1
|
A reactive oxygen species-mediated, self-perpetuating loop persistently activates platelet-derived growth factor receptor α. Mol Cell Biol 2013; 34:110-22. [PMID: 24190966 DOI: 10.1128/mcb.00839-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The platelet-derived growth factor (PDGF) receptors (PDGFRs) are central to a spectrum of human diseases. When PDGFRs are activated by PDGF, reactive oxygen species (ROS) and Src family kinases (SFKs) act downstream of PDGFRs to enhance PDGF-mediated tyrosine phosphorylation of various signaling intermediates. In contrast to these firmly established principles of signal transduction, much less is known regarding the recently appreciated ability of ROS and SFKs to indirectly and chronically activate monomeric PDGF receptor α (PDGFRα) in the setting of a blinding condition called proliferative vitreoretinopathy (PVR). In this context, we made a series of discoveries that substantially expands our appreciation of epigenetic-based mechanisms to chronically activate PDGFRα. Vitreous, which contains growth factors outside the PDGF family but little or no PDGFs, promoted formation of a unique SFK-PDGFRα complex that was dependent on SFK-mediated phosphorylation of PDGFRα and activated the receptor's kinase activity. While vitreous engaged a total of five receptor tyrosine kinases, PDGFRα was the only one that was activated persistently (at least 16 h). Prolonged activation of PDGFRα involved mTOR-mediated inhibition of autophagy and accumulation of mitochondrial ROS. These findings reveal that growth factor-containing biological fluids, such as vitreous, are able to tirelessly activate PDGFRα by engaging a ROS-mediated, self-perpetuating loop.
Collapse
|
2
|
Wang H, Yin Y, Li W, Zhao X, Yu Y, Zhu J, Qin Z, Wang Q, Wang K, Lu W, Liu J, Huang L. Over-expression of PDGFR-β promotes PDGF-induced proliferation, migration, and angiogenesis of EPCs through PI3K/Akt signaling pathway. PLoS One 2012; 7:e30503. [PMID: 22355314 PMCID: PMC3280261 DOI: 10.1371/journal.pone.0030503] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 12/16/2011] [Indexed: 12/04/2022] Open
Abstract
The proliferation, migration, and angiogenesis of endothelial progenitor cells (EPCs) play critical roles in postnatal neovascularization and re-endothelialization following vascular injury. Here we evaluated whether the over-expression of platelet-derived growth factor receptor-β (PDGFR-β) can enhance the PDGF-BB-stimulated biological functions of EPCs through the PDGFR-β/phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. We first confirmed the expression of endogenous PDGFR-β and its plasma membrane localization in spleen-derived EPCs. We then demonstrated that the PDGFR-β over-expression in EPCs enhanced the PDGF-BB-induced proliferation, migration, and angiogenesis of EPCs. Using AG1295 (a PDGFR kinase inhibitor), LY294002 (a PI3K inhibitor), and sc-221226 (an Akt inhibitor), we further showed that the PI3K/Akt signaling pathway participates in the PDGF-BB-induced proliferation, migration, and angiogenesis of EPCs. In addition, the PI3K/Akt signaling pathway is required for PDGFR-β over-expression to enhance these PDGF-BB-induced phenotypes.
Collapse
Affiliation(s)
- Hang Wang
- Institute of Cardiovascular Science Xinqiao Hospital, Third Military Medical University, Shapingba District, Chongqing, People's Republic of China
| | - Yangguang Yin
- Emergency Department, Xinqiao Hospital, Third Military Medical University, Shapingba District, Chongqing, People's Republic of China
| | - Wei Li
- Institute of Cardiovascular Science Xinqiao Hospital, Third Military Medical University, Shapingba District, Chongqing, People's Republic of China
| | - Xiaohui Zhao
- Institute of Cardiovascular Science Xinqiao Hospital, Third Military Medical University, Shapingba District, Chongqing, People's Republic of China
| | - Yang Yu
- Institute of Cardiovascular Science Xinqiao Hospital, Third Military Medical University, Shapingba District, Chongqing, People's Republic of China
| | - Jinkun Zhu
- Institute of Cardiovascular Science Xinqiao Hospital, Third Military Medical University, Shapingba District, Chongqing, People's Republic of China
| | - Zhexue Qin
- Institute of Cardiovascular Science Xinqiao Hospital, Third Military Medical University, Shapingba District, Chongqing, People's Republic of China
| | - Qiang Wang
- Institute of Cardiovascular Science Xinqiao Hospital, Third Military Medical University, Shapingba District, Chongqing, People's Republic of China
| | - Kui Wang
- Institute of Cardiovascular Science Xinqiao Hospital, Third Military Medical University, Shapingba District, Chongqing, People's Republic of China
| | - Wei Lu
- Institute of Cardiovascular Science Xinqiao Hospital, Third Military Medical University, Shapingba District, Chongqing, People's Republic of China
| | - Jie Liu
- Institute of Cardiovascular Science Xinqiao Hospital, Third Military Medical University, Shapingba District, Chongqing, People's Republic of China
| | - Lan Huang
- Institute of Cardiovascular Science Xinqiao Hospital, Third Military Medical University, Shapingba District, Chongqing, People's Republic of China
- * E-mail:
| |
Collapse
|
3
|
SRY-box containing gene 17 regulates the Wnt/β-catenin signaling pathway in oligodendrocyte progenitor cells. J Neurosci 2011; 31:13921-35. [PMID: 21957254 DOI: 10.1523/jneurosci.3343-11.2011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The SRY-box (Sox) transcription factors regulate oligodendrocyte differentiation, but their signaling targets are largely unknown. We have identified a major signal transduction pathway regulated by Sox containing gene 17 (Sox17) in the oligodendrocyte lineage. Microarray analysis in oligodendrocyte progenitor cells (OPCs) after Sox17 attenuation revealed upregulated genes associated with cell cycle control and activation of the Wingless and integration site (Wnt)/β-catenin pathway. Sox17 knockdown also increases the levels of cyclin D1, Axin2, and activated β-catenin. In OPCs, the expression pattern of Sox17, cyclin D1, and secreted Frizzled-related protein-1 in the presence of platelet-derived growth factor (PDGF) was coordinately accelerated by addition of thyroid hormone, indicating differentiation-induced regulation of Sox17 targets. In developing white matter, decreased total β-catenin, activated β-catenin, and cyclin D1 levels coincided with the peak of Sox17 expression, and immunoprecipitates showed a developmentally regulated interaction among Sox17, T-cell transcription factor 4, and β-catenin proteins. In OPCs, PDGF stimulated phosphorylation of glycogen synthase 3β and the Wnt coreceptor LRP6, and enhanced β-catenin-dependent gene expression. Sox17 overexpression inhibited PDGF-induced TOPFLASH and cyclin D1 promoter activity, and decreased endogenous cyclin D1, activated β-catenin, as well as total β-catenin levels. Recombinant Sox17 prevented Wnt3a from repressing myelin protein expression, and inhibition of Sox17-mediated proteasomal degradation of β-catenin blocked myelin protein induction. These results indicate that Sox17 suppresses cyclin D1 expression and cell proliferation by directly antagonizing β-catenin, whose activity in OPCs is stimulated not only by Wnt3a, but also by PDGF. Our identification of downstream targets of Sox17 thus defines signaling pathways and molecular mechanisms in OPCs that are regulated by Sox17 during cell cycle exit and the onset of differentiation in oligodendrocyte development.
Collapse
|
4
|
ten Freyhaus H, Dumitrescu D, Berghausen E, Vantler M, Caglayan E, Rosenkranz S. Imatinib mesylate for the treatment of pulmonary arterial hypertension. Expert Opin Investig Drugs 2011; 21:119-34. [PMID: 22074410 DOI: 10.1517/13543784.2012.632408] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Despite recent advances, pulmonary arterial hypertension (PAH) remains a devastating disease which harbors a poor prognosis. Novel therapeutic approaches directly targeting pulmonary vascular remodeling are warranted. AREAS COVERED This review delineates the current limitations in the management of PAH and focuses on a novel, anti-proliferative therapeutic concept. It will help readers understand the mechanisms of receptor tyrosine kinase signaling, with a special focus on platelet-derived growth factor (PDGF) receptors and their role in the pathobiology of PAH. Furthermore, it provides a comprehensive summary regarding the rationale, efficacy and safety of the tyrosine kinase inhibitor imatinib mesylate , which potently inhibits the PDGF receptor, as an additional treatment option in PAH. EXPERT OPINION PDGF is a potent mitogen for pulmonary vascular smooth muscle cells and represents an important mediator of pulmonary vascular remodeling. Imatinib mesylate, a compound that inhibits the Bcr-Abl kinase and was developed for the treatment of chronic myeloid leukemia, also targets PDGF receptors. Both experimental and clinical data indicate that it reverses the vascular remodeling process even when it is fully established. Results from Phase II and III clinical trials suggest potent and prolonged efficacy in patients with severe PAH (i.e., pulmonary vascular resistance > 800 dynes*s*cm(-5)). Future studies should evaluate the long-term clinical efficacy and safety of imatinib, including patients with less impaired hemodynamics. Based on the current knowledge, this compound is likely to become an additional treatment option for patients with PAH and has the potential to at least partially correct the pathology of the disease.
Collapse
Affiliation(s)
- Henrik ten Freyhaus
- Klinik III für Innere Medizin, Center for Molecular Medicine Cologne, Universität zu Köln, Kerpener Str. 62, 50924 Köln, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Yuan Z, Gault EA, Campo MS, Nasir L. Different contribution of bovine papillomavirus type 1 oncoproteins to the transformation of equine fibroblasts. J Gen Virol 2010; 92:773-83. [PMID: 21177927 DOI: 10.1099/vir.0.028191-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Equine sarcoids represent the most common skin tumours in equids worldwide, characterized by localized invasion, rare regression and high recurrence following surgical intervention. Bovine papillomavirus type 1 (BPV-1) and less commonly BPV-2 are now widely recognized as the causative agents of the disease. Fibroblasts isolated from sarcoids are highly invasive. Invasion is associated with a high level of viral gene expression and matrix metalloproteinase upregulation. However, it remains unclear to what extent BPV-1 proteins are involved in the transformation of equine cells. To address this question, the individual viral genes E5, E6 and E7 were overexpressed in normal equine fibroblasts (EqPalF cells) and in the immortal but not fully transformed sarcoid-derived EqS02a cell line. The proliferation and invasiveness of these cell lines were assessed. E5 and E6 were found to be responsible for the enhanced cell proliferation and induction of increased invasion in EqS02a cells, whilst E7 appeared to enhance cell anchorage independence. Knockdown of BPV-1 oncogene expression by small interfering RNA reversed the transformed phenotype of sarcoid fibroblasts. Together, these observations strongly suggest that BPV-1 proteins play indispensable roles in the transformation of equine fibroblasts. These data also suggest that BPV-1 proteins are potential drug targets for equine sarcoid therapy.
