1
|
Young MR, Heit S, Bublitz M. Structure, function and biogenesis of the fungal proton pump Pma1. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119600. [PMID: 37741574 DOI: 10.1016/j.bbamcr.2023.119600] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/19/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
The fungal plasma membrane proton pump Pma1 is an integral plasma membrane protein of the P-type ATPase family. It is an essential enzyme responsible for maintaining a constant cytosolic pH and for energising the plasma membrane to secondary transport processes. Due to its importance for fungal survival and absence from animals, Pma1 is also a highly sought-after drug target. Until recently, its characterisation has been limited to functional, mutational and localisation studies, due to a lack of high-resolution structural information. The determination of three cryo-EM structures of Pma1 in its unique hexameric state offers a new level of understanding the molecular mechanisms underlying the protein's stability, regulated activity and druggability. In light of this context, this article aims to review what we currently know about the structure, function and biogenesis of fungal Pma1.
Collapse
Affiliation(s)
- Margaret R Young
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Sabine Heit
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Maike Bublitz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
2
|
Li M, Chu Y, Dong X, Ji H. General mechanisms of weak acid-tolerance and current strategies for the development of tolerant yeasts. World J Microbiol Biotechnol 2023; 40:49. [PMID: 38133718 DOI: 10.1007/s11274-023-03875-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Yeast cells are often subjected to various types of weak acid stress in the process of industrial production, food processing, and preservation, resulting in growth inhibition and reduced fermentation performance. Under acidic conditions, weak acids enter the near-neutral yeast cytoplasm and dissociate into protons and anions, leading to cytoplasmic acidification and cell damage. Although some yeast strains have developed the ability to survive weak acids, the complexity and diversity of stresses during industrial production still require the application of appropriate strategies for phenotypes improvement. In this review, we summarized current knowledge concerning weak acid stress response and resistance, which may suggest important targets for further construction of more robust strains. We also highlight current feasible strategies for improving the weak acid resistance of yeasts, such as adaptive laboratory evolution, transcription factors engineering, and cell membrane/wall engineering. Moreover, the challenges and perspectives associated with improving the competitiveness of industrial strains are also discussed. This review provides effective strategies for improving the industrial phenotypes of yeast from multiple dimensions in future studies.
Collapse
Affiliation(s)
- Mengmeng Li
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Yunfei Chu
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Xiameng Dong
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, PR China.
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China.
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
3
|
Mariscal M, Miguel-Rojas C, Hera C, Fernandes TR, Di Pietro A. Fusarium oxysporum Casein Kinase 1, a Negative Regulator of the Plasma Membrane H +-ATPase Pma1, Is Required for Development and Pathogenicity. J Fungi (Basel) 2022; 8:1300. [PMID: 36547634 PMCID: PMC9786551 DOI: 10.3390/jof8121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Like many hemibiotrophic plant pathogens, the root-infecting vascular wilt fungus Fusarium oxysporum induces an increase in the pH of the surrounding host tissue. How alkalinization promotes fungal infection is not fully understood, but recent studies point towards the role of cytosolic pH (pHc) and mitogen-activated protein kinase (MAPK) signaling. In fungi, pHc is mainly controlled by the essential plasma membrane H+-ATPase Pma1. Here we created mutants of F. oxysporum lacking casein kinase 1 (Ck1), a known negative regulator of Pma1. We found that the ck1Δ mutants have constitutively high Pma1 activity and exhibit reduced alkalinization of the surrounding medium as well as decreased hyphal growth and conidiation. Importantly, the ck1Δ mutants exhibit defects in hyphal chemotropism towards plant roots and in pathogenicity on tomato plants. Thus, Ck1 is a key regulator of the development and virulence of F. oxysporum.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14014 Cordoba, Spain
| |
Collapse
|
4
|
Tomashevsky AA, Petrov VV. Point mutations in the different domains of the Saccharomyces cerevisiae plasma membrane PMA1 ATPase cause redistribution among fractions of inorganic polyphosphates. J Biomol Struct Dyn 2020; 40:635-647. [PMID: 32876544 DOI: 10.1080/07391102.2020.1815582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Both ATP and inorganic polyphosphates (PolyP) appeared to be involved in the yeast energy homeostasis, in which plasma membrane PMA1 H+-АТРase plays one of the key roles. During biogenesis and functioning, the enzyme undergoes structural and regulatory phosphorylation. Aim of the work was to elucidate interconnection between functioning of the yeast PMA1 H+-АТРase carrying point substitutions that affected the enzyme structure-function relationship and its ability to be phosphorylated and PolyP metabolism. Effect of such replacements of phosphorylable and non-phosphorylable residues in three topologically and functionally different domains of the enzyme - membrane, extracytosolic, and C-terminal - on the metabolism of polyphosphates and distribution between short-, mid-, and long-chained PolyP fractions (PolyP1-PolyP4-5) has been studied. АТРase activity of membrane and most extracytosolic strains was noticeably lower comparing to the wild type. Of these mutants, three substitutions (L801A, E803A, E847A) have not caused significant changes in PolyP content regardless up to twofold drop of the ATPase activity; F796A with four-fold decreased activity has led to noticeable increase of mid-chained PolyP fractions. The most pronounced effect of PolyP redistribution was caused either by removal of potential (S846A, T850A, D851A) or established (S911A) phosphosites in the PMA1 ATPase or by altering type of the established phosphosite (S911D, T912D). Patterns of PolyP fractions for these two groups have significantly differed from each other, occurring in opposite directions for mutants with removed and changed phosphosite. Changing residue of phosphosite without altering its type (T850S) has not led to significant changes in PolyP content.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alexandr A Tomashevsky
- Pushchino Scientific Center for Biological Research, G.K.Skryabin Institute of Biochemisry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Valery V Petrov
- Pushchino Scientific Center for Biological Research, G.K.Skryabin Institute of Biochemisry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
5
|
Manoli MT, Espeso EA. Modulation of calcineurin activity in Aspergillus nidulans: the roles of high magnesium concentrations and of transcriptional factor CrzA. Mol Microbiol 2019; 111:1283-1301. [PMID: 30741447 DOI: 10.1111/mmi.14221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2019] [Indexed: 01/31/2023]
Abstract
A proper response to elevated extracellular calcium levels helps to most organisms to keep this secondary messenger under strict control, thereby preventing inadequate activation or inhibition of many regulatory activities into cells. In fungi, the calcineurin responsive zinc-finger Crz1/CrzA transcription factor transduces calcium signaling to gene expression. In Aspergillus nidulans, absence of CrzA activity leads to alkaline pH sensitivity and loss of tolerance to high levels of extracellular calcium. Disruption of calcium uptake mechanisms or the presence of high levels of Mg2+ partially suppresses this calcium-sensitive phenotype of null crzA strain. The effects of Mg2+ on CrzA phosphorylation and perturbations that reduce calcineurin phosphatase activity on CrzA demonstrate that the calcium sensitive phenotype of null crzA strain is a consequence of up-regulated calcineurin activity under calcium-induced conditions.
Collapse
Affiliation(s)
- Maria-Tsampika Manoli
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu, 9, Madrid, 28040, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu, 9, Madrid, 28040, Spain
| |
Collapse
|
6
|
Deprez MA, Eskes E, Wilms T, Ludovico P, Winderickx J. pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-à-trois to stress tolerance and longevity. MICROBIAL CELL 2018; 5:119-136. [PMID: 29487859 PMCID: PMC5826700 DOI: 10.15698/mic2018.03.618] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The plasma membrane H+-ATPase Pma1 and the vacuolar V-ATPase act in close harmony to tightly control pH homeostasis, which is essential for a vast number of physiological processes. As these main two regulators of pH are responsive to the nutritional status of the cell, it seems evident that pH homeostasis acts in conjunction with nutrient-induced signalling pathways. Indeed, both PKA and the TORC1-Sch9 axis influence the proton pumping activity of the V-ATPase and possibly also of Pma1. In addition, it recently became clear that the proton acts as a second messenger to signal glucose availability via the V-ATPase to PKA and TORC1-Sch9. Given the prominent role of nutrient signalling in longevity, it is not surprising that pH homeostasis has been linked to ageing and longevity as well. A first indication is provided by acetic acid, whose uptake by the cell induces toxicity and affects longevity. Secondly, vacuolar acidity has been linked to autophagic processes, including mitophagy. In agreement with this, a decline in vacuolar acidity was shown to induce mitochondrial dysfunction and shorten lifespan. In addition, the asymmetric inheritance of Pma1 has been associated with replicative ageing and this again links to repercussions on vacuolar pH. Taken together, accumulating evidence indicates that pH homeostasis plays a prominent role in the determination of ageing and longevity, thereby providing new perspectives and avenues to explore the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Elja Eskes
- Functional Biology, KU Leuven, Leuven, Belgium
| | | | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
7
|
Compensatory Internalization of Pma1 in V-ATPase Mutants in Saccharomyces cerevisiae Requires Calcium- and Glucose-Sensitive Phosphatases. Genetics 2017; 208:655-672. [PMID: 29254995 PMCID: PMC5788529 DOI: 10.1534/genetics.117.300594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/09/2017] [Indexed: 11/23/2022] Open
Abstract
Loss of V-ATPase activity in organelles triggers compensatory endocytic downregulation of the plasma membrane proton pump Pma1. Here, Velivela and Kane... Loss of V-ATPase activity in organelles, whether through V-ATPase inhibition or V-ATPase (vma) mutations, triggers a compensatory downregulation of the essential plasma membrane proton pump Pma1 in Saccharomyces cerevisiae. We have previously determined that the α-arrestin Rim8 and ubiquitin ligase Rsp5 are essential for Pma1 ubiquination and endocytosis in response to loss of V-ATPase activity. Here, we show that Pma1 endocytosis in V-ATPase mutants does not require Rim101 pathway components upstream and downstream of Rim8, indicating that Rim8 is acting independently in Pma1 internalization. We find that two phosphatases, the calcium-responsive phosphatase calcineurin and the glucose-sensitive phosphatase Glc7 (PP1), and one of the Glc7 regulatory subunits Reg1, exhibit negative synthetic genetic interactions with vma mutants, and demonstrate that both phosphatases are essential for ubiquitination and endocytic downregulation of Pma1 in these mutants. Although both acute and chronic loss of V-ATPase activity trigger the internalization of ∼50% of surface Pma1, a comparable reduction in Pma1 expression in a pma1-007 mutant neither compensates for loss of V-ATPase activity nor stops further Pma1 endocytosis. The results indicate that the cell surface level of Pma1 is not directly sensed and that internalized Pma1 may play a role in compensating for loss of V-ATPase-dependent acidification. Taken together, these results provide new insights into cross talk between two major proton pumps central to cellular pH control.
