1
|
The Recombinant Inhibitor of DNA Binding Id2 Forms Multimeric Structures via the Helix-Loop-Helix Domain and the Nuclear Export Signal. Int J Mol Sci 2018; 19:ijms19041105. [PMID: 29642431 PMCID: PMC5979349 DOI: 10.3390/ijms19041105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
The inhibitor of DNA binding and cell differentiation 2 (Id2) is a helix-loop-helix (HLH) protein that acts as negative dominant regulator of basic-HLH transcription factors during development and in cancer. The structural properties of Id2 have been investigated so far by using synthetic or recombinant fragments reproducing single domains (N-terminus, HLH, C-terminus): the HLH domain tends to dimerize into a four-helix bundle, whereas the flanking regions are flexible. In this work, the intact protein was expressed in E. coli, solubilized from inclusion bodies with urea, purified and dissolved in water at pH~4. Under these conditions, Id2 was obtained with both cysteine residues disulfide-bonded to β-mercaptoethanol that was present during the solubilization process. Moreover, it existed in a self-assembled state, in which the N-terminus remained highly flexible, while the HLH domain and, surprisingly, part of the C-terminus, which corresponds to the nuclear export signal (NES), both were involved in slowly tumbling, rigid structures. The protein oligomers also formed twisted fibrils that were several micrometers long and up to 80 nm thick. These results show that self-assembly decreases the backbone flexibility of those two protein regions (HLH and NES) that are important for interaction with basic-HLH transcription factors or for nucleocytoplasmic shuttling.
Collapse
|
2
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
3
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
4
|
Xu K, Wang L, Feng W, Feng Y, Shu HK. Phosphatidylinositol-3 kinase-dependent translational regulation of Id1 involves the PPM1G phosphatase. Oncogene 2016; 35:5807-5816. [PMID: 27065332 PMCID: PMC5064830 DOI: 10.1038/onc.2016.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/04/2016] [Accepted: 01/22/2016] [Indexed: 12/30/2022]
Abstract
Id1 is a helix-loop-helix transcriptional modulator that increases the aggressiveness of malignant glial neoplasms. Since most glioblastomas (GBMs) show increased phosphatidylinositol-3 kinase (PI-3K) signaling, we sought to determine whether this pathway regulates Id1 expression. Higher basal Id1 expression correlates with dysregulated PI-3K signaling in multiple established GBM cell lines. Further characterization of PI-3K-dependent Id1 regulation reveals that chemical or genetic inhibition of PI-3K signaling reduces Id1 protein but not mRNA expression. Overall, PI-3K signaling appears to enhance Id1 translation with no significant effect on its stability. PI-3K signaling is known to regulate protein translation through mTORC1-dependent phosphorylation of 4E-BP1, which reduces its association with and inhibition of the translation initiation factor eIF4E. Interestingly, while inhibition of PI-3K and AKT lowers 4E-BP1 phosphorylation and expression of Id1 in all cases, inhibition of TORC1 with rapamycin does not consistently have a similar effect suggesting an alternative mechanism for PI-3K-dependent regulation of Id1 translation. We now identify a potential role for the serine-threonine phosphatase PPM1G in translational regulation of Id1 protein expression. PPM1G knockdown by siRNA increase both 4E-BP1 phosphorylation and Id1 expression and PPM1G and 4E-BP1 co-associates in GBM cells. Furthermore, PPM1G is a phosphoprotein and this phosphorylation appears to be regulated by PI-3K activity. Finally, PI-3K inhibition increases PPM1G activity when assessed by an in vitro phosphatase assay. Our findings provide the first evidence that the PI-3K/AKT signaling pathway modulates PPM1G activity resulting in a shift in the balance between hyper- and hypo-phosphorylated 4E-BP1 and translational regulation of Id1 expression.