Collapse
Affiliation(s)
- ZhengQiang Yuan
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK
| | | | | | | |
Collapse
|
6
|
Zhou L, Takayama Y, Boucher P, Tallquist MD, Herz J. LRP1 regulates architecture of the vascular wall by controlling PDGFRbeta-dependent phosphatidylinositol 3-kinase activation. PLoS One 2009; 4:e6922. [PMID: 19742316 PMCID: PMC2734324 DOI: 10.1371/journal.pone.0006922] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 08/07/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Low density lipoprotein receptor-related protein 1 (LRP1) protects against atherosclerosis by regulating the activation of platelet-derived growth factor receptor beta (PDGFRbeta) in vascular smooth muscle cells (SMCs). Activated PDGFRbeta undergoes tyrosine phosphorylation and subsequently interacts with various signaling molecules, including phosphatidylinositol 3-kinase (PI3K), which binds to the phosphorylated tyrosine 739/750 residues in mice, and thus regulates actin polymerization and cell movement. METHODS AND PRINCIPAL FINDINGS In this study, we found disorganized actin in the form of membrane ruffling and enhanced cell migration in LRP1-deficient (LRP1-/-) SMCs. Marfan syndrome-like phenotypes such as tortuous aortas, disrupted elastic layers and abnormally activated transforming growth factor beta (TGFbeta) signaling are present in smooth muscle-specific LRP1 knockout (smLRP1-/-) mice. To investigate the role of LRP1-regulated PI3K activation by PDGFRbeta in atherogenesis, we generated a strain of smLRP1-/- mice in which tyrosine 739/750 of the PDGFRbeta had been mutated to phenylalanines (PDGFRbeta F2/F2). Spontaneous atherosclerosis was significantly reduced in the absence of hypercholesterolemia in these mice compared to smLRP1-/- animals that express wild type PDGFR. Normal actin organization was restored and spontaneous SMC migration as well as PDGF-BB-induced chemotaxis was dramatically reduced, despite continued overactivation of TGFbeta signaling, as indicated by high levels of nuclear phospho-Smad2. CONCLUSIONS AND SIGNIFICANCE Our data suggest that LRP1 regulates actin organization and cell migration by controlling PDGFRbeta-dependent activation of PI3K. TGFbeta activation alone is not sufficient for the expression of the Marfan-like vascular phenotype. Thus, regulation of PI3 Kinase by PDGFRbeta is essential for maintaining vascular integrity, and for the prevention of atherosclerosis as well as Marfan syndrome.
Collapse
Affiliation(s)
- Li Zhou
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yoshiharu Takayama
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Philippe Boucher
- Department of Pharmacology, University of Strasbourg, Strasbourg, France
| | - Michelle D. Tallquist
- Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Cha JY, Maddileti S, Mitin N, Harden TK, Der CJ. Aberrant receptor internalization and enhanced FRS2-dependent signaling contribute to the transforming activity of the fibroblast growth factor receptor 2 IIIb C3 isoform. J Biol Chem 2008; 284:6227-40. [PMID: 19103595 DOI: 10.1074/jbc.m803998200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling.
Collapse
Affiliation(s)
- Jiyoung Y Cha
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | |
Collapse
|
8
|
DeMali K. Kris DeMali: fixed on cell adhesion. Interview by Ruth Williams. J Cell Biol 2008; 182:1032-3. [PMID: 18809718 PMCID: PMC2542459 DOI: 10.1083/jcb.1826pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
9
|
Petti LM, Ricciardi EC, Page HJ, Porter KA. Transforming signals resulting from sustained activation of the PDGFbeta receptor in mortal human fibroblasts. J Cell Sci 2008; 121:1172-82. [PMID: 18349076 DOI: 10.1242/jcs.018713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The platelet-derived growth factor beta receptor (PDGFbetaR) plays an important role in proliferation and motility of fibroblasts. We have been investigating the effects of sustained PDGFbetaR activation in mortal human diploid fibroblasts (HDFs), which are typically difficult to transform. We have previously shown that the bovine papillomavirus E5 protein, through its ability to crosslink and constitutively activate the PDGFbetaR, induces morphological transformation, enhanced growth and loss of contact inhibition (focus formation) in HDFs. Here, we characterized two E5 mutants as being severely defective for focus formation but still competent for enhanced growth, suggesting that proliferation is insufficient for loss of contact inhibition. These E5 mutants were then used in a comparative study to distinguish the PDGFbetaR signaling intermediates required for the enhanced growth phenotype from those required for focus formation. Our data suggested that a PI 3-kinase (PI3K)-AKT-cyclin D3 pathway, a Grb2-Gab1-SHP2 complex and JNK played a role in the enhanced growth phenotype. However, a SHP2-p66Shc-p190BRhoGAP complex and ROCK were implicated exclusively in focus formation. We speculate that a SHP2-p66Shc-p190BRhoGAP signaling complex recruited to the activated PDGFbetaR promotes a distinct Rho-dependent process required for focus formation but not growth of HDFs.
Collapse
Affiliation(s)
- Lisa M Petti
- Center for Immunology and Microbial Disease, Albany Medical College, MC-151, 47 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | | | |
Collapse
|
10
|
Smith D, Shimamura T, Barbera S, Bejcek BE. NF-kappaB controls growth of glioblastomas/astrocytomas. Mol Cell Biochem 2007; 307:141-7. [PMID: 17828582 DOI: 10.1007/s11010-007-9593-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/23/2007] [Indexed: 01/06/2023]
Abstract
NF-kappaB is a family of transcription factors that have been shown to be elevated in a variety of tumor types and in some cases central to their survival and growth. Here we present evidence that U-87 MG and U-118 MG growth is regulated by NF-kappaB and controlled by PDGF. NF-kappaB activity was suppressed by a dominant negative mutant of the human PDGF type beta receptor and PDGF-B chain neutralizing antibodies. Creation of cell lines that had inducible expression of shRNAs directed against either c-Rel or RelA inhibited growth almost 90% indicating that NF-kappaB plays a central role in glioblastoma growth.
Collapse
Affiliation(s)
- Denise Smith
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | | | | | | |
Collapse
|
11
|
Im E, Kazlauskas A. Src family kinases promote vessel stability by antagonizing the Rho/ROCK pathway. J Biol Chem 2007; 282:29122-9. [PMID: 17684019 DOI: 10.1074/jbc.m702637200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src family kinases (SFKs) are one of the signaling enzymes that contribute to angiogenesis, but their precise input to the various phases of the angiogenic program has not been defined. Using an in vitro model system, we discovered that SFKs promoted the formation of tubes and prevented their regression. They suppressed regression by activating the ERK pathway that antagonized the Rho/ROCK pathway, which was essential for regression. These studies reveal that SFKs contribute to several phases of the angiogenic program and identify the downstream effectors by which SFKs stabilize tubes.
Collapse
Affiliation(s)
- Eunok Im
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
12
|
Shah K, Vincent F. Divergent roles of c-Src in controlling platelet-derived growth factor-dependent signaling in fibroblasts. Mol Biol Cell 2005; 16:5418-32. [PMID: 16135530 PMCID: PMC1266437 DOI: 10.1091/mbc.e05-03-0263] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The vast complexity of platelet-derived growth factor (PDGF)-induced downstream signaling pathways is well known, but the precise roles of critical players still elude us due to our lack of specific and temporal control over their activities. Accordingly, although Src family members are some of the better characterized effectors of PDGFbeta signaling, considerable controversy still surrounds their precise functions. To address these questions and limitations, we applied a chemical-genetic approach to study the role of c-Src at the cellular level, in defined signaling cascades; we also uncovered novel phosphorylation targets and defined its influence on transcriptional events. The spectacular control of c-Src on actin reorganization and chemotaxis was delineated by global substrate labeling and transcriptional analysis, revealing multiple cytoskeletal proteins and chemotaxis promoting genes to be under c-Src control. Additionally, this tool revealed the contrasting roles of c-Src in controlling DNA synthesis, where it transmits conflicting inputs via the phosphatidylinositol 3 kinase and Ras pathways. Finally, this study reveals a mechanism by which Src family kinases may control PDGF-mediated responses both at transcriptional and translational levels.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
13
|
Chiara F, Goumans MJ, Forsberg H, Ahgrén A, Rasola A, Aspenström P, Wernstedt C, Hellberg C, Heldin CH, Heuchel R. A Gain of Function Mutation in the Activation Loop of Plateletderived Growth Factor β-Receptor Deregulates Its Kinase Activity. J Biol Chem 2004; 279:42516-27. [PMID: 15284236 DOI: 10.1074/jbc.m406051200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The platelet-derived growth factor receptors (PDGFRs) are receptor tyrosine kinases implicated in multiple aspects of cell growth, differentiation, and survival. Recently, a gain of function mutation in the activation loop of the human PDGFRalpha has been found in patients with gastrointestinal stromal tumors. Here we show that a mutation in the corresponding codon in the activation loop of the murine PDGFRbeta, namely an exchange of asparagine for aspartic acid at amino acid position 849 (D849N), confers transforming characteristics to embryonic fibroblasts from mutant mice, generated by a knock-in strategy. By comparing the enzymatic properties of the wild-type versus the mutant receptor protein, we demonstrate that the D849N mutation lowers the threshold for kinase activation, causes a dramatic alteration in the pattern of tyrosine phosphorylation kinetics following ligand stimulation, and induces a ligand-independent phosphorylation of several tyrosine residues. These changes result in deregulated recruitment of specific signal transducers. The GTPase-activating protein for Ras (RasGAP), a negative regulator of the Ras mitogenic pathway, displayed a delayed binding to the mutant receptor. Moreover, we have observed enhanced ligand-independent ERK1/2 activation and an increased proliferation of mutant cells. The p85 regulatory subunit of the phosphatidylinositol 3 '-kinase was constitutively associated with the mutant receptor, and this ligand-independent activation of the phosphatidylinositol 3'-kinase pathway may explain the observed strong protection against apoptosis and increased motility in cellular wounding assays. Our findings support a model whereby an activating point mutation results in a deregulated PDGFRbeta with oncogenic predisposition.
