1
|
Sinnett-Smith J, Torres-Marquez ME, Chang JK, Shimizu Y, Hao F, Martin MG, Rozengurt E. Statins inhibit protein kinase D (PKD) activation in intestinal cells and prevent PKD1-induced growth of murine enteroids. Am J Physiol Cell Physiol 2023; 324:C807-C820. [PMID: 36779664 PMCID: PMC10042602 DOI: 10.1152/ajpcell.00286.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/14/2023]
Abstract
We examined the impact of statins on protein kinase D (PKD) activation by G protein-coupled receptor (GPCR) agonists. Treatment of intestinal IEC-18 cells with cerivastatin inhibited PKD autophosphorylation at Ser916 induced by angiotensin II (ANG II) or vasopressin in a dose-dependent manner with half-maximal inhibition at 0.2 µM. Cerivastatin treatment inhibited PKD activation stimulated by these agonists for different times (5-60 min) and blunted HDAC5 phosphorylation, a substrate of PKD. Other lipophilic statins, including simvastatin, atorvastatin, and fluvastatin also prevented PKD activation in a dose-dependent manner. Using IEC-18 cell lines expressing PKD1 tagged with EGFP (enhanced green fluorescent protein), cerivastatin or simvastatin blocked GPCR-mediated PKD1-EGFP translocation to the plasma membrane and its subsequent nuclear accumulation. Similar results were obtained in IEC-18 cells expressing PKD3-EGFP. Mechanistically, statins inhibited agonist-dependent PKD activation rather than acting directly on PKD catalytic activity since exposure to cerivastatin or simvastatin did not impair PKD autophosphorylation or PKD1-EGFP membrane translocation in response to phorbol dibutyrate, which bypasses GPCRs and directly stimulates PKC and PKD. Furthermore, cerivastatin did not inhibit recombinant PKD activity determined via an in vitro kinase assay. Using enteroids generated from intestinal crypt-derived epithelial cells from PKD1 transgenic mice as a model of intestinal regeneration, we show that statins oppose PKD1-mediated increase in enteroid area, complexity (number of crypt-like buds), and DNA synthesis. Our results revealed a previously unappreciated inhibitory effect of statins on receptor-mediated PKD activation and in opposing the growth-promoting effects of PKD1 on intestinal epithelial cells.
Collapse
Affiliation(s)
- James Sinnett-Smith
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
- VA Greater Los Angeles Health Care System, Los Angeles, California, United States
| | - M Eugenia Torres-Marquez
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Jen-Kuan Chang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Yuki Shimizu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Fang Hao
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Martin G Martin
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
- VA Greater Los Angeles Health Care System, Los Angeles, California, United States
| |
Collapse
|
2
|
Gilles P, Voets L, Van Lint J, De Borggraeve WM. Developments in the Discovery and Design of Protein Kinase D Inhibitors. ChemMedChem 2021; 16:2158-2171. [PMID: 33829655 DOI: 10.1002/cmdc.202100110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Indexed: 01/16/2023]
Abstract
Protein kinase D (PKD) is a serine/threonine kinase family belonging to the Ca2+/calmodulin-dependent protein kinase group. Since its discovery two decades ago, many efforts have been put in elucidating PKD's structure, cellular role and functioning. The PKD family consists of three highly homologous isoforms: PKD1, PKD2 and PKD3. Accumulating cell-signaling research has evidenced that dysregulated PKD plays a crucial role in the pathogenesis of cardiac hypertrophy and several cancer types. These findings led to a broad interest in the design of small-molecule protein kinase D inhibitors. In this review, we present an extensive overview on the past and recent advances in the discovery and development of PKD inhibitors. The focus extends from broad-spectrum kinase inhibitors used in PKD signaling experiments to intentionally developed, bioactive PKD inhibitors. Finally, attention is paid to PKD inhibitors that have been identified as an off-target through large kinome screening panels.
Collapse
Affiliation(s)
- Philippe Gilles
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F - Box 2404, 3001, Leuven, Belgium
| | - Lauren Voets
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F - Box 2404, 3001, Leuven, Belgium
| | - Johan Van Lint
- Department of Cellular and Molecular Medicine & Leuven Cancer Institute, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven O&N I, Herestraat 49 - Box 901, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F - Box 2404, 3001, Leuven, Belgium
| |
Collapse
|
3
|
Tyagi K, Roy A. Evaluating the current status of protein kinase C (PKC)-protein kinase D (PKD) signalling axis as a novel therapeutic target in ovarian cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188496. [PMID: 33383102 DOI: 10.1016/j.bbcan.2020.188496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Ovarian cancer, especially high grade serous ovarian cancer is one of the most lethal gynaecological malignancies with high relapse rate and patient death. Notwithstanding development of several targeted treatment and immunotherapeutic approaches, researchers fail to turn ovarian cancer into a manageable disease. Protein kinase C (PKC) and protein kinase D (PKD) are families of evolutionarily conserved serine/threonine kinases that can be activated by a plethora of extracellular stimuli such as hormones, growth factors and G-protein coupled receptor agonists. Recent literature suggests that a signalling cascade initiated by these two protein kinases regulates a battery of cellular and physiological processes involved in tumorigenesis including cell proliferation, migration, invasion and angiogenesis. In an urgent need to discover novel therapeutic interventions against a deadly pathology like ovarian cancer, we have discussed the status quo of PKC/PKD signalling axis in context of this disease. Additionally, apart from discussing the structural properties and activation mechanisms of PKC/PKD, we have provided a comprehensive review of the recent reports on tumor promoting functions of PKC isoforms and discussed the potential of PKC/PKD signalling axis as a novel target in this lethal pathology. Furthermore, in this review, we have discussed the significance of several recent clinical trials and development of small molecule inhibitors that target PKC/PKD signalling axis in ovarian cancer.
Collapse
Affiliation(s)
- Komal Tyagi
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
4
|
Chen S, Jiang Q, Huang P, Hu C, Shen H, Schachner M, Zhao W. The L1 cell adhesion molecule affects protein kinase D1 activity in the cerebral cortex in a mouse model of Alzheimer's disease. Brain Res Bull 2020; 162:141-150. [PMID: 32540419 DOI: 10.1016/j.brainresbull.2020.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by deposition of β-amyloid protein (Aβ), neurofibrillary tangles and cognitive deficits resulting from neuronal cell death. In search for the molecular underpinnings of the disease, we were interested in the relationship between Aβ, L1 cell adhesion molecule and protein kinase D1 (PKD1), which are not only implicated in neural development and functional maintenance in the adult, but are also neuroprotective under pathological conditions. Based on our observations that L1 and phosphorylated, i.e. activated, protein kinase PKD1 (pPKD1) co-localize in cultured neurons, we investigated the functional relationship between L1 and pPKD1 in the frontal lobe of an AD human cortical tissue microarray, and found increased and positively correlating levels of both molecules when compared to a non-affected human brain. Also in the APPSWE mouse model of AD, L1 and pPKD1 levels were increased in the frontal lobe. To investigate whether L1 influences PKD1-based functions in AD, cultured cortical neurons were stressed with either H2O2 or oligomeric Aβ1-42, in the presence or absence of recombinant L1 extracellular domain, and PKD1 phosphorylation was measured. As indicated by the cell viability assay, L1 maintained neuronal survival under oxidative stress and under application of oligomeric Aβ1-42, when PKD1 activity was inhibited, suggesting that L1 ameliorates some aspects of Aβ1-42 pathology in parallel with reducing PKD1 function.
Collapse
Affiliation(s)
- Shuangxi Chen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China; The First Affiliated Hospital of University of South China, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Qiong Jiang
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Peizhi Huang
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Chengliang Hu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Huifan Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China; Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China.
| |
Collapse
|
5
|
Reinhardt R, Truebestein L, Schmidt HA, Leonard TA. It Takes Two to Tango: Activation of Protein Kinase D by Dimerization. Bioessays 2020; 42:e1900222. [PMID: 31997382 DOI: 10.1002/bies.201900222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/10/2020] [Indexed: 12/23/2022]
Abstract
The recent discovery and structure determination of a novel ubiquitin-like dimerization domain in protein kinase D (PKD) has significant implications for its activation. PKD is a serine/threonine kinase activated by the lipid second messenger diacylglycerol (DAG). It is an essential and highly conserved protein that is implicated in plasma membrane directed trafficking processes from the trans-Golgi network. However, many open questions surround its mechanism of activation, its localization, and its role in the biogenesis of cargo transport carriers. In reviewing this field, the focus is primarily on the mechanisms that control the activation of PKD at precise locations in the cell. In light of the new structural findings, the understanding of the mechanisms underlying PKD activation is critically evaluated, with particular emphasis on the role of dimerization in PKD autophosphorylation, and the provenance and recognition of the DAG that activates PKD.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter, 1030, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1030, Vienna, Austria
| | - Linda Truebestein
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter, 1030, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1030, Vienna, Austria
| | - Heiko A Schmidt
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna Biocenter, 1030, Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter, 1030, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1030, Vienna, Austria
| |
Collapse
|
6
|
Thomas W, Dooley R, Quinn S, Robles MY, Harvey BJ. Protein kinase D2 regulates epithelial sodium channel activity and aldosterone non-genomic responses in renal cortical collecting duct cells. Steroids 2020; 155:108553. [PMID: 31836481 DOI: 10.1016/j.steroids.2019.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Protein kinase D2 (PKD2) is a serine/threonine protein kinase which plays an important role in vesicle fission at the trans-Golgi network (TGN) to coordinate subcellular trafficking with gene expression. We found that in the rat kidney, PKD2 is specifically expressed in collecting duct principal cells predominantly at the apical membrane and with lower basal expression in cytosolic compartments. When rats were maintained on a Na+ depleted diet (<0.87 mmol Na+/kg) to increase plasma aldosterone levels, PKD2 became internalized to a cytoplasmic compartment. Treatment of murine M1 cortical collecting duct (M1-CCD) cells with aldosterone (10 nM) promoted PKD2 co-localization with the trans-Golgi network within 30 min. PKD2 underwent autophosphorylation at Ser876 within 10 min of aldosterone treatment and remained phosphorylated (active) for at least 24 h. A stable PKD2 shRNA knock-down (PKD2 KD) M1-CCD cell line was developed to study the role of PKD2 in epithelial Na+ channel (ENaC) trafficking and transepithelial Na+ transport (SCC) in epithelial monolayers grown in Ussing chambers. The PKD2 KD cells developed transepithelial resistance with kinetics equivalent to wild-type cells, however the transepithelial voltage and Na+ current were significantly elevated in PKD2 knock-down CCD epithelia. The higher basal SCC was due to increased ENaC activity. Aldosterone treatment for 24 h resulted in a decline in ENaC activity in the PKD2 KD cells as opposed to the increase observed in the wild-type cells. The paradoxical inhibition of SCC by aldosterone in PKD2 KD epithelium was attributed to a reduction in ENaC current and lower membrane abundance of ENaC, demonstrating that PKD2 plays a critical tonic role in ENaC trafficking and channel subunit stability. The rapid activation of PKD2 by aldosterone is synergistic with the transcriptional activity of MR and contributes to increased ENaC activity.
