrins with laminin in the basement membrane contribute to mammary epithelial cell morphogenesis and differentiation. The integrin-linked kinase (ILK) is one of the signaling moieties that associates with the cytoplasmic domain of (β)1 integrin subunits with some specificity. Forced expression of a dominant negative, kinase-dead form of ILK subtly altered mouse mammary epithelial cell morphogenesis but it did not prevent differentiative milk protein expression. In contrast, forced overexpression of wild-type ILK strongly inhibited both morphogenesis and differentiation. Overexpression of wild-type ILK also caused the cells to lose the cell-cell adhesion molecule E-cadherin, become invasive, reorganize cortical actin into cytoplasmic stress fibers, and switch from an epithelial cytokeratin to a mesenchymal vimentin intermediate filament phenotype. Forced expression of E-cadherin in the latter mesenchymal cells rescued epithelial cytokeratin expression and it partially restored the ability of the cells to differentiate and undergo morphogenesis. These data demonstrate that ILK, which responds to interactions between cells and the extracellular matrix, induces a mesenchymal transformation in mammary epithelial cells, at least in part, by disrupting cell-cell junctions.
Collapse
Affiliation(s)
- A Somasiri
- Dept of Anatomy, University of British Columbia, Vancouver B.C., Canada, V6T 1Z3
| | | | | | | | | |
Collapse
|
45
|
Zhu X, Price-Schiavi SA, Carraway KL. Extracellular regulated kinase (ERK)-dependent regulation of sialomucin complex/rat Muc4 in mammary epithelial cells. Oncogene 2000; 19:4354-61. [PMID: 10980611 DOI: 10.1038/sj.onc.1203781] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sialomucin complex (SMC, rat Muc4) is a membrane mucin implicated in the protection of epithelia and the metastasis of some tumors. It is a heterodimeric complex, containing a mucin subunit with anti-adhesive activity and a transmembrane subunit with epidermal growth factor-like domains, one of which acts as an intramembrane ligand for ErbB2. Serum, insulin and insulin-like growth factor, but not epidermal growth factor, induce the expression of sialomucin complex in mammary epithelial cells. Induction correlates with sustained, but not transient, activation of extracellular-regulated protein kinase (ERK). MEK inhibitor U0126 blocked the induction, while activated MEK-1 transfected into a rat mammary adenocarcinoma cell line induced a sustained activation of ERK and up-regulated SMC/Muc4 expression. Northern and Western blotting indicated that up-regulation occurred concomitantly at the transcript and protein levels, both of which could be blocked by U0126. These results suggest that expression of SMC/Muc4 in mammary epithelial cells is regulated by selected growth factors through an ERK-dependent pathway at the transcript level.
Collapse
Affiliation(s)
- X Zhu
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, Florida, FL 33101, USA
| | | | | |
Collapse
|
46
|
Abstract
Tyrosine phosphorylation regulates the dimerization of STATs as an essential prerequisite for the establishment of a classical JAK-STAT signaling path. However, most vertebrate STATs contain a second phosphorylation site within their C-termini. The phosphorylated residue in this case is a serine contained within a P(M)SP motif, and in the majority of situations its mutation to alanine alters transcription factor activity. This review addresses recent advances in understanding the regulation of STAT serine phosphorylation, as well as the kinases and other signal transducers implied in this process. The biochemical and biological consequences of STAT serine phosphorylation are discussed. Oncogene (2000).
Collapse
Affiliation(s)
- T Decker
- Vienna Biocenter, Institute of Microbiology and Genetics, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
47
|
Herrington J, Smit LS, Schwartz J, Carter-Su C. The role of STAT proteins in growth hormone signaling. Oncogene 2000; 19:2585-97. [PMID: 10851057 DOI: 10.1038/sj.onc.1203526] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth hormone (GH) has long been known to be the body's primary regulator of body growth and a regulator of metabolism, yet the mechanisms by which GH regulates the transcription of specific genes required for these processes are just now being delineated. GH binding to its receptor recruits and activates the receptor-associated JAK2 that in turn phosphorylates tyrosines within itself and the GH receptor. These tyrosines form binding sites for a number of signaling proteins, including members of the family of signal transducers and activators of transcription (STAT). Among the known signaling molecules for GH, STAT proteins play a particularly prominent role in the regulation of gene transcription. This paper will review what is currently understood about which STAT proteins are regulated by GH, how they are regulated by GH, the GH-dependent genes they regulate, and discuss current theories about how GH-activated STAT signaling is regulated. Particular attention will be given to the novel role that STAT5 plays in sexually dimorphic gene expression in the liver as determined by the secretory pattern of GH and the role of STAT5 in body growth. Oncogene (2000).
