1
|
Koetemann A, Wollscheid B. Apicobasal Surfaceome Architecture Encodes for Polarized Epithelial Functionality and Depends on Tumor Suppressor PTEN. Int J Mol Sci 2022; 23:ijms232416193. [PMID: 36555834 PMCID: PMC9788433 DOI: 10.3390/ijms232416193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The loss of apicobasal polarity during the epithelial-to-mesenchymal transition (EMT) is a hallmark of cancer and metastasis. The key feature of this polarity in epithelial cells is the subdivision of the plasma membrane into apical and basolateral domains, with each orchestrating specific intra- and extracellular functions. Epithelial transport and signaling capacities are thought to be determined largely by the quality, quantity, and nanoscale organization of proteins residing in these membrane domains, the apicobasal surfaceomes. Despite its implications for cancer, drug uptake, and infection, our current knowledge of how the polarized surfaceome is organized and maintained is limited. Here, we used chemoproteomic surfaceome scanning to establish proteotype maps of apicobasal surfaceomes and reveal quantitative distributions of, i.e., surface proteases, phosphatases, and tetraspanins as potential key regulators of polarized cell functionality. We show further that the tumor suppressor PTEN regulates polarized surfaceome architecture and uncover a potential role in collective cell migration. Our differential surfaceome analysis provides a molecular framework to elucidate polarized protein networks regulating epithelial functions and PTEN-associated cancer progression.
Collapse
Affiliation(s)
- Anika Koetemann
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, 8049 Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, 8049 Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
- Correspondence:
| |
Collapse
|
2
|
Chum T, Glatzová D, Kvíčalová Z, Malínský J, Brdička T, Cebecauer M. The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins. J Cell Sci 2015; 129:95-107. [DOI: 10.1242/jcs.175190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/13/2015] [Indexed: 01/23/2023] Open
Abstract
Plasma membrane proteins synthesised at the endoplasmic reticulum are delivered to cell surface via sorting pathways. Hydrophobic mismatch theory based on the length of transmembrane domain (TMD) dominates discussion about determinants required for protein sorting to the plasma membrane. Transmembrane adaptor proteins (TRAP) are involved in signalling events taking place at the plasma membrane. Members of this protein family have TMD of varying length. We were interested whether palmitoylation or other motifs contribute to the effective sorting of TRAP proteins. We found that palmitoylation is essential for some but not all TRAP proteins independent of their TMD length. We also provide evidence that palmitoylation and proximal sequences can modulate sorting of artificial proteins with TMD of suboptimal length. Our observations point to a unique character of each TMD defined by its primary amino acid sequence and its impact on membrane protein localisation. We conclude that, in addition to the TMD length, secondary sorting determinants such as palmitoylation or flanking sequences have evolved for the localisation of membrane proteins.
Collapse
Affiliation(s)
- Tomáš Chum
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, Prague, Czech Republic
| | - Daniela Glatzová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, Prague, Czech Republic
- Laboratory of Leukocyte Signaling, Institute of Molecule Genetics, Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Zuzana Kvíčalová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, Prague, Czech Republic
| | - Jan Malínský
- Microscopy Unit, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Tomáš Brdička
- Laboratory of Leukocyte Signaling, Institute of Molecule Genetics, Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, Prague, Czech Republic
| |
Collapse
|
3
|
Martínez-Hernández J, Ballesteros-Merino C, Fernández-Alacid L, Nicolau JC, Aguado C, Luján R. Polarised localisation of the voltage-gated sodium channel Na(v)1.2 in cerebellar granule cells. THE CEREBELLUM 2013; 12:16-26. [PMID: 22528969 DOI: 10.1007/s12311-012-0387-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels are responsible for action potential initiation and propagation in electrically excitable cells. In this study, we used biochemical, immunohistochemical and quantitative immunoelectron microscopy techniques to reveal the temporal and spatial expression of the Na(v)1.2 channel subunit in granule cells of cerebellum. Using histoblot, we detected Na(v)1.2 widely distributed in the adult brain, but prominently expressed in the cerebellum. During postnatal development, Na(v)1.2 mRNA and protein were detected low during the first and second postnatal week, increased to P15 and then continue to decrease until adult levels. At the light microscopic level, Na(v)1.2 immunoreactivity concentrated in the molecular layer of the cerebellar cortex. Using immunofluorescence, Na(v)1.2 colocalised with VGluT1, but not with VGluT2, demonstrating that the subunit was preferentially present in parallel fibre axons and axon terminals. At the electron microscopic level, Na(v)1.2 immunoparticles were exclusively detected at presynaptic sites in granule cell axons and axon terminals of granule cells, with occasional clustering in their axon initial segment. This was demonstrated using quantitative immunogold analysis. In the axon terminals, the distribution of Na(v)1.2 was relatively uniform along the extrasynaptic plasma membrane and never detected in the active zone. We could not find detectable levels of Na(v)1.2 at postsynaptic elements of granule cells or other cerebellar cell types. The present findings show a polarised distribution of Na(v)1.2 along the neuronal surface of granule cells and suggest its primary involvement in the transmission of information from granule cells to Purkinje cells.