Collapse
Affiliation(s)
- Federica Chiara
- Ludwig Institute for Cancer Research, Box 595, Uppsala S-751 24, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Takeuchi H, Kanzawa T, Kondo Y, Kondo S. Inhibition of platelet-derived growth factor signalling induces autophagy in malignant glioma cells. Br J Cancer 2004; 90:1069-75. [PMID: 14997209 PMCID: PMC2409632 DOI: 10.1038/sj.bjc.6601605] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Malignant gliomas highly coexpress platelet-derived growth factor (PDGF) and its receptor, suggesting the presence of an autocrine loop. Therefore, disruption of PDGF ligand/receptor complex represents a promising strategy for the treatment of malignant gliomas. However, the mechanisms of the antitumour effect exerted by the inhibition of PDGF-mediated cell growth remain unclear. In the present study, using anti-PDGF neutralising antibody, we investigated the effect of the inhibition of PDGF signalling on malignant glioma U87-MG, D54, and T98G cells with high levels of PDGF-A and -B. As a control, normal fibroblast MRC5 cells expressing low levels of PDGF-A and -B were used. Treatment with anti-PDGF neutralising antibody did not affect the expressions of PDGF-A, PDGF-B, and Akt, but suppressed the level of phosphorylated Akt in tumour cells, indicating the inhibition of PDGF signalling. The cell viability of all malignant glioma cells tested in this study was significantly inhibited in a time-dependent manner following the treatment compared to that of fibroblast cells (P<0.02 to <0.05). The antitumour effect of anti-PDGF antibody was suppressed by the activation of Akt and enhanced by the downregulation of Akt. Interestingly, the inhibition of PDGF signalling induced the development of acidic vesicular organelles and the autophagosome membrane association of the microtubule-associated protein light chain 3, which are characteristic of autophagy, in malignant glioma cells, while apoptotic cell death was not observed. Together these findings imply a new concept of autophagy for PDGF autocrine inhibition in malignant gliomas.
Collapse
Affiliation(s)
- H Takeuchi
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA
| | - T Kanzawa
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA
| | - Y Kondo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA
| | - S Kondo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
15
|
Hunger-Glaser I, Fan RS, Perez-Salazar E, Rozengurt E. PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910: Dissociation from Tyr-397 phosphorylation and requirement for ERK activation. J Cell Physiol 2004; 200:213-22. [PMID: 15174091 DOI: 10.1002/jcp.20018] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A rapid increase in the tyrosine phosphorylation of focal adhesion kinase (FAK) has been extensively documented in cells stimulated by multiple signaling molecules, but very little is known about the regulation of FAK phosphorylation at serine residues. Stimulation of Swiss 3T3 cells with platelet-derived growth factor (PDGF) promoted a striking increase in the phosphorylation of FAK at Ser-910, as revealed by site-specific antibodies that recognized the phosphorylated state of this residue. FAK phosphorylation at Ser-910 could be distinguished from that at Tyr-397 in terms of dose-response relationships and kinetics. Furthermore, the selective phosphoinositide 3-kinase (PI 3-kinase) inhibitors wortmannin and LY 294002 abrogated FAK phosphorylation at Tyr-397 but did not interfere with PDGF-induced FAK phosphorylation at Ser-910. Conversely, treatment with U0126, a potent inhibitor of MEK-mediated ERK activation, prevented FAK phosphorylation at Ser-910 induced by PDGF but did not interfere with PDGF-induced FAK phosphorylation at Tyr-397. These results were extended using growth factors that either stimulate, fibroblast growth factor (FGF), or do not stimulate (insulin) the ERK pathway activation in Swiss 3T3 cells. FGF but not insulin promoted a striking ERK-dependent phosphorylation of FAK at Ser-910. Our results indicate that FAK phosphorylation at Tyr-397 and FAK phosphorylation at Ser-910 are induced in response to PDGF stimulation through different signaling pathways, namely PI 3-kinase and ERK, respectively.
Collapse
Affiliation(s)
- Isabel Hunger-Glaser
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
16
|
Hong YK, Mikami A, Schaffhausen B, Jun T, Roberts TM. A new class of mutations reveals a novel function for the original phosphatidylinositol 3-kinase binding site. Proc Natl Acad Sci U S A 2003; 100:9434-9. [PMID: 12881485 PMCID: PMC170936 DOI: 10.1073/pnas.1432964100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated that the specificity of Src homology 2 (SH2) and phosphotyrosine-binding domain interactions are mediated by phosphorylated tyrosines and their neighboring amino acids. Two of the first phosphotyrosine-based binding sites were found on middle T antigen of polyoma virus. Tyr-250 acts as a binding site for ShcA, whereas Tyr-315 forms a binding site for the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase. However, genetic analysis of a given phosphotyrosine's role in signaling can be complicated when it serves as a binding site for multiple proteins. The situation is particularly difficult when the phosphotyrosine serves as a secondary binding site for a protein with primary binding determinates elsewhere. Mutation of a tyrosine residue to phenylalanine blocks association of all bound proteins. Here we show that the mutation of the amino acids following the phosphorylated tyrosine to alanine can reveal phosphotyrosine function as a secondary binding site, while abrogating the phosphotyrosine motif's role as a primary binding site for SH2 domains. We tested this methodology by using middle T antigen. Our results suggest that Tyr-250 is a secondary binding site for phosphatidylinositol 3-kinase, whereas Tyr-315 is a secondary binding site for a yet-to-be-identified protein, which is critical for transformation.
Collapse
Affiliation(s)
- Y Kate Hong
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Pathology, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
17
|
Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, Zhang DE. High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem 2003; 278:16608-13. [PMID: 12582176 DOI: 10.1074/jbc.m208435200] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ISG15 is a ubiquitin-like protein that conjugates to numerous proteins in cells treated with interferon or lipopolysaccharide. Dysregulation of protein ISG15 modification (ISGylation) in mice leads to decreased life expectancy, brain cell injury, and hypersensitivity to interferon. Although ISG15 was identified more than two decades ago, the exact biochemical and physiological functions of ISG15-modification remain unknown, and the proteins targeted by ISG15 have not been identified. The major purpose of this work was to identify ISG15 targets among well characterized proteins that could be used as models for biological studies. We purified ISGylated proteins from human thymus by immunoaffinity chromatography and analyzed ISG15 conjugates by a high-throughput Western blot screen (PowerBlot). We found that three key regulators of signal transduction, phospholipase Cgamma1, Jak1, and ERK1 are modified by ISG15. In addition to that, we demonstrate that transcription factor Stat1, an immediate substrate of Jak1 kinase, is also ISGylated. Using whole cell protein extracts and phospholipase Cgamma1 as an example we demonstrate that ISG15 conjugates are not accumulated in cells treated with specific inhibitors of proteasomes. Our work suggests a role for ISG15 in the regulation of multiple signal transduction pathways and offers attractive models to further elucidate the biochemical function of ISGylation.
Collapse
Affiliation(s)
- Michael P Malakhov
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Aberrant receptor tyrosine kinase signaling plays an important role in the molecular pathogenesis of brain tumors. We have been studying a previously identified human glioblastoma-derived PDGFR-alpha mutant that has an in-frame deletion in the extracellular domain, causing loss of exons 8 and 9 (PDGFR-alpha(delta8,9)). In the primary tumor, this deletion mutant receptor was shown to be amplified and overexpressed. The purpose of this study was to determine the expression, activity, localization, and transformation properties of this deletion mutant. In the absence of serum, or PDGF-AA, PDGFR-alpha(delta8,9) was phosphorylated on tyrosine residues, indicating ligand-independent autoactivation. Localization by staining and cell surface biotinylation studies revealed expression of the deletion mutant predominantly in the cytoplasm, with very little present on the cell surface. To determine if PDGFR-alpha(delta8,9) was oncogenic, we transfected wild-type and mutant receptors into Rat1 cells and performed analyses of cell growth, in vitro transformation, and subcutaneous growth in the nude mouse. PDGFR-alpha(delta8,9)-expressing cells displayed enhanced cell growth and survival in low serum, and formed foci in monolayer cultures. PDGFR-alpha(delta8,9)-expressing Rat1 cells were also tumorigenic when injected subcutaneously into nude mice. Expression of PDGFR-alpha(delta8,9) was also associated with increased c-Jun phosphorylation in the absence of PDGF ligand, demonstrating also that the mutant receptor is associated with altered intracellular signaling. These data demonstrate that PDGFR-alpha(delta8,9) is transforming, and it is the first demonstration of a naturally occurring tumor-derived mutant PDGFR-alpha with oncogenic properties.
Collapse
Affiliation(s)
- I D Clarke
- Arthur and Sonia Labatt Brain Tumor Research Laboratory, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | |
Collapse
|
19
|
Yu J, Ustach C, Kim HRC. Platelet-derived growth factor signaling and human cancer. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:49-59. [PMID: 12542975 DOI: 10.5483/bmbrep.2003.36.1.049] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Platelet-derived growth factor (PDGF) is a critical regulator of mesenchymal cell migration and proliferation. The vital functions of PDGFs for angiogenesis, as well as development of kidney, brain, cardiovascular system and pulmonary alveoli during embryogenesis, have been well demonstrated by gene knock-out approaches. Clinical studies reveal that aberrant expression of PDGF and its receptor is often associated with a variety of disorders including atherosclerosis, fibroproliferative diseases of lungs, kidneys and joints, and neoplasia. PDGF contributes to cancer development and progression by both autocrine and paracrine signaling mechanisms. In this review article, important features of the PDGF isoforms and their cell surface receptor subunits are discussed, with regards to signal transduction, PDGF-isoform specific cellular responses, and involvement in angiogensis, and tumorstromal interactions.