Collapse
Affiliation(s)
- Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; Perdana University - Royal College of Surgeons in Ireland School of Medicine, Block D MAEPS, Serdang 43400, Selangor, Malaysia
| | - Ruth Dooley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Sinead Quinn
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Manuel Yusef Robles
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; Centro di Estudios Cientificos CECs, Valdivia, Chile.
| |
Collapse
|
7
|
Merzoug-Larabi M, Youssef I, Bui AT, Legay C, Loiodice S, Lognon S, Babajko S, Ricort JM. Protein Kinase D1 (PKD1) Is a New Functional Non-Genomic Target of Bisphenol A in Breast Cancer Cells. Front Pharmacol 2020; 10:1683. [PMID: 32082170 PMCID: PMC7006487 DOI: 10.3389/fphar.2019.01683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to bisphenol A (BPA), one of the most widespread endocrine disruptors present in our environment, has been associated with the recent increased prevalence and severity of several diseases such as diabetes, obesity, autism, reproductive and neurological defects, oral diseases, and cancers such as breast tumors. BPA is suspected to act through genomic and non-genomic pathways. However, its precise molecular mechanisms are still largely unknown. Our goal was to identify and characterize a new molecular target of BPA in breast cancer cells in order to better understand how this compound may affect breast tumor growth and development. By using in vitro (MCF-7, T47D, Hs578t, and MDA-MB231 cell lines) and in vivo models, we demonstrated that PKD1 is a functional non-genomic target of BPA. PKD1 specifically mediates BPA-induced cell proliferation, clonogenicity, and anchorage-independent growth of breast tumor cells. Additionally, low-doses of BPA (≤10- 8 M) induced the phosphorylation of PKD1, a key signature of its activation state. Moreover, PKD1 overexpression increased the growth of BPA-exposed breast tumor xenografts in vivo in athymic female Swiss nude (Foxn1nu/nu ) mice. These findings further our understanding of the molecular mechanisms of BPA. By defining PKD1 as a functional target of BPA in breast cancer cell proliferation and tumor development, they provide new insights into the pathogenesis related to the exposure to BPA and other endocrine disruptors acting similarly.
Collapse
Affiliation(s)
- Messaouda Merzoug-Larabi
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Ai Thu Bui
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Christine Legay
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Sophia Loiodice
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Sophie Lognon
- École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| |
Collapse
|
8
|
Zhang Y, Wu L, Wan X, Wang H, Li X, Pan Z, Sun S. Loss of PKC mu function induces cytoskeletal defects in mouse oocyte meiosis. J Cell Physiol 2019; 234:18513-18523. [DOI: 10.1002/jcp.28487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Lan‐Lan Wu
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Hong‐Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiao‐Han Li
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Zhen‐Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Shao‐Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| |
Collapse
|
9
|
Zhang L, Li Z, Liu Y, Xu S, Tandon M, Appelboom B, LaValle CR, Chiosea SI, Wang L, Sen M, Lui VWY, Grandis JR, Wang QJ. Analysis of oncogenic activities of protein kinase D1 in head and neck squamous cell carcinoma. BMC Cancer 2018; 18:1107. [PMID: 30419840 PMCID: PMC6233608 DOI: 10.1186/s12885-018-4965-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer death in the US. The protein kinase D (PKD) family has emerged as a promising target for cancer therapy with PKD1 being most intensively studied; however, its role in HNSCC has not been investigated. METHODS The expression of PKD was evaluated in human HNSCC by quantitative RT-PCR, Western blot and immunohistochemistry. Cell proliferation, wound healing, and matrigel invasion assays were performed upon siRNA-mediated knockdown of PKD1 in HNSCC cells, and subcutaneous xenograft mouse model was established by implantation of the stable doxycycline (Dox)-inducible PKD1 expression cell lines for analysis of tumorigenic activity in vivo. RESULTS PKD1 was frequently downregulated in HNSCC cell lines at both transcript and protein levels. In human HNSCC tissues, PKD1 was significantly down-regulated in localized tumors and metastases, and in patient-paired tumor tissues as compared to their normal counterparts, which was in part due to epigenetic modification of the PRKD1 gene. The function of PKD1 in HNSCC was analyzed using stable doxycycline-inducible cell lines that express native or constitutive-active PKD1. Upon induction, the rate of proliferation, survival, migration and invasion of HNSCC cells did not differ significantly between the control and PKD1 overexpressing cells in the basal state, and depletion of endogenous PKD1 did not impact the proliferation of HNSCC cells. However, the median growth rate of the subcutaneous HNSCC tumor xenografts over time was elevated with PKD1 induction, and the final tumor weight was significantly increased in Dox-induced vs. the non-induced tumors. Moreover, induced expression of PKD1 promoted bombesin-induced cell proliferation of HNSCC and resulted in sustained ERK1/2 activation in response to gastrin-releasing peptide or bombesin stimulation, suggesting that PKD1 potentiates GRP/bombesin-induced mitogenic response through the activation of ERK1/2 in HSNCC cells. CONCLUSIONS Our study has identified PKD1 as a frequently downregulated gene in HNSCC, and functionally, under certain cellular context, may play a role in GRP/bombesin-induced oncogenesis in HNSCC.
Collapse
Affiliation(s)
- Liyong Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA 15261 USA
| | - Zhihong Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA 15261 USA
- Department of Biochemistry, China Three Gorges University, Yichang, Hubei Province People’s Republic of China 443002
| | - Yehai Liu
- Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province People’s Republic of China 230022
| | - Shuping Xu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA 15261 USA
| | - Manuj Tandon
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA 15261 USA
| | - Brittany Appelboom
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA 15261 USA
| | - Courtney R. LaValle
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA 15261 USA
| | - Simion I. Chiosea
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Lin Wang
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Vivian W. Y. Lui
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Jennifer R. Grandis
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15261 USA
- Present address: Otolaryngology/Head and Neck Surgery, University of California, San Francisco, CA 94115 USA
| | - Q. Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA 15261 USA
| |
Collapse
|
10
|
Roy A, Ye J, Deng F, Wang QJ. Protein kinase D signaling in cancer: A friend or foe? Biochim Biophys Acta Rev Cancer 2017; 1868:283-294. [PMID: 28577984 DOI: 10.1016/j.bbcan.2017.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/18/2022]
Abstract
Protein kinase D is a family of evolutionarily conserved serine/threonine kinases that belongs to the Ca++/Calmodulin-dependent kinase superfamily. Signal transduction pathways mediated by PKD can be triggered by a variety of stimuli including G protein-coupled receptor agonists, growth factors, hormones, and cellular stresses. The regulatory mechanisms and physiological roles of PKD have been well documented including cell proliferation, survival, migration, angiogenesis, regulation of gene expression, and protein/membrane trafficking. However, its precise roles in disease progression, especially in cancer, remain elusive. A plethora of studies documented the cell- and tissue-specific expressions and functions of PKD in various cancer-associated biological processes, while the causes of the differential effects of PKD have not been thoroughly investigated. In this review, we have discussed the structural-functional properties, activation mechanisms, signaling pathways and physiological functions of PKD in the context of human cancer. Additionally, we have provided a comprehensive review of the reported tumor promoting or tumor suppressive functions of PKD in several major cancer types and discussed the discrepancies that have been raised on PKD as a major regulator of malignant transformation.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jing Ye
- Department of Anesthesiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
11
|
Chang JK, Ni Y, Han L, Sinnett-Smith J, Jacamo R, Rey O, Young SH, Rozengurt E. Protein kinase D1 (PKD1) phosphorylation on Ser 203 by type I p21-activated kinase (PAK) regulates PKD1 localization. J Biol Chem 2017; 292:9523-9539. [PMID: 28408623 DOI: 10.1074/jbc.m116.771394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Although PKC-mediated phosphorylation of protein kinase D1 (PKD1) has been extensively characterized, little is known about PKD1 regulation by other upstream kinases. Here we report that stimulation of epithelial or fibroblastic cells with G protein-coupled receptor agonists, including angiotensin II or bombesin, induced rapid and persistent PKD1 phosphorylation at Ser203, a highly conserved residue located within the PKD1 N-terminal domain. Exposure to PKD or PKC family inhibitors did not prevent PKD1 phosphorylation at Ser203, indicating that it is not mediated by autophosphorylation. In contrast, several lines of evidence indicated that the phosphorylation of PKD1 at Ser203 is mediated by kinases of the class I PAK subfamily, specifically 1) exposing cells to four structurally unrelated PAK inhibitors (PF-3758309, FRAX486, FRAX597, and IPA-3) that act via different mechanisms abrogated PKD1 phosphorylation at Ser203, 2) siRNA-mediated knockdown of PAK1 and PAK2 in IEC-18 and Swiss 3T3 cells blunted PKD1 phosphorylation at Ser203, 3) phosphorylation of Ser203 markedly increased in vitro when recombinant PKD1 was incubated with either PAK1 or PAK2 in the presence of ATP. PAK inhibitors did not interfere with G protein-coupled receptor activation-induced rapid translocation of PKD1 to the plasma membrane but strikingly prevented the dissociation of PKD1 from the plasma membrane and blunted the phosphorylation of nuclear targets, including class IIa histone deacetylases. We conclude that PAK-mediated phosphorylation of PKD1 at Ser203 triggers its membrane dissociation and subsequent entry into the nucleus, thereby regulating the phosphorylation of PKD1 nuclear targets, including class IIa histone deacetylases.
Collapse
Affiliation(s)
- Jen-Kuan Chang
- From the Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine
| | - Yang Ni
- From the Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine
| | - Liang Han
- From the Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine
| | - James Sinnett-Smith
- From the Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine.,CURE: Digestive Diseases Research Center, and.,Veterans Affairs Greater Los Angeles Health Care System and
| | - Rodrigo Jacamo
- the Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4017, and
| | - Osvaldo Rey
- the Institute of Immunology, Genetics, and Metabolism, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad de Buenos Aires, Buenos Aires C1120AAR, Argentina
| | - Steven H Young
- From the Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine.,CURE: Digestive Diseases Research Center, and.,Veterans Affairs Greater Los Angeles Health Care System and
| | - Enrique Rozengurt
- From the Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, .,CURE: Digestive Diseases Research Center, and.,Veterans Affairs Greater Los Angeles Health Care System and.,the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1786
| |
Collapse
|
12
|
Chen SX, Hu CL, Liao YH, Zhao WJ. L1 modulates PKD1 phosphorylation in cerebellar granule neurons. Neurosci Lett 2015; 584:331-6. [PMID: 25445362 DOI: 10.1016/j.neulet.2014.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/16/2014] [Accepted: 11/10/2014] [Indexed: 02/05/2023]
Abstract
The neural cell adhesion molecule L1 (L1CAM) is crucial for the development of the nervous system, with an essential role in regulating multiple cellular activities. Protein kinase D1 (PKD1) serves as a key kinase given its diverse array of functions within the cell. Here, we investigated various aspects of the functional relationship between L1 and phosphorylated PKD1 (pPKD1) in cerebellar granule neurons. To study the relationship between L1 and PKD1 phosphorylation, human cerebellar tissue microarrays were subject to immunofluorescence staining. We observed a positive correlation between L1 protein levels and PKD1 phosphorylation. In addition, L1 also co-localized with pPKD1. To analyze the regulatory role of L1 on PKD1 phosphorylation, primary mouse cerebellar granule neurons were treated with various concentrations of rL1 for 48 h. Using Western blot, we revealed that L1 significantly increased PKD1 phosphorylation compared with vehicle control, with the maximal effect observed at 5 nM. ERK1/2 phosphorylation was significantly increased by 2.5 nM and 10nM L1, with no apparent change in SRC phosphorylation. However, SRC expression was markedly reduced by 10nM rL1. AKT1 expression and phosphorylation levels were significantly increased by rL1, with the maximal effect observed at 2.5 and 5 nM, respectively. Our combined data revealed a positive relationship between L1 and pPKD1 in both cultured cerebellar neurons and human cerebellar tissue, suggesting that L1 functions in the modulation of PKD1 phosphorylation.
