1
|
Actis M, Fujii N, Mackey ZB. A phenotypic screen with Trypanosoma brucei for discovering small molecules that target the SLiM-binding pocket of proliferating cell nuclear antigen orthologs. Chem Biol Drug Des 2024; 103:e14361. [PMID: 37767622 DOI: 10.1111/cbdd.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Proliferating cell nuclear antigen (PCNA) is a homo-trimeric protein complex that clamps around DNA to tether DNA polymerases to the template during replication and serves as a hub for many other interacting proteins. It regulates DNA metabolic processes and other vital cellar functions through the binding of proteins having short linear motifs (SLiMs) like the PIP-box (PCNA-interacting protein-box) or the APIM (AlkB homolog 2 PCNA-interacting motif) in the hydrophobic pocket where SLiMs bind. However, overproducing TbPCNA or human PCNA (hPCNA) in the pathogenic protist Trypanosoma brucei triggers a dominant-negative phenotype of arrested proliferation. The mechanism for arresting T. brucei proliferation requires the overproduced PCNA orthologs to have functional intact SLiM-binding pocket. Sight-directed mutagenesis studies showed that T. brucei overproducing PCNA variants with disrupted SLiM-binding pockets grew normally. We hypothesized that chemically disrupting the SLiM-binding pocket would restore proliferation in T. brucei, overproducing PCNA orthologs. Testing this hypothesis is the proof-of-concept for a T. brucei-based PCNA screening assay. The assay design is to discover bioactive small molecules that restore proliferation in T. brucei strains that overproduce PCNA orthologs, likely by disrupting interactions in the SLiM-binding pocket. The pilot screen for this assay discovered two hit compounds that linked to predetermined PCNA targets. Compound #1, a known hPCNA inhibitor, had selective bioactivity to hPCNA overproduced in T. brucei, validating the assay. Compound #6 had promiscuous bioactivity for hPCNA and TbPCNA but is the first compound discovered with bioactivity for inhibiting TbPCNA.
Collapse
Affiliation(s)
- Marisa Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zachary B Mackey
- Biochemistry Department, Fralin Life Science Institute Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Horsfall AJ, Vandborg BA, Kikhtyak Z, Scanlon DB, Tilley WD, Hickey TE, Bruning JB, Abell AD. A cell permeable bimane-constrained PCNA-interacting peptide. RSC Chem Biol 2021; 2:1499-1508. [PMID: 34704055 PMCID: PMC8496261 DOI: 10.1039/d1cb00113b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
The human sliding clamp protein known as proliferating cell nuclear antigen (PCNA) orchestrates DNA-replication and -repair and as such is an ideal therapeutic target for proliferative diseases, including cancer. Peptides derived from the human p21 protein bind PCNA with high affinity via a 310-helical binding conformation and are known to shut down DNA-replication. Here, we present studies on short analogues of p21 peptides (143-151) conformationally constrained with a covalent linker between i, i + 4 separated cysteine residues at positions 145 and 149 to access peptidomimetics that target PCNA. The resulting macrocycles bind PCNA with K D values ranging from 570 nM to 3.86 μM, with the bimane-constrained peptide 7 proving the most potent. Subsequent X-ray crystallography and computational modelling studies of the macrocyclic peptides bound to PCNA indicated only the high-affinity peptide 7 adopted the classical 310-helical binding conformation. This suggests the 310-helical conformation is critical to high affinity PCNA binding, however NMR secondary shift analysis of peptide 7 revealed this secondary structure was not well-defined in solution. Peptide 7 is cell permeable and localised to the cell cytosol of breast cancer cells (MDA-MB-468), revealed by confocal microscopy showing blue fluorescence of the bimane linker. The inherent fluorescence of the bimane moiety present in peptide 7 allowed it to be directly imaged in the cell uptake assay, without attachment of an auxiliary fluorescent tag. This highlights a significant benefit of using a bimane constraint to access conformationally constrained macrocyclic peptides. This study identifies a small peptidomimetic that binds PCNA with higher affinity than previous reported p21 macrocycles, and is cell permeable, providing a significant advance toward development of a PCNA inhibitor for therapeutic applications.
Collapse
Affiliation(s)
- Aimee J Horsfall
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Physical Sciences, The University of Adelaide Adelaide South Australia 5005 Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP) Australia
| | - Beth A Vandborg
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Biological Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Zoya Kikhtyak
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide Adelaide South Australia 5005 Australia
| | - Denis B Scanlon
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Physical Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide Adelaide South Australia 5005 Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide Adelaide South Australia 5005 Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Biological Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Andrew D Abell
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Physical Sciences, The University of Adelaide Adelaide South Australia 5005 Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP) Australia
| |
Collapse
|
3
|
Kumari P, Sundaram R, Manohar K, Vasudevan D, Acharya N. Interdomain connecting loop and J loop structures determine cross-species compatibility of PCNA. J Biol Chem 2021; 297:100911. [PMID: 34175309 PMCID: PMC8319368 DOI: 10.1016/j.jbc.2021.100911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic proliferating cell nuclear antigen (PCNA) plays an essential role in orchestrating the assembly of the replisome complex, stimulating processive DNA synthesis, and recruiting other regulatory proteins during the DNA damage response. PCNA and its binding partner network are relatively conserved in eukaryotes, and it exhibits extraordinary structural similarity across species. However, despite this structural similarity, the PCNA of a given species is rarely functional in heterologous systems. In this report, we determined the X-ray crystal structure of Neurospora crassa PCNA (NcPCNA) and compared its structure–function relationship with other available PCNA studies to understand this cross-species incompatibility. We found two regions, the interdomain connecting loop (IDCL) and J loop structures, vary significantly among PCNAs. In particular, the J loop deviates in NcPCNA from that in Saccharomyces cerevisiae PCNA (ScPCNA) by 7 Å. Differences in the IDCL structures result in varied binding affinities of PCNAs for the subunit Pol32 of DNA polymerase delta and for T2-amino alcohol, a small-molecule inhibitor of human PCNA. To validate that these structural differences are accountable for functional incompatibility in S. cerevisiae, we generated NcPCNA mutants mimicking IDCL and J loop structures of ScPCNA. Our genetic analyses suggested that NcPCNA mutants are fully functional in S. cerevisiae. The susceptibility of the strains harboring ScPCNA mimics of NcPCNA to various genotoxic agents was similar to that in yeast cells expressing ScPCNA. Taken together, we conclude that in addition to the overall architecture of PCNA, structures of the IDCL and J loop of PCNA are critical determinants of interspecies functional compatibility.
Collapse
Affiliation(s)
- Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India; Regional Centre for Biotechnology, Faridabad, India
| | - Rajivgandhi Sundaram
- Laboratory of Macromolecular Crystallography, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India; Manipal Academy of Higher Education, Manipal, India
| | - Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Dileep Vasudevan
- Laboratory of Macromolecular Crystallography, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.
| |
Collapse
|
4
|
Altieri AS, Kelman Z. DNA Sliding Clamps as Therapeutic Targets. Front Mol Biosci 2018; 5:87. [PMID: 30406112 PMCID: PMC6204406 DOI: 10.3389/fmolb.2018.00087] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023] Open
Abstract
Chromosomal DNA replication is achieved by an assembly of multi-protein complexes at the replication fork. DNA sliding clamps play an important role in this assembly and are essential for cell viability. Inhibitors of bacterial (β-clamp) and eukaryal DNA clamps, proliferating cell nuclear antigen (PCNA), have been explored for use as antibacterial and anti-cancer drugs, respectively. Inhibitors for bacterial β-clamps include modified peptides, small molecule inhibitors, natural products, and modified non-steroidal anti-inflammatory drugs. Targeting eukaryotic PCNA sliding clamp in its role in replication can be complicated by undesired effects on healthy cells. Some success has been seen in the design of peptide inhibitors, however, other research has focused on targeting PCNA molecules that are modified in diseased states. These inhibitors that are targeted to PCNA involved in DNA repair can sensitize cancer cells to existing anti-cancer therapeutics, and a DNA aptamer has also been shown to inhibit PCNA. In this review, studies in the use of both bacterial and eukaryotic sliding clamps as therapeutic targets are summarized.