Collapse
Affiliation(s)
- Jiuhong Yu
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
20
|
Chiarugi P, Cirri P, Taddei ML, Giannoni E, Fiaschi T, Buricchi F, Camici G, Raugei G, Ramponi G. Insight into the role of low molecular weight phosphotyrosine phosphatase (LMW-PTP) on platelet-derived growth factor receptor (PDGF-r) signaling. LMW-PTP controls PDGF-r kinase activity through TYR-857 dephosphorylation. J Biol Chem 2002; 277:37331-8. [PMID: 12149261 DOI: 10.1074/jbc.m205203200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low molecular weight phosphotyrosine phosphatase (LMW-PTP) is an enzyme involved in platelet-derived growth factor-induced mitogenesis and cytoskeleton rearrangement. Our previous results demonstrated that LMW-PTP is able to bind and dephosphorylate activated platelet-derived growth factor receptor (PDGF-r), thus inhibiting cell proliferation. Here we revisit the role of LMW-PTP on activated PDGF-r dephosphorylation. We demonstrate that LMW-PTP preferentially acts on cell surface PDGF-r, excluding the internalized activated receptor pool. Many phosphotyrosine phosphatases act by site-selective dephosphorylation on several sites of PDGF-r, but until now, there has been no evidence of a direct involvement of a specific phosphotyrosine phosphatase in the dephosphorylation of the 857 kinase domain activation tyrosine. Here we report that LMW-PTP affects the kinase activity of the receptor through the binding and dephosphorylation of Tyr-857 and influences many of the signal outputs from the receptor. In particular, we demonstrate a down-regulation of phosphatidylinositol 3-kinase, Src homology phosphatase-2, and phospholipase C-gamma1 binding but not of MAPK activation. In addition, we report a slight action of LMW-PTP on Tyr-716, which directs MAPK activation through Grb2 binding. On the basis of these results, we propose a key role for LMW-PTP in PDGF-r down-regulation through the dephosphorylation of the activation loop Tyr-857, thus determining a general negative regulation of all downstream signals, with the exception of those elicited by internalized receptors.
Collapse
Affiliation(s)
- Paola Chiarugi
- Department of Biochemical Sciences, University of Florence, 50134 Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shu L, Lee L, Shayman JA. Regulation of phospholipase C-gamma activity by glycosphingolipids. J Biol Chem 2002; 277:18447-53. [PMID: 11886852 DOI: 10.1074/jbc.m111363200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosphingolipid-enriched domains are hot spots for cell signaling within plasma membranes and are characterized by the enrichment of glycosphingolipids. A role for glucosylceramide-based glycosphingolipids in phospholipase C-mediated inositol 1,4,5-trisphosphate formation has been previously documented. These earlier studies utilized a first generation glucosylceramide synthase inhibitor to deplete cells of their glycosphingolipids. Recently, more active and specific glucosylceramide synthase inhibitors, including d-threo-ethylendioxyphenyl-2-palmitoylamino-3-pyrrolidinopropanol (d-t-EtDO-P4), have been designed. d-t-EtDO-P4 has the advantage of blocking glucosylceramide synthase at low nanomolar concentrations but does not cause secondary elevations in cell ceramide levels. In the present study, d-t-EtDO-P4 depleted cellular glucosylceramide and lactosylceramide in cultured ECV304 cells at nanomolar concentrations without obvious cellular toxicity. The expression of several signaling proteins was evaluated in glycosphingolipid-depleted ECV304 cells to study the role of glycosphingolipids in phospholipase C-mediated signaling. No difference was observed in the cellular expression of phospholipase C-gamma between controls and glycolipid-depleted cells. Western blot analysis, however, revealed that depletion of endogenous glycosphingolipids in cultured ECV304 cells with d-t-EtDO-P4 induced tyrosine phosphorylation of phospholipase C-gamma in a concentration-dependent manner with maximum induction at 100 nm. The phosphorylation of phospholipase C-gamma induced by d-t-EtDO-P4 was abolished by exogenously added glucosylceramide, consistent with a specific glycosphingolipid-phospholipase C-gamma interaction. The phospholipase C-gamma phosphorylation was maximally enhanced by bradykinin when cells were exposed to 100 nm d-t-EtDO-P4. The measurement of cellular activity of phospholipase C-gamma, by myo-inositol 1,4,5-trisphosphate radioreceptor assay, demonstrated that depletion of glucosylceramide-based glycosphingolipids in cultured ECV304 cells with d-t-EtDO-P4 resulted in significantly increased formation of inositol 1,4,5-trisphosphate above base line, and an increased sensitivity of phospholipase C-gamma to bradykinin stimulation. Thus, the activation of phospholipase C-gamma is negatively regulated by membrane glycosphingolipids in ECV304 cells.
Collapse
Affiliation(s)
- Liming Shu
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
22
|
Chiarugi P, Cirri P, Taddei ML, Talini D, Doria L, Fiaschi T, Buricchi F, Giannoni E, Camici G, Raugei G, Ramponi G. New perspectives in PDGF receptor downregulation: the main role of phosphotyrosine phosphatases. J Cell Sci 2002; 115:2219-32. [PMID: 11973362 DOI: 10.1242/jcs.115.10.2219] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uncontrolled activation of receptor tyrosine kinases (RTKs) is implicated in the proliferation of cancerous cells, and deficiencies in RTKs results in pathological conditions such as developmental abnormalities and immunodeficiencies. Tight regulation of RTK cascades is therefore critical for eliciting an appropriate type and level of response to external stimuli. The aim of this work is to compare different RTK downregulation mechanisms, such as ligandinduced internalisation, ubiquitin-mediated proteolysis and dephosphorylation by protein phosphotyrosine phosphatase (PTPs). We choose platelet-derived growth factor receptor (PDGF-r) in NIH3T3 cells as a model of RTK. Our data suggest that PDGF-r internalisation could be mainly considered as a positive signaling system, as it is involved in MAPK activation rather than a downregulation of the mitotic signal. Inhibition of receptor ubiquitination does not result in regulation of PDGF-r tyrosine phosphorylation and does not lead to variation of intracellular signalling pathways. The overall PDGF-r protein degradation upon PDGF stimulation does not exceed 30-40% of the total receptor; thus the receptor remains functionally active for further stimulation. On the contrary, PTP-dependent dephosphorylation of the activated receptors appears to play a crucial role. In fact, inhibition of PTP upon PDGF stimulation results in upregulation of receptor phosphorylation level, of PI3K recruitment and activation and of cell cycle rate. On the contrary, PTP-dependent dephosphorylation does not affect the endosomic pool of activated receptor. Furthermore, we demonstrate that PDGF-r downregulation by means of PTP dephosphorylation is important for both short term (2 hours) and long-lasting (up to 8 hours) PDGF-r activation. Herein we propose a revisited model of PDGF-r downregulation in which PTPs dephosphorylation retains a major role, conferring on receptor internalisation a signal transduction function.
Collapse
Affiliation(s)
- Paola Chiarugi
- Department of Biochemical Sciences of the University of Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mitsuda T, Furukawa K, Fukumoto S, Miyazaki H, Urano T, Furukawa K. Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J Biol Chem 2002; 277:11239-46. [PMID: 11782461 DOI: 10.1074/jbc.m107756200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the molecular mechanisms of gangliosides for the regulation of cell proliferation, Swiss 3T3 cells were transfected with GM2/GD2 synthase and GM1 synthase cDNAs, resulting in the establishment of GM1-expressing (GM1(+)) lines. Compared with the vector control (GM1(-)) cell lines, GM1(+) cells exhibited reduced cell proliferation by stimulation with platelet-derived growth factor (PDGF). In accordance with the reduced cell growth, GM1(+) cells showed earlier decreases in the phosphorylation levels of PDGF receptor and less activation of MAP kinases than GM1(-) cells. To analyze the effects of GM1 expression on the PDGF/PDGF receptor (PDGFR) signals, the glycolipid-enriched microdomain (GEM) was isolated and the following results were obtained. (i) PDGFR predominantly distributed in the non-GEM fraction in GM1(+) cells, while it was present in both GEM and non-GEM fractions in GM1(-) cells. (ii) Activation of PDGFR as detected by anti-phosphotyrosine antibody occurred almost in parallel with existing amounts of PDGFR in each fraction. (iii) GM1 binds with PDGFR in GEM fractions. These findings suggested that GM1 regulates signals via PDGF/PDGFR by controlling the distribution of PDGFR in- and outside of GEM, and also interacting with PDGFR in the GEM fraction as a functional constituent of the microdomain.
Collapse
Affiliation(s)
- Teruhiko Mitsuda
- Department of Biochemistry II, Nagoya University School of Medicine, 65 Tsurumai, Nagoya, 466-0065 Japan
| | | | | | | | | | | |
Collapse
|
24
|
Saucier C, Papavasiliou V, Palazzo A, Naujokas MA, Kremer R, Park M. Use of signal specific receptor tyrosine kinase oncoproteins reveals that pathways downstream from Grb2 or Shc are sufficient for cell transformation and metastasis. Oncogene 2002; 21:1800-11. [PMID: 11896612 DOI: 10.1038/sj.onc.1205261] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Revised: 11/02/2001] [Accepted: 12/12/2001] [Indexed: 11/08/2022]
Abstract
Many human cancers have been associated with the deregulation of receptor tyrosine kinases (RTK). However, the individual contribution of receptor-associated signaling proteins in cellular transformation and metastasis is poorly understood. To examine the role of RTK activated signal transduction pathways to processes involved in cell transformation, we have exploited the oncogenic derivative of the Met RTK (Tpr-Met). Unlike other RTKs, twin tyrosine residues in the carboxy-terminal tail of the Met oncoprotein and receptor are required for all biological and transforming activities, and a mutant lacking these tyrosines is catalytically active but non transforming. Using this mutant we have inserted oligonucleotide cassettes, each encoding a binding site for a specific signaling protein derived from other RTKs. We have generated variant forms of the Tpr-Met oncoprotein with the ability to bind individually to the p85 subunit of PI3'K, PLCgamma, or to the Grb2 or Shc adaptor proteins. Variants that recruit the Shc or Grb2 adaptor proteins generated foci of morphologically transformed fibroblast cells and induced anchorage-independent growth, scattering of epithelial cells and experimental metastasis. In contrast, variants that bind and activate PI3'K or PLCgamma failed to generate readily detectable foci. Although cell lines expressing the PI3'K variant grew in soft-agar, these cells were non metastatic. Using this unique RTK oncoprotein model, we have established that Grb2 or Shc dependent signaling pathways are sufficient for cell transformation and metastatic spread.