Collapse
Affiliation(s)
- K Xu
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - L Wang
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - W Feng
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Y Feng
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - H-Kg Shu
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Puram SV, Kim AH, Park HY, Anckar J, Bonni A. The ubiquitin receptor S5a/Rpn10 links centrosomal proteasomes with dendrite development in the mammalian brain. Cell Rep 2013; 4:19-30. [PMID: 23831032 DOI: 10.1016/j.celrep.2013.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 05/05/2013] [Accepted: 06/05/2013] [Indexed: 11/15/2022] Open
Abstract
Proteasomes drive the selective degradation of protein substrates with covalently linked ubiquitin chains in eukaryotes. Although proteasomes are distributed throughout the cell, specific biological functions of the proteasome in distinct subcellular locales remain largely unknown. We report that proteasomes localized at the centrosome regulate the degradation of local ubiquitin conjugates in mammalian neurons. We find that the proteasomal subunit S5a/Rpn10, a ubiquitin receptor that selects substrates for degradation, is essential for proteasomal activity at centrosomes in neurons and thereby promotes the elaboration of dendrite arbors in the rodent brain in vivo. We also find that the helix-loop-helix protein Id1 disrupts the interaction of S5a/Rpn10 with the proteasomal lid and thereby inhibits centrosomal proteasome activity and dendrite elaboration in neurons. Together, our findings define a function for a specific pool of proteasomes at the neuronal centrosome and identify a biological function for S5a/Rpn10 in the mammalian brain.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
6
|
Hau PM, Tsang CM, Yip YL, Huen MSY, Tsao SW. Id1 interacts and stabilizes the Epstein-Barr virus latent membrane protein 1 (LMP1) in nasopharyngeal epithelial cells. PLoS One 2011; 6:e21176. [PMID: 21701587 PMCID: PMC3118807 DOI: 10.1371/journal.pone.0021176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/22/2011] [Indexed: 12/15/2022] Open
Abstract
The EBV-encoded latent membrane protein 1 (LMP1) functions as a constitutive active form of tumor necrosis factor receptor (TNFR) and activates multiple downstream signaling pathways similar to CD40 signaling in a ligand-independent manner. LMP1 expression in EBV-infected cells has been postulated to play an important role in pathogenesis of nasopharyngeal carcinoma. However, variable levels of LMP1 expression were detected in nasopharyngeal carcinoma. At present, the regulation of LMP1 levels in nasopharyngeal carcinoma is poorly understood. Here we show that LMP1 mRNAs are transcribed in an EBV-positive nasopharyngeal carcinoma (NPC) cell line (C666-1) and other EBV-negative nasopharyngeal carcinoma cells stably re-infected with EBV. The protein levels of LMP1 could readily be detected after incubation with proteasome inhibitor, MG132 suggesting that LMP1 protein is rapidly degraded via proteasome-mediated proteolysis. Interestingly, we observed that Id1 overexpression could stabilize LMP1 protein in EBV-infected cells. In contrary, Id1 knockdown significantly reduced LMP1 levels in cells. Co-immunoprecipitation studies revealed that Id1 interacts with LMP1 by binding to the CTAR1 domain of LMP1. N-terminal region of Id1 is required for the interaction with LMP1. Furthermore, binding of Id1 to LMP1 suppressed polyubiquitination of LMP1 and may be involved in stabilization of LMP1 in EBV-infected nasopharyngeal epithelial cells.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong Special Administrative Region
| | | | | | | | | |
Collapse
|
7
|
Henke RM, Meredith DM, Borromeo MD, Savage TK, Johnson JE. Ascl1 and Neurog2 form novel complexes and regulate Delta-like3 (Dll3) expression in the neural tube. Dev Biol 2009; 328:529-40. [PMID: 19389376 PMCID: PMC2698949 DOI: 10.1016/j.ydbio.2009.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 11/21/2022]
Abstract
Delta-like 3 (Dll3) is a Delta family member expressed broadly in the developing nervous system as neural progenitor cells initiate differentiation. A proximal promoter sequence for Dll3 is conserved across multiple species and is sufficient to direct GFP expression in a Dll3-like pattern in the neural tube of transgenic mice. This promoter contains multiple E-boxes, the consensus binding site for bHLH factors. Dll3 expression and the activity of the Dll3-promoter in the dorsal neural tube depends on the basic helix-loop-helix (bHLH) transcription factors Ascl1 (Mash1) and Neurog2 (Ngn2). Mutations in each E-box identified in the Dll3-promoter allowed distinct enhancer or repressor properties to be assigned to each site individually or in combination. In addition, each E-box has distinct characteristics relative to binding of bHLH factors Ascl1, Neurog1, and Neurog2. Surprisingly, novel Ascl1 containing DNA binding complexes are identified that interact with specific E-box sites within the Dll3-promoter in vitro. These complexes include Ascl1/Ascl1 homodimers and Ascl1/Neurog2 heterodimers, complexes that in some cases require additional undefined factors for efficient DNA binding. Thus, a complex interplay of E-box binding proteins spatially and temporally regulate Dll3 levels during neural tube development.
Collapse
Affiliation(s)
- R. Michael Henke
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390 USA, , 214-648-1870 phone, 214-648-1801 fax
| | - David M. Meredith
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390 USA, , 214-648-1870 phone, 214-648-1801 fax
| | - Mark D. Borromeo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390 USA, , 214-648-1870 phone, 214-648-1801 fax
| | - Trisha K. Savage
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390 USA, , 214-648-1870 phone, 214-648-1801 fax
| | - Jane E. Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390 USA, , 214-648-1870 phone, 214-648-1801 fax
| |
Collapse
|
8
|
Man C, Rosa J, Yip YL, Cheung ALM, Kwong YL, Doxsey SJ, Tsao SW. Id1 overexpression induces tetraploidization and multiple abnormal mitotic phenotypes by modulating aurora A. Mol Biol Cell 2008; 19:2389-401. [PMID: 18353975 DOI: 10.1091/mbc.e07-09-0875] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The basic helix-loop-helix transcription factor, Id1, was shown to induce tetraploidy in telomerase-immortalized nasopharyngeal epithelial cells in this study. Using both transient and stable Id1-expressing cell models, multiple mitotic aberrations were detected, including centrosome amplification, binucleation, spindle defects, and microtubule perturbation. Many of these abnormal phenotypes have previously been reported in cells overexpressing Aurora A. Further experiments showed that Id1 could stabilize Aurora A, whereas knocking down Aurora A expression in Id1-expressing cells could rescue some of the mitotic defects. The mechanisms by which Aurora A could be modulated by Id1 were explored. DNA amplification of the Aurora A locus was not involved. Id1 could only weakly activate the transcriptional activity of the Aurora A promoter. We found that Id1 overexpression could affect Aurora A degradation, leading to its stabilization. Aurora A is normally degraded from mitosis exit by the APC/C(Cdh1)-mediated proteasomal proteolysis pathway. Our results revealed that Id1 and Cdh1 are binding partners. The association of Id1 and Cdh1 was found to be dependent on the canonical destruction box motif of Id1, the increased binding of which may compete with the interaction between Cdh1 and Aurora A, leading to stabilization of Aurora A in Id1-overexpressing cells.