Collapse
Affiliation(s)
- Amanda S Altieri
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, Rockville, MD, United States
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, Rockville, MD, United States.,Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, MD, United States
| |
Collapse
|
5
|
Galanos P, Vougas K, Walter D, Polyzos A, Maya-Mendoza A, Haagensen EJ, Kokkalis A, Roumelioti FM, Gagos S, Tzetis M, Canovas B, Igea A, Kanavakis E, Kletsas D, Roninson I, Garbis SD, Nebreda A, Thanos D, Townsend P, Blow JJ, Sørensen CS, Bartek J, Gorgoulis VG. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol 2016; 18:777-89. [PMID: 27323328 PMCID: PMC6535144 DOI: 10.1038/ncb3378] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/19/2016] [Indexed: 12/17/2022]
Abstract
The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (p21) is a cell-cycle checkpoint effector and inducer of senescence, regulated by p53. Yet, evidence suggests that p21 could also be oncogenic, through a mechanism that has so far remained obscure. We report that a subset of atypical cancerous cells strongly expressing p21 showed proliferation features. This occurred predominantly in p53-mutant human cancers, suggesting p53-independent upregulation of p21 selectively in more aggressive tumour cells. Multifaceted phenotypic and genomic analyses of p21-inducible, p53-null, cancerous and near-normal cellular models showed that after an initial senescence-like phase, a subpopulation of p21-expressing proliferating cells emerged, featuring increased genomic instability, aggressiveness and chemoresistance. Mechanistically, sustained p21 accumulation inhibited mainly the CRL4-CDT2 ubiquitin ligase, leading to deregulated origin licensing and replication stress. Collectively, our data reveal the tumour-promoting ability of p21 through deregulation of DNA replication licensing machinery-an unorthodox role to be considered in cancer treatment, since p21 responds to various stimuli including some chemotherapy drugs.
Collapse
Affiliation(s)
- Panagiotis Galanos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Konstantinos Vougas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - David Walter
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Alexander Polyzos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Emma J. Haagensen
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dundee, UK
| | - Antonis Kokkalis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Sarantis Gagos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, University of Athens, Athens, Greece
| | - Begoña Canovas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Ana Igea
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Emanuel Kanavakis
- Department of Medical Genetics, Medical School, University of Athens, Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biology, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Igor Roninson
- Cancer Center, Ordway Research Institute, Albany, NY, USA
| | - Spiros D. Garbis
- Cancer and Clinical Experimental Science Units, Faculty of Medicine, Institute for Life Sciences, Center for Proteome Research, University of Southampton, Southampton, UK
| | - Angel Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Dimitris Thanos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Paul Townsend
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - J. Julian Blow
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dundee, UK
| | | | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Centre, Copenhagen, Denmark
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
6
|
Altieri AS, Ladner JE, Li Z, Robinson H, Sallman ZF, Marino JP, Kelman Z. A small protein inhibits proliferating cell nuclear antigen by breaking the DNA clamp. Nucleic Acids Res 2016; 44:6232-41. [PMID: 27141962 PMCID: PMC5181682 DOI: 10.1093/nar/gkw351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain a canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.
Collapse
Affiliation(s)
- Amanda S Altieri
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Jane E Ladner
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Zhuo Li
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Howard Robinson
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zahur F Sallman
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
7
|
Smith SJ, Hickey RJ, Malkas LH. Validating the disruption of proliferating cell nuclear antigen interactions in the development of targeted cancer therapeutics. Cancer Biol Ther 2016; 17:310-9. [PMID: 26889573 DOI: 10.1080/15384047.2016.1139247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human DNA replication and repair is a highly coordinated process involving the specifically timed actions of numerous proteins and enzymes. Many of these proteins require interaction with proliferating cell nuclear antigen (PCNA) for activation within the process. The interdomain connector loop (IDCL) of PCNA provides a docking site for many of those proteins, suggesting that this region is critically important in the regulation of cellular function. Previous work in this laboratory has demonstrated that a peptide mimicking a specific region of the IDCL (caPeptide) has the ability to disrupt key protein-protein interactions between PCNA and its binding partners, thereby inhibiting DNA replication within the cells. In this study, we confirm the ability of the caPeptide to disrupt DNA replication function using both intact cell and in vitro DNA replication assays. Further, we were able to demonstrate that treatment with caPeptide results in a decrease of polymerase δ activity that correlates with the observed decrease in DNA replication. We have also successfully developed a surface plasmon resonance (SPR) assay to validate the disruption of the PCNA-pol δ interaction with caPeptide.
Collapse
Affiliation(s)
- Shanna J Smith
- a Beckman Research Institute at City of Hope , Department of Molecular and Cellular Biology , Duarte , CA , USA
| | - Robert J Hickey
- b Beckman Research Institute at City of Hope , Department of Molecular Pharmacology , Duarte , CA , USA
| | - Linda H Malkas
- a Beckman Research Institute at City of Hope , Department of Molecular and Cellular Biology , Duarte , CA , USA
| |
Collapse
|
8
|
Traver S, Coulombe P, Peiffer I, Hutchins J, Kitzmann M, Latreille D, Méchali M. MCM9 Is Required for Mammalian DNA Mismatch Repair. Mol Cell 2015; 59:831-9. [DOI: 10.1016/j.molcel.2015.07.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/23/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
|
9
|
Smith SJ, Gu L, Phipps EA, Dobrolecki LE, Mabrey KS, Gulley P, Dillehay KL, Dong Z, Fields GB, Chen YR, Ann D, Hickey RJ, Malkas LH. A Peptide mimicking a region in proliferating cell nuclear antigen specific to key protein interactions is cytotoxic to breast cancer. Mol Pharmacol 2015; 87:263-76. [PMID: 25480843 PMCID: PMC4293449 DOI: 10.1124/mol.114.093211] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a highly conserved protein necessary for proper component loading during the DNA replication and repair process. Proteins make a connection within the interdomain connector loop of PCNA, and much of the regulation is a result of the inherent competition for this docking site. If this target region of PCNA is modified, the DNA replication and repair process in cancer cells is potentially altered. Exploitation of this cancer-associated region has implications for targeted breast cancer therapy. In the present communication, we characterize a novel peptide (caPeptide) that has been synthesized to mimic the sequence identified as critical to the cancer-associated isoform of PCNA. This peptide is delivered into cells using a nine-arginine linking mechanism, and the resulting peptide (R9-cc-caPeptide) exhibits cytotoxicity in a triple-negative breast cancer cell line, MDA-MB-436, while having less of an effect on the normal counterparts (MCF10A and primary breast epithelial cells). The novel peptide was then evaluated for cytotoxicity using various in vivo techniques, including ATP activity assays, flow cytometry, and clonogenetic assays. This cytotoxicity has been observed in other breast cancer cell lines (MCF7 and HCC1937) and other forms of cancer (pancreatic and lymphoma). R9-cc-caPeptide has also been shown to block the association of PCNA with chromatin. Alanine scanning of the peptide sequence, combined with preliminary in silico modeling, gives insight to the disruptive ability and the molecular mechanism of action of the therapeutic peptide in vivo.
Collapse
Affiliation(s)
- Shanna J Smith
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Long Gu
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Elizabeth A Phipps
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Lacey E Dobrolecki
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Karla S Mabrey
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Pattie Gulley
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Kelsey L Dillehay
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Zhongyun Dong
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Gregg B Fields
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Yun-Ru Chen
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - David Ann
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Robert J Hickey
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Linda H Malkas
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| |
Collapse
|
10
|
Li Z, Huang RYC, Yopp DC, Hileman TH, Santangelo TJ, Hurwitz J, Hudgens JW, Kelman Z. A novel mechanism for regulating the activity of proliferating cell nuclear antigen by a small protein. Nucleic Acids Res 2014; 42:5776-89. [PMID: 24728986 PMCID: PMC4027161 DOI: 10.1093/nar/gku239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that associates with and influences the activity of many proteins participating in DNA metabolic processes and cell cycle progression. Previously, an uncharacterized small protein, encoded by TK0808 in the archaeon Thermococcus kodakarensis, was shown to stably interact with PCNA in vivo. Here, we show that this protein, designated Thermococcales inhibitor of PCNA (TIP), binds to PCNA in vitro and inhibits PCNA-dependent activities likely by preventing PCNA trimerization. Using hydrogen/deuterium exchange mass spectrometry and site-directed mutagenesis, the interacting regions of PCNA and TIP were identified. Most proteins bind to PCNA via a PCNA-interacting peptide (PIP) motif that interacts with the inter domain connecting loop (IDCL) on PCNA. TIP, however, lacks any known PCNA-interacting motif, suggesting a new mechanism for PCNA binding and regulation of PCNA-dependent activities, which may support the development of a new subclass of therapeutic biomolecules for inhibiting PCNA.