Collapse
Affiliation(s)
- Caroline Saucier
- Molecular Oncology Group, McGill University Hospital Center, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | | | |
Collapse
|
25
|
Shimamura T, Hsu TC, Colburn NH, Bejcek BE. Activation of NF-kappaB is required for PDGF-B chain to transform NIH3T3 cells. Exp Cell Res 2002; 274:157-67. [PMID: 11855867 DOI: 10.1006/excr.2001.5449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Elucidating the secondary signaling molecules that are necessary for platelet-derived growth factor (PDGF) to stimulate tumor development will be crucial to the understanding and treatment of a variety of cancers. Several lines of evidence have indicated that the transcription factor NF-kappaB plays a central role in transformation induced by Ha-ras and Bcr-abl, but nothing is known concerning its role in transformation by PDGF. Here we demonstrate that transcription from a promoter containing NF-kappaB binding sequences as well as the DNA binding activity of NF-kappaB were increased in PDGF-B-chain-transformed mouse fibroblast cells. Focus formation of PDGF-B-chain-transformed mouse fibroblasts was suppressed by treatment with acetylsalicylic acid (ASA) and salicylic acid, which are known inhibitors of NF-kappaB activation, but other nonsteroidal anti-inflammatory drugs that do not have an effect on NF-kappaB activity did not affect focus formation in these cells. Furthermore, expression of a dominant negative mutant of IkappaBalpha, pMEIkappaBalpha67CJ, and a dominant negative mutant of p65, p65DeltaC, resulted in decreased focus formation and NF-kappaB activity. Therefore, the transcription factor NF-kappaB plays a vital role in PDGF-B chain transformation of mouse fibroblast cells, and the NF-kappaB activity is sensitive to treatment with ASA.
Collapse
Affiliation(s)
- Takeshi Shimamura
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | | | | | | |
Collapse
|
26
|
Rosenmüller T, Rydh K, Nånberg E. Role of phosphoinositide 3OH-kinase in autocrine transformation by PDGF-BB. J Cell Physiol 2001; 188:369-82. [PMID: 11473364 DOI: 10.1002/jcp.1126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phosphoinositide 3OH-kinases (PI3K) are a family of lipid kinases that activates signalling pathways important for migration, cytoskeletal rearrangements, and cell survival. These processes are important hallmarks in transformation. We have evaluated the functional role of PI3K for development of a transformed morphology and migratory responses of murine fibroblasts (NIH/sis and COL1A1/NIH3T3 cell lines) stimulated in an autocrine fashion by constitutive expression of platelet-derived growth factor-BB (PDGF-BB). We show that prolonged treatment with the specific PI3K inhibitor LY294002, induced a reversion of the transformed morphology, and prevented density-independent growth and focus formation. Functional PI3K was also required for development of the transformed morphology of NIH/sis and COL1A1/NIH3T3. Furthermore, treatment with LY294002 completely perturbed random migration of the cells. In addition our data show that, in the signalling pathways downstream of PI3K, activation of the small GTPase Rac was a prerequisite for the transformation signal. Our data also indicate the presence of a suramin-insensitive PI3K activity. Most likely this was due to the presence of a suramin-insensitive intracellular PDGFR pool that allowed activation of PI3K located in intracellular compartments. In conclusion these data show that intact PI3K activity was required for the morphological alterations and the enhanced migratory response that are hallmarks for PDGF induced autocrine transformation.
Collapse
Affiliation(s)
- T Rosenmüller
- Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Sweden
| | | | | |
Collapse
|
27
|
Nickas ME, Bernard A, Kazlauskas A. The requirement of tyrosines 579 and 581 for maximal ligand-dependent activation of the betaPDGFR is influenced by noncytoplasmic regions of the receptor. Exp Cell Res 2001; 265:80-9. [PMID: 11281646 DOI: 10.1006/excr.2001.5169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutating tyrosines 579 and 581 of the beta platelet-derived growth factor receptor (betaPDGFR) tyrosine kinase to phenylalanines (the F2 mutation) impair activation of the receptor in response to ligand, but mutation of the analogous tyrosines in the alphaPDGFR has no effect on ligand-dependent receptor activation. We have found that the F2 mutation has only a modest effect on ligand-dependent activation of a chimeric PDGFR composed of the extracellular and transmembrane domains of the alphaPDGFR and the cytoplasmic domain of the betaPDGFR by three measures: (1) the ability to phosphorylate endogenous and exogenous protein substrates in vitro, (2) phosphorylation of tyrosine 857, and (3) binding of the effector proteins PLCgamma, RasGAP, and SHP-2. Conversely, the F2 mutation substantially impairs ligand-dependent activation of chimeric PDGFRs that consist of either the extracellular domain alone or the extracellular and transmembrane domains of the betaPDGFR and all remaining sequence from the alphaPDGFR by two measures: (1) phosphorylation of endogenous protein substrates in vitro and (2) binding of PLCgamma and SHP-2. Our results indicate that the requirement of tyrosines 579 and 581 for maximal activation of the betaPDGFR in response to ligand is primarily determined by noncytoplasmic regions of the receptor.
Collapse
Affiliation(s)
- M E Nickas
- The Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
28
|
Tallquist MD, Klinghoffer RA, Heuchel R, Mueting-Nelsen PF, Corrin PD, Heldin CH, Johnson RJ, Soriano P. Retention of PDGFR-beta function in mice in the absence of phosphatidylinositol 3'-kinase and phospholipase Cgamma signaling pathways. Genes Dev 2000; 14:3179-90. [PMID: 11124809 PMCID: PMC317125 DOI: 10.1101/gad.844700] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Signal transduction by the platelet-derived growth-factor receptor beta (PDGFR-beta) tyrosine kinase is required for proper formation of vascular smooth muscle cells (VSMC). However, the importance of individual PDGFR-beta signal transduction pathways in vivo is not known. To investigate the role of two of the pathways believed to be critical for PDGF signal transduction, we have generated mice that bear a PDGFR-beta that can no longer activate PI3kinase or PLCgamma. Although these mutant mice have normal vasculature, we provide multiple lines of evidence in vivo and from cells derived from the mutant mice that suggest that the mutant PDGFR-beta operates at suboptimal levels. Our observations indicate that although loss of these pathways can lead to attenuated PDGF-dependent cellular function, certain PDGFR-beta-induced signal cascades are not essential for survival in mice.
Collapse
MESH Headings
- Animals
- Cell Division/drug effects
- Cell Division/genetics
- Cell Movement/drug effects
- Cell Movement/genetics
- Cells, Cultured
- Enzyme Activation
- Glomerular Mesangium/drug effects
- Glomerular Mesangium/metabolism
- Glomerular Mesangium/pathology
- Glomerulonephritis/pathology
- Homozygote
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Inbred Strains
- Mice, Mutant Strains
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phospholipase C gamma
- Platelet-Derived Growth Factor/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Receptor, Platelet-Derived Growth Factor beta/drug effects
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Signal Transduction
- Type C Phospholipases/genetics
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- M D Tallquist
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Rebecchi MJ, Pentyala SN. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 2000; 80:1291-335. [PMID: 11015615 DOI: 10.1152/physrev.2000.80.4.1291] [Citation(s) in RCA: 733] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) subtypes beta, gamma, and delta comprise a related group of multidomain phosphodiesterases that cleave the polar head groups from inositol lipids. Activated by all classes of cell surface receptor, these enzymes generate the ubiquitous second messengers inositol 1,4, 5-trisphosphate and diacylglycerol. The last 5 years have seen remarkable advances in our understanding of the molecular and biological facets of PLCs. New insights into their multidomain arrangement and catalytic mechanism have been gained from crystallographic studies of PLC-delta(1), while new modes of controlling PLC activity have been uncovered in cellular studies. Most notable is the realization that PLC-beta, -gamma, and -delta isoforms act in concert, each contributing to a specific aspect of the cellular response. Clues to their true biological roles were also obtained. Long assumed to function broadly in calcium-regulated processes, genetic studies in yeast, slime molds, plants, flies, and mammals point to specific and conditional roles for each PLC isoform in cell signaling and development. In this review we consider each subtype of PLC in organisms ranging from yeast to mammals and discuss their molecular regulation and biological function.