Collapse
Affiliation(s)
- Shuang-xi Chen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Rd, Jinping District, Shantou, Guangdong Province 515041, PR China
| | - Cheng-liang Hu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Rd, Jinping District, Shantou, Guangdong Province 515041, PR China
| | - Yong-hong Liao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Rd, Jinping District, Shantou, Guangdong Province 515041, PR China
| | - Wei-jiang Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Rd, Jinping District, Shantou, Guangdong Province 515041, PR China.
| |
Collapse
|
13
|
Olala LO, Shapiro BA, Merchen TC, Wynn JJ, Bollag WB. Protein kinase C and Src family kinases mediate angiotensin II-induced protein kinase D activation and acute aldosterone production. Mol Cell Endocrinol 2014; 392:173-81. [PMID: 24859649 PMCID: PMC4120960 DOI: 10.1016/j.mce.2014.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/26/2014] [Accepted: 05/14/2014] [Indexed: 12/26/2022]
Abstract
Recent evidence has shown a role for the serine/threonine protein kinase D (PKD) in the regulation of acute aldosterone secretion upon angiotensin II (AngII) stimulation. However, the mechanism by which AngII activates PKD remains unclear. In this study, using both pharmacological and molecular approaches, we demonstrate that AngII-induced PKD activation is mediated by protein kinase C (PKC) and Src family kinases in primary bovine adrenal glomerulosa cells and leads to increased aldosterone production. The pan PKC inhibitor Ro 31-8220 and the Src family kinase inhibitors PP2 and Src-1 inhibited both PKD activation and acute aldosterone production. Additionally, like the dominant-negative serine-738/742-to-alanine PKD mutant that cannot be phosphorylated by PKC, the dominant-negative tyrosine-463-to-phenylalanine PKD mutant, which is not phosphorylatable by the Src/Abl pathway, inhibited acute AngII-induced aldosterone production. Taken together, our results demonstrate that AngII activates PKD via a mechanism involving Src family kinases and PKC, to underlie increased aldosterone production.
Collapse
Affiliation(s)
- Lawrence O Olala
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Brian A Shapiro
- Institute of Molecular Medicine and Genetics, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Todd C Merchen
- Department of Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - James J Wynn
- Department of Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States; Departments of Cell Biology and Anatomy, Medicine and Orthopaedic Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States.
| |
Collapse
|
14
|
Olala LO, Choudhary V, Johnson MH, Bollag WB. Angiotensin II-induced protein kinase D activates the ATF/CREB family of transcription factors and promotes StAR mRNA expression. Endocrinology 2014; 155:2524-33. [PMID: 24708239 PMCID: PMC4060184 DOI: 10.1210/en.2013-1485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aldosterone synthesis is initiated upon the transport of cholesterol from the outer to the inner mitochondrial membrane, where the cholesterol is hydrolyzed to pregnenolone. This process is the rate-limiting step in acute aldosterone production and is mediated by the steroidogenic acute regulatory (StAR) protein. We have previously shown that angiotensin II (AngII) activation of the serine/threonine protein kinase D (PKD) promotes acute aldosterone production in bovine adrenal glomerulosa cells, but the mechanism remains unclear. Thus, the purpose of this study was to determine the downstream signaling effectors of AngII-stimulated PKD activity. Our results demonstrate that overexpression of the constitutively active serine-to-glutamate PKD mutant enhances, whereas the dominant-negative serine-to-alanine PKD mutant inhibits, AngII-induced StAR mRNA expression relative to the vector control. PKD has been shown to phosphorylate members of the activating transcription factor (ATF)/cAMP response element binding protein (CREB) family of leucine zipper transcription factors, which have been shown previously to bind the StAR proximal promoter and induce StAR mRNA expression. In primary glomerulosa cells, AngII induces ATF-2 and CREB phosphorylation in a time-dependent manner. Furthermore, overexpression of the constitutively active PKD mutant enhances the AngII-elicited phosphorylation of ATF-2 and CREB, and the dominant-negative mutant inhibits this response. Furthermore, the constitutively active PKD mutant increases the binding of phosphorylated CREB to the StAR promoter. Thus, these data provide insight into the previously reported role of PKD in AngII-induced acute aldosterone production, providing a mechanism by which PKD may be mediating steroidogenesis in primary bovine adrenal glomerulosa cells.
Collapse
Affiliation(s)
- Lawrence O Olala
- Charlie Norwood Veterans Administration Medical Center (L.O.O., V.C., W.B.B.), Augusta, Georgia 30904; and Departments of Physiology (L.O.O., V.C., W.B.B.), Biostatistics and Epidemiology (M.H.J.), and Cell Biology and Anatomy and Medicine and Orthopaedic Surgery (W.B.B.), Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912
| | | | | | | |
Collapse
|
15
|
McGee SL, Swinton C, Morrison S, Gaur V, Campbell DE, Jorgensen SB, Kemp BE, Baar K, Steinberg GR, Hargreaves M. Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress. FASEB J 2014; 28:3384-95. [DOI: 10.1096/fj.14-249359] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sean L. McGee
- Metabolic Remodelling Laboratory, Metabolic Research UnitSchool of Medicine, Deakin UniversityWaurn PondsVictoriaAustralia
- Division of Cell Signalling and MetabolismBaker International Diabetes Institute Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Courtney Swinton
- Metabolic Remodelling Laboratory, Metabolic Research UnitSchool of Medicine, Deakin UniversityWaurn PondsVictoriaAustralia
| | - Shona Morrison
- Metabolic Remodelling Laboratory, Metabolic Research UnitSchool of Medicine, Deakin UniversityWaurn PondsVictoriaAustralia
| | - Vidhi Gaur
- Metabolic Remodelling Laboratory, Metabolic Research UnitSchool of Medicine, Deakin UniversityWaurn PondsVictoriaAustralia
| | - Duncan E. Campbell
- Metabolic Remodelling Laboratory, Metabolic Research UnitSchool of Medicine, Deakin UniversityWaurn PondsVictoriaAustralia
- Department of PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Sebastian B. Jorgensen
- St. Vincent's InstituteFitzroyVictoriaAustralia
- Diabetes Research UnitNovo Nordisk A/SMaaloevDenmark
| | | | - Keith Baar
- Department of Neurobiology, Physiology, and BehaviorUniversity of CaliforniaDavisCaliforniaUSA
| | - Gregory R. Steinberg
- St. Vincent's InstituteFitzroyVictoriaAustralia
- Department of MedicineMcMaster UniversityHamiltonOntarioCanada
| | - M. Hargreaves
- Department of PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
16
|
Wang N, Su P, Zhang Y, Lu J, Xing B, Kang K, Li W, Wang Y. Protein kinase D1-dependent phosphorylation of dopamine D1 receptor regulates cocaine-induced behavioral responses. Neuropsychopharmacology 2014; 39:1290-301. [PMID: 24362306 PMCID: PMC3957125 DOI: 10.1038/npp.2013.341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 01/06/2023]
Abstract
The dopamine (DA) D1 receptor (D1R) is critically involved in reward and drug addiction. Phosphorylation-mediated desensitization or internalization of D1R has been extensively investigated. However, the potential for upregulation of D1R function through phosphorylation remains to be determined. Here we report that acute cocaine exposure induces protein kinase D1 (PKD1) activation in the rat striatum, and knockdown of PKD1 in the rat dorsal striatum attenuates cocaine-induced locomotor hyperactivity. Moreover, PKD1-mediated phosphorylation of serine 421 (S421) of D1R promotes surface localization of D1R and enhances downstream extracellular signal-regulated kinase signaling in D1R-transfected HEK 293 cells. Importantly, injection of the peptide Tat-S421, an engineered Tat fusion-peptide targeting S421 (Tat-S421), into the rat dorsal striatum inhibits cocaine-induced locomotor hyperactivity and injection of Tat-S421 into the rat hippocampus or the shell of the nucleus accumbens (NAc) also inhibits cocaine-induced conditioned place preference (CPP). However, injection of Tat-S421 into the rat NAc shell does not establish CPP by itself and injection of Tat-S421 into the hippocampus does not influence spatial learning and memory. Thus, targeting S421 of D1R represents a promising strategy for the development of pharmacotherapeutic treatments for drug addiction and other disorders that result from DA imbalances.
Collapse
Affiliation(s)
- Ning Wang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Ping Su
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Ying Zhang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Jie Lu
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Baoming Xing
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Kai Kang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Wenqi Li
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China,Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China, Tel/Fax: +86 10 82801119, E-mail:
| |
Collapse
|
17
|
Sinnett-Smith J, Ni Y, Wang J, Ming M, Young SH, Rozengurt E. Protein kinase D1 mediates class IIa histone deacetylase phosphorylation and nuclear extrusion in intestinal epithelial cells: role in mitogenic signaling. Am J Physiol Cell Physiol 2014; 306:C961-71. [PMID: 24647541 DOI: 10.1152/ajpcell.00048.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We examined whether class IIa histone deacetylases (HDACs) play a role in mitogenic signaling mediated by protein kinase D1 (PKD1) in IEC-18 intestinal epithelial cells. Our results show that class IIa HDAC4, HDAC5, and HDAC7 are prominently expressed in these cells. Stimulation with ANG II, a potent mitogen for IEC-18 cells, induced a striking increase in phosphorylation of HDAC4 at Ser(246) and Ser(632), HDAC5 at Ser(259) and Ser(498), and HDAC7 at Ser(155). Treatment with the PKD family inhibitors kb NB 142-70 and CRT0066101 or small interfering RNA-mediated knockdown of PKD1 prevented ANG II-induced phosphorylation of HDAC4, HDAC5, and HDAC7. A variety of PKD1 activators in IEC-18 cells, including vasopressin, lysophosphatidic acid, and phorbol esters, also induced HDAC4, HDAC5, and HDAC7 phosphorylation. Using endogenously and ectopically expressed HDAC5, we show that PKD1-mediated phosphorylation of HDAC5 induces its nuclear extrusion into the cytoplasm. In contrast, HDAC5 with Ser(259) and Ser(498) mutated to Ala was localized to the nucleus in unstimulated and stimulated cells. Treatment of IEC-18 cells with specific inhibitors of class IIa HDACs, including MC1568 and TMP269, prevented cell cycle progression, DNA synthesis, and proliferation induced in response to G protein-coupled receptor/PKD1 activation. The PKD1-class IIa HDAC axis also functions in intestinal epithelial cells in vivo, since an increase in phosphorylation of HDAC4/5 and HDAC7 was demonstrated in lysates of crypt cells from PKD1 transgenic mice compared with matched nontransgenic littermates. Collectively, our results reveal a PKD1-class IIa HDAC axis in intestinal epithelial cells leading to mitogenic signaling.