Collapse
Affiliation(s)
- Zhuo Li
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Richard Y-C Huang
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Daniel C Yopp
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Travis H Hileman
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Thomas J Santangelo
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Jerard Hurwitz
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jeffrey W Hudgens
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
11
|
Zhang S, Zhao H, Darzynkiewicz Z, Zhou P, Zhang Z, Lee EYC, Lee MYWT. A novel function of CRL4(Cdt2): regulation of the subunit structure of DNA polymerase δ in response to DNA damage and during the S phase. J Biol Chem 2013; 288:29550-61. [PMID: 23913683 DOI: 10.1074/jbc.m113.490466] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase δ (Pol δ4) is a heterotetrameric enzyme, whose p12 subunit is degraded in response to DNA damage, leaving behind a trimer (Pol δ3) with altered enzymatic characteristics that participate in gap filling during DNA repair. We demonstrate that CRL4(Cdt2), a key regulator of cell cycle progression that targets replication licensing factors, also targets the p12 subunit of Pol δ4 in response to DNA damage and on entry into S phase. Evidence for the involvement of CRL4(Cdt2) included demonstration that p12 possesses a proliferating cell nuclear antigen-interacting protein-degron (PIP-degron) and that knockdown of the components of the CRL4(Cdt2) complex inhibited the degradation of p12 in response to DNA damage. Analysis of p12 levels in synchronized cell populations showed that p12 is partially degraded in S phase and that this is affected by knockdowns of CUL4A or CUL4B. Laser scanning cytometry of overexpressed wild type p12 and a mutant resistant to degradation showed that the reduction in p12 levels during S phase was prevented by mutation of p12. Thus, CRL4(Cdt2) also regulates the subunit composition of Pol δ during the cell cycle. These studies reveal a novel function of CRL4(Cdt2), i.e. the direct regulation of DNA polymerase δ, adding to its known functions in the regulation of the licensing of replication origins and expanding the scope of its overall control of DNA replication. The formation of Pol δ3 in S phase as a normal aspect of cell cycle progression leads to the novel implications that it is involved in DNA replication as well as DNA repair.
Collapse
Affiliation(s)
- Sufang Zhang
- From the Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | | | | | | | | | | | | |
Collapse
|
12
|
NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain. J Mol Biol 2013; 425:3091-105. [PMID: 23747975 DOI: 10.1016/j.jmb.2013.05.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 01/13/2023]
Abstract
Rev1 is a Y-family translesion synthesis (TLS) DNA polymerase involved in bypass replication across sites of DNA damage and postreplicational gap filling. In the process of TLS, high-fidelity replicative DNA polymerases stalled by DNA damage are replaced by error-prone TLS enzymes responsible for the majority of mutagenesis in eukaryotic cells. The polymerase exchange that gains low-fidelity TLS polymerases access to DNA is mediated by their interactions with proliferating cell nuclear antigen (PCNA). Rev1 stands alone from other Y-family TLS enzymes since it lacks the consensus PCNA-interacting protein box (PIP-box) motif, instead utilizing other modular domains for PCNA binding. Here we report solution NMR structure of an 11-kDa BRCA1 C-terminus (BRCT) domain from Saccharomyces cerevisiae Rev1 and demonstrate with the use of transverse relaxation optimized spectroscopy (TROSY) NMR methods that Rev1-BRCT domain directly interacts with an 87-kDa PCNA in solution. The domain adopts α/β fold (β1-α1-β2-β3-α2-β4-α3-α4) typical for BRCT domain superfamily. PCNA-binding interface of the Rev1-BRCT domain comprises conserved residues of the outer surface of the α1-helix and the α1-β1, β2-β3 and β3-α2 loops. On the other hand, Rev1-BRCT binds to the inter-domain region of PCNA that overlaps with the binding site for the PIP-box motif. Furthermore, Rev1-BRCT domain bound to PCNA can be displaced by increasing amounts of the PIP-box peptide from TLS DNA polymerase polη, suggesting that Rev1-BRCT and polη PIP-box interactions with the same PCNA monomer are mutually exclusive. These results provide structural insights into PCNA recognition by TLS DNA polymerases that help better understand TLS regulation in eukaryotes.
Collapse
|
13
|
Crystal structures of two active proliferating cell nuclear antigens (PCNAs) encoded by Thermococcus kodakaraensis. Proc Natl Acad Sci U S A 2011; 108:2711-6. [PMID: 21270332 DOI: 10.1073/pnas.1019179108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a ring-shaped protein that encircles duplex DNA and plays an essential role in many DNA metabolic processes in archaea and eukarya. The eukaryotic and euryarchaea genomes contain a single gene encoding for PCNA. Interestingly, the genome of the euryarchaeon Thermococcus kodakaraensis contains two PCNA-encoding genes (TK0535 and TK0582), making it unique among the euryarchaea kingdom. It is shown here that the two T. kodakaraensis PCNA proteins support processive DNA synthesis by the polymerase. Both proteins form trimeric structures with characteristics similar to those of other archaeal and eukaryal PCNA proteins. One of the notable differences between the TK0535 and TK0582 rings is that the interfaces are different, resulting in different stabilities for the two trimers. The possible implications of these observations for PCNA functions are discussed.
Collapse
|
14
|
Oda H, Hübner MR, Beck DB, Vermeulen M, Hurwitz J, Spector DL, Reinberg D. Regulation of the histone H4 monomethylase PR-Set7 by CRL4(Cdt2)-mediated PCNA-dependent degradation during DNA damage. Mol Cell 2010; 40:364-76. [PMID: 21035370 PMCID: PMC2999913 DOI: 10.1016/j.molcel.2010.10.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/30/2010] [Accepted: 10/07/2010] [Indexed: 11/26/2022]
Abstract
The histone methyltransferase PR-Set7/Set8 is the sole enzyme that catalyzes monomethylation of histone H4 at K20 (H4K20me1). Previous reports document disparate evidence regarding PR-Set7 expression during the cell cycle, the biological relevance of PR-Set7 interaction with PCNA, and its role in the cell. We find that PR-Set7 is indeed undetectable during S phase and instead is detected during late G2, mitosis, and early G1. PR-Set7 is transiently recruited to laser-induced DNA damage sites through its interaction with PCNA, after which 53BP1 is recruited dependent on PR-Set7 catalytic activity. During the DNA damage response, PR-Set7 interaction with PCNA through a specialized "PIP degron" domain targets it for PCNA-coupled CRL4(Cdt2)-dependent proteolysis. PR-Set7 mutant in its "PIP degron" is now detectable during S phase, during which the mutant protein accumulates. Outside the chromatin context, Skp2 promotes PR-Set7 degradation as well. These findings demonstrate a stringent spatiotemporal control of PR-Set7 that is essential for preserving the genomic integrity of mammalian cells.
Collapse
Affiliation(s)
- Hisanobu Oda
- Department of Biochemistry, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Millau JF, Bastien N, Drouin R. P53 transcriptional activities: a general overview and some thoughts. Mutat Res 2008; 681:118-133. [PMID: 18639648 DOI: 10.1016/j.mrrev.2008.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 05/05/2008] [Accepted: 06/19/2008] [Indexed: 12/20/2022]
Abstract
P53 is a master transcriptional regulator controlling several main cellular pathways. Its role is to adapt gene expression programs in order to maintain cellular homeostasis and genome integrity in response to stresses. P53 is found mutated in about half of human cancers and most mutations are clustered within the DNA-binding domain of the protein resulting in altered p53 transcriptional activity. This illustrates the importance of the gene regulations achieved by p53. The aim of this review is to provide a global overview of the current understanding of p53 transcriptional activities and to discuss some ongoing questions and unresolved points about p53 transcriptional activity.