Collapse
|
8
|
Mahmoud S, Planes MD, Cabedo M, Trujillo C, Rienzo A, Caballero-Molada M, Sharma SC, Montesinos C, Mulet JM, Serrano R. TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis. FEBS Lett 2017; 591:1993-2002. [PMID: 28486745 DOI: 10.1002/1873-3468.12673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022]
Abstract
We have identified in yeast a connection between two master regulators of cell growth: a biochemical connection involving the TORC1 protein kinase (which activates protein synthesis, nutrient uptake, and anabolism) and a biophysical connection involving the plasma membrane proton-pumping H+ -ATPase Pma1 (which drives nutrient and K+ uptake and regulates pH homeostasis). Raising the temperature to nonpermissive values in a TOR thermosensitive mutant decreases Pma1 activity. Rapamycin, a TORC1 inhibitor, inhibits Pma1 dependent on its receptor Fpr1 and on the protein phosphatase Sit4, a TORC1 effector. Mutation of either Sit4 or Tco89, a nonessential subunit of TORC1, decreases proton efflux, K+ uptake, intracellular pH, cell growth, and tolerance to weak organic acids. Tco89 does not affect Pma1 activity but activates K+ transport.
Collapse
Affiliation(s)
- Shima Mahmoud
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - María Dolores Planes
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Marc Cabedo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Cristina Trujillo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Alessandro Rienzo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Marcos Caballero-Molada
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Sukesh C Sharma
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Consuelo Montesinos
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| |
Collapse
|
9
|
Lee Y, Nasution O, Lee YM, Kim E, Choi W, Kim W. Overexpression of PMA1 enhances tolerance to various types of stress and constitutively activates the SAPK pathways in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2016; 101:229-239. [PMID: 27730338 DOI: 10.1007/s00253-016-7898-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/10/2016] [Accepted: 09/25/2016] [Indexed: 11/26/2022]
Abstract
PMA1 encodes a transmembrane polypeptide that functions to pump protons out of the cell. Ectopic PMA1 overexpression in Saccharomyces cerevisiae enhances tolerance to weak acids, reactive oxygen species (ROS) and ethanol, and changes the following physiological properties: better proton efflux, lower membrane permeability, and lessened internal hydrogen peroxide production. The enhanced stress tolerance was dependent on the mitogen-activated protein kinase (MAPK) Hog1 of the high osmolarity glycerol (HOG) pathway, but not the MAPK Slt2 of the cell wall integrity (CWI) pathway; however, a PMA1 overexpression constitutively activated both Hog1 and Slt2. The constitutive Hog1 activation required the MAPK kinase kinase (MAP3K) Ssk2 of the HOG pathway, but not Ste11 and Ssk22, two other MAP3Ks of the same pathway. The constitutive Slt2 activation did not require Rom2 and the membrane sensors of the CWI pathway, whereas Bck1 was indispensable. The PMA1 overexpression activated the stress response element but not the cyclic AMP response element and the Rlm1 transcription factor. PMA1 overexpression may facilitate the construction of industrial strains with simultaneous tolerance to weak acids, ROS, and ethanol.
Collapse
Affiliation(s)
- Yeji Lee
- Interdisciplinary Program of EcoCreative, College of Natural Sciences, Ewha Womans University, Seoul, 03766, South Korea
| | - Olviyani Nasution
- Interdisciplinary Program of EcoCreative, College of Natural Sciences, Ewha Womans University, Seoul, 03766, South Korea
| | - Young Mi Lee
- Department of Life Sciences College of Natural Sciences, Ewha Womans University, Seoul, 03766, South Korea
| | - Eunjung Kim
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, 16499, South Korea
| | - Wonja Choi
- Interdisciplinary Program of EcoCreative, College of Natural Sciences, Ewha Womans University, Seoul, 03766, South Korea.
- Department of Life Sciences College of Natural Sciences, Ewha Womans University, Seoul, 03766, South Korea.
| | - Wankee Kim
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
10
|
Snowdon C, Johnston M. A novel role for yeast casein kinases in glucose sensing and signaling. Mol Biol Cell 2016; 27:3369-3375. [PMID: 27630263 PMCID: PMC5170868 DOI: 10.1091/mbc.e16-05-0342] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
The yeast casein kinases function upstream of the glucose sensors in the sensor/receptor-repressor signaling pathway. The sensor Rgt2 undergoes Yck-dependent phosphorylation on its C-terminal tail, which is necessary for Mth1 and Std1 binding and downstream signaling. Yeasts have sophisticated signaling pathways for sensing glucose, their preferred carbon source, to regulate its uptake and metabolism. One of these is the sensor/receptor-repressor (SRR) pathway, which detects extracellular glucose and transmits an intracellular signal that induces expression of HXT genes. The yeast casein kinases (Ycks) are key players in this pathway. Our model of the SRR pathway had the Ycks functioning downstream of the glucose sensors, transmitting the signal from the sensors to the Mth1 and Std1 corepressors that are required for repression of HXT gene expression. However, we found that overexpression of Yck1 fails to restore glucose signaling in a glucose sensor mutant. Conversely, overexpression of a glucose sensor suppresses the signaling defect of a yck mutant. These results suggest that the Ycks act upstream or at the level of the glucose sensors. Indeed, we found that the glucose sensor Rgt2 is phosphorylated on Yck consensus sites in its C-terminal tail in a Yck-dependent manner and that this phosphorylation is required for corepressor binding and ultimately HXT expression. This leads to a revised model of the SRR pathway in which the Ycks prime a site on the cytoplasmic tails of the glucose sensors to promote binding of the corepressors.
Collapse
Affiliation(s)
- Chris Snowdon
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Mark Johnston
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
11
|
Sugar and Glycerol Transport in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:125-168. [PMID: 26721273 DOI: 10.1007/978-3-319-25304-6_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.
Collapse
|
12
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Interactions Between Monovalent Cations and Nutrient Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:271-289. [PMID: 26721278 DOI: 10.1007/978-3-319-25304-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maintenance of appropriate fluxes of monovalent cation is a requirement for growth and survival. In the budding yeast Saccharomyces cerevisiae an electrochemical gradient of H(+) is fundamental for the uptake of diverse cations, such as K(+), and of many other nutrients. In spite of early work suggesting that alterations in monovalent cation fluxes impact on the uptake and utilization of nutrients, such as phosphate anions, only recently this important aspect of the yeast physiology has been addressed and characterized in some detail. This chapter provides a historical background and summarizes the latest findings.