Collapse
Affiliation(s)
- James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California; and
| | - Yang Ni
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California; and Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China Jinan, People's Republic of China
| | - Jia Wang
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California; and
| | - Ming Ming
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California; and
| | - Steven H Young
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California; and
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California; and
| |
Collapse
|
18
|
Bao Y, Hou W, Hua B. Protease-activated receptor 2 signalling pathways: a role in pain processing. Expert Opin Ther Targets 2013; 18:15-27. [PMID: 24147628 DOI: 10.1517/14728222.2014.844792] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Pain is a complex biological phenomenon that includes intricate neurophysiological, behavioural, psychosocial and affective components. Despite decades of pain research, many patients continue suffering from chronic pain that may be refractory to current medical regimens. Accumulating evidence has indicated an important role of protease-activated receptor 2 (PAR2) in the pathogenesis of pain, including inflammation, neuropathic and cancer pain. AREAS COVERED In this review, the role of the PAR2 signalling pathway in pain processes, basic mechanism of PAR2 activation and expression of PAR2 in the nervous system is covered. Furthermore, intracellular signalling pathways that are activated by PAR2 are also described. EXPERT OPINION The role of PAR2 in pain processing is becoming increasingly clear, and although causal implication remains to be established, PAR2 activation has been observed in several disease model systems. Since PAR2 is activated after nerve injury as well as by trypsin and related serine proteases, and PAR2 plays an important role in pain development and maintenance, exploring PAR2 and its corresponding signalling pathways will provide unfathomable knowledge in understanding the molecular basis of pain. This will also help to identify new targets for pharmacological intervention; however, in the context of potential PAR2-directed therapies, several aspects should be clarified.
Collapse
Affiliation(s)
- Yanju Bao
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Department of Oncology , Beixiange 5, Xicheng District, Beijing 100053 , China +86 10 88001221 ; +86 10 88001430 ; ; ;
| | | | | |
Collapse
|
19
|
Lau WW, Chan AS, Poon LS, Zhu J, Wong YH. Gβγ-mediated activation of protein kinase D exhibits subunit specificity and requires Gβγ-responsive phospholipase Cβ isoforms. Cell Commun Signal 2013; 11:22. [PMID: 23561540 PMCID: PMC3637504 DOI: 10.1186/1478-811x-11-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/22/2013] [Indexed: 11/29/2022] Open
Abstract
Background Protein kinase D (PKD) constitutes a novel family of serine/threonine protein kinases implicated in fundamental biological activities including cell proliferation, survival, migration, and immune responses. Activation of PKD in these cellular activities has been linked to many extracellular signals acting through antigen receptor engagement, receptor tyrosine kinases, as well as G protein-coupled receptors. In the latter case, it is generally believed that the Gα subunits of the Gq family are highly effective in mediating PKD activation, whereas little is known with regard to the ability of Gβγ dimers and other Gα subunits to stimulate PKD. It has been suggested that the interaction between Gβγ and the PH domain of PKD, or the Gβγ-induced PLCβ/PKC activity is critical for the induction of PKD activation. However, the relative contribution of these two apparently independent events to Gβγ-mediated PKD activation has yet to be addressed. Results In this report, we demonstrate that among various members in the four G protein families, only the Gα subunits of the Gq family effectively activate all the three PKD isoforms (PKD1/2/3), while Gα subunits of other G protein families (Gs, Gi, and G12) are ineffective. Though the Gα subunits of Gi family are unable to stimulate PKD, receptors linked to Gi proteins are capable of triggering PKD activation in cell lines endogenously expressing (HeLa cells and Jurkat T-cells) or exogenously transfected with (HEK293 cells) Gβγ-sensitive PLCβ2/3 isoforms. This indicates that the Gi-mediated PKD activation is dependent on the released Gβγ dimers upon stimulation. Further investigation on individual Gβγ combinations (i.e. Gβ1 with Gγ1–13) revealed that, even if they can stimulate the PLCβ activity in a comparable manner, only those Gβ1γ dimers with γ2, γ3, γ4, γ5, γ7, and γ10 can serve as effective activators of PKD. We also demonstrated that Gi-mediated PKD activation is essential for the SDF-1α-induced chemotaxis on Jurkat T-cells. Conclusions Our current report illustrates that Gβγ dimers from the Gi proteins may activate PKD in a PLCβ2/3-dependent manner, and the specific identities of Gγ components within Gβγ dimers may determine this stimulatory action.
Collapse
Affiliation(s)
- Winnie Wi Lau
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | | | |
Collapse
|
20
|
Karam M, Legay C, Auclair C, Ricort JM. Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway. Exp Cell Res 2012; 318:558-69. [PMID: 22245102 DOI: 10.1016/j.yexcr.2012.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/17/2011] [Accepted: 01/03/2012] [Indexed: 01/05/2023]
Abstract
Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic properties and would, therefore, define PKD1 as a potentially new promising anti-tumor therapeutic target.
Collapse
|
21
|
Clocchiatti A, Florean C, Brancolini C. Class IIa HDACs: from important roles in differentiation to possible implications in tumourigenesis. J Cell Mol Med 2012; 15:1833-46. [PMID: 21435179 PMCID: PMC3918040 DOI: 10.1111/j.1582-4934.2011.01321.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylases (HDACs) are important regulators of gene expression. Specific structural features and distinct regulative mechanisms rationalize the separation of the 18 different human HDACs into four classes. The class II comprises a heterogeneous group of nuclear and cytosolic HDACs involved in the regulation of several cellular functions, not just limited to transcriptional repression. In particular, HDAC4, 5, 7 and 9 belong to the subclass IIa and share many transcriptional partners, including members of the MEF2 family. Genetic studies in mice have disclosed the fundamental contribution of class IIa HDACs to specific developmental/differentiation pathways. In this review, we discuss about the recent literature, which hints a role of class IIa HDACs in the development, growth and aggressiveness of cancer cells.
Collapse
Affiliation(s)
- Andrea Clocchiatti
- Dipartimento di Scienze Mediche e Biologiche and MATI Center of Excellence Università degli Studi di Udine, Udine, Italy
| | | | | |
Collapse
|
22
|
Differential PKC-dependent and -independent PKD activation by G protein α subunits of the Gq family: selective stimulation of PKD Ser⁷⁴⁸ autophosphorylation by Gαq. Cell Signal 2011; 24:914-21. [PMID: 22227248 DOI: 10.1016/j.cellsig.2011.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/06/2011] [Accepted: 12/19/2011] [Indexed: 11/21/2022]
Abstract
Protein kinase D (PKD) is activated within cells by stimulation of multiple G protein coupled receptors (GPCR). Earlier studies demonstrated a role for PKC to mediate rapid activation loop phosphorylation-dependent PKD activation. Subsequently, a novel PKC-independent pathway in response to Gαq-coupled GPCR stimulation was identified. Here, we examined further the specificity and PKC-dependence of PKD activation using COS-7 cells cotransfected with different Gq-family Gα and stimulated with aluminum fluoride (AlF4⁻). PKD activation was measured by kinase assays, and Western blot analysis of activation loop sites Ser⁷⁴⁴, a prominent and rapid PKC transphosphorylation site, and Ser⁷⁴⁸, a site autophosphorylated in the absence of PKC signaling. Treatment with AlF4⁻ potently induced PKD activation and Ser⁷⁴⁴ and Ser⁷⁴⁸ phosphorylation, in the presence of cotransfected Gαq, Gα11, Gα14 or Gα15. These treatments achieved PKD activation loop phosphorylation similar to the maximal levels obtained by stimulation with the phorbol ester, PDBu. Preincubation with the PKC inhibitor GF1 potently blocked Gα11-, Gα14-, and Gα15-mediated enhancement of Ser⁷⁴⁸ phosphorylation induced by AlF4⁻, and largely abolished Ser⁷⁴⁴ phosphorylation. In contrast, Ser⁷⁴⁸ phosphorylation was almost completely intact, and Ser⁷⁴⁴ phosphorylation was significantly activated in cells cotransfected with Gαq. Importantly, the differential Ser⁷⁴⁸ phosphorylation was also promoted by treatment of Swiss 3T3 cells with Pasteurella multocida toxin, a selective activator of Gαq but not Gα11. Taken together, our results suggest that Gαq, but not the closely related Gα11, promotes PKD activation in response to GPCR ligands in a unique manner leading to PKD autophosphorylation at Ser⁷⁴⁸.
Collapse
|
23
|
Yoo J, Rodriguez Perez CE, Nie W, Sinnett-Smith J, Rozengurt E. Protein kinase D1 mediates synergistic MMP-3 expression induced by TNF-α and bradykinin in human colonic myofibroblasts. Biochem Biophys Res Commun 2011; 413:30-5. [PMID: 21867693 DOI: 10.1016/j.bbrc.2011.08.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/07/2011] [Indexed: 01/28/2023]
Abstract
Stromal myofibroblasts regulate extracellular matrix components through the secretion of matrix metalloproteinases such as MMP-3. Both myofibroblasts and MMP-3 have been implicated in colonic inflammation and cancer but the regulatory signaling mechanism(s) are unknown. Exposure of the human colonic myofibroblast cell line 18Co to TNF-α and bradykinin induced synergistic MMP-3 mRNA and protein expression, which were blocked by the preferential PKC inhibitors GF109203X and Go6983 and by the MEK inhibitor U0126. Transfection with siRNA targeting PKD1, a known downstream target of both bradykinin and PKC, completely inhibited MMP-3 mRNA and protein expression. Our results imply that TNF-α and bradykinin amplify MMP-3 expression at a transcriptional level through a signaling cascade involving PKC, PKD1, and MEK. PKD1 plays a critical role in the expression of MMP-3 in human colonic myofibroblasts, and may contribute to the pathophysiology underlying colitis-associated cancer.