Collapse
Affiliation(s)
- José Martínez-Hernández
- Department of Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006, Albacete, Spain
| | | | | | | | | | | |
Collapse
|
4
|
Imjeti NS, Lebreton S, Paladino S, de la Fuente E, Gonzalez A, Zurzolo C. N-Glycosylation instead of cholesterol mediates oligomerization and apical sorting of GPI-APs in FRT cells. Mol Biol Cell 2011; 22:4621-34. [PMID: 21998201 PMCID: PMC3226479 DOI: 10.1091/mbc.e11-04-0320] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In contrast to MDCK cells, in FRT cells oligomerization and apical sorting of GPI-APs are mediated by N-glycosylation independent of cholesterol and raft association. Sorting of glycosylphosphatidyl-inositol–anchored proteins (GPI-APs) in polarized epithelial cells is not fully understood. Oligomerization in the Golgi complex has emerged as the crucial event driving apical segregation of GPI-APs in two different kind of epithelial cells, Madin–Darby canine kidney (MDCK) and Fisher rat thyroid (FRT) cells, but whether the mechanism is conserved is unknown. In MDCK cells cholesterol promotes GPI-AP oligomerization, as well as apical sorting of GPI-APs. Here we show that FRT cells lack this cholesterol-driven oligomerization as apical sorting mechanism. In these cells both apical and basolateral GPI-APs display restricted diffusion in the Golgi likely due to a cholesterol-enriched membrane environment. It is striking that N-glycosylation is the critical event for oligomerization and apical sorting of GPI-APs in FRT cells but not in MDCK cells. Our data indicate that at least two mechanisms exist to determine oligomerization in the Golgi leading to apical sorting of GPI-APs. One depends on cholesterol, and the other depends on N-glycosylation and is insensitive to cholesterol addition or depletion.
Collapse
Affiliation(s)
- Naga Salaija Imjeti
- Institut Pasteur, Unité de Traffic Membranaire et Pathogenèse, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
5
|
Papanikolaou A, Papafotika A, Christoforidis S. CD39 Reveals Novel Insights into the Role of Transmembrane Domains in Protein Processing, Apical Targeting and Activity. Traffic 2011; 12:1148-65. [DOI: 10.1111/j.1600-0854.2011.01224.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Catino MA, Paladino S, Tivodar S, Pocard T, Zurzolo C. N- andO-Glycans Are Not Directly Involved in the Oligomerization and Apical Sorting of GPI Proteins. Traffic 2008; 9:2141-50. [DOI: 10.1111/j.1600-0854.2008.00826.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Curtis MW, Johnson KR, Wheelock MJ. E-cadherin/catenin complexes are formed cotranslationally in the endoplasmic reticulum/Golgi compartments. CELL COMMUNICATION & ADHESION 2008; 15:365-78. [PMID: 18937087 PMCID: PMC2742162 DOI: 10.1080/15419060802460748] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cadherins are synthesized with a proregion that lies between a short amino-terminal signal sequence and the first extracellular domain. Following synthesis, the proregion is cleaved, an event that is mandatory for the mature cadherin to function in adhesion. The authors have previously reported that catenins coimmunoprecipate with pro-N-cadherin, and that the N-cadherin/catenin complex forms in the Golgi/endoplasmic reticulum. It is clear that N- and E-cadherin confer significantly different characteristics on cells, and it is possible that N- and E-cadherin/catenin complex formation is equally different. To investigate this, the authors generated an antibody against the proregion of E-cadherin and have used it to examine the assembly of the E-cadherin/catenin complex.
Collapse
Affiliation(s)
- Matthew W. Curtis
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7696
| | - Keith R. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7696
- Department of Oral Biology, University of Nebraska Medical Center, Omaha, NE 68198-7696
- Department of Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-7696
- The Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-7696
| | - Margaret J. Wheelock
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7696
- Department of Oral Biology, University of Nebraska Medical Center, Omaha, NE 68198-7696
- Department of Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-7696
- The Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-7696
| |
Collapse
|
8
|
Chmelar RS, Nathanson NM. Identification of a novel apical sorting motif and mechanism of targeting of the M2 muscarinic acetylcholine receptor. J Biol Chem 2006; 281:35381-96. [PMID: 16968700 DOI: 10.1074/jbc.m605954200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous studies have shown that the M2 receptor is localized at steady state to the apical domain in Madin-Darby canine kidney (MDCK) epithelial cells. In this study, we identify the molecular determinants governing the localization and the route of apical delivery of the M2 receptor. First, by confocal analysis of a transiently transfected glycosylation mutant in which the three putative glycosylation sites were mutated, we determined that N-glycans are not necessary for the apical targeting of the M2 receptor. Next, using a chimeric receptor strategy, we found that two independent sequences within the M2 third intracellular loop can confer apical targeting to the basolaterally targeted M4 receptor, Val270-Lys280 and Lys280-Ser350. Experiments using Triton X-100 extraction followed by OptiPrep density gradient centrifugation and cholera toxin beta-subunit-induced patching demonstrate that apical targeting is not because of association with lipid rafts. 35S-Metabolic labeling experiments with domain-specific surface biotinylation as well as immunocytochemical analysis of the time course of surface appearance of newly transfected confluent MDCK cells expressing FLAG-M2-GFP demonstrate that the M2 receptor achieves its apical localization after first appearing on the basolateral domain. Domain-specific application of tannic acid of newly transfected cells indicates that initial basolateral plasma membrane expression is required for subsequent apical localization. This is the first demonstration that a G-protein-coupled receptor achieves its apical localization in MDCK cells via transcytosis.