Collapse
Affiliation(s)
- J Herrington
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan, MI 48109-0622, USA
| | | | | | | |
Collapse
|
48
|
Molenaar AJ, Wheeler TT, Grigor MR. Nuclear localisation of the transcription factor Stat5b is associated with ovine milk protein gene expression during lactation but not during late pregnancy or forced weaning. THE HISTOCHEMICAL JOURNAL 2000; 32:265-74. [PMID: 10939513 DOI: 10.1023/a:1004002611259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Localisation patterns of the transcription factor Stat5b in the udders from pregnant, lactating and involuting ewes were compared with the expression patterns of two major milk protein genes alpha-lactalbumin and alphaS1 casein. Stat5b was detected in the cytoplasm and nuclei of epithelial cells at all stages of mammary gland development. A consistent positive relationship between the nuclear localisation of Stat5b in lactating mammary alveolar epithelial cells, and the presence of milk protein gene mRNA was apparent during lactation and early involution. Conversely, there was little evidence of nuclear localisation of Stat5b in non-lactating mammary alveolar epithelial cells during lactation and early involution. This supports the observation that during lactation, Stat5b may play a role in milk protein gene expression. However, during pregnancy and later involution, while Stat5b was observed to be present in mammary epithelial cell nuclei and cytoplasm, no relationship between this and the presence of milk protein gene mRNA was apparent. This suggests that during late pregnancy and in later involution, Stat5b may be involved in processes other than initiation of milk protein gene transcription.
Collapse
Affiliation(s)
- A J Molenaar
- Food Science Platform, AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | | | | |
Collapse
|
49
|
Beuvink I, Hess D, Flotow H, Hofsteenge J, Groner B, Hynes NE. Stat5a serine phosphorylation. Serine 779 is constitutively phosphorylated in the mammary gland, and serine 725 phosphorylation influences prolactin-stimulated in vitro DNA binding activity. J Biol Chem 2000; 275:10247-55. [PMID: 10744710 DOI: 10.1074/jbc.275.14.10247] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of transcription factors of the Stat family is controlled by phosphorylation of a conserved, carboxyl-terminal tyrosine residue. Tyrosine phosphorylation is essential for Stat dimerization, nuclear translocation, DNA binding, and transcriptional activation. Phosphorylation of Stats on specific serine residues has also been described. We have previously shown that in HC11 mammary epithelial cells Stat5a is phosphorylated on Tyr(694) in a prolactin-sensitive manner, whereas serine phosphorylation is constitutive (Wartmann, M., Cella, N., Hofer, P., Groner, B., Xiuwen, L., Hennighausen, L., and Hynes, N. E. (1996) J. Biol. Chem. 271, 31863-31868). By using mass spectrometry and site-directed mutagenesis, we have now identified Ser(779), located in a unique Stat5a SP motif, as the site of serine phosphorylation. By using phospho-Ser(779)-specific antiserum, we have determined that Ser(779) is constitutively phosphorylated in mammary glands taken from different developmental stages. Stat5a isolated from spleen, heart, brain, and lung was also found to be phosphorylated on Ser(779). Ser(725) in Stat5a has also been identified as a phosphorylation site (Yamashita, H., Xu, J., Erwin, R. A., Farrar, W. L., Kirken, R. A., and Rui, H. (1998) J. Biol. Chem. 273, 30218-30224). Here we show that mutagenesis of Ser(725), Ser(779), or a combination of Ser(725/779) to an Ala had no effect on prolactin-induced transcriptional activation of a beta-casein reporter construct. However, following prolactin induction the Ser(725) mutant displayed sustained DNA binding activity compared with that of wild type Stat5a. The results suggest that Ser(725) phosphorylation has an impact on signal duration.
Collapse
Affiliation(s)
- I Beuvink
- Friedrich Miescher Institute, P. O. Box 2543, CH-4002 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Rebsamen MC, Arrighi JF, Juge-Aubry CE, Vallotton MB, Lang U. Epidermal growth factor induces hypertrophic responses and Stat5 activation in rat ventricular cardiomyocytes. J Mol Cell Cardiol 2000; 32:599-610. [PMID: 10756117 DOI: 10.1006/jmcc.2000.1103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidermal growth factor (EGF) was tested for its ability to promote hypertrophic responses in neonatal rat ventricular cardiomyocytes. Exposure of these cells to 100 n m EGF for 2-18 h resulted in a time-dependent increase in protein synthesis reaching 174+/-18% of control values at 18 h. After 30 min stimulation, the mRNA levels of c-jun and c-fos were also increased 20- and 36-fold, respectively. We also investigated EGF-induced activation of Stat (signal transducers and activators of transcription) proteins as well as the possible interactions of this signaling pathway with the p38 and p42/44 MAP kinases cascades. EGF did not activate Stat1 and Stat3, but did induce a rapid and transient activation of Stat5, which corresponded mainly to Stat5b DNA-binding. The EGF-promoted Stat5 DNA-binding was decreased in a concentration-dependent manner by the p38 MAPK inhibitor SB 203580 (IC(50)=1.2 microm), whereas it was tripled by 50 micro m PD 98059, an inhibitor of the p42/44 MAPK cascade. This is the first demonstration that EGF increases protein synthesis and early response gene expression in cardiomyocytes, responses considered as markers of hypertrophy in these cells. The results further show that EGF activates Stat5, that this response requires p38 MAPK stimulation, and it is negatively modulated by p42/44 MAPK.
Collapse
Affiliation(s)
- M C Rebsamen
- Division of Endocrinology and Diabetology, Division of Immunology and Allergy, Geneva 14, CH-1211, Switzerland
| | | | | | | | | |
Collapse
|