Collapse
|
14
|
Stalder D, Novick PJ. The casein kinases Yck1p and Yck2p act in the secretory pathway, in part, by regulating the Rab exchange factor Sec2p. Mol Biol Cell 2015; 27:686-701. [PMID: 26700316 PMCID: PMC4750927 DOI: 10.1091/mbc.e15-09-0651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/17/2015] [Indexed: 12/04/2022] Open
Abstract
Sec2p is phosphorylated by the redundant casein kinases Yck1p and Yck2p. This promotes the interaction of Sec2p with the downstream effector, Sec15p, and contributes to Sec2p localization and function. Phosphorylation requires prior association of Sec2p with vesicles and reduction of the inhibitory Golgi lipid PI(4)P from the vesicle membrane. Sec2p is a guanine nucleotide exchange factor that activates Sec4p, the final Rab GTPase of the yeast secretory pathway. Sec2p is recruited to secretory vesicles by the upstream Rab Ypt32p acting in concert with phosphatidylinositol-4-phosphate (PI(4)P). Sec2p also binds to the Sec4p effector Sec15p, yet Ypt32p and Sec15p compete against each other for binding to Sec2p. We report here that the redundant casein kinases Yck1p and Yck2p phosphorylate sites within the Ypt32p/Sec15p binding region and in doing so promote binding to Sec15p and inhibit binding to Ypt32p. We show that Yck2p binds to the autoinhibitory domain of Sec2p, adjacent to the PI(4)P binding site, and that addition of PI(4)P inhibits Sec2p phosphorylation by Yck2p. Loss of Yck1p and Yck2p function leads to accumulation of an intracellular pool of the secreted glucanase Bgl2p, as well as to accumulation of Golgi-related structures in the cytoplasm. We propose that Sec2p is phosphorylated after it has been recruited to secretory vesicles and the level of PI(4)P has been reduced. This promotes Sec2p function by stimulating its interaction with Sec15p. Finally, Sec2p is dephosphorylated very late in the exocytic reaction to facilitate recycling.
Collapse
Affiliation(s)
- Danièle Stalder
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Peter J Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
15
|
Baron JA, Chen JS, Culotta VC. Cu/Zn superoxide dismutase and the proton ATPase Pma1p of Saccharomyces cerevisiae. Biochem Biophys Res Commun 2015; 462:251-6. [PMID: 25956063 PMCID: PMC4458189 DOI: 10.1016/j.bbrc.2015.04.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/26/2015] [Indexed: 12/30/2022]
Abstract
In eukaryotes, the Cu/Zn containing superoxide dismutase (SOD1) plays a critical role in oxidative stress protection as well as in signaling. We recently demonstrated a function for Saccharomyces cerevisiae Sod1p in signaling through CK1γ casein kinases and identified the essential proton ATPase Pma1p as one likely target. The connection between Sod1p and Pma1p was explored further by testing the impact of sod1Δ mutations on cells expressing mutant alleles of Pma1p that alter activity and/or post-translational regulation of this ATPase. We report here that sod1Δ mutations are lethal when combined with the T912D allele of Pma1p in the C-terminal regulatory domain. This "synthetic lethality" was reversed by intragenic suppressor mutations in Pma1p, including an A906G substitution that lies within the C-terminal regulatory domain and hyper-activates Pma1p. Surprisingly the effect of sod1Δ mutations on Pma1-T912D is not mediated through the Sod1p signaling pathway involving the CK1γ casein kinases. Rather, Sod1p sustains life of cells expressing Pma1-T912D through oxidative stress protection. The synthetic lethality of sod1Δ Pma1-T912D cells is suppressed by growing cells under low oxygen conditions or by treatments with manganese-based antioxidants. We now propose a model in which Sod1p maximizes Pma1p activity in two ways: one involving signaling through CK1γ casein kinases and an independent role for Sod1p in oxidative stress protection.
Collapse
Affiliation(s)
- J Allen Baron
- Department of Biochemistry and Molecular Biology, Johns Hopkins U. Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Janice S Chen
- Department of Biochemistry and Molecular Biology, Johns Hopkins U. Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins U. Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Mazón MJ, Eraso P, Portillo F. Specific phosphoantibodies reveal two phosphorylation sites in yeast Pma1 in response to glucose. FEMS Yeast Res 2015; 15:fov030. [PMID: 26019146 DOI: 10.1093/femsyr/fov030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 11/14/2022] Open
Abstract
Glucose triggers post-translational modifications of the Saccharomyces cerevisiae plasma membrane H(+)-ATPase (Pma1) that lead to an increase in enzyme activity. The activation results from changes in two kinetic parameters: an increase in the affinity of the enzyme for ATP, depending on Ser899, and an increase in the Vmax involving Ser911/Thr912. Using phosphospecific antibodies, we show that Ser899 and Ser911/Thr912 are phosphorylated in vivo during glucose activation and that protein phosphatase Glc7 is involved in the dephosphorylation of Ser899 upon glucose starvation.
Collapse
Affiliation(s)
- María J Mazón
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Pilar Eraso
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| |
Collapse
|
17
|
Pereira RR, Castanheira D, Teixeira JA, Bouillet LEM, Ribeiro EMC, Trópia MMJ, Alvarez F, Correa LFM, Mota BEF, Conceição LEFR, Castro IM, Brandão RL. Detailed search for protein kinase(s) involved in plasma membrane H+−ATPase activity regulation of yeast cells. FEMS Yeast Res 2015; 15:fov003. [DOI: 10.1093/femsyr/fov003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Canadell D, González A, Casado C, Ariño J. Functional interactions between potassium and phosphate homeostasis in Saccharomyces cerevisiae. Mol Microbiol 2014; 95:555-72. [PMID: 25425491 DOI: 10.1111/mmi.12886] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2014] [Indexed: 12/29/2022]
Abstract
Maintenance of ion homeostatic mechanisms is essential for living cells, including the budding yeast Saccharomyces cerevisiae. Whereas the impact of changes in phosphate metabolism on metal ion homeostasis has been recently examined, the inverse effect is still largely unexplored. We show here that depletion of potassium from the medium or alteration of diverse regulatory pathways controlling potassium uptake, such as the Trk potassium transporters or the Pma1 H(+) -ATPase, triggers a response that mimics that of phosphate (Pi) deprivation, exemplified by accumulation of the high-affinity Pi transporter Pho84. This response is mediated by and requires the integrity of the PHO signaling pathway. Removal of potassium from the medium does not alter the amount of total or free intracellular Pi, but is accompanied by decreased ATP and ADP levels and rapid depletion of cellular polyphosphates. Therefore, our data do not support the notion of Pi being the major signaling molecule triggering phosphate-starvation responses. We also observe that cells with compromised potassium uptake cannot grow under limiting Pi conditions. The link between potassium and phosphate homeostasis reported here could explain the invasive phenotype, characteristic of nutrient deprivation, observed in potassium-deficient yeast cells.
Collapse
Affiliation(s)
- David Canadell
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | | | | |
Collapse
|
19
|
Wolf W, Meese K, Seedorf M. Ist2 in the yeast cortical endoplasmic reticulum promotes trafficking of the amino acid transporter Bap2 to the plasma membrane. PLoS One 2014; 9:e85418. [PMID: 24416406 PMCID: PMC3885692 DOI: 10.1371/journal.pone.0085418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
The equipment of the plasma membrane in Saccharomyces cerevisiae with specific nutrient transporters is highly regulated by transcription, translation and protein trafficking allowing growth in changing environments. The activity of these transporters depends on a H+ gradient across the plasma membrane generated by the H+-ATPase Pma1. We found that the polytopic membrane protein Ist2 in the cortical endoplasmic reticulum (ER) is required for efficient leucine uptake during the transition from fermentation to respiration. Experiments employing tandem fluorescence timer protein tag showed that Ist2 was necessary for efficient trafficking of newly synthesized leucine transporter Bap2 from the ER to the plasma membrane. This finding explains the growth defect of ist2Δ mutants during nutritional challenges and illustrates the important role of physical coupling between cortical ER and plasma membrane.
Collapse
Affiliation(s)
- Wendelin Wolf
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Allianz, Heidelberg, Germany
| | - Klaus Meese
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Allianz, Heidelberg, Germany
| | - Matthias Seedorf
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Allianz, Heidelberg, Germany
| |
Collapse
|
20
|
Gorietti D, Zanni E, Palleschi C, Delfini M, Uccelletti D, Saliola M, Miccheli A. Depletion of casein kinase I leads to a NAD(P)(+)/NAD(P)H balance-dependent metabolic adaptation as determined by NMR spectroscopy-metabolomic profile in Kluyveromyces lactis. Biochim Biophys Acta Gen Subj 2013; 1840:556-64. [PMID: 24144565 DOI: 10.1016/j.bbagen.2013.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/25/2013] [Accepted: 10/12/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND In the Crabtree-negative Kluyveromyces lactis yeast the rag8 mutant is one of nineteen complementation groups constituting the fermentative-deficient model equivalent to the Saccharomyces cerevisiae respiratory petite mutants. These mutants display pleiotropic defects in membrane fatty acids and/or cell walls, osmo-sensitivity and the inability to grow under strictly anaerobic conditions (Rag(-) phenotype). RAG8 is an essential gene coding for the casein kinase I, an evolutionary conserved activity involved in a wide range of cellular processes coordinating morphogenesis and glycolytic flux with glucose/oxygen sensing. METHODS A metabolomic approach was performed by NMR spectroscopy to investigate how the broad physiological roles of Rag8, taken as a model for all rag mutants, coordinate cellular responses. RESULTS Statistical analysis of metabolomic data showed a significant increase in the level of metabolites in reactions directly involved in the reoxidation of the NAD(P)H in rag8 mutant samples with respect to the wild type ones. We also observed an increased de novo synthesis of nicotinamide adenine dinucleotide. On the contrary, the production of metabolites in pathways leading to the reduction of the cofactors was reduced. CONCLUSIONS The changes in metabolite levels in rag8 showed a metabolic adaptation that is determined by the intracellular NAD(P)(+)/NAD(P)H redox balance state. GENERAL SIGNIFICANCE The inadequate glycolytic flux of the mutant leads to a reduced/asymmetric distribution of acetyl-CoA to the different cellular compartments with loss of the fatty acid dynamic respiratory/fermentative adaptive balance response.