Collapse
Affiliation(s)
- James Yoo
- Departments of Surgery and Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
24
|
Rozengurt E. Protein kinase D signaling: multiple biological functions in health and disease. Physiology (Bethesda) 2011; 26:23-33. [PMID: 21357900 DOI: 10.1152/physiol.00037.2010] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein kinase D (PKD) is an evolutionarily conserved protein kinase family with structural, enzymological, and regulatory properties different from the PKC family members. Signaling through PKD is induced by a remarkable number of stimuli, including G-protein-coupled receptor agonists and polypeptide growth factors. PKD1, the most studied member of the family, is increasingly implicated in the regulation of a complex array of fundamental biological processes, including signal transduction, cell proliferation and differentiation, membrane trafficking, secretion, immune regulation, cardiac hypertrophy and contraction, angiogenesis, and cancer. PKD mediates such a diverse array of normal and abnormal biological functions via dynamic changes in its spatial and temporal localization, combined with its distinct substrate specificity. Studies on PKD thus far indicate a striking diversity of both its signal generation and distribution and its potential for complex regulatory interactions with multiple downstream pathways, often regulating the subcellular localization of its targets.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
25
|
Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2. Blood 2011; 118:416-24. [PMID: 21527521 DOI: 10.1182/blood-2010-10-312199] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.
Collapse
|
26
|
Evans IM, Zachary IC. Protein kinase D in vascular biology and angiogenesis. IUBMB Life 2011; 63:258-63. [DOI: 10.1002/iub.456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Rodriguez Perez CE, Nie W, Sinnett-Smith J, Rozengurt E, Yoo J. TNF-α potentiates lysophosphatidic acid-induced COX-2 expression via PKD in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2011; 300:G637-46. [PMID: 21292998 PMCID: PMC3074991 DOI: 10.1152/ajpgi.00381.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The myofibroblast (MFB) has recently been identified as an important mediator of tumor necrosis factor-α (TNF-α)-associated colitis and cancer, but the mechanism(s) involved remains incompletely understood. Here, we show that treatment of 18Co cells, a model of human colonic MFBs, with TNF-α and lysophosphatidic acid (LPA) induced striking synergistic cyclooxygenase-2 (COX-2) protein expression and production of PGE(2). This effect was prevented by the LPA(1) receptor antagonist Ki16425, the G(iα)-specific inhibitor pertussis toxin, and by the preferential protein kinase (PK) C inhibitors GF109203X and Go6983. As a known downstream target of LPA and PKC, we tested whether PKD, recently implicated in the regulation of COX-2 expression in MFB, was involved in this response. TNF-α, while having no detectable effect on the activation of PKD when added alone, augmented PKD activation stimulated by LPA, as measured by PKD autophosphorylation at Ser(910). LPA-induced PKD activation was also inhibited by Ki16425, pertussis toxin, GF109203X, and Go6983. Transfection of 18Co cells with short interfering RNA targeting PKD completely inhibited the synergistic increase in COX-2 protein, demonstrating a critical role of PKD in this response. Our results imply that cross talk between TNF-α and LPA results in the amplification of COX-2 protein expression via a conserved PKD-dependent signaling pathway that appears to involve the LPA(1) receptor and the G protein G(iα). PKD plays a critical role in the expression of COX-2 in human colonic MFBs and may contribute to an inflammatory microenvironment that promotes tumor growth.
Collapse
Affiliation(s)
- Citlali Ekaterina Rodriguez Perez
- Departments of Surgery and Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California
| | - Wenxian Nie
- Departments of Surgery and Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California
| | - James Sinnett-Smith
- Departments of Surgery and Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California
| | - Enrique Rozengurt
- Departments of Surgery and Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California
| | - James Yoo
- Departments of Surgery and Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California
| |
Collapse
|
28
|
Ligand-stimulated downregulation of the alpha interferon receptor: role of protein kinase D2. Mol Cell Biol 2010; 31:710-20. [PMID: 21173164 DOI: 10.1128/mcb.01154-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Alpha interferon (IFN-α) controls homeostasis of hematopoietic stem cells, regulates antiviral resistance, inhibits angiogenesis, and suppresses tumor growth. This cytokine is often used to treat cancers and chronic viral infections. The extent of cellular responses to IFN-α is limited by the IFN-induced ubiquitination and degradation of the IFN-α/β receptor chain 1 (IFNAR1) chain of the cognate receptor. IFNAR1 ubiquitination is facilitated by the βTrcp E3 ubiquitin ligase that is recruited to IFNAR1 upon its degron phosphorylation, which is induced by the ligand. Here we report identification of protein kinase D2 (PKD2) as a kinase that mediates the ligand-inducible phosphorylation of IFNAR1 degron and enables binding of βTrcp to the receptor. Treatment of cells with IFN-α induces catalytic activity of PKD2 and stimulates its interaction with IFNAR1. Expression and kinase activity of PKD2 are required for the ligand-inducible stimulation of IFNAR1 ubiquitination and endocytosis and for accelerated proteolytic turnover of IFNAR1. Furthermore, inhibition or knockdown of PKD2 robustly augments intracellular signaling induced by IFN-α and increases the efficacy of its antiviral effects. The mechanisms of the ligand-inducible elimination of IFNAR1 are discussed, along with the potential medical significance of this regulation.
Collapse
|
29
|
Guha S, Tanasanvimon S, Sinnett-Smith J, Rozengurt E. Role of protein kinase D signaling in pancreatic cancer. Biochem Pharmacol 2010; 80:1946-1954. [PMID: 20621068 PMCID: PMC2974013 DOI: 10.1016/j.bcp.2010.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 11/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with dismal survival rates. Its intransigence to conventional therapy renders PDAC an aggressive disease with early metastatic potential. Thus, novel targets for PDAC therapy are urgently needed. Multiple signal transduction pathways are implicated in progression of PDAC. These pathways stimulate production of intracellular messengers in their target cells to modify their behavior, including the lipid-derived diacylglycerol (DAG). One of the prominent intracellular targets of DAG is the protein kinase C (PKC) family. However, the mechanisms by which PKC-mediated signals are decoded by the cell remain incompletely understood. Protein kinase D1 (PKD or PKD1, initially called atypical PKCμ), is the founding member of a novel protein kinase family that includes two additional protein kinases that share extensive overall homology with PKD, termed PKD2, and PKD3. The PKD family occupies a unique position in the signal transduction pathways initiated by DAG and PKC. PKD lies downstream of PKCs in a novel signal transduction pathway implicated in the regulation of multiple fundamental biological processes. We and others have shown that PKD-mediated signaling pathways promote mitogenesis and angiogenesis in PDAC. Our recent observations demonstrate that PKD also potentiates chemoresistance and invasive potential of PDAC cells. This review will briefly highlight diverse biological roles of PKD family in multiple neoplasias including PDAC. Further, this review will underscore our latest advancement with the development of a potent PKD family inhibitor and its effect both in vitro and in vivo in PDAC.
Collapse
Affiliation(s)
- Sushovan Guha
- Department of Gastroenetrology, Hepatology, and Nutrition, the UT MD Anderson Cancer Center, Unit 1466, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
30
|
Sinnett-Smith J, Rozengurt N, Kui R, Huang C, Rozengurt E. Protein kinase D1 mediates stimulation of DNA synthesis and proliferation in intestinal epithelial IEC-18 cells and in mouse intestinal crypts. J Biol Chem 2010; 286:511-20. [PMID: 21051537 DOI: 10.1074/jbc.m110.167528] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined whether protein kinase D1 (PKD1), the founding member of a new protein kinase family, plays a critical role in intestinal epithelial cell proliferation. Our results demonstrate that PKD1 activation is sustained, whereas that of PKD2 is transient in intestinal epithelial IEC-18 stimulated with the G(q)-coupled receptor agonists angiotensin II or vasopressin. PKD1 gene silencing utilizing small interfering RNAs dramatically reduced DNA synthesis and cell proliferation in IEC-18 cells stimulated with G(q)-coupled receptor agonists. To clarify the role of PKD1 in intestinal epithelial cell proliferation in vivo, we generated transgenic mice that express elevated PKD1 protein in the intestinal epithelium. Transgenic PKD1 exhibited constitutive catalytic activity and phosphorylation at the activation loop residues Ser(744) and Ser(748) and on the autophosphorylation site, Ser(916). To examine whether PKD1 expression stimulates intestinal cell proliferation, we determined the rate of crypt cell DNA synthesis by detection of 5-bromo-2-deoxyuridine incorporated into the nuclei of crypt cells of the ileum. Our results demonstrate a significant increase (p < 0.005) in DNA-synthesizing cells in the crypts of two independent lines of PKD1 transgenic mice as compared with non-transgenic littermates. Morphometric analysis showed a significant increase in the length and in the total number of cells per crypt in the transgenic PKD1 mice as compared with the non-transgenic littermates (p < 0.01). Thus, transgenic PKD1 signaling increases the number of cells per crypt by stimulating the rate of crypt cell proliferation. Collectively, our results indicate that PKD1 plays a role in promoting cell proliferation in intestinal epithelial cells both in vitro and in vivo.
Collapse
Affiliation(s)
- James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
31
|
Goodall MH, Wardlow RD, Goldblum RR, Ziman A, Lederer WJ, Randall W, Rogers TB. Novel function of cardiac protein kinase D1 as a dynamic regulator of Ca2+ sensitivity of contraction. J Biol Chem 2010; 285:41686-700. [PMID: 21041300 DOI: 10.1074/jbc.m110.179648] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the function of protein kinase D1 (PKD) in cardiac cells has remained enigmatic, recent work has shown that PKD phosphorylates the nuclear regulators HDAC5/7 (histone deacetylase 5/7) and CREB, implicating this kinase in the development of dysfunction seen in heart failure. Additional studies have shown that PKD also phosphorylates multiple sarcomeric substrates to regulate myofilament function. Initial studies examined PKD through adenoviral vector expression of wild type PKD, constitutively active PKD (caPKD), or dominant negative PKD in cultured adult rat ventricular myocytes. Confocal immunofluorescent images of these cells reveal a predominant distribution of all PKD forms in a non-nuclear, Z-line localized, striated reticular pattern, suggesting the importance of PKD in Ca(2+) signaling in heart. Consistent with an established role of PKD in targeting cardiac troponin I (cTnI), caPKD expression led to a marked decrease in contractile myofilament Ca(2+) sensitivity with an unexpected electrical stimulus dependence to this response. This desensitization was accompanied by stimulus-dependent increases in cTnI phosphorylation in control and caPKD cells with a more pronounced effect in the latter. Electrical stimulation also provoked phosphorylation of regulatory site Ser(916) on PKD. The functional importance of this phospho-Ser(916) event is demonstrated in experiments with a phosphorylation-defective mutant, caPKD-S916A, which is functionally inactive and blocks stimulus-dependent increases in cTnI phosphorylation. Dominant negative PKD expression resulted in sensitization of the myofilaments to Ca(2+) and blocked stimulus-dependent increases in cTnI phosphorylation. Taken together, these data reveal that localized PKD may play a role as a dynamic regulator of Ca(2+) sensitivity of contraction in cardiac myocytes.