Collapse
Affiliation(s)
- Renée S Chmelar
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | |
Collapse
|
9
|
Lerner M, Lemke D, Bertram H, Schillers H, Oberleithner H, Caplan MJ, Reinhardt J. An extracellular loop of the human non-gastric H,K-ATPase alpha-subunit is involved in apical plasma membrane polarization. Cell Physiol Biochem 2006; 18:75-84. [PMID: 16914892 DOI: 10.1159/000095169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The human non-gastric H,K-ATPase, ATP1AL1, belongs to the gene family of P-type ATPases. Consistent with their physiological roles in ion transport, members of this group, including the Na,KATPase and the gastric and non-gastric H,K-ATPases, are differentially polarized to either the basolateral or apical plasma membrane in epithelial cells. However, their polarized distribution is highly complex and depends on specific sorting signals or motifs which are recognized by the subcellular targeting machinery. For the gastric H,K-ATPase it has been suggested that the 4(th) transmembrane spanning domain (TM4) and its flanking regions induce conformational sorting motifs which direct the ion pump exclusively to the epithelial apical membrane. Here, we show in transfected Madin-Darby canine kidney (MDCK) cells that the related non-gastric H,KATPase, ATP1AL1, does contain similar sorting motifs in close proximity to TM4. A short extracellular loop between TM3 and TM4 is critical for this pump's apical delivery. A single point mutation in the corresponding region redirects ATP1AL1 to the basolateral membrane. In conclusion, our work provides further evidence that the cellular distribution of P-type ATPases is determined by conformational sorting motifs.
Collapse
|
10
|
Potter BA, Hughey RP, Weisz OA. Role of N- and O-glycans in polarized biosynthetic sorting. Am J Physiol Cell Physiol 2006; 290:C1-C10. [PMID: 16338974 DOI: 10.1152/ajpcell.00333.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The maintenance of proper epithelial function requires efficient sorting of newly synthesized and recycling proteins to the apical and basolateral surfaces of differentiated cells. Whereas basolateral protein sorting signals are generally confined to their cytoplasmic regions, apical targeting signals have been identified that localize to luminal, transmembrane, and cytoplasmic aspects of proteins. In the past few years, both N- and O-linked glycans have been identified as apical sorting determinants. Glycan structures are extraordinarily diverse and have tremendous information potential. Moreover, because the oligosaccharides added to a given protein can change depending on cell type and developmental stage, the potential exists for altering sorting pathways by modulation of the expression pattern of enzymes involved in glycan synthesis. In this review, we discuss the evidence for glycan-mediated apical sorting along the biosynthetic pathway and present possible mechanisms by which these common and heterogeneous posttranslational modifications might function as specific sorting signals.
Collapse
Affiliation(s)
- Beth A Potter
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Univ. of Pittsburgh School of Medicine, 978 Scaife Hall, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
11
|
Song J, Aumüller G, Xiao F, Wilhelm B, Albrecht M. Cell specific expression of CD10/neutral endopeptidase 24.11 gene in human prostatic tissue and cells. Prostate 2004; 58:394-405. [PMID: 14968440 DOI: 10.1002/pros.10345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Neutral endopeptidase (NEP/CD10) is a cell surface zinc metalloproteinase that functions as part of a regulatory loop controlling local concentrations of peptide substrates and associated peptide-mediated signal transduction processes. In contrast to the encouraging data dealing with NEP activity and regulation in prostate epithelial cells, only a few studies are available on the cellular expression and localization of neutral endopeptidase in the prostatic stromal and cancer cells. Here, we describe the cellular localization of NEP in human prostatic tissue and cells using in situ RT-PCR as a novel molecular biological approach. METHODS Immunofluorescence and Western blot experiments were performed to control the expression and distribution of the NEP in normal and malignant human prostatic tissues and cell lines. NEP gene expression was monitored by RT-PCR, NEP mRNA was detected in paraffin tissue sections and cultured cells of human prostate by the highly sensitive method of one step-in situ reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS NEP mRNA was detected in human prostatic tissue and in cultured cells by means of in situ RT-PCR. Prostatic tissue showed strong signals in the glandular epithelium and weak signals in the stroma, cultured cells displayed strong signals in prostate cancer cells (LNCaP) and weak signals in stromal cells (hPCPs). Western blot experiments were performed using whole cell extracts to proof the presence of NEP protein in LNCaP and hPCPs. The experiments confirm the expression of NEP by both cell types, however, the experiment with hPCPs cells showed two bands. NEP-immunofluorescence was strong in normal prostatic epithelium and confined to the apical plasma membrane. In dedifferentiated prostate cancer specimens, immunofluorescence of apical plasma membranes was lost, and both the cytoplasm and portions of the plasma membrane were immunoreactive for NEP. Prostate cancer cells (LNCaP) showed a strong immunoreaction of the plasma membrane and the cytoplasm. In comparison with LNCaP cells, only a weak cytoplasmic immunofluorescence was found in some stromal cells (hPCPs). CONCLUSIONS In normal prostatic tissue and specimens derived from human prostate cancer, NEP mRNA and protein are expressed mainly by the epithelial cells and to a minor extent by the stromal cells of human prostate glands. In situ RT-PCR is a powerful and straightforward approach for the routine and rapid detection of cellular specific expression of low copy genes.