Collapse
Affiliation(s)
- Cornelia Man
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Hasskarl J, Mern DS, Münger K. Interference of the dominant negative helix-loop-helix protein ID1 with the proteasomal subunit S5A causes centrosomal abnormalities. Oncogene 2007; 27:1657-64. [PMID: 17891176 DOI: 10.1038/sj.onc.1210808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The inhibitor of DNA-binding (ID) proteins are dominant-negative inhibitors of basic helix-loop-helix transcription factors that have multiple functions during development and cellular differentiation. High-level expression of some ID family members has been observed in human malignancies, and in some cases was correlated with poor clinical prognosis. Ectopic ID1 expression extends the life span of primary human epithelial cells, inhibits cellular differentiation and induces centrosome duplication errors, thus suggesting that ID1 may have oncogenic activities. ID1 can bind to the proteasomal subunit S5A/Rpn10, but the biological consequences of the interaction have not been studied in detail. Here, we show that ID1's ability to induce supernumerary centrosomes correlates with S5A binding. Similar to ID1, a fraction of the S5A protein localizes to centrosomal structures. Furthermore, partial depletion of S5A by RNA interference causes accumulation of cells with supernumerary centrosomes. These results are consistent with the model that ID1 dysregulates centrosome homeostasis at least in part by interfering with S5A activities at the centrosome.
Collapse
Affiliation(s)
- J Hasskarl
- Division of Hematology and Oncology, University of Freiburg Medical Center, Freiburg im Breisgau, Germany.
| | | | | |
Collapse
|
10
|
Babushok DV, Ohshima K, Ostertag EM, Chen X, Wang Y, Mandal PK, Okada N, Abrams CS, Kazazian HH. A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids. Genome Res 2007; 17:1129-38. [PMID: 17623810 PMCID: PMC1933510 DOI: 10.1101/gr.6252107] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Most new genes arise by duplication of existing gene structures, after which relaxed selection on the new copy frequently leads to mutational inactivation of the duplicate; only rarely will a new gene with modified function emerge. Here we describe a unique mechanism of gene creation, whereby new combinations of functional domains are assembled at the RNA level from distinct genes, and the resulting chimera is then reverse transcribed and integrated into the genome by the L1 retrotransposon. We characterized a novel gene, which we termed PIP5K1A and PSMD4-like (PIPSL), created by this mechanism from an intergenic transcript between the phosphatidylinositol-4-phosphate 5-kinase (PIP5K1A) and the 26S proteasome subunit (PSMD4) genes in a hominoid ancestor. PIPSL is transcribed specifically in the testis both in humans and chimpanzees, and is post-transcriptionally repressed by independent mechanisms in these primate lineages. The PIPSL gene encodes a chimeric protein combining the lipid kinase domain of PIP5K1A and the ubiquitin-binding motifs of PSMD4. Strong positive selection on PIPSL led to its rapid divergence from the parental genes PIP5K1A and PSMD4, forming a chimeric protein with a distinct cellular localization and minimal lipid kinase activity, but significant affinity for cellular ubiquitinated proteins. PIPSL is a tightly regulated, testis-specific novel ubiquitin-binding protein formed by an unusual exon-shuffling mechanism in hominoid primates and represents a key example of rapid evolution of a testis-specific gene.
Collapse
Affiliation(s)
- Daria V. Babushok
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kazuhiko Ohshima
- Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan
| | - Eric M. Ostertag
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xinsheng Chen
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yanfeng Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Prabhat K. Mandal
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Charles S. Abrams
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Haig H. Kazazian
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Corresponding author.E-mail ; fax (215) 573-7760
| |
Collapse
|
11
|
Lim RWS, Wu JM. Molecular mechanisms regulating expression and function of transcription regulator inhibitor of differentiation 3. Acta Pharmacol Sin 2005; 26:1409-20. [PMID: 16297338 DOI: 10.1111/j.1745-7254.2005.00207.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The transcription factor antagonist inhibitor of differentiation 3 (Id3) has been implicated in many diverse developmental, physiological and pathophysiological processes. Its expression and function is subjected to many levels of complex regulation. This review summarizes the current understanding of these mechanisms and describes how they might be related to the diverse functions that have been attributed to the Id3 protein. Detailed understanding of these mechanisms should provide insights towards the development of therapeutic approaches to various diseases, including cancer and atherogenesis.