Collapse
Affiliation(s)
- Jean-François Millau
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke J1H 5N4, QC, Canada
| | - Nathalie Bastien
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke J1H 5N4, QC, Canada
| | - Régen Drouin
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke J1H 5N4, QC, Canada.
| |
Collapse
|
16
|
Unk I, Hajdú I, Fátyol K, Szakál B, Blastyák A, Bermudez V, Hurwitz J, Prakash L, Prakash S, Haracska L. Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc Natl Acad Sci U S A 2006; 103:18107-12. [PMID: 17108083 PMCID: PMC1838714 DOI: 10.1073/pnas.0608595103] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human SHPRH gene is located at the 6q24 chromosomal region, and loss of heterozygosity in this region is seen in a wide variety of cancers. SHPRH is a member of the SWI/SNF family of ATPases/helicases, and it possesses a C(3)HC(4) RING motif characteristic of ubiquitin ligase proteins. In both of these features, SHPRH resembles the yeast Rad5 protein, which, together with Mms2-Ubc13, promotes replication through DNA lesions via an error-free postreplicational repair pathway. Genetic evidence in yeast has indicated a role for Rad5 as a ubiquitin ligase in mediating the Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Here we show that SHPRH is a functional homolog of Rad5. Similar to Rad5, SHPRH physically interacts with the Rad6-Rad18 and Mms2-Ubc13 complexes, and we show that SHPRH protein is a ubiquitin ligase indispensable for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Based on these observations, we predict a role for SHPRH in promoting error-free replication through DNA lesions. Such a role for SHPRH is consistent with the observation that this gene is mutated in a number of cancer cell lines, including those from melanomas and ovarian cancers, which raises the strong possibility that SHPRH function is an important deterrent to mutagenesis and carcinogenesis in humans.
Collapse
Affiliation(s)
- Ildiko Unk
- *Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Ildikó Hajdú
- *Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Károly Fátyol
- *Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Barnabás Szakál
- *Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - András Blastyák
- *Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Vladimir Bermudez
- Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
| | - Jerard Hurwitz
- Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
- To whom correspondence should be addressed. E-mail:
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Lajos Haracska
- *Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| |
Collapse
|
17
|
Rossi ML, Purohit V, Brandt PD, Bambara RA. Lagging strand replication proteins in genome stability and DNA repair. Chem Rev 2006; 106:453-73. [PMID: 16464014 DOI: 10.1021/cr040497l] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marie L Rossi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
18
|
Lee SD, Alani E. Analysis of interactions between mismatch repair initiation factors and the replication processivity factor PCNA. J Mol Biol 2005; 355:175-84. [PMID: 16303135 DOI: 10.1016/j.jmb.2005.10.059] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/12/2005] [Accepted: 10/17/2005] [Indexed: 11/28/2022]
Abstract
In eukaryotes, the DNA replication factor PCNA is loaded onto primer-template junctions to act as a processivity factor for DNA polymerases. Genetic and biochemical studies suggest that PCNA also functions in early steps in mismatch repair (MMR) to facilitate the repair of misincorporation errors generated during DNA replication. These studies have shown that PCNA interacts directly with several MMR components, including MSH3, MSH6, MLH1, and EXO1. At present, little is known about how these interactions contribute to the mismatch repair mechanism. The interaction between MLH1 and PCNA is of particular interest because MLH1-PMS1 is thought to act as a matchmaker to signal mismatch recognition to downstream repair events; in addition, PCNA has been hypothesized to act in strand discrimination steps in MMR. Here, we utilized both genetic and surface plasmon resonance techniques to characterize the MLH1-PMS1-PCNA interaction. These analyses enabled us to determine the stability of the complex (K(D) = 300 nM) and to identify residues (572-579) in MLH1 and PCNA (126,128) that appear important to maintain this stability. We favor a model in which PCNA acts as a scaffold for consecutive protein-protein interactions that allow for the coordination of MMR steps.
Collapse
Affiliation(s)
- Susan D Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | |
Collapse
|
19
|
Haracska L, Acharya N, Unk I, Johnson RE, Hurwitz J, Prakash L, Prakash S. A single domain in human DNA polymerase iota mediates interaction with PCNA: implications for translesion DNA synthesis. Mol Cell Biol 2005; 25:1183-90. [PMID: 15657443 PMCID: PMC544020 DOI: 10.1128/mcb.25.3.1183-1190.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerases (Pols) of the Y family rescue stalled replication forks by promoting replication through DNA lesions. Humans have four Y family Pols, eta, iota, kappa, and Rev1, of which Pols eta, iota, and kappa have been shown to physically interact with proliferating cell nuclear antigen (PCNA) and be functionally stimulated by it. However, in sharp contrast to the large increase in processivity that PCNA binding imparts to the replicative Pol, Poldelta, the processivity of Y family Pols is not enhanced upon PCNA binding. Instead, PCNA binding improves the efficiency of nucleotide incorporation via a reduction in the apparent K(m) for the nucleotide. Here we show that Poliota interacts with PCNA via only one of its conserved PCNA binding motifs, regardless of whether PCNA is bound to DNA or not. The mode of PCNA binding by Poliota is quite unlike that in Poldelta, where multisite interactions with PCNA provide for a very tight binding of the replicating Pol with PCNA. We discuss the implications of these observations for the accuracy of DNA synthesis during translesion synthesis and for the process of Pol exchange at the lesion site.
Collapse
Affiliation(s)
- Lajos Haracska
- Sealy Center for Molecular Science, University of Texas Medical Branch, 6.104 Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Granja AG, Nogal ML, Hurtado C, Salas J, Salas ML, Carrascosa AL, Revilla Y. Modulation of p53 cellular function and cell death by African swine fever virus. J Virol 2004; 78:7165-74. [PMID: 15194793 PMCID: PMC421689 DOI: 10.1128/jvi.78.13.7165-7174.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. We have studied the function of p53 in African swine fever virus (ASFV) infection by determining the expression and activity of this transcription factor in infected cells. p53 levels are increased at early times of infection and are maintained throughout the infectious cycle. The protein is transcriptionally active, stabilized by phosphorylation, and localized in the nucleus. p53 induces the expression of p21 and Mdm2. Strikingly, these two proteins are located at the cytoplasmic virus factories. The retention of Mdm2 at the factory may represent a viral mechanism to prevent p53 inactivation by the protein. The expression of apoptotic proteins, such as Bax or active caspase-3, is also increased following ASFV infection, although the increase in caspase-3 does not appear to be, at least exclusively, p53 dependent. Bax probably plays a role in the induction of apoptosis in the infected cells, as suggested by the release of cytochrome c from the mitochondria. The significance of p21 induction and localization is discussed in relation to the shutoff of cellular DNA synthesis that is observed in ASFV-infected cells.
Collapse
Affiliation(s)
- Aitor G Granja
- Centro de Biología Molecular Severo Ochoa, Universidad Autonoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
DNA polymerase sliding clamps are a family of ring-shaped proteins that play essential roles in DNA metabolism. The proteins from the three domains of life, Bacteria, Archaea and Eukarya, as well as those from bacteriophages and viruses, were shown to interact with a large number of cellular factors and to influence their activity. In the last several years a large number of such proteins have been identified and studied. Here the various proteins that have been shown to interact with the sliding clamps of Bacteria, Archaea and Eukarya are summarized.
Collapse
Affiliation(s)
- Jonathan B Vivona
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | |
Collapse
|
22
|
Liu L, Rodriguez-Belmonte EM, Mazloum N, Xie B, Lee MYWT. Identification of a novel protein, PDIP38, that interacts with the p50 subunit of DNA polymerase delta and proliferating cell nuclear antigen. J Biol Chem 2003; 278:10041-7. [PMID: 12522211 DOI: 10.1074/jbc.m208694200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast two-hybrid screening method was used to identify novel proteins that associate with human DNA polymerase delta (pol delta). Two baits were used in this study. These were the large (p125) and small (p50) subunits of the core pol delta heterodimer. p50 was the only positive isolated with p125 as the bait. Two novel protein partners, named PDIP38 and PDIP46, were identified from the p50 screen. In this study, the interaction of PDIP38 with pol delta was further characterized. PDIP38 encodes a protein of 368 amino acids whose C terminus is conserved with the bacterial APAG protein and with the F box A protein. It was found that PDIP38 also interacts with proliferating cell nuclear antigen (PCNA). The ability of PDIP38 to interact with both the p50 subunit of pol delta and with PCNA was confirmed by pull-down assays using glutathione S-transferase (GST)-PDIP38 fusion proteins. The PCNA-PDIP38 interaction was also demonstrated by PCNA overlay experiments. The association of PDIP38 with pol delta was shown to occur in calf thymus tissue and mammalian cell extracts by GST-PDIP38 pull-down and coimmunoprecipitation experiments. PDIP38 was associated with pol delta isolated by immunoaffinity chromatography. The association of PDIP38 with pol delta could also be demonstrated by native gel electrophoresis.