Collapse
Affiliation(s)
- Jian Song
- Department of Anatomy and Cell Biology, Philipps University, Marburg, Germany.
| | | | | | | | | |
Collapse
|
12
|
He C, Hobert M, Friend L, Carlin C. The epidermal growth factor receptor juxtamembrane domain has multiple basolateral plasma membrane localization determinants, including a dominant signal with a polyproline core. J Biol Chem 2002; 277:38284-93. [PMID: 12161422 DOI: 10.1074/jbc.m104646200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The epidermal growth factor (EGF) receptor is located predominantly in the basolateral membrane of polarized epithelia, where it plays a pivotal role during organogenesis and tissue homeostasis. We have shown previously that a 22-amino acid sequence in the EGF receptor juxtamembrane domain contains autonomous sorting information necessary for basolateral localization using the Madin-Darby canine kidney epithelial cell model. The goal of this study was to determine the molecular basis of EGF receptor basolateral membrane expression using site-directed mutagenesis to modify specific residues in this region. We now show that this sequence has two different, functionally redundant basolateral sorting signals with distinct amino acid requirements: one dependent on residues (658)LL(659) conforming to well-characterized leucine-based sorting signals, and a second containing a polyproline core comprising residues Pro(667) and Pro(670) ((667)PXXP(670)). Our data also suggest that Arg(662) contributes to the function of the proline-based signal. (667)PXXP(670) was the dominant signal when both motifs were present and was more effective than (658)LL(659) at overriding strong apical sorting signals located in the same molecule. Site-directed mutations at Arg(662), Pro(667), and Pro(670) were also associated with increased apical expression of full-length EGF receptors, demonstrating for the first time that the juxtamembrane region is necessary for accurate polarized expression of the native molecule.
Collapse
Affiliation(s)
- Cheng He
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
13
|
Martín-Belmonte F, Arvan P, Alonso MA. MAL mediates apical transport of secretory proteins in polarized epithelial Madin-Darby canine kidney cells. J Biol Chem 2001; 276:49337-42. [PMID: 11673461 DOI: 10.1074/jbc.m106882200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MAL proteolipid is an integral membrane protein identified as a component of the raft machinery for apical sorting of membrane proteins in Madin-Darby canine kidney (MDCK) cells. Previous studies have implicated lipid rafts in the transport of exogenous thyroglobulin (Tg), the predominant secretory protein of thyroid epithelial cells, to the apical surface in MDCK cells. We have examined the secretion of recombinant Tg and gp80/clusterin, a major endogenous secretory protein not detected in Triton X-100 insoluble rafts, for the investigation of the involvement of MAL in the constitutive apical secretory pathway of MDCK cells. We show that MAL depletion impairs apical secretion of Tg and causes its accumulation in the Golgi. Cholesterol sequestration, which blocks apical secretion of Tg, did not alter the levels of MAL in rafts but created a block proximal to Tg entrance into rafts. Apical secretion of gp80/clusterin was also inhibited by elimination of endogenous MAL. Our results suggest a role for MAL in the transport of both endogenously and exogenously expressed apical secretory proteins in MDCK cells.
Collapse
Affiliation(s)
- F Martín-Belmonte
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid and Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
14
|
Subramanian VS, Marchant JS, Parker I, Said HM. Intracellular trafficking/membrane targeting of human reduced folate carrier expressed in Xenopus oocytes. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1477-86. [PMID: 11705753 DOI: 10.1152/ajpgi.2001.281.6.g1477] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The major cellular pathway for uptake of the vitamin folic acid, including its absorption in the intestine, is via a plasma membrane carrier system, the reduced folate carrier (RFC). Very little is known about the mechanisms that control intracellular trafficking and plasma membrane targeting of RFC. To begin addressing these issues, we used Xenopus oocyte as a model system and examined whether the signal that targets the protein to the plasma membrane is located in the COOH-terminal cytoplasmic tail or in the backbone of the polypeptide. We also examined the role of microtubules and microfilaments in intracellular trafficking of the protein. Confocal imaging of human RFC (hRFC) fused to the enhanced green fluorescent protein (hRFC-EGFP) showed that the protein was expressed at the plasma membrane, with expression confined almost entirely to the animal pole of the oocyte. Localization of hRFC at the plasma membrane was not affected by partial or total truncation of the COOH-terminal tail of the polypeptide, whereas a construct of the cytoplasmic tail fused to EGFP was not found at the plasma membrane. Disruption of microtubules, but not microfilaments, prevented hRFC expression at the plasma membrane. These results demonstrate that the molecular determinant(s) that directs plasma membrane targeting of hRFC is located within the backbone of the polypeptide and that intact microtubules, but not microfilaments, are essential for intracellular trafficking of the protein.
Collapse
Affiliation(s)
- V S Subramanian
- Department of Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | | | | | | |
Collapse
|
15
|
Ihrke G, Bruns JR, Luzio J, Weisz OA. Competing sorting signals guide endolyn along a novel route to lysosomes in MDCK cells. EMBO J 2001; 20:6256-64. [PMID: 11707397 PMCID: PMC125743 DOI: 10.1093/emboj/20.22.6256] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Revised: 10/02/2001] [Accepted: 10/03/2001] [Indexed: 11/13/2022] Open
Abstract
We have examined the trafficking of the mucin-like protein endolyn in transfected, polarized MDCK cells using biochemical approaches and immunofluorescence microscopy. Although endolyn contains a lysosomal targeting motif of the type YXXPhi and was localized primarily to lysosomes at steady state, significant amounts of newly synthesized endolyn were delivered to the apical cell surface. Antibodies to endolyn, but not lamp-2, were preferentially internalized from the apical plasma membrane and efficiently transported to lysosomes. Analysis of endolyn-CD8 chimeras showed that the lumenal domain of endolyn contains apical targeting information that predominates over basolateral information in its cytoplasmic tail. Interestingly, surface polarity of endolyn was independent of O-glycosylation processing, but was reversed by disruption of N-glycosylation using tunicamycin. At all times, endolyn was soluble in cold Triton X-100, suggesting that apical sorting was independent of sphingolipid rafts. Our data indicate that a strong, N-glycan-dependent apical targeting signal in the lumenal domain directs endolyn into a novel biosynthetic pathway to lysosomes, which occurs via the apical surface of polarized epithelial cells.