Collapse
Affiliation(s)
- Mariah H Goodall
- Department of Biochemistry and Molecular Biology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Peltonen HM, Åkerman KE, Bart G. A role for PKD1 and PKD3 activation in modulation of calcium oscillations induced by orexin receptor 1 stimulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1206-12. [DOI: 10.1016/j.bbamcr.2010.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/27/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
|
33
|
Characterization of the biological effects of a novel protein kinase D inhibitor in endothelial cells. Biochem J 2010; 429:565-72. [PMID: 20497126 PMCID: PMC2907712 DOI: 10.1042/bj20100578] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
VEGF (vascular endothelial growth factor) plays an essential role in angiogenesis during development and in disease largely mediated by signalling events initiated by binding of VEGF to its receptor, VEGFR2 (VEGF receptor 2)/KDR (kinase insert domain receptor). Recent studies indicate that VEGF activates PKD (protein kinase D) in endothelial cells to regulate a variety of cellular functions, including signalling events, proliferation, migration and angiogenesis. To better understand the role of PKD in VEGF-mediated endothelial function, we characterized the effects of a novel pyrazine benzamide PKD inhibitor CRT5 in HUVECs (human umbilical vein endothelial cells). The activity of the isoforms PKD1 and PKD2 were blocked by this inhibitor as indicated by reduced phosphorylation, at Ser916 and Ser876 respectively, after VEGF stimulation. The VEGF-induced phosphorylation of three PKD substrates, histone deacetylase 5, CREB (cAMP-response-element-binding protein) and HSP27 (heat-shock protein 27) at Ser82, was also inhibited by CRT5. In contrast, CRT6, an inactive analogue of CRT5, had no effect on PKD or HSP27 Ser82 phosphorylation. Furthermore, phosphorylation of HSP27 at Ser78, which occurs solely via the p38 MAPK (mitogen-activated protein kinase) pathway, was also unaffected by CRT5. In vitro kinase assays show that CRT5 did not significantly inhibit several PKC isoforms expressed in endothelial cells. CRT5 also decreased VEGF-induced endothelial migration, proliferation and tubulogenesis, similar to effects seen when the cells were transfected with PKD siRNA (small interfering RNA). CRT5, a novel specific PKD inhibitor, will greatly facilitate the study of the role of PKD signalling mechanisms in angiogenesis.
Collapse
|
34
|
LaValle CR, George KM, Sharlow ER, Lazo JS, Wipf P, Wang QJ. Protein kinase D as a potential new target for cancer therapy. Biochim Biophys Acta Rev Cancer 2010; 1806:183-92. [PMID: 20580776 DOI: 10.1016/j.bbcan.2010.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/13/2010] [Accepted: 05/13/2010] [Indexed: 12/20/2022]
Abstract
Protein kinase D is a novel family of serine/threonine kinases and diacylglycerol receptors that belongs to the calcium/calmodulin-dependent kinase superfamily. Evidence has established that specific PKD isoforms are dysregulated in several cancer types, and PKD involvement has been documented in a variety of cellular processes important to cancer development, including cell growth, apoptosis, motility, and angiogenesis. In light of this, there has been a recent surge in the development of novel chemical inhibitors of PKD. This review focuses on the potential of PKD as a chemotherapeutic target in cancer treatment and highlights important recent advances in the development of PKD inhibitors.
Collapse
Affiliation(s)
- Courtney R LaValle
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
35
|
Torres-Marquez E, Sinnett-Smith J, Guha S, Kui R, Waldron RT, Rey O, Rozengurt E. CID755673 enhances mitogenic signaling by phorbol esters, bombesin and EGF through a protein kinase D-independent pathway. Biochem Biophys Res Commun 2010; 391:63-68. [PMID: 19896460 PMCID: PMC2812606 DOI: 10.1016/j.bbrc.2009.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 11/01/2009] [Indexed: 11/21/2022]
Abstract
Recently, CID755673 was reported to act as a highly selective inhibitor of protein kinase D (PKD). In the course of experiments using CID755673, we noticed that it exerted unexpected stimulatory effects on [(3)H]thymidine incorporation and cell cycle progression in Swiss 3T3 cells stimulated by bombesin, a Gq-coupled receptor agonist, phorbol 12,13-dibutyrate (PDBu), a biologically active tumor promoting phorbol ester and epidermal growth factor (EGF). These stimulatory effects could be dissociated from the inhibitory effect of CID755673 on PKD activity, since enhancement of DNA synthesis was still evident in cells with severely down-regulated PKD1 after transfection of siRNA targeting PKD1. A major point raised by our study is that CID755673 can not be considered a specific inhibitor of PKD and it should be used with great caution in experiments attempting to elucidate the role of PKD family members in cellular regulation, particularly cell cycle progression from G(1)/G(o) to S phase.
Collapse
Affiliation(s)
- Eugenia Torres-Marquez
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, CA 90095
- Biochemistry Department School of Medicine, UNAM, Mexico, DF45010
| | - James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Sushovan Guha
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas M. D. Anderson Cancer Center, Houston, 77030, USA
| | - Robert Kui
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Richard T. Waldron
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Osvaldo Rey
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
36
|
Yoo J, Chung C, Slice L, Sinnett-Smith J, Rozengurt E. Protein kinase D mediates synergistic expression of COX-2 induced by TNF-{alpha} and bradykinin in human colonic myofibroblasts. Am J Physiol Cell Physiol 2009; 297:C1576-87. [PMID: 19794144 DOI: 10.1152/ajpcell.00184.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myofibroblasts have recently been identified as major mediators of tumor necrosis factor-alpha (TNF-alpha)-associated colitis, but the precise mechanism(s) involved remains incompletely understood. In particular, the possibility that TNF-alpha signaling cross talks with other proinflammatory mediators, including bradykinin (BK), has not been examined in these cells. Here we show that treatment of 18Co cells, a model of human colonic myofibroblasts, with BK and TNF-alpha induced striking synergistic COX-2 protein expression that was paralleled by increases in the levels of transcripts encoding COX-2 and microsomal prostaglandin E synthase 1 (mPGES-1) and by the production of PGE(2). COX-2 expression in 18Co cells treated with BK and TNF-alpha was prevented by the B(2) BK receptor antagonist HOE-140, the preferential protein kinase C (PKC) inhibitors Ro31-8220 and GF-109203X, and Gö-6976, an inhibitor of conventional PKCs and protein kinase D (PKD). In a parallel fashion, TNF-alpha, while having no detectable effect on the activation of PKD when added alone, augmented PKD activation induced by BK, as measured by PKD phosphorylation at its activation loop (Ser(744)) and autophosphorylation site (Ser(916)). BK-induced PKD activation was also inhibited by HOE-140, Ro31-8220, and Gö-6976. Transfection of 18Co cells with small interfering RNA targeting PKD completely inhibited the synergistic increase in COX-2 protein in response to BK and TNF-alpha, demonstrating, for the first time, a critical role of PKD in the pathways leading to synergistic expression of COX-2. Our results imply that cross talk between TNF-alpha and BK amplifies a PKD phosphorylation cascade that mediates synergistic COX-2 expression in colonic myofibroblasts. It is plausible that PKD increases COX-2 expression in colonic myofibroblasts to promote an inflammatory microenvironment that supports tumor growth.
Collapse
Affiliation(s)
- James Yoo
- Department of Surgery, CURE: Digestive Diseases Research Center, Molecular Biology Institute, University of California, Los Angeles, 90095-1786, USA
| | | | | | | | | |
Collapse
|
37
|
Amadesi S, Grant AD, Cottrell GS, Vaksman N, Poole DP, Rozengurt E, Bunnett NW. Protein kinase D isoforms are expressed in rat and mouse primary sensory neurons and are activated by agonists of protease-activated receptor 2. J Comp Neurol 2009; 516:141-56. [PMID: 19575452 DOI: 10.1002/cne.22104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Serine proteases generated during injury and inflammation cleave protease-activated receptor 2 (PAR(2)) on primary sensory neurons to induce neurogenic inflammation and hyperalgesia. Hyperalgesia requires sensitization of transient receptor potential vanilloid (TRPV) ion channels by mechanisms involving phospholipase C and protein kinase C (PKC). The protein kinase D (PKD) serine/threonine kinases are activated by diacylglycerol and PKCs and can phosphorylate TRPV1. Thus, PKDs may participate in novel signal transduction pathways triggered by serine proteases during inflammation and pain. However, it is not known whether PAR(2) activates PKD, and the expression of PKD isoforms by nociceptive neurons is poorly characterized. By using HEK293 cells transfected with PKDs, we found that PAR(2) stimulation promoted plasma membrane translocation and phosphorylation of PKD1, PKD2, and PKD3, indicating activation. This effect was partially dependent on PKCepsilon. By immunofluorescence and confocal microscopy, with antibodies against PKD1/PKD2 and PKD3 and neuronal markers, we found that PKDs were expressed in rat and mouse dorsal root ganglia (DRG) neurons, including nociceptive neurons that expressed TRPV1, PAR(2), and neuropeptides. PAR(2) agonist induced phosphorylation of PKD in cultured DRG neurons, indicating PKD activation. Intraplantar injection of PAR(2) agonist also caused phosphorylation of PKD in neurons of lumbar DRG, confirming activation in vivo. Thus, PKD1, PKD2, and PKD3 are expressed in primary sensory neurons that mediate neurogenic inflammation and pain transmission, and PAR(2) agonists activate PKDs in HEK293 cells and DRG neurons in culture and in intact animals. PKD may be a novel component of a signal transduction pathway for protease-induced activation of nociceptive neurons and an important new target for antiinflammatory and analgesic therapies.
Collapse
Affiliation(s)
- Silvia Amadesi
- Center for Neurobiology of Digestive Diseases, University of California, San Francisco, San Francisco, California 94143-0660, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ha CH, Jin ZG. Protein kinase D1, a new molecular player in VEGF signaling and angiogenesis. Mol Cells 2009; 28:1-5. [PMID: 19655095 PMCID: PMC4228936 DOI: 10.1007/s10059-009-0109-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is essential for many angiogenic processes both in normal and pathological conditions. However, the signaling pathways involved in VEGF-induced angiogenesis are incompletely understood. The protein kinase D1 (PKD1), a newly described calcium/calmodulin-dependent serine/threonine kinase, has been implicated in cell migration, proliferation and membrane trafficking. Increasing evidence suggests critical roles for PKD1-mediated signaling pathways in endothelial cells, particularly in the regulation of VEGF-induced angiogenesis. Recent studies show that class IIa histone deacetylases (HDACs) are PKD1 substrates and VEGF signal-responsive repressors of myocyte enhancer factor-2 (MEF2) transcriptional activation in endothelial cells. This review provides a guide to PKD1 signaling pathways and the direct downstream targets of PKD1 in VEGF signaling, and suggests important functions of PKD1 in angiogenesis.