Collapse
Affiliation(s)
- Li Liu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595, USA
| | | | | | | | | |
Collapse
|
23
|
Lu X, Tan CK, Zhou JQ, You M, Carastro LM, Downey KM, So AG. Direct interaction of proliferating cell nuclear antigen with the small subunit of DNA polymerase delta. J Biol Chem 2002; 277:24340-5. [PMID: 11986310 DOI: 10.1074/jbc.m200065200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between proliferating cell nuclear antigen (PCNA) and DNA polymerase delta is essential for processive DNA synthesis during DNA replication/repair; however, the identity of the subunit of DNA polymerase delta that directly interacts with PCNA has not been resolved until now. In the present study we have used reciprocal co-immunoprecipitation experiments to determine which of the two subunits of core DNA polymerase delta, the 125-kDa catalytic subunit or the 50-kDa small subunit, directly interacts with PCNA. We found that PCNA co-immunoprecipitated with human p50, as well as calf thymus DNA polymerase delta heterodimer, but not with p125 alone, suggesting that PCNA directly interacts with p50 but not with p125. A PCNA-binding motif, similar to the sliding clamp-binding motif of bacteriophage RB69 DNA polymerase, was identified in the N terminus of p50. A 22-amino acid oligopeptide containing this sequence (MRPFL) was shown to bind PCNA by far Western analysis and to compete with p50 for binding to PCNA in co-immunoprecipitation experiments. The binding of p50 to PCNA was inhibited by p21, suggesting that the two proteins compete for the same binding site on PCNA. These results establish that the interaction of PCNA with DNA polymerase delta is mediated through the small subunit of the enzyme.
Collapse
Affiliation(s)
- Xiaoqing Lu
- Departments of Medicine and Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Macip S, Igarashi M, Fang L, Chen A, Pan ZQ, Lee SW, Aaronson SA. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 2002; 21:2180-8. [PMID: 11980715 PMCID: PMC125979 DOI: 10.1093/emboj/21.9.2180] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1/Sdi1) was identified initially as a gene induced in senescent cells and itself has been shown to cause permanent growth arrest/senescence. Reactive oxygen species (ROS), a byproduct of oxidative processes, can also induce an irreversible growth arrest similar to senescence. Here we show that p21 increased intracellular levels of ROS both in normal fibroblasts and in p53-negative cancer cells. N-acetyl-L-cysteine, an ROS inhibitor, rescued p21-induced senescence, showing that ROS elevation is necessary for induction of the permanent growth arrest phenotype. p16(Ink4a), a CDK4- and CDK6-specific inhibitor, failed to increase ROS levels, and cell cycle arrest induced by p16 was reversible following its down-regulation, demonstrating the specificity of this p21 effect. A p21 mutant that lacked the ability to bind proliferating cell nuclear antigen (PCNA) retained the ability to induce both ROS and permanent growth arrest. All of these findings establish that p21 mediates senescence by a mechanism involving ROS accumulation which does not require either its PCNA binding or the CDK inhibitory functions shared with p16.
Collapse
Affiliation(s)
| | | | - Li Fang
- Derald H.Ruttenberg Cancer Center, Mount Sinai School of Medicine, One Gustave L.Levy Place, Box 1130, New York, NY 10029 and
Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115, USA Present address: Cor Therapeutics, 256 East Grand Avenue, South San Francisco, CA 94403, USA Corresponding author e-mail:
| | | | | | - Sam W. Lee
- Derald H.Ruttenberg Cancer Center, Mount Sinai School of Medicine, One Gustave L.Levy Place, Box 1130, New York, NY 10029 and
Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115, USA Present address: Cor Therapeutics, 256 East Grand Avenue, South San Francisco, CA 94403, USA Corresponding author e-mail:
| | - Stuart A. Aaronson
- Derald H.Ruttenberg Cancer Center, Mount Sinai School of Medicine, One Gustave L.Levy Place, Box 1130, New York, NY 10029 and
Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115, USA Present address: Cor Therapeutics, 256 East Grand Avenue, South San Francisco, CA 94403, USA Corresponding author e-mail:
| |
Collapse
|
25
|
Haracska L, Unk I, Johnson RE, Phillips BB, Hurwitz J, Prakash L, Prakash S. Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA. Mol Cell Biol 2002; 22:784-91. [PMID: 11784855 PMCID: PMC133560 DOI: 10.1128/mcb.22.3.784-791.2002] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2001] [Revised: 10/19/2001] [Accepted: 10/23/2001] [Indexed: 11/20/2022] Open
Abstract
Humans have three DNA polymerases, Poleta, Polkappa, and Poliota, which are able to promote replication through DNA lesions. However, the mechanism by which these DNA polymerases are targeted to the replication machinery stalled at a lesion site has remained unknown. Here, we provide evidence for the physical interaction of human Polkappa (hPolkappa) with proliferating cell nuclear antigen (PCNA) and show that PCNA, replication factor C (RFC), and replication protein A (RPA) act cooperatively to stimulate the DNA synthesis activity of hPolkappa. The processivity of hPolkappa, however, is not significantly increased in the presence of these protein factors. The efficiency (V(max)/K(m)) of correct nucleotide incorporation by hPolkappa is enhanced approximately 50- to 200-fold in the presence of PCNA, RFC, and RPA, and this increase in efficiency is achieved by a reduction in the apparent K(m) for the nucleotide. Although in the presence of these protein factors, the efficiency of the insertion of an A nucleotide opposite an abasic site is increased approximately 40-fold, this reaction still remains quite inefficient; thus, it is unlikely that hPolkappa would bypass an abasic site by inserting a nucleotide opposite the site.
Collapse
Affiliation(s)
- Lajos Haracska
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1061, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Key-Sun Kim
- Life Sciences Division, KIST, Cheongyang Box 131, Seoul 130-650, Korea.
| |
Collapse
|
27
|
Affiliation(s)
- Nam Deuk Kim
- Department of Pharmacy, Pusan National University, Pusan Cancer Research Center, Korea.
| | | | | | | |
Collapse
|
28
|
Haracska L, Johnson RE, Unk I, Phillips BB, Hurwitz J, Prakash L, Prakash S. Targeting of human DNA polymerase iota to the replication machinery via interaction with PCNA. Proc Natl Acad Sci U S A 2001; 98:14256-61. [PMID: 11724965 PMCID: PMC64669 DOI: 10.1073/pnas.261560798] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2001] [Indexed: 11/18/2022] Open
Abstract
Human DNA polymerase iota (hPoliota) promotes translesion synthesis by inserting nucleotides opposite highly distorting or noninstructional DNA lesions. Here, we provide evidence for the physical interaction of hPoliota with proliferating cell nuclear antigen (PCNA), and show that PCNA, together with replication factor C (RFC) and replication protein A (RPA), stimulates the DNA synthetic activity of hPoliota. In the presence of these protein factors, on undamaged DNA, the efficiency (V(max)/K(m)) of correct nucleotide incorporation by hPoliota is increased approximately 80-150-fold, and this increase in efficiency results from a reduction in the apparent K(m) for the nucleotide. PCNA, RFC, and RPA also stimulate nucleotide incorporation opposite the 3'-T of the (6) thymine-thymine (T-T) photoproduct and opposite an abasic site. The interaction of hPoliota with PCNA implies that the targeting of this polymerase to the replication machinery stalled at a lesion site is achieved via this association.
Collapse
Affiliation(s)
- L Haracska
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555-1061, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Haracska L, Johnson RE, Unk I, Phillips B, Hurwitz J, Prakash L, Prakash S. Physical and functional interactions of human DNA polymerase eta with PCNA. Mol Cell Biol 2001; 21:7199-206. [PMID: 11585903 PMCID: PMC99895 DOI: 10.1128/mcb.21.21.7199-7206.2001] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2001] [Accepted: 07/27/2001] [Indexed: 11/20/2022] Open
Abstract
Human DNA polymerase eta (hPoleta) functions in the error-free replication of UV-damaged DNA, and mutations in hPoleta cause cancer-prone syndrome, the variant form of xeroderma pigmentosum. However, in spite of its key role in promoting replication through a variety of distorting DNA lesions, the manner by which hPoleta is targeted to the replication machinery stalled at a lesion site remains unknown. Here, we provide evidence for the physical interaction of hPoleta with proliferating cell nuclear antigen (PCNA) and show that mutations in the PCNA binding motif of hPoleta inactivate this interaction. PCNA, together with replication factor C and replication protein A, stimulates the DNA synthetic activity of hPoleta, and steady-state kinetic studies indicate that this stimulation accrues from an increase in the efficiency of nucleotide insertion resulting from a reduction in the apparent K(m) for the incoming nucleotide.