Collapse
Affiliation(s)
- Gudrun Ihrke
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge CB2 2XY, UK and
Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - Jennifer R. Bruns
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge CB2 2XY, UK and
Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | | | - Ora A. Weisz
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge CB2 2XY, UK and
Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| |
Collapse
|
16
|
Slimane TA, Lenoir C, Bello V, Delaunay JL, Goding JW, Chwetzoff S, Maurice M, Fransen JA, Trugnan G. The cytoplasmic/transmembrane domain of dipeptidyl peptidase IV, a type II glycoprotein, contains an apical targeting signal that does not specifically interact with lipid rafts. Exp Cell Res 2001; 270:45-55. [PMID: 11597126 DOI: 10.1006/excr.2001.5337] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We investigated the signals involved in the apical targeting of dipeptidyl peptidase IV (DPP IV/CD26), an archetypal type II transmembrane glycoprotein. A secretory construct, corresponding to the DPP IV ectodomain, was first stably expressed in both the enterocytic-like cell line Caco-2 and the epithelial kidney MDCK cells. Most of the secretory form of the protein was delivered apically in MDCK cells, whereas secretion was 60% basolateral in Caco-2 cells, indicating that DPP IV ectodomain targeting is cell-type-dependent. A chimera (CTM-GFP) containing only the cytoplasmic and transmembrane domains of mouse DPP IV plus the green fluorescent protein was then studied. In both cell lines, this chimera was preferentially expressed at the apical membrane. By contrast, a secretory form of GFP was randomly secreted, indicating that GFP by itself does not contain cryptic targeting information. Comparison of the sequence of the transmembrane domain of DPP IV and several other apically targeted proteins does not show any consensus, suggesting that the apical targeting signal may be conformational. Neither the DPP IV nor the CTM-GFP chimera was enriched in lipid rafts. Together these results indicate that, besides the well-known raft-dependent apical targeting pathway, the fate of the CTM domain of DPP IV may reveal a new raft-independent apical pathway.
Collapse
Affiliation(s)
- T A Slimane
- INSERM U538, CHU St Antoine, 27 rue Chaligny, Paris Cedex 12, 75571, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cholesterol-sphingolipid microdomains (lipid rafts) are part of the machinery ensuring correct intracellular trafficking of proteins and lipids. The most apparent roles of rafts are in sorting and vesicle formation, although their roles in vesicle movement and cytoskeletal connections as well as in vesicle docking and fusion are coming into focus. New evidence suggests that compositionally distinct lipid microdomains are assembled and may coexist within a given membrane. Important clues have also been uncovered about the mechanisms coupling raft-dependent signaling and endocytic uptake.
Collapse
Affiliation(s)
- E Ikonen
- Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, PO Box 104, Haartmaninkatu 8, 00251, Helsinki, Finland.
| |
Collapse
|
18
|
Renneberg H, Albrecht M, Kurek R, Krause E, Lottspeich F, Aumüller G, Wilhelm B. Identification and characterization of neutral endopeptidase (EC 3. 4. 24. 11) from human prostasomes--localization in prostatic tissue and cell lines. Prostate 2001; 46:173-83. [PMID: 11170145 DOI: 10.1002/1097-0045(20010215)46:3<173::aid-pros1021>3.0.co;2-f] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND An antibody directed against a 100 kDa protein was immunoselected from a polyvalent antiserum against human prostasomes. The antibody as well as biochemical characteristics of the respective antigen were used to study the structural relationship of the latter with prostate membrane specific antigen (PMSA), another 100 kDa membrane protein of the prostate. METHODS The isolated purified 100 kDa protein was characterized by tryptic degradation, aminoacid-sequencing and mass spectroscopy peptide-fingerprinting as well as mono-saccharide analysis and lectin binding and identified as a prostasomal neutral endopeptidase (NEP, EC 3.4.24.11). Immunohistochemistry, immunoelectron microscopy, in situ hybridization, and RT-PCR were performed to analyze the expression and distribution of the protein in normal and malignant human prostatic tissues and cell lines. RESULTS Prostatic NEP, which has no relationship with PMSA, is a glycosylated, integral membrane protein type II. The prevalent glycosyl residues are NeuNAc, GlcNAc, GalNAc, Gal, Man, Fuc. NEP-mRNA is expressed in human prostatic epithelial and some stromal cells. NEP-immunoreactivity is strong in normal prostatic epithelium and confined to the apical plasma membrane. During apocrine secretion, the enzyme is released from the secretory cells, contributing to the formation of prostasomes. In prostate cancer specimens, immunoreactivity of apical plasma membranes is lost, while generalized cytoplasmic immunoreactivity develops. CONCLUSIONS Prostatic secretory cells contain a membrane-bound, highly glycosylated neutral endopeptidase which is restricted to the apical plasma membrane. The enzyme is released from the cells in an apocrine fashion and contributes to the formation of prostasomes. In prostate cancer cells a preferential cytoplasmic localization is observed, pointing to alterations in intracellular targeting.