Collapse
Affiliation(s)
- Robert Wai-Sui Lim
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri 65212, USA.
| | | |
Collapse
|
12
|
Berse M, Bounpheng M, Huang X, Christy B, Pollmann C, Dubiel W. Ubiquitin-dependent degradation of Id1 and Id3 is mediated by the COP9 signalosome. J Mol Biol 2004; 343:361-70. [PMID: 15451666 DOI: 10.1016/j.jmb.2004.08.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 05/28/2004] [Accepted: 08/12/2004] [Indexed: 11/24/2022]
Abstract
Recently, evidence is accumulating pointing to a function of the COP9 signalosome (CSN) in regulation of ubiquitination by specific ubiquitin ligases. Here, we demonstrate by mammalian two-hybrid analysis that the transcriptional regulators and substrates of the ubiquitin system Id1 and Id3, but not Id2 and Id4, bind to the CSN subunit CSN5. Pull-down experiments revealed that Id3 physically interacts with the CSN complex. Additional far Western and pull-down studies with Id3 support our two-hybrid data and show that the transcription regulator can bind to CSN5 and CSN7. Recombinant Id3 is not phosphorylated by the CSN-associated kinases CK2 and PKD. However, it inhibits c-Jun and CSN2 phosphorylation by the isolated CSN complex and by the recombinant CK2. The inhibitors of CSN associated kinases, curcumin and emodin, significantly induce ubiquitination and proteasome-dependent degradation of transiently expressed Id3 in HeLa cells. Proteasome-dependent degradation of endogenous Id1 in HeLa cells is also stimulated by treatment with curcumin or emodin. Ubiquitination of Id3 is shown directly by cotransfection of HeLa cells with Id3 and His-ubiquitin cDNA. Curcumin increased Id3-ubiquitin conjugate formation, as shown by Western blotting and His-pull-downs. In addition, overexpression of CSN2 leads to stabilization of Id3 protein. On the basis of these data, it is speculated that CSN-mediated phosphorylation inhibits ubiquitination of Id1 and Id3.
Collapse
Affiliation(s)
- Matthias Berse
- Department of Surgery, Division of Molecular Biology, Charité, Universitätsmedizin Berlin, Monbijoustrasse 2, D-10117, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Viñals F, Ventura F. Myogenin Protein Stability Is Decreased by BMP-2 through a Mechanism Implicating Id1. J Biol Chem 2004; 279:45766-72. [PMID: 15322112 DOI: 10.1074/jbc.m408059200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) induces a switch in differentiation of mesenchymal cells from the myogenic to the osteogenic lineage. Here we describe that in C2C12 cells, BMP-2 decreases myogenin expression induced by des-(1,3) insulin-like growth factor-1 (des-(1,3)IGF-1) or ectopically expressed from a constitutive promoter, even in conditions where myogenin mRNA levels were unaffected. Addition of BMP-2 decreases myogenin protein half-life to 50%, whereas proteasome inhibitors abolish these effects. Forced expression of Id1, either by transient transfection or under the control of an inducible system, causes degradation of myogenin in the absence of BMP-2. In contrast, E47 overexpression blocks the inhibitory effect of BMP-2 on myogenin levels. Finally, expression of E47 in 293 cells stabilizes myogenin, an effect that is dependent on the heterodimerization mediated by their helix-loop-helix. Our findings indicate that induction of Id1 not only blocks transcriptional activity but also induces myogenin degradation by blocking formation of myogenin-E47 protein complexes.
Collapse
Affiliation(s)
- Francesc Viñals
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, E-08907 L'Hospitalet de Llobregat, Spain
| | | |
Collapse
|
14
|
Desprez PY, Sumida T, Coppé JP. Helix-loop-helix proteins in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 2003; 8:225-39. [PMID: 14635797 DOI: 10.1023/a:1025957025773] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors functions in the coordinated regulation of gene expression, cell lineage commitment, and cell differentiation in most mammalian tissues. Helix-loop-helix Id (Inhibitor of DNA binding) proteins are distinct from bHLH transcription factors in that they lack the basic domain necessary for DNA binding. Id proteins thus function as dominant negative regulators of bHLH transcription factors. The inhibition of bHLH factor activity by forced constitutive expression of Id proteins is closely associated with the inhibition of differentiation in a number of different cell types, including mammary epithelial cells. Moreover, recent literature suggests important roles of HLH proteins in many normal and transformed tissues, including mammary gland. Therefore, future directions for prognosis or therapeutic treatments of breast cancer may be able to exploit bHLH and Id genes as useful molecular targets. The purpose of this review is to summarize the evidence implicating HLH proteins in the regulation of normal and transformed mammary epithelial cell phenotypes.
Collapse
Affiliation(s)
- Pierre-Yves Desprez
- California Pacific Medical Center, Cancer Research Institute, San Francisco, California 94115, USA.