Collapse
Affiliation(s)
- L Haracska
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1061, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Scott M, Bonnefin P, Vieyra D, Boisvert FM, Young D, Bazett-Jones DP, Riabowol K. UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. J Cell Sci 2001; 114:3455-62. [PMID: 11682605 DOI: 10.1242/jcs.114.19.3455] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that UV-induced binding of p21WAF1 to PCNA through the PCNA-interacting protein (PIP) domain in p21WAF1 promotes a switch from DNA replication to DNA repair by altering the PCNA protein complex. Here we show that the p33ING1b isoform of the ING1 candidate tumour suppressor contains a PIP domain. UV rapidly induces p33ING1b to bind PCNA competitively through this domain, a motif also found in DNA ligase, the DNA repair-associated FEN1 and XPG exo/endonucleases, and DNA methyltransferase. Interaction of p33ING1b with PCNA occurs between a significant proportion of ING1 and PCNA, increases more than tenfold in response to UV and is specifically inhibited by overexpression of p21WAF1, but not by p16MTS1, which has no PIP sequence. In contrast to wild-type p33ING1b, ING1 PIP mutants that do not bind PCNA do not induce apoptosis, but protect cells from UV-induced apoptosis, suggesting a role for this PCNA-p33ING1b interaction in eliminating UV-damaged cells through programmed cell death. These data indicate that ING1 competitively binds PCNA through a site used by growth regulatory and DNA damage proteins, and may contribute to regulating the switch from DNA replication to DNA repair by altering the composition of the PCNA protein complex.
Collapse
Affiliation(s)
- M Scott
- Department of Biochemistry, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Ling X, Kamangar S, Boytim ML, Kelman Z, Huie P, Lyu SC, Sibley RK, Hurwitz J, Clayberger C, Krensky AM. Proliferating cell nuclear antigen as the cell cycle sensor for an HLA-derived peptide blocking T cell proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6188-92. [PMID: 10843669 DOI: 10.4049/jimmunol.164.12.6188] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synthetic peptides corresponding to structural regions of HLA molecules are novel immunosuppressive agents. A peptide corresponding to residues 65-79 of the alpha-chain of HLA-DQA03011 (DQ65-79) blocks cell cycle progression from early G1 to the G1 restriction point, which inhibits cyclin-dependent kinase-2 activity and phosphorylation of the retinoblastoma protein. A yeast two-hybrid screen identified proliferating cell nuclear Ag (PCNA) as a cellular ligand for this peptide, whose interaction with PCNA was further confirmed by in vitro biochemistry. Electron microscopy demonstrates that the DQ65-79 peptide enters the cell and colocalizes with PCNA in the T cell nucleus in vivo. Binding of the DQ65-79 peptide to PCNA did not block polymerase delta (pol delta)-dependent DNA replication in vitro. These findings support a key role for PCNA as a sensor of cell cycle progression and reveal an unanticipated function for conserved regions of HLA molecules.
Collapse
Affiliation(s)
- X Ling
- Department of Pediatrics, Cardiothoracic Surgery, and Pathology, Stanford University, CA 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kelman Z, Hurwitz J. A unique organization of the protein subunits of the DNA polymerase clamp loader in the archaeon Methanobacterium thermoautotrophicum deltaH. J Biol Chem 2000; 275:7327-36. [PMID: 10702304 DOI: 10.1074/jbc.275.10.7327] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication factor C (RFC, also called activator 1), in conjunction with proliferating cell nuclear antigen (PCNA), is responsible for processive DNA synthesis catalyzed by the eukaryotic replicative DNA polymerases delta and epsilon. Here we report the isolation and characterization of homologues of RFC and PCNA from the archaeon, Methanobacterium thermoautotrophicum DeltaH. In contrast to the five subunit RFC complex isolated from eukaryotic cells, the mthRFC contains only two subunits. The two genes encoding the RFC subunits called, mthRFC1 and mthRFC3, were cloned, and the proteins (54.4 and 36.8 kDa, respectively) were overexpressed in Escherichia coli and purified individually and as a complex. The gene encoding PCNA was also cloned, and the protein was purified after overexpression in E. coli. Based on sizing column elution and subunit composition, the mthRFC complex appears to be a hexamer consisting of two mthRFC1 protomers and four mthRFC3 protomers. Although mthRFC differs in organization from its eukaryotic counterpart, it was shown to be functionally similar to eukaryotic RFC in: (i) catalyzing DNA-dependent ATP hydrolysis; (ii) binding preferentially to DNA primer ends; (iii) loading mthPCNA onto singly nicked circular DNA; and (iv) supporting mthPolB-catalyzed PCNA-dependent DNA chain elongation. The importance and roles of RFC and PCNA in M. thermoautotrophicum DeltaH replication are discussed.
Collapse
Affiliation(s)
- Z Kelman
- Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | |
Collapse
|
33
|
Abstract
New structural information on the architecture of a DNA replisome provides insights into a number of DNA metabolic processes and their modulation by circular 'sliding damps', which form rings around DNA that play an Important role in processive processes such as replication.
Collapse
Affiliation(s)
- M M Hingorani
- The Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
34
|
Shamoo Y, Steitz TA. Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 1999; 99:155-66. [PMID: 10535734 DOI: 10.1016/s0092-8674(00)81647-5] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have solved the crystal structures of the bacteriophage RB69 sliding clamp, its complex with a peptide essential for DNA polymerase interactions, and the DNA polymerase complexed with primer-template DNA. The editing complex structure shows a partially melted duplex DNA exiting from the exonuclease domain at an unexpected angle and significant changes in the protein structure. The clamp complex shows the C-terminal 11 residues of polymerase bound in a hydrophobic pocket, and it allows docking of the editing and clamp structures together. The peptide binds to the sliding clamp at a position identical to that of a replication inhibitor peptide bound to PCNA, suggesting that the replication inhibitor protein p21CIP1 functions by competing with eukaryotic polymerases for the same binding pocket on the clamp.
Collapse
Affiliation(s)
- Y Shamoo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8814, USA
| | | |
Collapse
|
35
|
Kelman Z, Zuo S, Arroyo MP, Wang TS, Hurwitz J. The C-terminal region of Schizosaccaromyces pombe proliferating cell nuclear antigen is essential for DNA polymerase activity. Proc Natl Acad Sci U S A 1999; 96:9515-20. [PMID: 10449724 PMCID: PMC22240 DOI: 10.1073/pnas.96.17.9515] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA), the processivity factor (sliding clamp) of DNA polymerases (Pols), plays essential roles in DNA metabolism. In this report, we examined the functional role of the C-terminal region of Schizosaccaromyces pombe PCNA both in vitro and in vivo. The deletion or Ala substitution of the last 9 aa (252-260A), as well as Ala replacement of only 4 aa (252-255A) at the C terminus, failed to substitute for the wild-type PCNA protein for cell growth in S. pombe. Two other PCNA mutant proteins, A251V and K253E, exhibited cold-sensitive phenotypes. Several yeast strains harboring mutations, including those at the acidic C-terminal region, showed elevated sensitivity to DNA damage. The ability of the mutant PCNA proteins to stimulate DNA synthesis by Poldelta and Polepsilon also was studied in vitro. The mutant proteins that did not support cell growth and a mutant protein containing a single amino acid substitution at position 252, where Pro is replaced by Ala, stimulated Poldelta and Polepsilon activities poorly. All mutant PCNA proteins, however, were assembled around DNA by the clamp loader, replication factor C, efficiently. Thus, the C-terminal region of PCNA is important for interactions with both Poldelta and Polepsilon and for cell survival after DNA damage. The C terminus of sliding clamps from other organisms has been shown to be important for clamp loading as well as polymerase interactions. The relationship between the conserved sequence in this region in different organisms is discussed.