Collapse
Affiliation(s)
- D Gorietti
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Reddi AR, Culotta VC. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell 2013; 152:224-35. [PMID: 23332757 PMCID: PMC3552299 DOI: 10.1016/j.cell.2012.11.046] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/27/2012] [Accepted: 11/09/2012] [Indexed: 12/22/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) is an abundant enzyme that has been best studied as a regulator of antioxidant defense. Using the yeast Saccharomyces cerevisiae, we report that SOD1 transmits signals from oxygen and glucose to repress respiration. The mechanism involves SOD1-mediated stabilization of two casein kinase 1-gamma (CK1γ) homologs, Yck1p and Yck2p, required for respiratory repression. SOD1 binds a C-terminal degron we identified in Yck1p/Yck2p and promotes kinase stability by catalyzing superoxide conversion to peroxide. The effects of SOD1 on CK1γ stability are also observed with mammalian SOD1 and CK1γ and in a human cell line. Therefore, in a single circuit, oxygen, glucose, and reactive oxygen can repress respiration through SOD1/CK1γ signaling. Our data therefore may provide mechanistic insight into how rapidly proliferating cells and many cancers accomplish glucose-mediated repression of respiration in favor of aerobic glycolysis.
Collapse
Affiliation(s)
- Amit R Reddi
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
22
|
Souza AA, Miranda MN, da Silva SF, Bozaquel-Morais B, Masuda CA, Ghislain M, Montero-Lomelí M. Expression of the glucose transporter HXT1 involves the Ser-Thr protein phosphatase Sit4 in Saccharomyces cerevisiae. FEMS Yeast Res 2012; 12:907-17. [PMID: 22882630 DOI: 10.1111/j.1567-1364.2012.00839.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 11/29/2022] Open
Abstract
We studied the effect of the loss of the Ser-Thr protein phosphatase Sit4, an important post-translational regulator, on the steady-state levels of the low-affinity glucose transporter Hxt1p and observed a delay in its appearance after high glucose induction, slow growth, and diminished glucose consumption. By analyzing the known essential pathway necessary to induce Hxt1p, we observed a partial inhibition of casein kinase I activity. In both WT and sit4Δ strains, the transcript was induced with no significant difference at 15 min of glucose induction; however, after 45 min, a clear difference in the level of expression was observed being 45% higher in WT than in sit4Δ strain. As at early time of induction, the HXT1 transcript was present but not the protein in the sit4Δ strain we analyzed association of HXT1 with ribosomes, which revealed a significant difference in the association profile; in the mutant strain, the HXT1 transcript associated with a larger set of ribosomal fractions than it did in the WT strain, suggesting also a partial defect in protein synthesis. Overexpression of the translation initiation factor TIF2/eIF4A led to an increase in Hxt1p abundance in the WT strain only. It was concluded that Sit4p ensures that HXT1 transcript is efficiently transcribed and translated thus increasing protein levels of Hxt1p when high glucose levels are present.
Collapse
Affiliation(s)
- Andréa A Souza
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Yeast Ist2 recruits the endoplasmic reticulum to the plasma membrane and creates a ribosome-free membrane microcompartment. PLoS One 2012; 7:e39703. [PMID: 22808051 PMCID: PMC3392263 DOI: 10.1371/journal.pone.0039703] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022] Open
Abstract
The endoplasmic reticulum (ER) forms contacts with the plasma membrane. These contacts are known to function in non-vesicular lipid transport and signaling. Ist2 resides in specific domains of the ER in Saccharomyces cerevisiae where it binds phosphoinositide lipids at the cytosolic face of the plasma membrane. Here, we report that Ist2 recruits domains of the yeast ER to the plasma membrane. Ist2 determines the amount of cortical ER present and the distance between the ER and the plasma membrane. Deletion of IST2 resulted in an increased distance between ER and plasma membrane and allowed access of ribosomes to the space between the two membranes. Cells that overexpress Ist2 showed an association of the nucleus with the plasma membrane. The morphology of the ER and yeast growth were sensitive to the abundance of Ist2. Moreover, Ist2-dependent effects on cytosolic pH and genetic interactions link Ist2 to the activity of the H(+) pump Pma1 in the plasma membrane during cellular adaptation to the growth phase of the culture. Consistently we found a partial colocalization of Ist2-containing cortical ER and Pma1-containing domains of the plasma membrane. Hence Ist2 may be critically positioned in domains that couple functions of the ER and the plasma membrane.
Collapse
|
24
|
Borklu Yucel E, Ulgen KO. A network-based approach on elucidating the multi-faceted nature of chronological aging in S. cerevisiae. PLoS One 2011; 6:e29284. [PMID: 22216232 PMCID: PMC3244448 DOI: 10.1371/journal.pone.0029284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/23/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cellular mechanisms leading to aging and therefore increasing susceptibility to age-related diseases are a central topic of research since aging is the ultimate, yet not understood mechanism of the fate of a cell. Studies with model organisms have been conducted to ellucidate these mechanisms, and chronological aging of yeast has been extensively used as a model for oxidative stress and aging of postmitotic tissues in higher eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS The chronological aging network of yeast was reconstructed by integrating protein-protein interaction data with gene ontology terms. The reconstructed network was then statistically "tuned" based on the betweenness centrality values of the nodes to compensate for the computer automated method. Both the originally reconstructed and tuned networks were subjected to topological and modular analyses. Finally, an ultimate "heart" network was obtained via pooling the step specific key proteins, which resulted from the decomposition of the linear paths depicting several signaling routes in the tuned network. CONCLUSIONS/SIGNIFICANCE The reconstructed networks are of scale-free and hierarchical nature, following a power law model with γ = 1.49. The results of modular and topological analyses verified that the tuning method was successful. The significantly enriched gene ontology terms of the modular analysis confirmed also that the multifactorial nature of chronological aging was captured by the tuned network. The interplay between various signaling pathways such as TOR, Akt/PKB and cAMP/Protein kinase A was summarized in the "heart" network originated from linear path analysis. The deletion of four genes, TCB3, SNA3, PST2 and YGR130C, was found to increase the chronological life span of yeast. The reconstructed networks can also give insight about the effect of other cellular machineries on chronological aging by targeting different signaling pathways in the linear path analysis, along with unraveling of novel proteins playing part in these pathways.
Collapse
Affiliation(s)
- Esra Borklu Yucel
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.
| | | |
Collapse
|
25
|
A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae. EUKARYOTIC CELL 2011; 10:1241-50. [PMID: 21724935 DOI: 10.1128/ec.05029-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Potassium homeostasis is crucial for living cells. In the yeast Saccharomyces cerevisiae, the uptake of potassium is driven by the electrochemical gradient generated by the Pma1 H(+)-ATPase, and this process represents a major consumer of the gradient. We considered that any mutation resulting in an alteration of the electrochemical gradient could give rise to anomalous sensitivity to any cationic drug independently of its toxicity mechanism. Here, we describe a genomewide screen for mutants that present altered tolerance to hygromycin B, spermine, and tetramethylammonium. Two hundred twenty-six mutant strains displayed altered tolerance to all three drugs (202 hypersensitive and 24 hypertolerant), and more than 50% presented a strong or moderate growth defect at a limiting potassium concentration (1 mM). Functional groups such as protein kinases and phosphatases, intracellular trafficking, transcription, or cell cycle and DNA processing were enriched. Essentially, our screen has identified a substantial number of genes that were not previously described to play a direct or indirect role in potassium homeostasis. A subset of 27 representative mutants were selected and subjected to diverse biochemical tests that, in some cases, allowed us to postulate the basis for the observed phenotypes.