Collapse
Affiliation(s)
- H Renneberg
- Department of Urology, Municipal Hospital, Offenbach, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Martínez-Maza R, Poyatos I, López-Corcuera B, N úñez E, Giménez C, Zafra F, Aragón C. The role of N-glycosylation in transport to the plasma membrane and sorting of the neuronal glycine transporter GLYT2. J Biol Chem 2001; 276:2168-73. [PMID: 11036075 DOI: 10.1074/jbc.m006774200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycine transporter GLYT2 is an axonal glycoprotein involved in the removal of glycine from the synaptic cleft. To elucidate the role of the carbohydrate moiety on GLYT2 function, we analyzed the effect of the disruption of the putative N-glycosylation sites on the transport activity, intracellular traffic in COS cells, and asymmetrical distribution of this protein in polarized Madin-Darby canine kidney (MDCK) cells. Transport activity was reduced by 35-40% after enzymatic deglycosylation of the transporter reconstituted into liposomes. Site-directed mutagenesis of the four glycosylation sites (Asn-345, Asn-355, Asn-360, and Asn-366), located in the large extracellular loop of GLYT2, produced an inactive protein that was retained in intracellular compartments when transiently transfected in COS cells or in nonpolarized MDCK cells. When expressed in polarized MDCK cells, wild type GLYT2 localizes in the apical surface as assessed by transport and biotinylation assays. However, a partially unglycosylated mutant (triple mutant) was distributed in a nonpolarized manner in MDCK cells. The apical localization of GLYT2 occurred by a glycolipid rafts independent pathway.
Collapse
Affiliation(s)
- R Martínez-Maza
- Centro de Biologia Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Martin-Belmonte F, Alonso MA, Zhang X, Arvan P. Thyroglobulin is selected as luminal protein cargo for apical transport via detergent-resistant membranes in epithelial cells. J Biol Chem 2000; 275:41074-81. [PMID: 11013241 DOI: 10.1074/jbc.m005429200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Thyroid hormone synthesis by thyrocytes depends upon apical secretion of thyroglobulin (Tg), the glycoprotein prohormone. In stably transfected MDCK cells, recombinant Tg is also secreted apically. All secreted Tg has undergone Golgi carbohydrate modification, whereas most intracellular Tg (which is slow to exit the endoplasmic reticulum) is sensitive to digestion with endoglycosidase H. However, in MDCK cells and PC Cl3 thyrocytes, a subpopulation of newly synthesized recombinant and endogenous Tg, respectively, is recovered in a Triton X-100 insoluble, glycosphingolipid/cholesterol-enriched (GEM/raft) fraction, and this small subpopulation is overwhelmingly endoglycosidase H resistant. Upon apical secretion, Tg solubility is restored. Apical secretion of Tg is inhibited by cellular cholesterol depletion. In FRT cells, recombinant Tg becomes Triton X-100 insoluble within 60 min after synthesis and a portion is actually endoglycosidase H-sensitive, suggesting early Tg entry into GEMs/rafts. Interestingly in FRT cells, Tg remains associated with the apical plasma membrane upon exocytosis, and all surface Tg is GEM/raft-associated. Thus, Tg is the first secretory protein demonstrated to enter Triton X-100 insoluble membranes en route to the apical surface of epithelial cells. The data imply that Tg utilizes a cargo-selective mechanism for apical sorting.
Collapse
Affiliation(s)
- F Martin-Belmonte
- Centro de Biologia Molecular "Severo Ochoa," Universidad Autonoma de Madrid, Madrid 280-49, Spain
| | | | | | | |
Collapse
|
21
|
Tam BM, Moritz OL, Hurd LB, Papermaster DS. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis. J Cell Biol 2000; 151:1369-80. [PMID: 11134067 PMCID: PMC2150681 DOI: 10.1083/jcb.151.7.1369] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2000] [Accepted: 11/08/2000] [Indexed: 01/22/2023] Open
Abstract
Mislocalization of the photopigment rhodopsin may be involved in the pathology of certain inherited retinal degenerative diseases. Here, we have elucidated rhodopsin's targeting signal which is responsible for its polarized distribution to the rod outer segment (ROS). Various green fluorescent protein (GFP)/rhodopsin COOH-terminal fusion proteins were expressed specifically in the major red rod photoreceptors of transgenic Xenopus laevis under the control of the Xenopus opsin promoter. The fusion proteins were targeted to membranes via lipid modifications (palmitoylation and myristoylation) as opposed to membrane spanning domains. Membrane association was found to be necessary but not sufficient for efficient ROS localization. A GFP fusion protein containing only the cytoplasmic COOH-terminal 44 amino acids of Xenopus rhodopsin localized exclusively to ROS membranes. Chimeras between rhodopsin and alpha adrenergic receptor COOH-terminal sequences further refined rhodopsin's ROS localization signal to its distal eight amino acids. Mutations/deletions of this region resulted in partial delocalization of the fusion proteins to rod inner segment (RIS) membranes. The targeting and transport of endogenous wild-type rhodopsin was unaffected by the presence of mislocalized GFP fusion proteins.