Collapse
Affiliation(s)
- Z Kelman
- Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue/Box 97, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
36
|
Kohn KW. Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 1999; 10:2703-34. [PMID: 10436023 PMCID: PMC25504 DOI: 10.1091/mbc.10.8.2703] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Eventually to understand the integrated function of the cell cycle regulatory network, we must organize the known interactions in the form of a diagram, map, and/or database. A diagram convention was designed capable of unambiguous representation of networks containing multiprotein complexes, protein modifications, and enzymes that are substrates of other enzymes. To facilitate linkage to a database, each molecular species is symbolically represented only once in each diagram. Molecular species can be located on the map by means of indexed grid coordinates. Each interaction is referenced to an annotation list where pertinent information and references can be found. Parts of the network are grouped into functional subsystems. The map shows how multiprotein complexes could assemble and function at gene promoter sites and at sites of DNA damage. It also portrays the richness of connections between the p53-Mdm2 subsystem and other parts of the network.
Collapse
Affiliation(s)
- K W Kohn
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
37
|
Zhang G, Gibbs E, Kelman Z, O'Donnell M, Hurwitz J. Studies on the interactions between human replication factor C and human proliferating cell nuclear antigen. Proc Natl Acad Sci U S A 1999; 96:1869-74. [PMID: 10051561 PMCID: PMC26703 DOI: 10.1073/pnas.96.5.1869] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a processivity factor required for DNA polymerase delta (or epsilon)-catalyzed DNA synthesis. When loaded onto primed DNA templates by replication factor C (RFC), PCNA acts to tether the polymerase to DNA, resulting in processive DNA chain elongation. In this report, we describe the identification of two separate peptide regions of human PCNA spanning amino acids 36-55 and 196-215 that bind RFC by using the surface plasmon resonance technique. Site-directed mutagenesis of residues within these regions in human PCNA identified two specific sites that affected the biological activity of PCNA. Replacement of the aspartate 41 residue by an alanine, serine, or asparagine significantly impaired the ability of PCNA to (i) support the RFC/PCNA-dependent polymerase delta-catalyzed elongation of a singly primed DNA template; (ii) stimulate RFC-catalyzed DNA-dependent hydrolysis of ATP; (iii) be loaded onto DNA by RFC; and (iv) activate RFC-independent polymerase delta-catalyzed synthesis of poly dT. Introduction of an alanine at position 210 in place of an arginine also reduced the efficiency of PCNA in supporting RFC-dependent polymerase delta-catalyzed elongation of a singly primed DNA template. However, this mutation did not significantly alter the ability of PCNA to stimulate DNA polymerase delta in the absence of RFC but substantially lowered the efficiency of RFC-catalyzed reactions. These results are in keeping with a model in which surface exposed regions of PCNA interact with RFC and the subsequent loading of PCNA onto DNA orients the elongation complex in a manner essential for processive DNA synthesis.
Collapse
Affiliation(s)
- G Zhang
- Program in Molecular Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue/Box 97, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
38
|
Podust VN, Tiwari N, Stephan S, Fanning E. Replication factor C disengages from proliferating cell nuclear antigen (PCNA) upon sliding clamp formation, and PCNA itself tethers DNA polymerase delta to DNA. J Biol Chem 1998; 273:31992-9. [PMID: 9822671 DOI: 10.1074/jbc.273.48.31992] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Replication factor C (RF-C) and proliferating cell nuclear antigen (PCNA) assemble a complex, called sliding clamp, onto DNA. The clamp in turn loads DNA polymerases (pol) delta and epsilon to form the corresponding holoenzymes, which play an essential role in replication of eukaryotic chromosomal DNA and in several DNA repair pathways. To determine the fate of RF-C after loading of PCNA onto DNA, we tagged the RF-C subunit p37 with a protein kinase A recognition motif, so that the recombinant five-subunit RF-C complex could be 32P-labeled and quantitatively detected in femtomolar amounts. Nonspecific binding of RF-C to DNA was minimized by replacing the p140 subunit with an N-terminally truncated p140 subunit lacking the previously identified nonspecific DNA binding domain. Neither of these modifications impaired the clamp loading activity of the recombinant RF-C. Using gel filtration techniques, we demonstrated that RF-C dissociated from the DNA after clamp loading or pol delta holoenzyme assembly, while PCNA or PCNA.pol delta complex remained bound to DNA. PCNA catalytically loaded onto the template-primer was sufficient by itself to tether pol delta and stimulate DNA replication. The readdition of RF-C to the isolated PCNA.DNA complex did not further stimulate pol delta DNA synthesis. We conclude that pol delta holoenzyme consists of PCNA and pol delta core and that RF-C serves only to load PCNA clamp.
Collapse
Affiliation(s)
- V N Podust
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235 and Vanderbilt Cancer Center, Nashville, Tennessee 37232-6838, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Replication of the two template strands at eukaryotic cell DNA replication forks is a highly coordinated process that ensures accurate and efficient genome duplication. Biochemical studies, principally of plasmid DNAs containing the Simian Virus 40 origin of DNA replication, and yeast genetic studies have uncovered the fundamental mechanisms of replication fork progression. At least two different DNA polymerases, a single-stranded DNA-binding protein, a clamp-loading complex, and a polymerase clamp combine to replicate DNA. Okazaki fragment synthesis involves a DNA polymerase-switching mechanism, and maturation occurs by the recruitment of specific nucleases, a helicase, and a ligase. The process of DNA replication is also coupled to cell-cycle progression and to DNA repair to maintain genome integrity.
Collapse
Affiliation(s)
- S Waga
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
40
|
Gerik KJ, Li X, Pautz A, Burgers PM. Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 1998; 273:19747-55. [PMID: 9677405 DOI: 10.1074/jbc.273.31.19747] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast DNA polymerase delta (Poldelta) has three subunits of 125, 58, and 55 kDa. The gene for the 125-kDa catalytic subunit (POL3) has been known for several years. Here we describe the cloning of the genes for the 58- and 55-kDa subunits using peptide sequence analysis and searching of the yeast genome data base. The 58-kDa subunit, encoded by the POL31 gene, shows 23-28% sequence similarity to the 48-kDa subunit of human Poldelta and to S. pombe Cdc1. POL31 is allelic to HYS2 and SDP5. The 55-kDa subunit is encoded by the POL32 gene (ORF YJR043c in the yeast data base). Very limited sequence similarity was observed between Pol32p and Schizosaccharomyces pombe Cdc27, the functionally analogous subunit in S. pombe Poldelta. The POL32 gene is not essential, but a deletion mutant shows cold sensitivity for growth and is sensitive to hydroxyurea and DNA damaging agents. In addition, lethality was observed when the POL32 deletion mutation was combined with conditional mutations in either the POL3 or POL31 gene. Pol32Delta strains are weak antimutators and are defective for damage-induced mutagenesis. The POL32 gene product binds proliferating cell nuclear antigen. A gel filtration analysis showed that Pol32p is a dimer in solution. When POL31 and POL32 were co-expressed in Escherichia coli, a tetrameric (Pol31p.Pol32p)2 species was detected by gel filtration, indicating that the two subunits form a complex.
Collapse
Affiliation(s)
- K J Gerik
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
41
|
Waga S, Stillman B. Cyclin-dependent kinase inhibitor p21 modulates the DNA primer-template recognition complex. Mol Cell Biol 1998; 18:4177-87. [PMID: 9632802 PMCID: PMC109002 DOI: 10.1128/mcb.18.7.4177] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 04/28/1998] [Indexed: 02/07/2023] Open
Abstract
The p21 protein, a cyclin-dependent kinase (CDK) inhibitor, is capable of binding to both cyclin-CDK and the proliferating cell nuclear antigen (PCNA). Through its binding to PCNA, p21 can regulate the function of PCNA differentially in replication and repair. To gain an understanding of the precise mechanism by which p21 affects PCNA function, we have designed a new assay for replication factor C (RFC)-catalyzed loading of PCNA onto DNA, a method that utilizes a primer-template DNA attached to agarose beads via biotin-streptavidin. Using this assay, we showed that RFC remains transiently associated with PCNA on the DNA after the loading reaction. Addition of p21 did not inhibit RFC-dependent PCNA loading; rather, p21 formed a stable complex with PCNA on the DNA. In contrast, the formation of a p21-PCNA complex on the DNA resulted in the displacement of RFC from the DNA. The nonhydrolyzable analogs of ATP, adenosine-5'-O-(3-thiotriphosphate) (ATPgammaS) and adenyl-imidodiphosphate, each stabilized the primer recognition complex containing RFC and PCNA in the absence of p21. RFC in the ATPgammaS-activated complex was no longer displaced from the DNA by p21. We propose that p21 stimulates the dissociation of the RFC from the PCNA-DNA complex in a process that requires ATP hydrolysis and then inhibits subsequent PCNA-dependent events in DNA replication. The data suggest that the conformation of RFC in the primer recognition complex might change on hydrolysis of ATP. We also suggest that the p21-PCNA complex that remains attached to DNA might function to tether cyclin-CDK complexes to specific regions of the genome.