Collapse
Affiliation(s)
- M J Rebecchi
- Departments of Anesthesiology and Physiology and Biophysics, School of Medicine, State University of New York, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
30
|
Yu J, Deuel TF, Kim HR. Platelet-derived growth factor (PDGF) receptor-alpha activates c-Jun NH2-terminal kinase-1 and antagonizes PDGF receptor-beta -induced phenotypic transformation. J Biol Chem 2000; 275:19076-82. [PMID: 10777515 DOI: 10.1074/jbc.m910329199] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet-derived growth factor (PDGF) is a potent mitogen for mesenchymal cells. The PDGF B-chain (c-sis proto-oncogene) homodimer (PDGF BB) and v-sis, its viral counterpart, activate both alpha- and beta-receptor subunits (alpha-PDGFR and beta-PDGFR) and mediate anchorage-independent growth in NIH3T3 cells. In contrast, the PDGF A chain homodimer (PDGF AA) activates alpha-PDGFR only and fails to induce phenotypic transformation. In the present study, we investigated alpha- and beta-PDGFR specific signaling pathways that are responsible for the differences between the transforming ability of PDGF AA and BB. To study PDGF BB activation of beta-PDGFR, we established NIH3T3 clones in which alpha-PDGFR signaling is inhibited by a dominant-negative alpha-PDGFR, or an antisense construct of alpha-PDGFR. Here, we demonstrate that beta-PDGFR activation alone is sufficient for PDGF BB-mediated anchorage-independent cell growth. More importantly, inhibition of alpha-PDGFR signaling enhanced PDGF BB-mediated phenotypic transformation, suggesting that alpha-PDGFR antagonizes beta-PDGFR-induced transformation. While both alpha- and beta-receptors effectively activate ERKs, alpha-PDGFR, but not beta-PDGFR, activates stress-activated protein kinase-1/c-Jun NH(2)-terminal kinase-1 (JNK-1). Inhibition of JNK-1 activity using a dominant-negative JNK-1 mutant markedly enhanced PDGF BB-mediated anchorage-independent cell growth, demonstrating an antagonistic role for JNK-1 in PDGF-induced transformation. Consistently, overexpression of wild-type JNK-1 reduced PDGF BB-mediated transformation. Taken together, the present study showed that alpha- and beta-PDGFRs differentially regulate Ras-mitogen-activated protein kinase pathways critical for regulation of cell transformation, and transformation suppressing activity of alpha-PDGFR involves JNK-1 activation.
Collapse
Affiliation(s)
- J Yu
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
31
|
Lai CC, Henningson C, DiMaio D. Bovine papillomavirus E5 protein induces the formation of signal transduction complexes containing dimeric activated platelet-derived growth factor beta receptor and associated signaling proteins. J Biol Chem 2000; 275:9832-40. [PMID: 10734138 DOI: 10.1074/jbc.275.13.9832] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bovine papillomavirus E5 protein binds to the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in constitutive activation of the receptor and cell growth transformation. By subjecting extracts from E5-transformed or PDGF-treated cells to velocity sedimentation in sucrose gradients, activated PDGF beta receptor complexes were separated from monomeric, inactive receptor. Rapidly sedimenting activated complexes contained oligomeric (apparently dimeric), tyrosine-phosphorylated PDGF beta receptor, the E5 protein, and associated cellular signaling proteins including the p85 subunit of phosphoinositol 3'-kinase, phospholipase Cgamma, and Ras-GTPase activating protein. These signaling proteins made the major contribution to the increased sedimentation rate of the activated receptor complexes. Pairwise analysis of components of these complexes indicated that multiple signaling proteins and the E5 protein were simultaneously present in the activated complexes. Our results also showed that the E5 protein and PDGF activated only a small fraction of the total PDGF beta receptor, that not all receptor molecules associated with the E5 protein were tyrosine-phosphorylated, and that signaling proteins could bind to hemiphosphorylated receptor dimers. On the basis of these results, we propose a model for the assembly of multiprotein, activated PDGF beta receptor complexes in response to the E5 protein.
Collapse
Affiliation(s)
- C C Lai
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
32
|
Platelet-derived growth factor-dependent association of the GTPase-activating protein of Ras and Src. Biochem J 2000. [PMID: 10567236 DOI: 10.1042/bj3440519] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we report that the platelet-derived growth factor beta receptor (betaPDGFR) is not the only tyrosine kinase able to associate with the GTPase-activating protein of Ras (RasGAP). The interaction of non-betaPDGFR kinase(s) with RasGAP was dependent on stimulation with platelet-derived growth factor (PDGF) and seemed to require tyrosine phosphorylation of RasGAP. Because the tyrosine phosphorylation site of RasGAP is in a sequence context that is favoured by the Src homology 2 ('SH2') domain of Src family members, we tested the possibility that Src was the kinase that associated with RasGAP. Indeed, Src interacted with phosphorylated RasGAP fusion proteins; immunodepletion of Src markedly decreased the recovery of the RasGAP-associated kinase activity. Thus PDGF-dependent tyrosine phosphorylation of RasGAP results in the formation of a complex between RasGAP and Src. To begin to address the relevance of these observations, we focused on the consequences of the interaction of Src and RasGAP. We found that a receptor mutant that did not activate Src was unable to efficiently mediate the tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Taken together, these observations support the following hypothesis. When RasGAP is recruited to the betaPDGFR, it is phosphorylated and associates with Src. Once bound to RasGAP, Src is no longer able to promote the phosphorylation of PLCgamma. This hypothesis offers a mechanistic explanation for our previously published findings that the recruitment of RasGAP to the betaPDGFR attenuates the tyrosine phosphorylation of PLCgamma. Finally, these findings suggest a novel way in which RasGAP negatively regulates signal relay by the betaPDGFR.
Collapse
|
33
|
Jazayeri A, McGee J, Shimamura T, Cross SB, Bejcek BE. SHP-2 can suppress transformation induced by platelet-derived growth factor. Exp Cell Res 2000; 254:197-203. [PMID: 10640417 DOI: 10.1006/excr.1999.4741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signaling by either the type alpha or type beta receptors of platelet-derived growth factor occurs by phosphorylation of at least 10 intra-cytoplasmic tyrosine residues and their subsequent association of secondary signaling molecules with Src homology 2 (SH2) domains. Although the role of several of these secondary signaling molecules in mitogenesis has become increasingly clear, their roles in morphological transformation are not as well defined. Here we present evidence that the SHP-2 phosphatase which associates with Tyr 1009 of the type beta receptor and Tyr 720 of the type alpha receptor may suppress transformation induced by the PDGF B chain. Cotransfection of a dominant negative mutant of the SHP-2 gene and the PDGF B chain gene into mouse fibroblasts that only poorly formed foci with the PDGF B chain alone resulted in larger and more prominent foci. Furthermore, introduction of a wild-type copy of the SHP-2 gene into a tumor cell line, U-87MG, which relies on PDGF expression to form foci in vitro, caused a reversion of phenotype.
Collapse
Affiliation(s)
- A Jazayeri
- Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
34
|
Riedel H, Yousaf N, Zhao Y, Dai H, Deng Y, Wang J. PSM, a mediator of PDGF-BB-, IGF-I-, and insulin-stimulated mitogenesis. Oncogene 2000; 19:39-50. [PMID: 10644978 DOI: 10.1038/sj.onc.1203253] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PSM/SH2-B has been described as a cellular partner of the FcepsilonRI receptor, insulin receptor (IR), insulin-like growth factor-I (IGF-I) receptor (IGF-IR), and nerve growth factor receptor (TrkA). A function has been proposed in neuronal differentiation and development but its role in other signaling pathways is still unclear. To further elucidate the physiologic role of PSM we have identified additional mitogenic receptor tyrosine kinases as putative PSM partners including platelet-derived growth factor (PDGF) receptor (PDGFR) beta, hepatocyte growth factor receptor (Met), and fibroblast growth factor receptor. We have mapped Y740 as a site of PDGFR beta that is involved in the association with PSM. We have further investigated the putative role of PSM in mitogenesis with three independent experimental strategies and found that all consistently suggested a role as a positive, stimulatory signaling adapter in normal NIH3T3 and baby hamster kidney fibroblasts. (1) PSM expression from cDNA using an ecdysone-regulated transient expression system stimulated PDGF-BB-, IGF-I-, and insulin- but not EGF-induced DNA synthesis in an ecdysone dose-responsive fashion; (2) Microinjection of the (dominant negative) PSM SH2 domain interfered with PDGF-BB- and insulin-induced DNA synthesis; and (3) A peptide mimetic of the PSM Pro-rich putative SH3 domain-binding region interfered with PDGF-BB-, IGF-I-, and insulin- but not with EGF-induced DNA synthesis in NIH3T3 fibroblasts. This experiment was based on cell-permeable fusion peptides with the Drosophila antennapedia homeodomain which effectively traverse the plasma membrane of cultured cells. These experimental strategies independently suggest that PSM functions as a positive, stimulatory, mitogenic signaling mediator in PDGF-BB, IGF-I, and insulin but not in EGF action. This function appears to involve the PSM SH2 domain as well as the Pro-rich putative SH3 domain binding region. Our findings support the model that PSM participates as an adapter in various mitogenic signaling mechanisms by linking an activated (receptor) phospho-tyrosine to the SH3 domain of an unknown cellular partner.
Collapse
Affiliation(s)
- H Riedel
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
A ubiquitous signaling event in hormonal responses is the phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4, 5-bisphosphate to produce the metabolite second messenger molecules inositol 1,4,5-trisphosphate and diacylglycerol. The former provokes a transient increase in intracellular free Ca(2+), while the latter serves as a direct activator of protein kinase C. In tyrosine kinase-dependent signaling pathways this reaction is mediated by the PLC-gamma isozymes. These are direct substrates of many tyrosine kinases in a wide variety of cell types. The mechanism of PLC-gamma activation involves its association with and phosphorylation by receptor and non-receptor tyrosine kinases, as well as interaction with specialized adaptor molecules and, perhaps, other second messenger molecules. However, the biochemistry of PLC-gamma is at a more advanced state than a clear understanding of exactly how this signaling element functions in the generation of a mitogenic response.
Collapse
Affiliation(s)
- G Carpenter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, USA.
| | | |
Collapse
|
36
|
Rosenkranz S, DeMali KA, Gelderloos JA, Bazenet C, Kazlauskas A. Identification of the Receptor-associated Signaling Enzymes That Are Required for Platelet-derived Growth Factor-AA-dependent Chemotaxis and DNA Synthesis. J Biol Chem 1999; 274:28335-43. [PMID: 10497192 DOI: 10.1074/jbc.274.40.28335] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the platelet-derived growth factor (PDGF) alpha receptor (alphaPDGFR) leads to cell migration and DNA synthesis. These events are preceded by the ligand-induced tyrosine phosphorylation of the receptor and its association with SH2-containing signaling enzymes including Src family members (Src), the phosphotyrosine phosphatase SHP-2, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-gamma1 (PLCgamma). In this study, we sought to systematically evaluate the relative roles of the signaling enzymes that are recruited to the alphaPDGFR for DNA synthesis and cell migration. Our approach was to generate and characterize tyrosine to phenylalanine alphaPDGFR mutants that failed to associate with one or more of the above listed signaling enzymes. In a 3T3-like cell line (Ph cells), PDGF-dependent DNA synthesis was strictly dependent on only one of the receptor-associated proteins, PI3K. In contrast, multiple signaling enzymes were required for maximal chemotaxis, as receptors unable to associate with either Src, PI3K, or PLCgamma initiated chemotaxis to 4, 47, or 56% of the wild-type level, respectively. Furthermore, coexpression of mutant receptors revealed that these signaling enzymes do not need to be on the same receptor for a cell to respond chemotactically to PDGF. We conclude that for the alphaPDGFR, PI3K plays a major role in initiating DNA synthesis, whereas PI3K, PLCgamma, and especially Src are required for chemotaxis.