Collapse
Affiliation(s)
- B M Tam
- Program in Neuroscience, Department of Pharmacology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | | | |
Collapse
|
22
|
Meerson NR, Bello V, Delaunay JL, Slimane TA, Delautier D, Lenoir C, Trugnan G, Maurice M. Intracellular traffic of the ecto-nucleotide pyrophosphatase/phosphodiesterase NPP3 to the apical plasma membrane of MDCK and Caco-2 cells: apical targeting occurs in the absence of N-glycosylation. J Cell Sci 2000; 113 Pt 23:4193-202. [PMID: 11069764 DOI: 10.1242/jcs.113.23.4193] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosylation was considered the major signal candidate for apical targeting of transmembrane proteins in polarized epithelial cells. However, direct demonstration of the role of glycosylation has proved difficult because non-glycosylated apical transmembrane proteins usually do not reach the cell surface. Here we were able to follow the targeting of the apical transmembrane glycoprotein NPP3 both when glycosylated and non-glycosylated. Transfected in polarized MDCK and Caco-2 cells, NPP3 was exclusively expressed at the apical membrane. The transport kinetics of the protein to the cell surface were studied after metabolic (35)S-labeling and surface immunoprecipitation. The newly synthesized protein was mainly targeted directly to the apical surface in MDCK cells, whereas 50% transited through the basolateral surface in Caco-2 cells. In both cell types, the basolaterally targeted pool was effectively transcytosed to the apical surface. In the presence of tunicamycin, NPP3 was not N-glycosylated. The non-glycosylated protein was partially retained intracellularly but the fraction that reached the cell surface was nevertheless predominantly targeted apically. However, transcytosis of the non-glycosylated protein was partially impaired in MDCK cells. These results provide direct evidence that glycosylation cannot be considered an apical targeting signal for NPP3, although glycosylation is necessary for correct trafficking of the protein to the cell surface.
Collapse
Affiliation(s)
- N R Meerson
- INSERM U538, Faculty of Medicine Saint-Antoine, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Barman S, Nayak DP. Analysis of the transmembrane domain of influenza virus neuraminidase, a type II transmembrane glycoprotein, for apical sorting and raft association. J Virol 2000; 74:6538-45. [PMID: 10864667 PMCID: PMC112163 DOI: 10.1128/jvi.74.14.6538-6545.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus neuraminidase (NA), a type II transmembrane protein, is directly transported to the apical plasma membrane in polarized MDCK cells. Previously, it was shown that the transmembrane domain (TMD) of NA provides a determinant(s) for apical sorting and raft association (A. Kundu, R. T. Avalos, C. M. Sanderson, and D. P. Nayak, J. Virol. 70:6508-6515, 1996). In this report, we have analyzed the sequences in the NA TMD involved in apical transport and raft association by making chimeric TMDs from NA and human transferring receptor (TR) TMDs and by mutating the NA TMD sequences. Our results show that the COOH-terminal half of the NA TMD (amino acids [aa] 19 to 35) was significantly involved in raft association, as determined by Triton X-100 (TX-100) resistance. However, in addition, the highly conserved residues at the extreme NH(2) terminus of the NA TMD were also critical for TX-100 resistance. On the other hand, 19 residues (aa 9 to 27) at the NH(2) terminus of the NA TMD were sufficient for apical sorting. Amino acid residues 14 to 18 and 27 to 31 had the least effect on apical transport, whereas mutations in the amino acid residues 11 to 13, 23 to 26, and 32 to 35 resulted in altered polarity for the mutant proteins. These results indicated that multiple regions in the NA TMD were involved in apical transport. Furthermore, these results support the idea that the signals for apical sorting and raft association, although residing in the NA TMD, are not identical and vary independently and that the NA TMD also possesses an apical determinant(s) which can interact with apical sorting machineries outside the lipid raft.
Collapse
Affiliation(s)
- S Barman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095-1747, USA
| | | |
Collapse
|
24
|
Karim-Jimenez Z, Hernando N, Biber J, Murer H. Requirement of a leucine residue for (apical) membrane expression of type IIb NaPi cotransporters. Proc Natl Acad Sci U S A 2000; 97:2916-21. [PMID: 10717004 PMCID: PMC16030 DOI: 10.1073/pnas.97.6.2916] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Type II NaPi cotransporters mediate epithelial phosphate (P(i)) reabsorption. In mammals the type IIb protein is expressed in the small intestinal apical membrane and other epithelia; it is not expressed in the renal proximal tubule where we find the type IIa isoform. To look for molecular determinant(s) involved in apical expression of type IIb cotransporters, we have made deletion mutations within the C-terminal tails of mouse IIb (mIIb) and human IIb (hIIb) transporter proteins. The constructs were fused to the enhanced green fluorescent protein and transiently transfected into intestinal CaCo2-cells. Both mIIb and hIIb were located exclusively in the apical membrane of the cells. For mIIb, the removal of a cysteine cluster or the last three amino acids (TVF) had no effect on the location of the protein. However, truncation at the level of the conserved L691/689 prevented the apical membrane expression of both mIIb and hIIb, respectively, and the mutated proteins were located in endosomal and lysosomal structures. A similar expression pattern of the mIIb and hIIb constructs was found in renal proximal tubular opossum kidney cells. Our data suggest that L691/689 is involved in mechanisms leading to an apical expression of type IIb NaPi cotransporters.