Collapse
Affiliation(s)
- Chang Hoon Ha
- The Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | |
Collapse
|
39
|
Gordon JW, Pagiatakis C, Salma J, Du M, Andreucci JJ, Zhao J, Hou G, Perry RL, Dan Q, Courtman D, Bendeck MP, McDermott JC. Protein kinase A-regulated assembly of a MEF2{middle dot}HDAC4 repressor complex controls c-Jun expression in vascular smooth muscle cells. J Biol Chem 2009; 284:19027-42. [PMID: 19389706 DOI: 10.1074/jbc.m109.000539] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) maintain the ability to modulate their phenotype in response to changing environmental stimuli. This phenotype modulation plays a critical role in the development of most vascular disease states. In these studies, stimulation of cultured vascular smooth muscle cells with platelet-derived growth factor resulted in marked induction of c-jun expression, which was attenuated by protein kinase Cdelta and calcium/calmodulin-dependent protein kinase inhibition. Given that these signaling pathways have been shown to relieve the repressive effects of class II histone deacetylases (HDACs) on myocyte enhancer factor (MEF) 2 proteins, we ectopically expressed HDAC4 and observed repression of c-jun expression. Congruently, suppression of HDAC4 by RNA interference resulted in enhanced c-jun expression. Consistent with these findings, mutation of the MEF2 cis-element in the c-jun promoter resulted in promoter activation during quiescent conditions, suggesting that the MEF2 cis-element functions as a repressor in this context. Furthermore, we demonstrate that protein kinase A attenuates c-Jun expression by promoting the formation of a MEF2.HDAC4 repressor complex by inhibiting salt-inducible kinase 1. Finally, we document a physical interaction between c-Jun and myocardin, and we document that forced expression of c-Jun represses the ability of myocardin to activate smooth muscle gene expression. Thus, MEF2 and HDAC4 act to repress c-Jun expression in quiescent VSMCs, protein kinase A enhances this repression, and platelet-derived growth factor derepresses c-Jun expression through calcium/calmodulin-dependent protein kinases and novel protein kinase Cs. Regulation of this molecular "switch" on the c-jun promoter may thus prove critical for toggling between the activated and quiescent VSMC phenotypes.
Collapse
Affiliation(s)
- Joseph W Gordon
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Eiseler T, Döppler H, Yan IK, Kitatani K, Mizuno K, Storz P. Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. Nat Cell Biol 2009; 11:545-56. [PMID: 19329994 PMCID: PMC2761768 DOI: 10.1038/ncb1861] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/19/2009] [Indexed: 01/27/2023]
Abstract
Dynamic actin remodelling processes at the leading edge of migrating tumour cells are concerted events controlled by a fine-tuned temporal and spatial interplay of kinases and phosphatases. Actin severing is regulated by ADF/Cofilin which regulates stimulus-induced lamellipodia protrusion and directed cell motility. Cofilin is activated by dephosphorylation via phosphatases of the slingshot (SSH) family. SSH activity is strongly increased by its binding to filamentous actin (F-actin), however, other upstream regulators remain unknown. We show that in response to RhoA activation, Protein Kinase D1 (PKD1) phosphorylates the SSH enzyme SSH1L at a serine residue located in its actin binding motif. This generates a 14-3-3 binding motif, blocks the localization of SSH1L to F-actin-rich structures in the lamellipodium by sequestering it in the cytoplasm. Consequently, expression of constitutively-active PKD1 in invasive tumour cells enhanced phosphorylation of cofilin and effectively blocked the formation of free actin filament barbed ends and directed cell migration.
Collapse
Affiliation(s)
- Tim Eiseler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | | | | | | | | | | |
Collapse
|
41
|
Sinnett-Smith J, Jacamo R, Kui R, Wang YM, Young SH, Rey O, Waldron RT, Rozengurt E. Protein kinase D mediates mitogenic signaling by Gq-coupled receptors through protein kinase C-independent regulation of activation loop Ser744 and Ser748 phosphorylation. J Biol Chem 2009; 284:13434-13445. [PMID: 19289471 DOI: 10.1074/jbc.m806554200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Rapid protein kinase D (PKD) activation and phosphorylation via protein kinase C (PKC) have been extensively documented in many cell types cells stimulated by multiple stimuli. In contrast, little is known about the role and mechanism(s) of a recently identified sustained phase of PKD activation in response to G protein-coupled receptor agonists. To elucidate the role of biphasic PKD activation, we used Swiss 3T3 cells because PKD expression in these cells potently enhanced duration of ERK activation and DNA synthesis in response to G(q)-coupled receptor agonists. Cell treatment with the preferential PKC inhibitors GF109203X or Gö6983 profoundly inhibited PKD activation induced by bombesin stimulation for <15 min but did not prevent PKD catalytic activation induced by bombesin stimulation for longer times (>60 min). The existence of sequential PKC-dependent and PKC-independent PKD activation was demonstrated in 3T3 cells stimulated with various concentrations of bombesin (0.3-10 nm) or with vasopressin, a different G(q)-coupled receptor agonist. To gain insight into the mechanisms involved, we determined the phosphorylation state of the activation loop residues Ser(744) and Ser(748). Transphosphorylation targeted Ser(744), whereas autophosphorylation was the predominant mechanism for Ser(748) in cells stimulated with G(q)-coupled receptor agonists. We next determined which phase of PKD activation is responsible for promoting enhanced ERK activation and DNA synthesis in response to G(q)-coupled receptor agonists. We show, for the first time, that the PKC-independent phase of PKD activation mediates prolonged ERK signaling and progression to DNA synthesis in response to bombesin or vasopressin through a pathway that requires epidermal growth factor receptor-tyrosine kinase activity. Thus, our results identify a novel mechanism of G(q)-coupled receptor-induced mitogenesis mediated by sustained PKD activation through a PKC-independent pathway.
Collapse
Affiliation(s)
- James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Rodrigo Jacamo
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Robert Kui
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - YunZu M Wang
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Steven H Young
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Osvaldo Rey
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Richard T Waldron
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095.
| |
Collapse
|
42
|
Cowell CF, Döppler H, Yan IK, Hausser A, Umezawa Y, Storz P. Mitochondrial diacylglycerol initiates protein-kinase D1-mediated ROS signaling. J Cell Sci 2009; 122:919-28. [PMID: 19258390 DOI: 10.1242/jcs.041061] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Increases in reactive oxygen species (ROS) have been implicated in age-related diseases, including cancer. The serine/threonine kinase protein kinase D1 (PKD1) is a stress-responsive kinase and sensor for reactive oxygen species, which can initiate cell survival through NF-kappaB signaling. We have previously shown that in response to ROS, PKD1 is activated at the mitochondria. However, the initial signaling events leading to localization of PKD1 to the mitochondria are unknown. Here, we show that formation of mitochondrial diacylglycerol (DAG) and its binding to PKD1 is the means by which PKD1 is localized to the mitochondria in response to ROS. Interestingly, DAG to which PKD1 is recruited in this pathway is formed downstream of phospholipase D1 (PLD1) and a lipase-inactive PLD1 or inhibition of PLD1 by pharmacological inhibitors blocked PKD1 activation under oxidative stress. To date it has been viewed that monosaturated and saturated DAG formed via PLD1 have no signaling function. However, our data describe a role for PLD1-induced DAG as a competent second messenger at the mitochondria that relays ROS to PKD1-mediated mitochondria-to-nucleus signaling.
Collapse
Affiliation(s)
- Catherine F Cowell
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
43
|
Chen LA, Li J, Silva SR, Jackson LN, Zhou Y, Watanabe H, Ives KL, Hellmich MR, Evers BM. PKD3 is the predominant protein kinase D isoform in mouse exocrine pancreas and promotes hormone-induced amylase secretion. J Biol Chem 2009; 284:2459-71. [PMID: 19028687 PMCID: PMC2629096 DOI: 10.1074/jbc.m801697200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 10/14/2008] [Indexed: 11/06/2022] Open
Abstract
The protein kinase D (PKD) family of serine/threonine kinases, which can be activated by gastrointestinal hormones, consists of three distinct isoforms that modulate a variety of cellular processes including intracellular protein transport as well as constitutive and regulated secretion. Although isoform-specific functions have been identified in a variety of cell lines, the expression and function of PKD isoforms in normal, differentiated secretory tissues is unknown. Here, we demonstrate that PKD isoforms are differentially expressed in the exocrine and endocrine cells of the pancreas. Specifically, PKD3 is the predominant isoform expressed in exocrine cells of the mouse and human pancreas, whereas PKD1 and PKD2 are more abundantly expressed in the pancreatic islets. Within isolated mouse pancreatic acinar cells, PKD3 undergoes rapid membrane translocation, trans-activating phosphorylation, and kinase activation after gastrointestinal hormone or cholinergic stimulation. PKD phosphorylation in pancreatic acinar cells occurs viaaCa2+-independent, diacylglycerol- and protein kinase C-dependent mechanism. PKD phosphorylation can also be induced by physiologic concentrations of secretagogues and by in vivo stimulation of the pancreas. Furthermore, activation of PKD3 potentiates MEK/ERK/RSK (RSK, ribosomal S6 kinase) signaling and significantly enhances cholecystokinin-mediated pancreatic amylase secretion. These findings reveal a novel distinction between the exocrine and endocrine cells of the pancreas and further identify PKD3 as a signaling molecule that promotes hormone-stimulated amylase secretion.
Collapse
Affiliation(s)
- L Andy Chen
- Department of Surgery and Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-0536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yuan J, Lugea A, Zheng L, Gukovsky I, Edderkaoui M, Rozengurt E, Pandol SJ. Protein kinase D1 mediates NF-kappaB activation induced by cholecystokinin and cholinergic signaling in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1190-201. [PMID: 18845574 PMCID: PMC2604803 DOI: 10.1152/ajpgi.90452.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/05/2008] [Indexed: 02/07/2023]
Abstract
The transcription factor NF-kappaB plays a critical role in inflammatory and cell death responses during acute pancreatitis. Previous studies in our laboratory demonstrated that protein kinase C (PKC) isoforms PKCdelta and epsilon are key regulators of NF-kappaB activation induced by cholecystokinin-8 (CCK-8), tumor necrosis factor-alpha, and ethanol. However, the downstream participants in regulating NF-kappaB activation in exocrine pancreas remain poorly understood. Here, we demonstrate that protein kinase D1 (PKD1) is a key downstream target of PKCdelta and PKCepsilon in pancreatic acinar cells stimulated by two major secretagogues, CCK-8 and the cholinergic agonist carbachol (CCh), and that PKD1 is necessary for NF-kappaB activation induced by CCK-8 and CCh. Both CCK-8 and CCh dose dependently induced a rapid and striking activation of PKD1 in rat pancreatic acinar cells, as measured by in vitro kinase assay and by phosphorylation at PKD1 activation loop (Ser744/748) or autophosphorylation site (Ser916). The phosphorylation and activation of PKD1 correlated with NF-kappaB activity stimulated by CCK-8 or CCh, as measured by NF-kappaB DNA binding. Either inhibition of PKCdelta or epsilon by isoform-specific inhibitory peptides, genetic deletion of PKCdelta and epsilon in pancreatic acinar cells, or knockdown of PKD1 by using small interfering RNAs in AR42J cells resulted in a marked decrease in PKD1 and NF-kappaB activation stimulated by CCK-8 or CCh. Conversely, overexpression of PKD1 resulted in augmentation of CCK-8- and CCh-stimulated NF-kappaB activation. Finally, the kinetics of PKD1 and NF-kappaB activation during cerulein-induced rat pancreatitis showed that both PKD1 and NF-kappaB activation were early events during acute pancreatitis and that their time courses of response were similar. Our results identify PKD1 as a novel early convergent point for PKCdelta and epsilon in the signaling pathways mediating NF-kappaB activation in pancreatitis.