| | | | | |
Collapse
|
15
|
Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 2002; 13:3369-87. [PMID: 12388743 PMCID: PMC129952 DOI: 10.1091/mbc.e02-05-0259] [Citation(s) in RCA: 559] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The von Willebrand A (VWA) domain is a well-studied domain involved in cell adhesion, in extracellular matrix proteins, and in integrin receptors. A number of human diseases arise from mutations in VWA domains. We have analyzed the phylogenetic distribution of this domain and the relationships among approximately 500 proteins containing this domain. Although the majority of VWA-containing proteins are extracellular, the most ancient ones, present in all eukaryotes, are all intracellular proteins involved in functions such as transcription, DNA repair, ribosomal and membrane transport, and the proteasome. A common feature seems to be involvement in multiprotein complexes. Subsequent evolution involved deployment of VWA domains by Metazoa in extracellular proteins involved in cell adhesion such as integrin beta subunits (all Metazoa). Nematodes and chordates separately expanded their complements of extracellular matrix proteins containing VWA domains, whereas plants expanded their intracellular complement. Chordates developed VWA-containing integrin alpha subunits, collagens, and other extracellular matrix proteins (e.g., matrilins, cochlin/vitrin, and von Willebrand factor). Consideration of the known properties of VWA domains in integrins and extracellular matrix proteins allows insights into their involvement in protein-protein interactions and the roles of bound divalent cations and conformational changes. These allow inferences about similar functions in novel situations such as protease regulators (e.g., complement factors and trypsin inhibitors) and intracellular proteins (e.g., helicases, chelatases, and copines).
Collapse
Affiliation(s)
- Charles A Whittaker
- Howard Hughes Medical Institute, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
16
|
Yanagawa Y, Hasezawa S, Kumagai F, Oka M, Fujimuro M, Naito T, Makino T, Yokosawa H, Tanaka K, Komamine A, Hashimoto J, Sato T, Nakagawa H. Cell-cycle dependent dynamic change of 26S proteasome distribution in tobacco BY-2 cells. PLANT & CELL PHYSIOLOGY 2002; 43:604-13. [PMID: 12091713 DOI: 10.1093/pcp/pcf072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 26S proteasome is known to play pivotal roles in cell-cycle progression in various eukaryotic cells; however, little is known about its role in higher plants. Here we report that the subcellular distribution of the 26S proteasome is dynamically changed in a cell-cycle dependent manner in tobacco BY-2 cells as determined by immunostaining with anti-Rpn10 (a regulatory PA700 subunit) and anti-20S catalytic proteasome antibodies. The 26S proteasome was found to localize not only in nuclear envelopes and mitotic spindles but also in preprophase bands (PPBs) and phragmoplasts appearing in G(2) and M phases, respectively. MG132, a proteasome inhibitor, exclusively caused cell-cycle arrest not only at the metaphase but also the early stage of PPB formation at the G(2) phase and the collapse of the phragmoplast, which seems to be closely related to proteasome distribution in the cells.
Collapse
Affiliation(s)
- Yuki Yanagawa
- Department of Bioproduction Science, Faculty of Horticulture, Chiba University, Matsudo, Matsudo, Chiba, 271-8510 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lange S, Lönnroth I. The antisecretory factor: synthesis, anatomical and cellular distribution, and biological action in experimental and clinical studies. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 210:39-75. [PMID: 11580208 DOI: 10.1016/s0074-7696(01)10003-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The antisecretory factor (AF) is a 41-kDa protein that provides protection against diarrheal diseases and intestinal inflammation. Its cDNA has been cloned and sequenced. AF is highly potent, with 10(-12) mol of recombinant AF being sufficient to counteract experimentally induced diarrhea in rat. The antisecretory activity is exerted by a peptide located between positions 35 and 50 of the AF sequence. Synthetic peptides based on this sequence are promising candidates for drugs to counteract intestinal hypersecretion, as well as imbalances of fluid transport in other body compartments. AF probably exerts its effects via nerves; AF immediately and potently inhibits ion transport across isolated nerve membranes from Deiters' cells. Immunocytochemistry has shown that AF is present in most tissues in the body, and in situ nucleic acid hybridization has shown that cells that store AF are also capable of AF synthesis. The endogenous plasma level of AF is increased by enterotoxins and by certain food constituents such as hydrothermally processed cereals. These cereals significantly improve clinical performance in patients suffering from inflammatory bowel diseases. AF-enhancing food also protects domestic animals against diarrheal diseases, and such feed has been used successfully in Swedish swine farming for the past 10 years. Increased understanding of AF action might result in expanded clinical applications and confirm that AF is an important regulator of homeostasis.