Collapse
Affiliation(s)
- S Waga
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
42
|
Oku T, Ikeda S, Sasaki H, Fukuda K, Morioka H, Ohtsuka E, Yoshikawa H, Tsurimoto T. Functional sites of human PCNA which interact with p21 (Cip1/Waf1), DNA polymerase delta and replication factor C. Genes Cells 1998; 3:357-69. [PMID: 9734782 DOI: 10.1046/j.1365-2443.1998.00199.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND PCNA, an eukaryotic DNA sliding clamp interacts with replication factors and the cell cycle protein, p21(Cip1/Waf1) and functions as a molecular switch for DNA elongation. To understand how DNA replication is regulated through PCNA, elucidation of the precise mechanisms of these protein interactions is necessary. RESULTS Loop-region mutants in which human PCNA sequences were substituted with the corresponding Saccharomyces cerevisiae PCNA regions were prepared. Analysis of their functions, along with previously prepared alanine scanning mutants, demonstrated that some loops interact with DNA polymerase delta (pol delta) and replication factor C (RFC). The p21 binding sites of PCNA, mapped by affinity measurement of the mutant forms, found to be located within a distinct structure of the PCNA monomer, overlap with RFC- and pol delta-interaction sites. Competition between p21 and pol delta or RFC for binding to PCNA results in efficient inhibition of its stimulation of pol delta DNA synthesis and RFC ATPase but not of PCNA loading on DNA by RFC. CONCLUSIONS Semi-saturated amounts of p21 selectively block formation of the active pol delta complex but not the RFC-PCNA complex at 3'-ends of DNA primers. This differential effect may explain the specific inhibition of DNA replication by p21.
Collapse
Affiliation(s)
- T Oku
- Faculty of Biological Science, Nara Institute of Science and Technology, Takayama, Ikoma, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y. Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci U S A 1998; 95:1392-7. [PMID: 9465025 PMCID: PMC19016 DOI: 10.1073/pnas.95.4.1392] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proper control of the mammalian cell cycle requires the function of cyclin-dependent kinase (CDK) inhibitors. The p21 family currently includes three distinct genes, p21, p27(Kip1), and p57(Kip2), that share a common N-terminal domain for binding to and inhibiting the kinase activity of CDK-cyclin complexes. The p21 protein also binds to proliferating cell nuclear antigen (PCNA) through a separate C-terminal domain affecting DNA replication and repair. The p27 and p57 proteins also each contain unique C-terminal domains whose functions are unknown. Here we show that the human p57 protein, like p21, contains a PCNA-binding domain within its C terminus that, when separated from its N-terminal CDK-cyclin binding domain, can prevent DNA replication in vitro and S phase entry in vivo. Disruption of either CDK/cyclin or PCNA binding partially reduced p57's ability to suppress myc/RAS-mediated transformation in primary cells, while loss of both inhibitory functions completely eliminated p57's suppressive activity. Thus, control of cell cycle and suppression of cell transformation by p57 require both CDK and PCNA inhibitory activity, and disruption of either or both functions may lead to uncontrolled cell growth.
Collapse
Affiliation(s)
- H Watanabe
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | |
Collapse
|
44
|
Zhang P, Sun Y, Hsu H, Zhang L, Zhang Y, Lee MY. The interdomain connector loop of human PCNA is involved in a direct interaction with human polymerase delta. J Biol Chem 1998; 273:713-9. [PMID: 9422722 DOI: 10.1074/jbc.273.2.713] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is required for processive DNA synthesis catalyzed by DNA polymerase delta (pol delta) and polymerase epsilon. We have shown that the epitope of a human PCNA inhibitory monoclonal antibody (74B1), which inhibits the PCNA stimulation of DNA synthesis catalyzed by pol delta, maps to residues 121-135, which overlap the interdomain connector loop of PCNA (residues 119-133). We have mutagenized residues 122-133 of human PCNA. The mutant proteins were expressed in Escherichia coli and purified to near-homogeneity. The interactions of the mutants with antibody 74B1 were examined; mutation of Gly-127 abolished the recognition by antibody 74B1 in a Western blot analysis, confirming the epitope assignment of 74B1. Mutations of Val-123, Leu-126, Gly-127, and Ile-128 affected the ability of PCNA to stimulate DNA synthesis by pol delta in several different assays. These mutations affected the interactions between PCNA and pol delta as determined by enzyme-linked immunosorbent assays. These mutants were also affected in their abilities to form a ternary complex with a DNA template-primer, as determined by electrophoretic mobility gel shift assays. The findings show that the interdomain connector loop region is involved in binding of pol delta. This same region is involved in the binding of p21, and our findings support the view that the mechanism of inhibition of DNA synthesis by p21 is due to a competition for PCNA binding to pol delta.
Collapse
Affiliation(s)
- P Zhang
- Department of Biochemistry, University of Miami, School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | |
Collapse
|
45
|
Eissenberg JC, Ayyagari R, Gomes XV, Burgers PM. Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Mol Cell Biol 1997; 17:6367-78. [PMID: 9343398 PMCID: PMC232488 DOI: 10.1128/mcb.17.11.6367] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The importance of the interdomain connector loop and of the carboxy-terminal domain of Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) for functional interaction with DNA polymerases delta (Poldelta) and epsilon (Pol epsilon) was investigated by site-directed mutagenesis. Two alleles, pol30-79 (IL126,128AA) in the interdomain connector loop and pol30-90 (PK252,253AA) near the carboxy terminus, caused growth defects and elevated sensitivity to DNA-damaging agents. These two mutants also had elevated rates of spontaneous mutations. The mutator phenotype of pol30-90 was due to partially defective mismatch repair in the mutant. In vitro, the mutant PCNAs showed defects in DNA synthesis. Interestingly, the pol30-79 mutant PCNA (pcna-79) was most defective in replication with Poldelta, whereas pcna-90 was defective in replication with Pol epsilon. Protein-protein interaction studies showed that pcna-79 and pcna-90 failed to interact with Pol delta and Pol epsilon, respectively. In addition, pcna-90 was defective in interaction with the FEN-1 endo-exonuclease (RTH1 product). A loss of interaction between pcna-79 and the smallest subunit of Poldelta, the POL32 gene product, implicates this interaction in the observed defect with the polymerase. Neither PCNA mutant showed a defect in the interaction with replication factor C or in loading by this complex. Processivity of DNA synthesis by the mutant holoenzyme containing pcna-79 was unaffected on poly(dA) x oligo(dT) but was dramatically reduced on a natural template with secondary structure. A stem-loop structure with a 20-bp stem formed a virtually complete block for the holoenzyme containing pcna-79 but posed only a minor pause site for wild-type holoenzyme, indicating a function of the POL32 gene product in allowing replication past structural blocks.
Collapse
Affiliation(s)
- J C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Health Sciences Center, Missouri 63104, USA
| | | | | | | |
Collapse
|
46
|
Gary R, Ludwig DL, Cornelius HL, MacInnes MA, Park MS. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem 1997; 272:24522-9. [PMID: 9305916 DOI: 10.1074/jbc.272.39.24522] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a DNA polymerase accessory factor that is required for DNA replication during S phase of the cell cycle and for resynthesis during nucleotide excision repair of damaged DNA. PCNA binds to flap endonuclease 1 (FEN-1), a structure-specific endonuclease involved in DNA replication. Here we report the direct physical interaction of PCNA with xeroderma pigmentosum (XP) G, a structure-specific repair endonuclease that is homologous to FEN-1. We have identified a 28-amino acid region of human FEN-1 (residues 328-355) and a 29-amino acid region of human XPG (residues 981-1009) that contains the PCNA binding activity. These regions share key hydrophobic residues with the PCNA-binding domain of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1), and all three competed with one another for binding to PCNA. A conserved arginine in FEN-1 (Arg339) and XPG (Arg992) was found to be crucial for PCNA binding activity. R992A and R992E mutant forms of XPG failed to fully reconstitute nucleotide excision repair in an in vivo complementation assay. These results raise the possibility of a mechanistic linkage between excision and repair synthesis that is mediated by PCNA.
Collapse
Affiliation(s)
- R Gary
- Life Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | |
Collapse
|