Collapse
|
26
|
Regulation of Saccharomyces cerevisiae Plasma membrane H(+)-ATPase (Pma1) by Dextrose and Hsp30 during Exposure to Thermal Stress. Indian J Microbiol 2011; 51:153-8. [PMID: 22654157 DOI: 10.1007/s12088-011-0137-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 10/22/2010] [Indexed: 12/30/2022] Open
Abstract
Pma1p is an essential plasma membrane H(+)-pump in Saccharomyces cerevisiae that pumps out H(+) at the expense of cellular ATP. Its activity is induced by glucose at 30°C and is inhibited by Hsp30 during exposure to heat shock conditions. To further investigate the regulation of Pma1 function by glucose and Hsp30 during exposure to thermal stress, we estimated Pma1 activity, its protein levels and ser-phosphorylation status in membrane fractions isolated from BY4741 and hsp30Δ cells grown in dextrose and sorbitol at 30°C, and following exposure at 40°C for 30 min. Our results demonstrate that Pma1 activity and protein levels were reduced in Hsp30(+) cells following exposure to thermal stress in dextrose media. The above was not observed in hsp30Δ cells wherein Pma1 activity did not decrease following exposure to similar conditions. Although Pma1p levels decreased in heat-shocked hsp30Δ cells, it was lower compared to that observed in Hsp30(+) cells. Total ser-phosphorylation of Pma1 also showed a decrease following exposure to heat shock condition in dextrose media in both BY4741 and hsp30Δ cells. Its levels were also reduced in BY4741 cells upon heat shock treatment in sorbitol unlike that observed in hsp30Δ cells wherein it was increased. Taken together the above indicate that heat shock induced reduction in Pma1 activity and protein levels in dextrose media required Hsp30. To examine functional interactions between dextrose utilization, Hsp30 and the regulation of various aspects of Pma1, we determined if dextrose regulated other functions attributed to Hsp30. Results demonstrate that the deletion of HSP30 rendered cells dependent on dextrose utilization for survival during exposure to lethal heat stress. Our study has hence been able to establish a functional relationship between glucose utilization, Hsp30 function and the regulation of Pma1 activity. Finally, since the deletion of HSP30 renders Pma1p levels and its activity unresponsive to thermal stress in dextrose media, we concluded that Hsp30 is necessary to maintain Pma1 in a regulation competent conformation. Hsp30 may thus act as a chaperone in the S. cerevisiae plasma membrane.
Collapse
|
27
|
Abstract
The maintenance of appropriate intracellular concentrations of alkali metal cations, principally K(+) and Na(+), is of utmost importance for living cells, since they determine cell volume, intracellular pH, and potential across the plasma membrane, among other important cellular parameters. Yeasts have developed a number of strategies to adapt to large variations in the concentrations of these cations in the environment, basically by controlling transport processes. Plasma membrane high-affinity K(+) transporters allow intracellular accumulation of this cation even when it is scarce in the environment. Exposure to high concentrations of Na(+) can be tolerated due to the existence of an Na(+), K(+)-ATPase and an Na(+), K(+)/H(+)-antiporter, which contribute to the potassium balance as well. Cations can also be sequestered through various antiporters into intracellular organelles, such as the vacuole. Although some uncertainties still persist, the nature of the major structural components responsible for alkali metal cation fluxes across yeast membranes has been defined within the last 20 years. In contrast, the regulatory components and their interactions are, in many cases, still unclear. Conserved signaling pathways (e.g., calcineurin and HOG) are known to participate in the regulation of influx and efflux processes at the plasma membrane level, even though the molecular details are obscure. Similarly, very little is known about the regulation of organellar transport and homeostasis of alkali metal cations. The aim of this review is to provide a comprehensive and up-to-date vision of the mechanisms responsible for alkali metal cation transport and their regulation in the model yeast Saccharomyces cerevisiae and to establish, when possible, comparisons with other yeasts and higher plants.
Collapse
|
28
|
Pasula S, Chakraborty S, Choi JH, Kim JH. Role of casein kinase 1 in the glucose sensor-mediated signaling pathway in yeast. BMC Cell Biol 2010; 11:17. [PMID: 20205947 PMCID: PMC2846877 DOI: 10.1186/1471-2121-11-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/07/2010] [Indexed: 02/06/2023] Open
Abstract
Background In yeast, glucose-dependent degradation of the Mth1 protein, a corepressor of the glucose transporter gene (HXT) repressor Rgt1, is a crucial event enabling expression of several HXT. This event occurs through a signaling pathway that involves the Rgt2 and Snf3 glucose sensors and yeast casein kinase 1 and 2 (Yck1/2). In this study, we examined whether the glucose sensors directly couple with Yck1/2 to convert glucose binding into an intracellular signal that leads to the degradation of Mth1. Results High levels of glucose induce degradation of Mth1 through the Rgt2/Snf3 glucose signaling pathway. Fluorescence microscopy analysis indicates that, under glucose-limited conditions, GFP-Mth1 is localized in the nucleus and does not shuttle between the nucleus and cytoplasm. If glucose-induced degradation is prevented due to disruption of the Rgt2/Snf3 pathway, GFP-Mth1 accumulates in the nucleus. When engineered to be localized to the cytoplasm, GFP-Mth1 is degraded regardless of the presence of glucose or the glucose sensors. In addition, removal of Grr1 from the nucleus prevents degradation of GFP-Mth1. These results suggest that glucose-induced, glucose sensor-dependent Mth1 degradation occurs in the nucleus. We also show that, like Yck2, Yck1 is localized to the plasma membrane via C-terminal palmitoylation mediated by the palmitoyl transferase Akr1. However, glucose-dependent degradation of Mth1 is not impaired in the absence of Akr1, suggesting that a direct interaction between the glucose sensors and Yck1/2 is not required for Mth1 degradation. Conclusion Glucose-induced, glucose sensor-regulated degradation of Mth1 occurs in the nucleus and does not require direct interaction of the glucose sensors with Yck1/2.
Collapse
Affiliation(s)
- Satish Pasula
- The Mississippi Functional Genomics Network, Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | | | | |
Collapse
|
29
|
Duby G, Boutry M. The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Pflugers Arch 2008; 457:645-55. [PMID: 18228034 DOI: 10.1007/s00424-008-0457-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 12/01/2022]
Abstract
Around 40 P-type ATPases have been identified in Arabidopsis and rice, for which the genomes are known. None seems to exchange sodium and potassium, as does the animal Na(+)/K(+)-ATPase. Instead, plants, together with fungi, possess a proton pumping ATPase (H(+)-ATPase), which couples ATP hydrolysis to proton transport out of the cell, and so establishes an electrochemical gradient across the plasma membrane, which is dissipated by secondary transporters using protons in symport or antiport, as sodium is used in animal cells. Additional functions, such as stomata opening, cell growth, and intracellular pH homeostasis, have been proposed. Crystallographic data and homology modeling suggest that the H(+)-ATPase has a broadly similar structure to the other P-type ATPases but has an extended C-terminal region, which is involved in enzyme regulation. Phosphorylation of the penultimate residue, a Thr, and the subsequent binding of regulatory 14-3-3 proteins result in the formation of a dodecamer (six H(+)-ATPase and six 14-3-3 molecules) and enzyme activation. This type of regulation is unique to the P-type ATPase family. However, the recent identification of additional phosphorylated residues suggests further regulatory features.
Collapse
Affiliation(s)
- Geoffrey Duby
- Unité de Biochimie Physiologique, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | | |
Collapse
|
30
|
Charter NW, Kauffman L, Singh R, Eglen RM. A generic, homogenous method for measuring kinase and inhibitor activity via adenosine 5'-diphosphate accumulation. ACTA ACUST UNITED AC 2006; 11:390-9. [PMID: 16751335 DOI: 10.1177/1087057106286829] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The authors describe an assay to measure the generation of adenosine 5'-diphosphate (ADP) resulting from phosphorylation of a substrate by a kinase. ADP accumulation is detected by conversion to a fluorescent signal via a coupled enzyme system. The technology has potential applications for the assessment of inhibitor potency and mode of action as well as kinetic analysis of enzyme activity. The assay has a wide dynamic range (0.25-75 microM) and has been validated with several kinases including the highly active cyclic adenosine monophosphate-dependent protein kinase (PKAalpha), casein kinase 1 (CK1), and the weakly active kinase Jun N-terminal kinase 2 (Jnk2alpha2). Kinase activity can be measured either in an end point or continuous mode. Assay performance in end point mode was compared with an adenosine 5'-triphosphate (ATP) depletion assay and in continuous mode with a pyruvate kinase/lactate dehydrogenase coupled assay. The ability to characterize kinase kinetics was demonstrated by deriving ATP/substrate affinity (Michaelis-Menten constant; K(m)) values for PKAalpha, CK1, and Jnk2alpha2. The assay readily measured activity with kinase reactions using protein substrates, indicating the suitability for use with large macromolecules. A wide range of inhibitor activities could be determined even in the presence of high ATP concentrations, making the assay highly suitable to characterize the mode of action of the inhibitor in question. Collectively, this assay provides a homogenous, generic method for a number of applications in kinase drug discovery.