Collapse
Affiliation(s)
- S Rosenkranz
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
37
|
Olivera A, Edsall L, Poulton S, Kazlauskas A, Spiegel S. Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCgamma. FASEB J 1999; 13:1593-600. [PMID: 10463951 DOI: 10.1096/fasebj.13.12.1593] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sphingosine-1-phosphate, a sphingolipid metabolite, is involved in the mitogenic response of platelet-derived growth factor (PDGF) and is formed by activation of sphingosine kinase. We examined the effect of PDGF on sphingosine kinase activation in TRMP cells expressing wild-type or various mutant betaPDGF receptors. Sphingosine kinase was stimulated by PDGF in cells expressing wild-type receptors but not in cells expressing kinase-inactive receptors (R634). Cells expressing mutated PDGF receptors with phenylalanine substitutions at five major tyrosine phosphorylation sites 740/751/771/1009/1021 (F5 mutants), which are unable to associate with PLCgamma, phosphatidylinositol 3-kinase, Ras GTPase-activating protein, or protein tyrosine phosphatase SHP-2, not only failed to increase DNA synthesis in response to PDGF but also did not activate sphingosine kinase. Moreover, mutation of tyrosine-1021 of the PDGF receptor to phenylalanine, which impairs its association with PLCgamma, abrogated PDGF-induced activation of sphingosine kinase. In contrast, PDGF was still able to stimulate sphingosine kinase in cells expressing the PDGF receptor mutated at tyrosines 740/751 and 1009, responsible for binding of phosphatidylinositol 3-kinase and SHP-2, respectively. In agreement, PDGF did not stimulate sphingosine kinase activity in F5 receptor 'add-back' mutants in which association with the Ras GTPase-activating protein, phosphatidylinositol 3-kinase, or SHP-2 was individually restored. However, a mutant PDGF receptor that was able to bind PLCgamma (tyrosine-1021), but not other signaling proteins, restored sphingosine kinase sensitivity to PDGF. These data indicate that the tyrosine residue responsible for binding of PLCgamma is required for PDGF-induced activation of sphingosine kinase. Moreover, calcium mobilization downstream of PLCgamma, but not protein kinase C activation, appears to be required for stimulation of sphingosine kinase by PDGF.-Olivera, A., Edsall, J., Poulton, S., Kazlauskas, A., Spiegel, S. Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCgamma.
Collapse
Affiliation(s)
- A Olivera
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, D.C. 20007, USA.
| | | | | | | | | |
Collapse
|
38
|
DeMali KA, Balciunaite E, Kazlauskas A. Integrins enhance platelet-derived growth factor (PDGF)-dependent responses by altering the signal relay enzymes that are recruited to the PDGF beta receptor. J Biol Chem 1999; 274:19551-8. [PMID: 10391888 DOI: 10.1074/jbc.274.28.19551] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the extracellular matrix (ECM) can promote platelet-derived growth factor (PDGF)-dependent responses, we hypothesized that the ECM mediates this effect by preventing the PDGF beta receptor (betaPDGFR) from associating with the negative regulator, RasGAP (the GTPase-activating protein of Ras). We found that binding of RasGAP to the wild-type betaPDGFR was decreased; the activation of Ras and Erk was enhanced, and [3H]thymidine uptake was better in cells cultured on fibronectin than in cells cultured on polylysine. To investigate the mechanism by which culturing cells on fibronectin diminished the recruitment of RasGAP to the betaPDGFR, we focused on SHP-2 since it dephosphorylates the betaPDGFR at the phosphotyrosine required for binding of RasGAP. Culturing cells on fibronectin increased the amount of SHP-2 that associated with the betaPDGFR. Furthermore, cells expressing receptor mutants that failed to associate with SHP-2 were insensitive to fibronectin. The ECM enhances PDGF-dependent responses by increasing the association of SHP-2 with the betaPDGFR, which in turn decreases the time that RasGAP interacts with the receptor. Thus, fibronectin changes PDGF-dependent signaling and biological responses by altering the signal relay enzymes that are recruited to the receptor.
Collapse
Affiliation(s)
- K A DeMali
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
39
|
Fambrough D, McClure K, Kazlauskas A, Lander ES. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 1999; 97:727-41. [PMID: 10380925 DOI: 10.1016/s0092-8674(00)80785-0] [Citation(s) in RCA: 373] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We sought to explore the relationship between receptor tyrosine kinase (RTK) activated signaling pathways and the transcriptional induction of immediate early genes (IEGs). Using global expression monitoring, we identified 66 fibroblast IEGs induced by platelet-derived growth factor beta receptor (PDGFRbeta) signaling. Mutant receptors lacking binding sites for activation of the PLCgamma, PI3K, SHP2, and RasGAP pathways still retain partial ability to induce 64 of these IEGs. Removal of the Grb2-binding site further broadly reduces induction. These results suggest that the diverse pathways exert broadly overlapping effects on IEG induction. Interestingly, a mutant receptor that restores the RasGAP-binding site promotes induction of an independent group of genes, normally induced by interferons. Finally, we compare the PDGFRbeta and fibroblast growth factor receptor 1; each induces essentially identical IEGs in fibroblasts.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Cell Line, Transformed
- Fibroblasts/cytology
- Gene Expression Regulation
- Genes, Immediate-Early
- Genes, Overlapping
- Humans
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Mice
- Mutagenesis
- Phenylalanine/genetics
- Phenylalanine/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Receptor, Platelet-Derived Growth Factor beta
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Platelet-Derived Growth Factor/genetics
- Receptors, Platelet-Derived Growth Factor/metabolism
- Signal Transduction
- Tyrosine/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- D Fambrough
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
40
|
Hossain MZ, Jagdale AB, Ao P, Kazlauskas A, Boynton AL. Disruption of gap junctional communication by the platelet-derived growth factor is mediated via multiple signaling pathways. J Biol Chem 1999; 274:10489-96. [PMID: 10187840 DOI: 10.1074/jbc.274.15.10489] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The platelet-derived growth factor (PDGF) mediates its cellular functions via activation of its receptor tyrosine kinase followed by the recruitment and activation of several signaling molecules. These signaling molecules then initiate specific signaling cascades, finally resulting in distinct physiological effects. To delineate the PDGF signaling pathway responsible for the disruption of gap junctional communication (GJC), wild-type PDGF receptor beta (PDGFRbeta) and a series of PDGFRbeta mutants were expressed in T51B rat liver epithelial cells. In cells expressing wild-type PDGFRbeta, PDGF induced disruption of GJC and phosphorylation of a gap junctional protein, connexin-43 (Cx43), which required activation of mitogen-activated protein kinase, although involvement of additional factors was also evident. In the F5 mutant lacking binding sites for phosphatidylinositol 3-kinase, GTPase-activating protein, SHP-2, and phospholipase Cgamma1 (PLCgamma1), PDGF induced mitogen-activated protein kinase, but failed to affect GJC or Cx43, indicating involvement of additional signals presumably initiated by one or more of the mutated binding sites. Examination of the single-site mutants revealed that PDGF effects were not mediated via a single signaling component. This was confirmed by the "add-back" mutants, which showed that restoration of either SHP-2 or PLCgamma1 binding was sufficient to propagate the GJC inhibitory actions of PDGF. Further analysis showed that activation of PLCgamma1 is involved in Cx43 phosphorylation, which surprisingly failed to correlate with GJC blockade. The results of our study demonstrate that PDGF-induced disruption of GJC can be mediated by multiple signaling pathways and requires participation of multiple components.
Collapse
Affiliation(s)
- M Z Hossain
- Molecular Medicine, Northwest Hospital, Seattle, Washington 98125, USA.
| | | | | | | | | |
Collapse
|
41
|
Gayko U, Cleghon V, Copeland T, Morrison DK, Perrimon N. Synergistic activities of multiple phosphotyrosine residues mediate full signaling from the Drosophila Torso receptor tyrosine kinase. Proc Natl Acad Sci U S A 1999; 96:523-8. [PMID: 9892666 PMCID: PMC15169 DOI: 10.1073/pnas.96.2.523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we identify four tyrosine residues (Y644, Y698, Y767, and Y772) that become phosphorylated after activation of the Torso (Tor) receptor tyrosine kinase. Previously, we characterized phosphotyrosine sites (P-Y630 and P-Y918). Of the six P-Y sites identified, three (Y630, Y644, and Y698) are located in the kinase domain insert region, one (Y918) is located in the C-terminal tail region, and two (Y767 and Y772) are located in the activation loop of the kinase domain. To investigate the function of each P-Y residue in Tor signaling, we have generated transgenic Drosophila embryos expressing mutant Tor receptors containing either single or multiple tyrosine to phenylalanine substitutions. Single P-Y mutations were found to have either positive, negative, or no effect on the signaling activity of the receptor. Elimination of all P-Y sites within the kinase insert region resulted in the complete loss of receptor function, indicating that some combination of these sites is necessary for Tor signaling. Mutation of the C-terminal P-Y918 site revealed that this site is responsible for negative signaling or down-regulation of receptor activity. Mutation of the P-Y sites in the kinase domain activation loop demonstrated that these sites are essential for enzymatic activity. Our analysis provides a detailed in vivo example of the extent of cooperativity between P-Y residues in transducing the signal received by a receptor tyrosine kinase and in vivo data demonstrating the function of P-Y residues in the activation loop of the kinase domain.