Collapse
Affiliation(s)
- S Lange
- Department of Clinical Bacteriology , Göteborg University, Sweden
| | | |
Collapse
|
18
|
Tanaka K, Kondoh N, Shuda M, Matsubara O, Imazeki N, Ryo A, Wakatsuki T, Hada A, Goseki N, Igari T, Hatsuse K, Aihara T, Horiuchi S, Yamamoto N, Yamamoto M. Enhanced expression of mRNAs of antisecretory factor-1, gp96, DAD1 and CDC34 in human hepatocellular carcinomas. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1536:1-12. [PMID: 11335099 DOI: 10.1016/s0925-4439(01)00026-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To identify differentially expressed genes in hepatocarcinogenesis, we performed differential display analysis using surgically resected hepatocellular carcinoma (HCC) and adjacent non-tumorous liver tissues. We identified four cDNA fragments upregulated in HCC samples, encoding antisecretory factor-1 (AF), gp96, DAD1 and CDC34. Northern blot analysis demonstrated that these mRNAs were expressed preferentially in HCCs compared with adjacent non-tumorous liver tissues or normal liver tissues from non-HCC patients. The expression of these mRNAs was increased along with the histological grading of HCC tissues. These mRNA levels were also high in three human HCC cell lines (HuH-7, HepG2 and HLF), irrespective of the growth state. We also demonstrate that sodium butyrate, an inducer of differentiation, downregulated the expression of AF and gp96 mRNAs, supporting in part our pathological observation. Immunohistochemical analysis revealed that gp96 and CDC34 proteins were preferentially accumulated in cytoplasm and nuclei of HCC cells, respectively. Overexpression of these genes could be an important manifestation of HCC phenotypes and should provide clues to understand the molecular basis of hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- K Tanaka
- Department of Microbiology and Molecular Virology, School of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 2000; 68:1015-68. [PMID: 10872471 DOI: 10.1146/annurev.biochem.68.1.1015] [Citation(s) in RCA: 1394] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway. The 26S proteasome is a 2.5-MDa molecular machine built from approximately 31 different subunits, which catalyzes protein degradation. It contains a barrel-shaped proteolytic core complex (the 20S proteasome), capped at one or both ends by 19S regulatory complexes, which recognize ubiquitinated proteins. The regulatory complexes are also implicated in unfolding and translocation of ubiquitinated targets into the interior of the 20S complex, where they are degraded to oligopeptides. Structure, assembly and enzymatic mechanism of the 20S complex have been elucidated, but the functional organization of the 19S complex is less well understood. Most subunits of the 19S complex have been identified, however, specific functions have been assigned to only a few. A low-resolution structure of the 26S proteasome has been obtained by electron microscopy, but the precise arrangement of subunits in the 19S complex is unclear.
Collapse
Affiliation(s)
- D Voges
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
20
|
BOUNPHENG MANGKEYA, DIMAS JOSEPHJ, DODDS SHERRYG, CHRISTY BARBARAA. Degradation of Id proteins by the ubiquitin‐proteasome pathway. FASEB J 1999. [DOI: 10.1096/fasebj.13.15.2257] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- MANGKEY A. BOUNPHENG
- Department of Cellular and Structural BiologyUniversity of Texas Health Science CenterSan AntonioTexas 78245‐3207USA
| | - JOSEPH J. DIMAS
- Department of Molecular Medicine/Institute of BiotechnologyUniversity of Texas Health Science CenterSan AntonioTexas 78245‐3207USA
| | - SHERRY G. DODDS
- Department of Molecular Medicine/Institute of BiotechnologyUniversity of Texas Health Science CenterSan AntonioTexas 78245‐3207USA
| | - BARBARA A. CHRISTY
- Department of Cellular and Structural BiologyUniversity of Texas Health Science CenterSan AntonioTexas 78245‐3207USA
- Department of Molecular Medicine/Institute of BiotechnologyUniversity of Texas Health Science CenterSan AntonioTexas 78245‐3207USA
| |
Collapse
|
21
|
Thomas MK, Yao KM, Tenser MS, Wong GG, Habener JF. Bridge-1, a novel PDZ-domain coactivator of E2A-mediated regulation of insulin gene transcription. Mol Cell Biol 1999; 19:8492-504. [PMID: 10567574 PMCID: PMC84960 DOI: 10.1128/mcb.19.12.8492] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/1999] [Accepted: 09/03/1999] [Indexed: 11/20/2022] Open
Abstract
Proteins in the E2A family of basic helix-loop-helix transcription factors are important in a wide spectrum of physiologic processes as diverse as neurogenesis, myogenesis, lymphopoeisis, and sex determination. In the pancreatic beta cell, E2A proteins, in combination with tissue-specific transcription factors, regulate expression of the insulin gene and other genes critical for beta-cell function. By yeast two-hybrid screening of a cDNA library prepared from rat insulinoma (INS-1) cells, we identified a novel protein, Bridge-1, that interacts with E2A proteins and functions as a coactivator of gene transcription mediated by E12 and E47. Bridge-1 contains a PDZ-like domain, a domain known to be involved in protein-protein interactions. Bridge-1 is highly expressed in pancreatic islets and islet cell lines and the expression pattern is primarily nuclear. The interaction of Bridge-1 with E2A proteins is further demonstrated by coimmunoprecipitation of in vitro-translated Bridge-1 with E12 or E47 and by mammalian two-hybrid studies. The PDZ-like domain of Bridge-1 is required for interaction with the carboxy terminus of E12. In both yeast and mammalian two-hybrid interaction studies, Bridge-1 mutants lacking an intact PDZ-like domain interact poorly with E12. An E12 mutant (E12DeltaC) lacking the carboxy-terminal nine amino acids shows impaired interaction with Bridge-1. Bridge-1 has direct transactivational activity, since a Gal4 DNA-binding domain-Bridge-1 fusion protein transactivates a Gal4CAT reporter. Bridge-1 also functions as a coactivator by enhancing E12- or E47-mediated activation of a rat insulin I gene minienhancer promoter-reporter construct in transient-transfection experiments. Substitution of the mutant E12DeltaC for E12 reduces the coactivation of the rat insulin I minienhancer by Bridge-1. Inactivation of endogenous Bridge-1 in insulinoma (INS-1) cells by expression of a Bridge-1 antisense RNA diminishes rat insulin I promoter activity. Bridge-1, by utilizing its PDZ-like domain to interact with E12, may provide a new mechanism for the coactivation and regulation of transcription of the insulin gene.