Collapse
|
31
|
Eraso P, Mazón MJ, Portillo F. Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:164-70. [PMID: 16510118 DOI: 10.1016/j.bbamem.2006.01.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/18/2005] [Accepted: 01/12/2006] [Indexed: 10/25/2022]
Abstract
Glucose triggers posttranslational modifications that increase the activity of the Saccharomyces cerevisiae plasma membrane H+-ATPase (Pma1). Glucose activation of yeast H+-ATPase results from the change in two kinetic parameters: an increase in the affinity of the enzyme for ATP, depending on Ser899, and an increase in the Vmax involving Thr912. Our previous studies suggested that Ptk2 mediates the Ser899-dependent part of the activation. In this study we find that Ptk2 localized to the plasma membrane in a Triton X-100 insoluble fraction. In vitro phosphorylation assays using a recombinant GST-fusion protein comprising 30 C-terminal amino acids of Pma1 suggest that Ser899 is phosphorylated by Ptk2. Furthermore, we show that the Ptk2 carboxyl terminus is essential for glucose-dependent Pma1 activation and for the phosphorylation of Ser899.
Collapse
Affiliation(s)
- Pilar Eraso
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Arturo Duperier, 4, 28029 Madrid, Spain
| | | | | |
Collapse
|
32
|
Watanabe Y, Oshima N, Tamai Y. Co-expression of the Na/H-antiporter and H-ATPase genes of the salt-tolerant yeast in. FEMS Yeast Res 2005; 5:411-7. [PMID: 15691746 DOI: 10.1016/j.femsyr.2004.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 10/21/2004] [Accepted: 11/09/2004] [Indexed: 11/15/2022] Open
Abstract
We cloned two genes from the salt-tolerant yeast Zygosaccharomyces rouxii: ZrSOD2 for the cell membrane Na(+)/H(+)-antiporter and ZrPMA1 for the cell membrane H(+)-ATPase. The products of these genes play cooperative roles in the salt-tolerance of Z. rouxii, and the function of the ZrPMA1 product is regulated at the transcription level. We constructed a yeast expression vector that is able to co-express the ZrSOD2 and ZrPMA1 genes. Single expression of ZrSOD2 was effective in conferring salt-tolerance, and although a slight synergic effect was observed with co-expression of ZrSOD2 and ZrPMA1, the usefulness of this co-expression is likely to be minimal with regard to salt-tolerance.
Collapse
Affiliation(s)
- Yasuo Watanabe
- Department of Biological Resources, Faculty of Agriculture, National University Corporation Ehime University, Matsuyama, Ehime 790-8566, Japan.
| | | | | |
Collapse
|
33
|
Portillo F, Mulet JM, Serrano R. A role for the non-phosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport. FEBS Lett 2004; 579:512-6. [PMID: 15642368 DOI: 10.1016/j.febslet.2004.12.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 10/25/2004] [Accepted: 12/09/2004] [Indexed: 11/20/2022]
Abstract
The Snf1/AMP-activated protein kinases play a key role in stress responses of eukaryotic cells. In the yeast Saccharomyces cerevisiae Snf1 is regulated by glucose depletion, which triggers its phosphorylation at Thr210 and concomitant increase in activity. Activated yeast Snf1 is required for the metabolic changes allowing starvation tolerance and utilization of alternative carbon sources. We now report a function for the non-activated form of Snf1: the regulation of the Trk high-affinity potassium transporter, encoded by the TRK1 and TRK2 genes. A snf1Delta strain is hypersensitive in high-glucose medium to different toxic cations, suggesting a hyperpolarization of the plasma membrane driving increased cation uptake. This phenotype is suppressed by the TRK1 and HAL5 genes in high-copy number consistent with a defect in K(+) uptake mediated by the Trk system. Accordingly, Rb(+) uptake and intracellular K(+) measurements indicate that snf1Delta is unable to fully activate K(+) import. Genetic analysis suggests that the weak kinase activity of the non-phosphorylated form of Snf1 activates Trk in glucose-metabolizing yeast cells. The effect of Snf1 on Trk is probably indirect and could be mediated by the Sip4 transcriptional activator.
Collapse
Affiliation(s)
- Francisco Portillo
- Instituto de Investigaciones Biomédicas, Universidad Autónoma de Madrid-C.S.I.C., Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | |
Collapse
|
34
|
Kellermayer R, Szigeti R, Kellermayer M, Miseta A. The intracellular dissipation of cytosolic calcium following glucose re-addition to carbohydrate depleted Saccharomyces cerevisiae. FEBS Lett 2004; 571:55-60. [PMID: 15280017 DOI: 10.1016/j.febslet.2004.06.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 06/17/2004] [Accepted: 06/21/2004] [Indexed: 10/26/2022]
Abstract
Glucose re-addition to carbohydrate starved yeast cells leads to a transient elevation of eytosolic calcium (TECC). Concomitantly, a cytosolic proton extrusion occurs through the activation of the vacuolar H(+)-ATPase and the plasma membrane H(+)-ATPases. This study addressed the dissipation of the TECC through intracellular compartmentalization and the possible affects of the H(+)-ATPases on this process. Both the vacuole and the Golgi-ER apparatus were found to play important roles in distributing calcium to internal stores. Additionally, the inhibition of cytosolic proton extrusion augmented cytosolic calcium responses. A model where pH dependent cytosolic calcium buffering plays an important role in the dissipation of the TECC in Saccharomyces cerevisiae is proposed.
Collapse
Affiliation(s)
- Richard Kellermayer
- Department of Medical Genetics and Child Development Medicine, University of Pécs, Szigeti ut 12, 7623 Pécs, Hungary.
| | | | | | | |
Collapse
|
35
|
Wu C, Arcand M, Jansen G, Zhong M, Iouk T, Thomas DY, Meloche S, Whiteway M. Phosphorylation of the MAPKKK regulator Ste50p in Saccharomyces cerevisiae: a casein kinase I phosphorylation site is required for proper mating function. EUKARYOTIC CELL 2004; 2:949-61. [PMID: 14555477 PMCID: PMC219381 DOI: 10.1128/ec.2.5.949-961.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ste50 protein of Saccharomyces cerevisiae is a regulator of the Ste11p protein kinase. Ste11p is a member of the MAP3K (or MEKK) family, which is conserved from yeast to mammals. Ste50p is involved in all the signaling pathways that require Ste11p function, yet little is known about the regulation of Ste50p itself. Here, we show that Ste50p is phosphorylated on multiple serine/threonine residues in vivo. Threonine 42 (T42) is phosphorylated both in vivo and in vitro, and the protein kinase responsible has been identified as casein kinase I. Replacement of T42 with alanine (T42A) compromises Ste50p function. This mutation abolishes the ability of overexpressed Ste50p to suppress either the mating defect of a ste20 ste50 deletion mutant or the mating defect of a strain with a Ste11p deleted from its sterile-alpha motif domain. Replacement of T42 with a phosphorylation-mimetic aspartic acid residue (T42D) permits wild-type function in all assays of Ste50p function. These results suggest that phosphorylation of T42 of Ste50p is required for proper signaling in the mating response. However, this phosphorylation does not seem to have a detectable role in modulating the high-osmolarity glycerol synthesis pathway.
Collapse
Affiliation(s)
- Cunle Wu
- Genetics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada H4P 2R2.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lefebvre B, Boutry M, Morsomme P. The yeast and plant plasma membrane H+ pump ATPase: divergent regulation for the same function. ACTA ACUST UNITED AC 2004; 74:203-37. [PMID: 14510077 DOI: 10.1016/s0079-6603(03)01014-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Benoit Lefebvre
- Unité de biochimie physiologique, Institut des Sciences de la Vie, University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
37
|
Yeast transport-ATPases and the genome-sequencing project. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0069-8032(04)43024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Erez O, Kahana C. Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiae trk1Deltatrk2Delta mutant cells exert dual effect on ion homeostasis. Biochem Biophys Res Commun 2002; 295:1142-9. [PMID: 12135613 DOI: 10.1016/s0006-291x(02)00823-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sky1p and Ptk2p are protein kinases that regulate ion transport across the plasma membrane of Saccharomyces cerevisiae. We show here that deletion of SKY1 or PTK2 in trk1,2Delta cells increase spermine tolerance, implying Trk1,2p independent activity. Unexpectedly, trk1,2Deltasky1Delta and trk1,2Deltaptk2Delta cells display hypersensitivity to LiCl. These cells also show increased tolerance to low pH and improved growth in low K(+), as demonstrated for deletion of PMP3 in trk1,2Delta cells. We show that Sky1p and Pmp3p act in different pathways. Hypersensitivity to LiCl and improved growth in low K(+) are partly dependent on the Nha1p and Kha1p antiporters and on the Tok1p channel. Finally, Dhh1p, a RNA helicase was demonstrated to improve growth of trk1,2Deltasky1Delta cells in low K(+). Overexpression of Dhh1p improves the ability of trk1,2Delta cells to grow in low K(+) while dhh1Delta cells are sensitive to spermine and salt ions. A model that integrates these results to explain the mechanism of ion transport across the plasma membrane is proposed.