Collapse
Affiliation(s)
- U Gayko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
42
|
Katan M. Families of phosphoinositide-specific phospholipase C: structure and function. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:5-17. [PMID: 9838022 DOI: 10.1016/s0005-2760(98)00125-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A large number of extracellular signals stimulate hydrolysis of phosphatidylinositol 4,5-bisphosphate by phosphoinositide-specific phospholipase C (PI-PLC). PI-PLC isozymes have been found in a broad spectrum of organisms and although they have common catalytic properties, their regulation involves different signalling pathways. A number of recent studies provided an insight into domain organisation of PI-PLC isozymes and contributed towards better understanding of the structural basis for catalysis, cellular localisation and molecular changes that could underlie the process of their activation.
Collapse
Affiliation(s)
- M Katan
- CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
43
|
Exton JH. Phospholipid‐Derived Second Messengers. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Heldin CH, Ostman A, Rönnstrand L. Signal transduction via platelet-derived growth factor receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1378:F79-113. [PMID: 9739761 DOI: 10.1016/s0304-419x(98)00015-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platelet-derived growth factor (PDGF) exerts its stimulatory effects on cell growth and motility by binding to two related protein tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic SH2-domain containing signal transduction molecules. Thereby, a number of different signaling pathways are initiated leading to cell growth, actin reorganization migration and differentiation. Recent observations suggest that extensive cross-talk occurs between different signaling pathways, and that stimulatory signals are modulated by inhibitory signals arising in parallel.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | |
Collapse
|
45
|
DeMali KA, Kazlauskas A. Activation of Src family members is not required for the platelet-derived growth factor beta receptor to initiate mitogenesis. Mol Cell Biol 1998; 18:2014-22. [PMID: 9528773 PMCID: PMC121431 DOI: 10.1128/mcb.18.4.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The basal activity of Src family kinases is readily detectable throughout the cell cycle and increases by two- to fivefold upon acute stimulation of cells with growth factors such as platelet-derived growth factor. Previous reports have demonstrated a requirement for Src activity for the G1/S and G2/M transitions. With a chimeric alpha-beta PDGF receptor (PDGFR) expressed in fibroblasts, we have investigated the importance of the PDGF-mediated increase in Src activity at the G0/G1 transition for subsequent cell cycle events. A mutant PDGFR chimera that was not able to detectably associate with or activate Src was compromised in its ability to mediate tyrosine phosphorylation of receptor-associated signaling molecules and initiated a submaximal activation of Erk. In contrast to these early cell cycle events, later responses such as entry of cells into S phase and cell proliferation proceeded normally when Src activity did not increase following acute stimulation with PDGF. We conclude that the initial burst of Src activity is required for efficient tyrosine phosphorylation of receptor-associated proteins such as PLCgamma, RasGAP, Shc, and SHP-2 and for maximal activation of Erk. Surprisingly, these events are not required for PDGF-dependent cell proliferation. Finally, later cell cycle events do not require that Src be activated at the G0/G1 transition and leave open the possibility that events such as the G1/S transition require the basal Src activity and/or activation of Src at later times in G1.
Collapse
Affiliation(s)
- K A DeMali
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
46
|
Gelderloos JA, Rosenkranz S, Bazenet C, Kazlauskas A. A role for Src in signal relay by the platelet-derived growth factor alpha receptor. J Biol Chem 1998; 273:5908-15. [PMID: 9488729 DOI: 10.1074/jbc.273.10.5908] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that Src is required for platelet-derived growth factor (PDGF)-dependent cell cycle progression in fibroblasts. Since fibroblasts usually express both PDGF receptors (PDGFRs), these findings suggested that Src was mandatory for signal relay by both the alpha and betaPDGFRs. In this study, we have focused on the role of Src in signal relay by the alphaPDGFR. In response to stimulation with PDGF-AA, which selectively engages the alphaPDGFR, Src family members (Src) associated with the alphaPDGFR and Src kinase were activated. A mutant receptor, in which tyrosines 572 and 574 were replaced with phenylalanine (F72/74), failed to efficiently associate with Src or activate Src. The wild type (WT) and F72/74 receptors induced the expression of c-myc and c-fos to comparable levels. Furthermore, an equivalent extent of PDGF-dependent soft agar growth was observed in cells expressing the WT or the F72/74 alphaPDGFR. Comparing the ability of these two receptors to initiate tyrosine phosphorylation of signaling molecules indicated that both receptors mediated phosphorylation of the receptor itself, phospholipase Cgamma 1, and SHP-2 to similar levels. In contrast, the F72/74 receptor triggered phosphorylation of Shc to 1 and 20% of the WT levels for the 55- and 46-kDa Shc isoforms, respectively. These findings indicate that after exposure of cells to PDGF-AA, Src stably associates with the alphaPDGFR, and Src activity is increased. Furthermore, Src is required for the PDGF-dependent phosphorylation of signaling molecules such as Shc. Finally, activation of Src during the G0/G1 transition does not appear to be required for latter cell cycle events such as induction of c-myc or cell proliferation.
Collapse
Affiliation(s)
- J A Gelderloos
- The Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
47
|
Pei ZD, Williamson JR. Mutations at residues Tyr771 and Tyr783 of phospholipase C-gamma1 have different effects on cell actin-cytoskeleton organization and cell proliferation in CCL-39 cells. FEBS Lett 1998; 423:53-6. [PMID: 9506840 DOI: 10.1016/s0014-5793(98)00063-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Currently a central question that remains unresolved is the potential importance of phospholipase C (PLC)-gamma1 in cell mitogenesis. In this study, we introduced wild-type PLC-gamma1 plasmid and mutants Y771F and Y783F into CCL-39 fibroblasts and investigated their effect on host cell functions. To our surprise, Y771F and Y783F plasmids appeared to have opposite effects on CCL-39 cell actin-cytoskeleton organization and cell proliferation. Y771F transfectants increased cell proliferation by two-fold. Y783F transfectants showed much thicker actin filaments and decreased cell growth rate by 50%. These results suggest that PLC-gamma1 mutations have an essential impact on cell mitogenesis.
Collapse
Affiliation(s)
- Z D Pei
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
48
|
Yu Z, Su L, Hoglinger O, Jaramillo ML, Banville D, Shen SH. SHP-1 associates with both platelet-derived growth factor receptor and the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem 1998; 273:3687-94. [PMID: 9452499 DOI: 10.1074/jbc.273.6.3687] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Src homology 2 (SH2)-containing protein tyrosine phosphatase 1, SHP-1, is highly expressed in all hematopoietic cells as well as in many non-hematopoietic cells, particularly in some malignant epithelial cell lines. In hematopoietic cells, SHP-1 negatively regulates multiple cytokine receptor pathways. The precise function and the targets of SHP-1 in non-hematopoietic cells, however, are largely unknown. Here we demonstrate that SHP-1 associates with both the tyrosine-phosphorylated platelet-derived growth factor (PDGF) receptor and the p85 subunit of phosphatidylinositol 3-kinase in MCF-7 and TRMP cells. Through the use of mutant PDGF receptors and performing peptide competition for immunoprecipitation, it was determined that SHP-1 independently associates with the PDGF receptor and p85 and that its N-terminal SH2 domain is directly responsible for the interactions. Overexpression of SHP-1 in TRMP cells transfected with the PDGF receptor markedly inhibited PDGF-induced c-fos promoter activation, whereas the expression of three catalytically inactive SHP-1 mutants increased the c-fos promoter activation in response to PDGF stimulation. These results indicate that SHP-1 might negatively regulate PDGF receptor-mediated signaling in these cells. Identification of the association of SHP-1 with the PDGF receptor and p85 in MCF-7 and TRMP cells furthers our understanding of the function of SHP-1 in non-hematopoietic cells.
Collapse
Affiliation(s)
- Z Yu
- Department of Medicine, McGill University, Montreal, Quebec H3G 1A4, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Pei Z, Maloney JA, Yang L, Williamson JR. A new function for phospholipase C-gamma1: coupling to the adaptor protein GRB2. Arch Biochem Biophys 1997; 345:103-10. [PMID: 9281317 DOI: 10.1006/abbi.1997.0245] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidermal growth factor (EGF)-induced autophosphorylation of the EGF receptor results in high-affinity binding of the adaptor protein GRB2, which serves as a convergence point for multiple signaling pathways. Present studies demonstrate that EGF induces the co-immunoprecipitation of phospholipase C (PLC)-gamma1 with the adaptor protein GRB2 and the guanine nucleotide exchange factor Sos, but not with the adaptor protein SHC, in WB cells. Inhibition of PLC-gamma1 tyrosine phosphorylation by phenylarsine oxide reduces the co-immunoprecipitation of PLC-gamma1 with GRB2. Furthermore, angiotensin II, a G protein-coupled receptor agonist, also induces the tyrosine phosphorylation of PLC-gamma1 and its co-immunoprecipitation with GRB2 in WB cells. Interestingly, angiotensin II stimulation also causes tyrosine phosphorylation of the EGF receptor, suggesting that angiotensin II-induced PLC-gamma1 tyrosine phosphorylation in WB cells may be via EGF receptor tyrosine kinase activation. In addition, there is some level of association between PLC-gamma1 and GRB2 that is independent of the tyrosine phosphorylation of PLC-gamma1 in both in vivo and in vitro studies. In vitro studies further demonstrate that the Tyr771 and Tyr783 region of PLC-gamma1 and the SH2 domain of GRB2 are potentially involved in the tyrosine phosphorylation-dependent association between PLC-gamma1 and GRB2. The association of PLC-gamma1 with GRB2 and Sos suggests that PLC-gamma1 may be directly involved in the Ras signaling pathway and that GRB2 may be involved in the translocation of PLC-gamma1 from cytosol to the plasma membrane as a necessary step for its effect on inositol lipid hydrolysis.
Collapse
Affiliation(s)
- Z Pei
- School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
50
|
Pedersen S, Sharp S, Liu W, Cohen J. Structure of the noncompetitive antagonist-binding site of the Torpedo nicotinic acetylcholine receptor. [3H]meproadifen mustard reacts selectively with alpha-subunit Glu-262. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50044-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|