Collapse
Affiliation(s)
- M K Thomas
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard Medical School, and Howard Hughes Medical Institute, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
22
|
Yin XY, Gupta K, Han WP, Levitan ES, Prochownik EV. Mmip-2, a novel RING finger protein that interacts with mad members of the Myc oncoprotein network. Oncogene 1999; 18:6621-34. [PMID: 10597267 DOI: 10.1038/sj.onc.1203097] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mad proteins are basic-helix-loop-helix-leucine zipper (bHLH-ZIP)-containing members of the myc oncoprotein network. They interact with the bHLH-ZIP protein max, compete for the same DNA binding sites as myc-max heterodimers and down-regulate myc-responsive genes. Using the bHLH-ZIP domain of mad1 as a yeast two-hybrid 'bait', we identified Mmip-2, a novel RING finger protein that interacts with all mad members, but weakly or not at all with c-myc, max or unrelated bHLH or bZIP proteins. The mad1-Mmip-2 interaction is mediated by the ZIP domain in the former protein and by at least two regions in the latter which do not include the RING finger. Mmip-2 can disrupt max-mad DNA binding and can reverse the suppressive effects of mad proteins on c-myc-responsive target genes and on c-myc + ras-mediated focus formation in fibroblasts. Tagging with spectral variants of green fluorescent protein showed that Mmip-2 and mad proteins reside in separate cytoplasmic and nuclear compartments, respectively. When co-expressed, however, the proteins interact and translocate to the cellular compartment occupied by the more abundant protein. These observations suggest a novel way by which Mmip-2 can modulate the transcriptional activity of myc oncoproteins.
Collapse
Affiliation(s)
- X Y Yin
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Cancer Institute, PA 15213, USA
| | | | | | | | | |
Collapse
|
23
|
Wice BM, Gordon JI. Forced expression of Id-1 in the adult mouse small intestinal epithelium is associated with development of adenomas. J Biol Chem 1998; 273:25310-9. [PMID: 9737997 DOI: 10.1074/jbc.273.39.25310] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ids are dominant-negative helix-loop-helix (HLH) proteins that play overlapping yet distinct roles in antagonizing basic HLH transcription factors. Although Ids affect myogenesis, neurogenesis, and B-cell development, little is known about their in vivo functions in epithelia. We have examined the effects of forced expression of Id-1 in the small intestinal epithelium of adult chimeric mice. 129/Sv embryonic stem cells, transfected with DNA containing Id-1 under the control of transcriptional regulatory elements that function in all intestinal epithelial cell lineages, were introduced into C57Bl/6 (B6) blastocysts heterozygous for the ROSA26 marker. The B6 ROSA26/+ intestinal epithelium of the resulting adult chimeras produces Escherichia coli beta-galactosidase, allowing identification of this internal control cell population. Chimeras produced from nontransfected embryonic stem cells served as additional controls. Immunohistochemical studies of the control chimeras indicated that the small intestinal epithelium supports a complex pattern of endogenous Id expression. Id-1 is restricted to the cytoplasm; levels do not decrease as descendants of multipotent intestinal stem cells differentiate. Id-2 and Id-3 are only detectable in nuclei; levels increase markedly as epithelial cells differentiate. Forced expression of Id-1 in the 129/Sv epithelium results in a decline in Id-2 and Id-3 to below the limits of immunodetection. A subset of chimeric-transgenic mice lacked growth factor- and defensin-producing Paneth cells in their 129/Sv epithelium and also developed intestinal adenomas. These changes were not present in normal control chimeras. Adenomas were composed of proliferating beta-Gal-positive and -negative epithelial cells, suggesting that they arose through cooperative interactions between 129/Sv(Id-1) and B6 ROSA26/+ cells. These chimeras provide a model for studying how perturbations in Id expression affect tumorigenesis.
Collapse
Affiliation(s)
- B M Wice
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
24
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
25
|
Aravind L, Ponting CP. Homologues of 26S proteasome subunits are regulators of transcription and translation. Protein Sci 1998; 7:1250-4. [PMID: 9605331 PMCID: PMC2144014 DOI: 10.1002/pro.5560070521] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Single copies of an alpha-helical-rich motif are demonstrated to be present within subunits of the large multiprotein 26S proteasome and eukaryotic initiation factor-3 (eIF3) complexes, and within proteins involved in transcriptional regulation. In addition, p40 and p47 subunits of eIF3 are shown to be homologues of the proteasome subunit Mov34, and transcriptional regulators JAB1/pad1. Finally, the proteasome subunit S5a and the p44 subunit of the basal transcription factor IIH (TFIIH) are identified as homologues. The presence of homologous, and sometimes identical, proteins in contrasting functional contexts suggests that the large multisubunit complexes of the 26S proteasome, eIF3 and TFIIH perform overlapping cellular roles.