Collapse
Affiliation(s)
- Omri Erez
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
39
|
Williams-Hart T, Wu X, Tatchell K. Protein phosphatase type 1 regulates ion homeostasis in Saccharomyces cerevisiae. Genetics 2002; 160:1423-37. [PMID: 11973298 PMCID: PMC1462070 DOI: 10.1093/genetics/160.4.1423] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein phosphatase type 1 (PP1) is encoded by the essential gene GLC7 in Saccharomyces cerevisiae. glc7-109 (K259A, R260A) has a dominant, hyperglycogen defect and a recessive, ion and drug sensitivity. Surprisingly, the hyperglycogen phenotype is partially retained in null mutants of GAC1, GIP2, and PIG1, which encode potential glycogen-targeting subunits of Glc7. The R260A substitution in GLC7 is responsible for the dominant and recessive traits of glc7-109. Another mutation at this residue, glc7-R260P, confers only salt sensitivity, indicating that the glycogen and salt traits of glc7-109 are due to defects in distinct physiological pathways. The glc7-109 mutant is sensitive to cations, aminoglycosides, and alkaline pH and exhibits increased rates of l-leucine and 3,3'-dihexyloxacarbocyanine iodide uptake, but it is resistant to molar concentrations of sorbitol or KCl, indicating that it has normal osmoregulation. KCl suppresses the ion and drug sensitivities of the glc7-109 mutant. The CsCl sensitivity of this mutant is suppressed by recessive mutations in PMA1, which encodes the essential plasma membrane H(+)ATPase. Together, these results indicate that Glc7 regulates ion homeostasis by controlling ion transport and/or plasma membrane potential, a new role for Glc7 in budding yeast.
Collapse
Affiliation(s)
- Tara Williams-Hart
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
40
|
Jahn TP, Schulz A, Taipalensuu J, Palmgren MG. Post-translational modification of plant plasma membrane H(+)-ATPase as a requirement for functional complementation of a yeast transport mutant. J Biol Chem 2002; 277:6353-8. [PMID: 11744700 DOI: 10.1074/jbc.m109637200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many heterologous membrane proteins expressed in the yeast Saccharomyces cerevisiae fail to reach their normal cellular location and instead accumulate in stacked internal membranes. Arabidopsis thaliana plasma membrane H(+)-ATPase isoform 2 (AHA2) is expressed predominantly in yeast internal membranes and fails to complement a yeast strain devoid of its endogenous H(+)-ATPase Pma1. We observed that phosphorylation of AHA2 in the heterologous host and subsequent binding of 14-3-3 protein is crucial for the ability of AHA2 to substitute for Pma1. Thus, mutants of AHA2, complementing pma1, showed increased phosphorylation at the penultimate residue (Thr(947)), which creates a binding site for endogenous 14-3-3 protein. Only a pool of ATPase in the plasma membrane is phosphorylated. Double mutants carrying in addition a T947A substitution lost their ability to complement pma1. However, mutants affected in both autoinhibitory regions of the C-terminal regulatory domain complemented pma1 irrespective of their ability to become phosphorylated at Thr(947). This demonstrates that it is the activity status of the mutant enzyme and neither redirection of trafficking nor 14-3-3 binding per se that determines the ability of H(+)-pumps to rescue pma1.
Collapse
Affiliation(s)
- Thomas P Jahn
- Department of Plant Biology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
41
|
Nso E, Goffeau A, Dufour JP. Fluctuations during growth of the plasma membrane H(+)-ATPase activity of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Folia Microbiol (Praha) 2002; 47:401-6. [PMID: 12422517 DOI: 10.1007/bf02818697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The plasma membrane H(+)-ATPase activity was determined under various growth conditions using the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Under early batch-growth conditions in a rich medium, the budding yeast S. cerevisiae ATPase specific activity increased 2- to 3-fold during exponential growth. During late exponential growth, a peak of ATPase activity, followed by a sudden decrease, was observed and termed "growth-arrest control". The growth arrest phenomenon of S. cerevisiae could not be related to the acidification of the culture medium or to glucose exhaustion in the medium or to variation of glucose activation of the H(+)-ATPase. Addition of ammonium to a proline minimum medium also stimulated transiently the ATPase activity of S. cerevisiae. Specific activity of the fission yeast S. pombe ATPase did not show a similar profile and steadily increased to reach a plateau in stationary growth. Under synchronous mitotic growth conditions, the ATPase activity of S. cerevisiae increased during the cell division cycle according to the "peak" type cycle, while that of S. pombe was of the "step" type.
Collapse
Affiliation(s)
- E Nso
- Department of Process Engineering, National Advanced School of Agro-Process Industries (ENSAI), University of Ngaoundere, Ngaoundere, Cameroon
| | | | | |
Collapse
|
42
|
Souza MAA, Trópia MJ, Brandão RL. New aspects of the glucose activation of the H(+)-ATPase in the yeast Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2849-2855. [PMID: 11577163 DOI: 10.1099/00221287-147-10-2849] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The glucose-induced activation of plasma membrane ATPase from Saccharomyces cerevisiae was first described by Serrano in 1983. Many aspects of this signal transduction pathway are still obscure. In this paper, evidence is presented for the involvement of Snf3p as the glucose sensor related to this activation process. It is shown that, in addition to glucose detection by Snf3p, sugar transport is also necessary for activation of the ATPase. The participation of the G protein, Gpa2p, in transducing the internal signal (phosphorylated sugars) is also demonstrated. Moreover, the involvement of protein kinase C in the regulation of ATPase activity is confirmed. Finally, a model pathway is presented for sensing and transmission of the glucose activation signal of the yeast H(+)-ATPase.
Collapse
Affiliation(s)
- M A A Souza
- Laboratório de Bioquı́mica e Fisiologia de Microrganismos, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro - 35.400-000 Ouro Preto, MG, Brazil1
| | - M J Trópia
- Laboratório de Bioquı́mica e Fisiologia de Microrganismos, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro - 35.400-000 Ouro Preto, MG, Brazil1
| | - R L Brandão
- Laboratório de Bioquı́mica e Fisiologia de Microrganismos, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro - 35.400-000 Ouro Preto, MG, Brazil1
| |
Collapse
|
43
|
Erez O, Kahana C. Screening for modulators of spermine tolerance identifies Sky1, the SR protein kinase of Saccharomyces cerevisiae, as a regulator of polyamine transport and ion homeostasis. Mol Cell Biol 2001; 21:175-84. [PMID: 11113192 PMCID: PMC88791 DOI: 10.1128/mcb.21.1.175-184.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although most cells are capable of transporting polyamines, the mechanism that regulates polyamine transport in eukaryotes is still largely unknown. Using a genetic screen for clones capable of restoring spermine sensitivity to spermine-tolerant mutants of Saccharomyces cerevisiae, we have demonstrated that Sky1p, a recently identified SR protein kinase, is a key regulator of polyamine transport. Yeast cells deleted for SKY1 developed tolerance to toxic levels of spermine, while overexpression of Sky1p in wild-type cells increased their sensitivity to spermine. Expression of the wild-type Sky1p but not of a catalytically inactive mutant restored sensitivity to spermine. SKY1 disruption results in dramatically reduced uptake of spermine, spermidine, and putrescine. In addition to spermine tolerance, sky1Delta cells exhibit increased tolerance to lithium and sodium ions but somewhat increased sensitivity to osmotic shock. The observed halotolerance suggests potential regulatory interaction between the transport of polyamines and inorganic ions, as suggested in the case of the Ptk2p, a recently described regulator of polyamine transport. We demonstrate that these two kinases act in two different signaling pathways. While deletion or overexpression of SKY1 did not significantly affect Pma1p activity, the ability of overexpressed Sky1p, Ptk1p, and Ptk2p to increase sensitivity to LiCl depends on the integrity of PPZ1 but not of ENA1.
Collapse
Affiliation(s)
- O Erez
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
44
|
de la Fuente N, Portillo F. The cell wall integrity/remodeling MAPK cascade is involved in glucose activation of the yeast plasma membrane H(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:189-94. [PMID: 11118530 DOI: 10.1016/s0005-2736(00)00293-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glucose triggers transcriptional and post-transcriptional mechanisms that increase the amount and the activity of Saccharomyces cerevisiae plasma membrane H(+)-ATPase. In a previous study, we found that a mutation in the Rsp5 ubiquitin-protein ligase enzyme affected the post-transcriptional activation of the enzyme by glucose. Mutations at the RSP5 locus alter the glucose-triggered K(m) decrease. In a genetic screening for multicopy suppressors of the rsp5 mutation, we identified the WSC2/YNL283c gene. Deletion of the WSC2 gene disturbs ATPase activation by glucose, abolishing the K(m) decrease that occurs during this process. Wsc2 is a component of the PKC1-MPK1 mitogen-activated protein kinase (MAPK) signaling pathway that controls the cell wall integrity. Deletion of the MPK1/SLT2 gene disturbs the glucose-triggered K(m) decrease in ATPase.