Collapse
Affiliation(s)
- Jingzhen Yuan
- Veterans Affairs Greater Los Angeles Healthcare System, West Los Angeles VA Healthcare Center, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Characterization of EVL-I as a protein kinase D substrate. Cell Signal 2008; 21:282-92. [PMID: 19000756 DOI: 10.1016/j.cellsig.2008.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 10/15/2008] [Accepted: 10/22/2008] [Indexed: 11/21/2022]
Abstract
EVL-I is a splice variant of EVL (Ena/VASP like protein), whose in vivo function and regulation are still poorly understood. We found that Protein Kinase D (PKD) interacts in vitro and in vivo with EVL-I and phosphorylates EVL-I in a 21 amino acid alternately-included insert in the EVH2 domain. Following knockdown of the capping protein CPbeta and spreading on laminin, phosphorylated EVL-I can support filopodia formation and the phosphorylated EVL-I is localized at filopodial tips. Furthermore, we found that the lamellipodial localization of EVL-I is unaffected by phosphorylation, but that impairment of EVL-I phosphorylation is associated with ruffling of lamellipodia upon PDBu stimulation. Besides the lamellipodial and filopodial localization of phosphorylated EVL-I in fibroblasts, we determined that EVL-I is hyperphosphorylated and localized in the cell-cell contacts of certain breast cancer cells and mouse embryo keratinocytes. Taken together, our results show that phosphorylated EVL-I is present in lamellipodia, filopodia and cell-cell contacts and suggest the existence of signaling pathways that may affect EVL-I via phosphorylation of its EVH2 domain.
Collapse
|
46
|
Iwamoto N, Abe-Dohmae S, Lu R, Yokoyama S. Involvement of protein kinase D in phosphorylation and increase of DNA binding of activator protein 2 alpha to downregulate ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 2008; 28:2282-7. [PMID: 18845787 DOI: 10.1161/atvbaha.108.174714] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Activator protein (AP) 2alpha negatively regulates expression of ABCA1 gene through Ser-phosphorylation of AP2alpha (Circ Res. 2007;101:156-165). Potential specific Ser-phosphorylation sites for this reaction were investigated in human AP2alpha. METHODS AND RESULTS The phosphorylation was shown mediated by PKD, and Ser258 and Ser326 were found in its specific phosphorylation sequence segment in AP2alpha. PKD phosphorylated Ser258 more than Ser326 and induced its binding to the ABCA1 promoter. These reactions and AP2alpha-induced suppression of the ABCA1 promoter activity were reversed by mutation of Ser258 more than Ser326 mutation. Knockdown of PKD by siRNA reduced the AP2alpha Ser-phosphorylation, and increased ABCA1 expression and HDL biogenesis. Gö6983 inhibited PKD more selectively than PKC in THP-1 and HEK 293 cells and in mice, and increased ABCA1 expression, HDL biogenesis, and plasma HDL level. CONCLUSIONS PKD phosphorylates AP2alpha to negatively regulate expression of ABCA1 gene to increase HDL biogenesis. The major functional phosphorylation of AP2alpha was identified at Ser258 by PKD, in the AP2alpha basic domain highly conserved among species and all 5 subtypes of AP2. PKD/AP2 system can be a potent pharmacological target for prevention of atherosclerosis.
Collapse
Affiliation(s)
- Noriyuki Iwamoto
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | |
Collapse
|
47
|
Haraguchi S, Good RA, Day-Good NK. A potent immunosuppressive retroviral peptide: cytokine patterns and signaling pathways. Immunol Res 2008; 41:46-55. [PMID: 18506644 DOI: 10.1007/s12026-007-0039-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A synthetic bioactive peptide composed of 17 amino acids (CKS-17) homologous to a highly conserved region of human and animal retroviral transmembrane envelope proteins induces not only significant immunoregulatory functions but also exhibits Th1-inhibiting properties, as described by its ability to suppress cell-mediated immunity and inhibit the production of interleukin (IL) 12, IL-2, gamma interferon, and tumor necrosis factor alpha, while enhancing IL-10. An important molecular mechanism responsible for the observed cytokine profiles by CKS-17 is provided by our findings demonstrating that this small peptide activates several intracellular signaling molecules, i.e., elevates intracellular cyclic adenosine monophosphate (cAMP) levels, and induces phosphorylation of extracellular signal-regulated kinase (ERK) 1 and 2, mitogen-activated protein kinase/ERK kinase (MEK), protein kinase D, Raf1, and phospholipase C gamma1 (PLCgamma1). The activation of ERK1/2 is via the PLCgamma1-protein kinase C-Raf1-MEK signaling cascade. The activation of both ERK1/2 and cAMP appears to be via a mechanism sensitive to AG879, a receptor tyrosine kinase inhibitor, but not to AG825, AG1296, or AG1478. Furthermore, phosphoinositide-3 kinase appears to mediate the CKS-17-induced activation of ERK1/2, but not of cAMP. A specific amino acid sequence as well as the dimerization of this peptide is required to confer these biological activities. The results obtained are compelling and reproducible. This highly conserved molecule may enable us to understand a basic mechanism(s) of intracellular signaling pathways, regulation of Th1/Th2 cytokines, immunosuppression, and immunologic tolerance.
Collapse
Affiliation(s)
- Soichi Haraguchi
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of South Florida, Children's Research Institute, 140 Seventh Avenue South, CRI 4008, St. Petersburg, FL 33701, USA.
| | | | | |
Collapse
|
48
|
Park JE, Kim YI, Yi AK. Protein kinase D1: a new component in TLR9 signaling. THE JOURNAL OF IMMUNOLOGY 2008; 181:2044-55. [PMID: 18641342 DOI: 10.4049/jimmunol.181.3.2044] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein kinase D1 (PKD1) is expressed ubiquitously and regulates diverse cellular processes such as oxidative stress, gene expression, cell survival, and vesicle trafficking. However, the presence and function of PKD1 in monocytic cells are currently unknown. In this study, we provide evidence that PKD1 is involved in TLR9 signaling in macrophages. Class B-type CpG DNA (CpG-B DNA) induced activation of PKD1 via a pathway that is dependent on endosomal pH, TLR9, MyD88, and IL-1R-associated kinase 1 in macrophages. Upon CpG-B DNA stimulation, PKD1 interacted with the TLR9/MyD88/IL-1R-associated kinase/TNFR-associated factor 6 complex. Knockdown of PKD1 revealed that PKD1 is required for activation of NF-kappaB and MAPKs, and subsequent expression of cytokines in response to CpG-B DNA. Our findings identify PKD1 as a key signaling modulator in TLR9-mediated macrophage activation.
Collapse
Affiliation(s)
- Jeoung-Eun Park
- Children's Foundation Research Center at Le Bonheur Children's Medical Center and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | | | |
Collapse
|
49
|
Poole DP, Amadesi S, Rozengurt E, Thacker M, Bunnett NW, Furness JB. Stimulation of the neurokinin 3 receptor activates protein kinase C epsilon and protein kinase D in enteric neurons. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1245-56. [PMID: 18308856 DOI: 10.1152/ajpgi.00521.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tachykinins, acting through NK(3) receptors (NK(3)R), contribute to excitatory transmission to intrinsic primary afferent neurons (IPANs) of the small intestine. Although this transmission is dependent on protein kinase C (PKC), its maintenance could depend on protein kinase D (PKD), a downstream target of PKC. Here we show that PKD1/2-immunoreactivity occurred exclusively in IPANs of the guinea pig ileum, demonstrated by double staining with the IPAN marker NeuN. PKCepsilon was also colocalized with PKD1/2 in IPANs. PKCepsilon and PKD1/2 trafficking was studied in enteric neurons within whole mounts of the ileal wall. In untreated preparations, PKCepsilon and PKD1/2 were cytosolic and no signal for activated (phosphorylated) PKD was detected. The NK(3)R agonist senktide evoked a transient translocation of PKCepsilon and PKD1/2 from the cytosol to the plasma membrane and induced PKD1/2 phosphorylation at the plasma membrane. PKCepsilon translocation was maximal at 10 s and returned to the cytosol within 2 min. Phosphorylated-PKD1/2 was detected at the plasma membrane within 15 s and translocated to the cytosol by 2 min, where it remained active up to 30 min after NK(3)R stimulation. PKD1/2 activation was reduced by a PKCepsilon inhibitor and prevented by NK(3)R inhibition. NK(3)R-mediated PKCepsilon and PKD activation was confirmed in HEK293 cells transiently expressing NK(3)R and green fluorescent protein-tagged PKCepsilon, PKD1, PKD2, or PKD3. Senktide caused membrane translocation and activation of kinases within 30 s. After 15 min, phosphorylated PKD had returned to the cytosol. PKD activation was confirmed through Western blotting. Thus stimulation of NK(3)R activates PKCepsilon and PKD in sequence, and sequential activation of these kinases may account for rapid and prolonged modulation of IPAN function.
Collapse
Affiliation(s)
- D P Poole
- Department of Anatomy and Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville, VIC, Australia.
| | | | | | | | | | | |
Collapse
|
50
|
Avkiran M, Rowland AJ, Cuello F, Haworth RS. Protein kinase d in the cardiovascular system: emerging roles in health and disease. Circ Res 2008; 102:157-63. [PMID: 18239146 DOI: 10.1161/circresaha.107.168211] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein kinase D (PKD) family is a recent addition to the calcium/calmodulin-dependent protein kinase group of serine/threonine kinases, within the protein kinase complement of the mammalian genome. Relative to their alphabetically superior cousins in the AGC group of kinases, namely the various isoforms of protein kinase A, protein kinase B/Akt, and protein kinase C, PKD family members have to date received limited attention from cardiovascular investigators. Nevertheless, increasing evidence now points toward important roles for PKD-mediated signaling pathways in the cardiovascular system, particularly in the regulation of myocardial contraction, hypertrophy and remodeling. This review provides a primer on PKD signaling, using information gained from studies in multiple cell types, and discusses recent data that suggest novel functions for PKD-mediated pathways in the heart and the circulation.
Collapse
Affiliation(s)
- Metin Avkiran
- Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, United Kingdom.
| | | | | | | |
Collapse
|