Collapse
Affiliation(s)
- L Aravind
- Department of Biology-BSBW, Texas A&M University, College Station 77843, USA
| | | |
Collapse
|
26
|
Mackrill JJ. Possible regulation of the skeletal muscle ryanodine receptor by a polyubiquitin binding subunit of the 26S proteasome. Biochem Biophys Res Commun 1998; 245:428-9. [PMID: 9571168 DOI: 10.1006/bbrc.1998.8450] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteolytic digestion of ryanodine receptor (RyR) purified from skeletal muscle generated 25 short peptides. The amino acid sequences of two, 'KC5' and 'KC7', were absent from the RyR primary structure deduced by cDNA cloning. The sequence of KC7 corresponded to the N-terminus of the 12 kDa FK506-binding protein, which associates with the RyR and modulates its Ca2+ release channel (CRC) function. The sequence of KC5 was not similar to any proteins in the databases searched at that time. In the present study, the sequence of KC5 was compared to proteins in the current Swissprot database release and corresponds most closely to S5a, a proteasome subunit. Since S5a targets the 26S proteasome to polyubiquitinated proteins, and inositol 1,4,5-trisphosphate receptors, a related class of CRC, are down-regulated by a polyubiquitin-dependent mechanism in hormone stimulated cells, the abundance of RyRs may be controlled by association with this regulatory subunit.
Collapse
Affiliation(s)
- J J Mackrill
- Department of Biochemistry, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
27
|
Young P, Deveraux Q, Beal RE, Pickart CM, Rechsteiner M. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J Biol Chem 1998; 273:5461-7. [PMID: 9488668 DOI: 10.1074/jbc.273.10.5461] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitylated proteins are degraded by the 26 S protease, an enzyme complex that contains 30 or more unique subunits. One of these proteins, subunit 5a (S5a), has been shown to bind ubiquitin-lysozyme conjugates and free polyubiquitin chains. Using deletional analysis, we have identified in the carboxyl-terminal half of human S5a, two independent polyubiquitin binding sites whose sequences are highly conserved among higher eukaryotic S5a homologs. The sites are approximately 30-amino acids long and are separated by 50 intervening residues. When expressed as small fragments or when present in full-length S5a molecules, the sites differ at least 10-fold in their apparent affinity for polyubiquitin chains. Each binding site contains 5 hydrophobic residues that form an alternating pattern of large and small side chains, e.g. Leu-Ala-Leu-Ala-Leu, and this pattern is essential for binding ubiquitin chains. Based on the importance of the alternating hydrophobic residues in the binding sites and previous studies showing that a hydrophobic patch on the surface of ubiquitin is essential for proteolytic targeting, we propose a model for molecular recognition of polyubiquitin chains by S5a.
Collapse
Affiliation(s)
- P Young
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- W Baumeister
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|
29
|
Fu H, Sadis S, Rubin DM, Glickman M, van Nocker S, Finley D, Vierstra RD. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J Biol Chem 1998; 273:1970-81. [PMID: 9442033 DOI: 10.1074/jbc.273.4.1970] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 26 S proteasome is a multisubunit proteolytic complex responsible for degrading eukaryotic proteins targeted by ubiquitin modification. Substrate recognition by the complex is presumed to be mediated by one or more common receptor(s) with affinity for multiubiquitin chains, especially those internally linked through lysine 48. We have identified previously a candidate for one such receptor from diverse species, designated here as Mcb1 for Multiubiquitin chain-binding protein, based on its ability to bind Lys48-linked multiubiquitin chains and its location within the 26 S proteasome complex. Even though Mcb1 is likely not the only receptor in yeast, it is necessary for conferring resistance to amino acid analogs and for degrading a subset of ubiquitin pathway substrates such as ubiquitin-Pro-beta-galactosidase (Ub-Pro-beta-gal) (van Nocker, S., Sadis, S., Rubin, D.M., Glickman, M., Fu, H., Coux, O., Wefes, I., Finley, D., and Vierstra, R. D. (1996) Mol. Cell. Biol. 16, 6020-28). To further define the role of Mcb1 in substrate recognition by the 26 S proteasome, a structure/function analysis of various deletion and site-directed mutants of yeast and Arabidopsis Mcb1 was performed. From these studies, we identified a single stretch of conserved hydrophobic amino acids (LAM/LALRL/V (ScMcb1 228-234 and At-Mcb1 226-232)) within the C-terminal half of each polypeptide that is necessary for interaction with Lys48-linked multiubiquitin chains. Unexpectedly, this domain was not essential for either Ub-Pro-beta-gal degradation or conferring resistance to amino acid analogs. The domain responsible for these two activities was mapped to a conserved region near the N terminus. Yeast and Arabidopsis Mcb1 derivatives containing an intact multiubiquitin-binding site but missing the N-terminal region failed to promote Ub-Pro-beta-gal degradation and even accentuated the sensitivity of the yeast delta mcb1 strain to amino acid analogs. This hypersensitivity was not caused by a gross defect in 26 S proteasome assembly as mutants missing either the N-terminal domain or the multiubiquitin chain-binding site could still associate with 26 S proteasome and generate a complex indistinguishable in size from that present in wild-type yeast. Together, these data indicate that residues near the N terminus, and not the multiubiquitin chain-binding site, are most critical for Mcb1 function in vivo.
Collapse
Affiliation(s)
- H Fu
- Cellular and Molecular Biology Program, University of Wisconsin-Madison 53706, USA
| | | | | | | | | | | | | |
Collapse
|