Collapse
Affiliation(s)
- N de la Fuente
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, E-28029, Madrid, Spain
| | | |
Collapse
|
45
|
Morsomme P, Slayman CW, Goffeau A. Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1469:133-57. [PMID: 11063881 DOI: 10.1016/s0304-4157(00)00015-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- P Morsomme
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Belgium
| | | | | |
Collapse
|
46
|
Goossens A, de La Fuente N, Forment J, Serrano R, Portillo F. Regulation of yeast H(+)-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol 2000; 20:7654-61. [PMID: 11003661 PMCID: PMC86331 DOI: 10.1128/mcb.20.20.7654-7661.2000] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of electrical membrane potential is a fundamental property of living cells. This biophysical parameter determines nutrient uptake, intracellular potassium and turgor, uptake of toxic cations, and stress responses. In fungi and plants, an important determinant of membrane potential is the electrogenic proton-pumping ATPase, but the systems that modulate its activity remain largely unknown. We have characterized two genes from Saccharomyces cerevisiae, PTK2 and HRK1 (YOR267c), that encode protein kinases implicated in activation of the yeast plasma membrane H(+)-ATPase (Pma1) in response to glucose metabolism. These kinases mediate, directly or indirectly, an increase in affinity of Pma1 for ATP, which probably involves Ser-899 phosphorylation. Ptk2 has the strongest effect on Pma1, and ptk2 mutants exhibit a pleiotropic phenotype of tolerance to toxic cations, including sodium, lithium, manganese, tetramethylammonium, hygromycin B, and norspermidine. A plausible interpretation is that ptk2 mutants have a decreased membrane potential and that diverse cation transporters are voltage dependent. Accordingly, ptk2 mutants exhibited reduced uptake of lithium and methylammonium. Ptk2 and Hrk1 belong to a subgroup of yeast protein kinases dedicated to the regulation of plasma membrane transporters, which include Npr1 (regulator of Gap1 and Tat2 amino acid transporters) and Hal4 and Hal5 (regulators of Trk1 and Trk2 potassium transporters).
Collapse
Affiliation(s)
- A Goossens
- Instituto de Biologia Molecular y Celular de Plantas, Universidad Politecnica de Valencia-C.S.I.C., 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
47
|
Abstract
The genome of Saccharomyces cerevisiae contains as many as 136 protein kinase encoding genes. However, only a limited number of mitochondrial protein kinases have been characterized. A computer-aided analysis revealed that only seven members of this large protein family are potentially localized in mitochondria. The low abundance of mitochondrially targeted protein kinases in yeast reflects the reductive evolution of mitochondrial signaling components and/or the apparent lack of selection pressure for acquiring mitochondrially localized protein kinases encoded by the host genome. This suggests that mitochondria, like obligatory intracellular bacterial parasites, are no longer dependent on signalling mechanisms mediated by protein kinases residing within the mitochondria. Instead, the nucleo-mitochondrial communication system requiring protein phosphorylation may be predominantly regulated by protein kinases, which are cytosolic and/or anchored to the outer mitochondrial membrane.
Collapse
Affiliation(s)
- L Tomaska
- Faculty of Natural Sciences, Comenius University, Department of Genetics, Mlynska dolina B-1, Bratislava, Slovak Republic.
| |
Collapse
|
48
|
Marchal C, Haguenauer-Tsapis R, Urban-Grimal D. Casein kinase I-dependent phosphorylation within a PEST sequence and ubiquitination at nearby lysines signal endocytosis of yeast uracil permease. J Biol Chem 2000; 275:23608-14. [PMID: 10811641 DOI: 10.1074/jbc.m001735200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uracil uptake by Saccharomyces cerevisiae is mediated by the FUR4-encoded uracil permease. The modification of uracil permease by phosphorylation at the plasma membrane is a key mechanism for regulating endocytosis of this protein. This modification in turn facilitates its ubiquitination and internalization. Following endocytosis, the permease is targeted to the lysosome/vacuole for proteolysis. We have previously shown that uracil permease is phosphorylated at several serine residues within a well characterized N-terminal PEST sequence. In this report, we provide evidence that lysine residues 38 and 41, adjacent to the PEST sequence, are the target sites for ubiquitination of the permease. Conservative substitutions at both Lys(38) and Lys(41) give variant permeases that are phosphorylated but fail to internalize. The PEST sequence contains potential phosphorylation sites conforming to the consensus sequences for casein kinase 1. Casein kinase 1 (CK1) protein kinases, encoded by the redundant YCKI and YCK2 genes, are located at the plasma membrane. Either alone supports growth, but loss of function of both is lethal. Here, we show that in CK1-deficient cells, the permease is poorly phosphorylated and poorly ubiquitinated. Moreover, CK1 overproduction rescued the defective endocytosis of a mutant permease in which the serine phosphoacceptors were replaced by threonine (a less effective phosphoacceptor), which suggests that Yck activity may play a direct role in phosphorylating the permease. Permease internalization was not greatly affected in CK1-deficient cells, despite the low level of ubiquitination of the protein. This may be due to CK1 having a second counteracting role in endocytosis as shown by the higher turnover of variant permeases with unphosphorylatable versions of the PEST sequence.
Collapse
Affiliation(s)
- C Marchal
- Institut Jacques Monod, CNRS-UMRC9922, Université Paris 6 and Paris 7-Denis Diderot, 2 Place Jussieu, 75251 Paris cedex 05, France
| | | | | |
Collapse
|
49
|
Kleinow T, Bhalerao R, Breuer F, Umeda M, Salchert K, Koncz C. Functional identification of an Arabidopsis snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:115-22. [PMID: 10929106 DOI: 10.1046/j.1365-313x.2000.00809.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Yeast Snf4 is a prototype of activating gamma-subunits of conserved Snf1/AMPK-related protein kinases (SnRKs) controlling glucose and stress signaling in eukaryotes. The catalytic subunits of Arabidopsis SnRKs, AKIN10 and AKIN11, interact with Snf4 and suppress the snf1 and snf4 mutations in yeast. By expression of an Arabidopsis cDNA library in yeast, heterologous multicopy snf4 suppressors were isolated. In addition to AKIN10 and AKIN11, the deficiency of yeast snf4 mutant to grown on non-fermentable carbon source was suppressed by Arabidopsis Myb30, CAAT-binding factor Hap3b, casein kinase I, zinc-finger factors AZF2 and ZAT10, as well as orthologs of hexose/UDP-hexose transporters, calmodulin, SMC1-cohesin and Snf4. Here we describe the characterization of AtSNF4, a functional Arabidopsis Snf4 ortholog, that interacts with yeast Snf1 and specifically binds to the C-terminal regulatory domain of Arabidopsis SnRKs AKIN10 and AKIN11.
Collapse
Affiliation(s)
- T Kleinow
- Max-Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Morsomme P, Boutry M. The plant plasma membrane H(+)-ATPase: structure, function and regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:1-16. [PMID: 10748244 DOI: 10.1016/s0005-2736(00)00128-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The proton-pumping ATPase (H(+)-ATPase) of the plant plasma membrane generates the proton motive force across the plasma membrane that is necessary to activate most of the ion and metabolite transport. In recent years, important progress has been made concerning the identification and organization of H(+)-ATPase genes, their expression, and also the kinetics and regulation of individual H(+)-ATPase isoforms. At the gene level, it is now clear that H(+)-ATPase is encoded by a family of approximately 10 genes. Expression, monitored by in situ techniques, has revealed a specific distribution pattern for each gene; however, this seems to differ between species. In the near future, we can expect regulatory aspects of gene expression to be elucidated. Already the expression of individual plant H(+)-ATPases in yeast has shown them to have distinct enzymatic properties. It has also allowed regulatory aspects of this enzyme to be studied through random and site-directed mutagenesis, notably its carboxy-terminal region. Studies performed with both plant and yeast material have converged towards deciphering the way phosphorylation and binding of regulatory 14-3-3 proteins intervene in the modification of H(+)-ATPase activity. The production of high quantities of individual functional H(+)-ATPases in yeast constitutes an important step towards crystallization studies to derive structural information. Understanding the specific roles of H(+)-ATPase isoforms in whole plant physiology is another challenge that has been approached recently through the phenotypic analysis of the first transgenic plants in which the expression of single H(+)-ATPases has been up- or down-regulated. In conclusion, the progress made recently concerning the H(+)-ATPase family, at both the gene and protein level, has come to a point where we can now expect a more integrated investigation of the expression, function and regulation of individual H(+)-ATPases in the whole plant context.
Collapse
Affiliation(s)
- P Morsomme
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Croix du Sud, 2-20, 1348, Louvain-la-Neuve, Belgium
| | | |
Collapse
|