Collapse
Affiliation(s)
- Z Karim-Jimenez
- Institute of Physiology, Zurich University, Zurich, CH-8057, Switzerland
| | | | | | | |
Collapse
|
25
|
Lipardi C, Nitsch L, Zurzolo C. Detergent-insoluble GPI-anchored proteins are apically sorted in fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting. Mol Biol Cell 2000; 11:531-42. [PMID: 10679012 PMCID: PMC14791 DOI: 10.1091/mbc.11.2.531] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In contrast to Madin-Darby canine kidney cells, Fischer rat thyroid cells deliver the majority of endogenous glycosylphosphatidyl inositol (GPI)-anchored proteins to the basolateral surface. However, we report here that the GPI proteins Placental Alkaline Phosphatase (PLAP) and Neurotrophin Receptor-Placental Alkaline Phosphatase (NTR-PLAP) are apically localized in transfected Fischer rat thyroid cells. In agreement with the "raft hypothesis," which postulates the incorporation of GPI proteins into glycosphingolipids and cholesterol-enriched rafts, we found that both of these proteins were insoluble in Triton X-100 and floated into the lighter fractions of sucrose density gradients. However, disruption of lipid rafts by removal of cholesterol did not cause surface missorting of PLAP and NTR-PLAP, and the altered surface sorting of these proteins after Fumonisin B1 treatment did not correlate with reduced levels in Triton X-100 -insoluble fractions. Furthermore, in contrast to the GPI-anchored forms of both of these proteins, the secretory and transmembrane forms (in the absence of a basolateral cytoplasmic signal) were sorted to the apical surface without association with lipid microdomains. Together, these data demonstrate that the GPI anchor is required to mediate raft association but is not sufficient to determine apical sorting. They also suggest that signals present in the ectodomain of the proteins play a major role and that lipid rafts may facilitate the recognition of these signals in the trans-Golgi network, even though they are not required for apical sorting.
Collapse
Affiliation(s)
- C Lipardi
- Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche-Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli "Federico II," 80131 Napoli, Italy
| | | | | |
Collapse
|
26
|
Abstract
Proteoglycans are widely expressed in animal cells. Interactions between negatively charged glycosaminoglycan chains and molecules such as growth factors are essential for differentiation of cells during development and maintenance of tissue organisation. We propose that glycosaminoglycan chains play a role in targeting of proteoglycans to their proper cellular or extracellular location. The variability seen in glycosaminoglycan chain structure from cell type to cell type, which is acquired by use of particular Ser-Gly sites in the protein core, might therefore be important for post-synthesis sorting. This links regulation of glycosaminoglycan synthesis to the post-Golgi fate of proteoglycans.
Collapse
Affiliation(s)
- K Prydz
- Department of Biochemistry and Institute for Nutrition Research, University of Oslo, Norway.
| | | |
Collapse
|
27
|
Rodriguez-Boulan E, Gonzalez A. Glycans in post-Golgi apical targeting: sorting signals or structural props? Trends Cell Biol 1999; 9:291-4. [PMID: 10407407 DOI: 10.1016/s0962-8924(99)01595-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A recent model proposed that N-glycans serve as apical targeting signals for soluble and membrane proteins in epithelial cells and neurons by interacting with lectin sorters in the trans-Golgi network. However, we believe that a number of experimental observations support an alternative hypothesis, that N-glycans play a facilitative role, by providing structural support or preventing aggregation of the proteins for example, thereby allowing interaction of proteinaceous apical sorting signals with the sorting machinery. This article discusses the experimental data currently available and how they relate to the proposed models.
Collapse
Affiliation(s)
- E Rodriguez-Boulan
- Dyson Vision Institute, Depts of Ophthalmology and Cell Biology, Weill Medical College of Cornell University, New York, USA.
| | | |
Collapse
|
28
|
Benting JH, Rietveld AG, Simons K. N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin-Darby canine kidney cells. J Cell Biol 1999; 146:313-20. [PMID: 10427087 PMCID: PMC2156177 DOI: 10.1083/jcb.146.2.313] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/1999] [Accepted: 06/11/1999] [Indexed: 01/03/2023] Open
Abstract
Glycosyl-phosphatidylinositol (GPI)- anchored proteins are preferentially transported to the apical cell surface of polarized Madin-Darby canine kidney (MDCK) cells. It has been assumed that the GPI anchor itself acts as an apical determinant by its interaction with sphingolipid-cholesterol rafts. We modified the rat growth hormone (rGH), an unglycosylated, unpolarized secreted protein, into a GPI-anchored protein and analyzed its surface delivery in polarized MDCK cells. The addition of a GPI anchor to rGH did not lead to an increase in apical delivery of the protein. However, addition of N-glycans to GPI-anchored rGH resulted in predominant apical delivery, suggesting that N-glycans act as apical sorting signals on GPI-anchored proteins as they do on transmembrane and secretory proteins. In contrast to the GPI-anchored rGH, a transmembrane form of rGH which was not raft-associated accumulated intracellularly. Addition of N-glycans to this chimeric protein prevented intracellular accumulation and led to apical delivery.
Collapse
Affiliation(s)
- Jürgen H. Benting
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Programme, D-69012 Heidelberg, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Anton G. Rietveld
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Programme, D-69012 Heidelberg, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Kai Simons
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Programme, D-69012 Heidelberg, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| |
Collapse
|
29
|
Puertollano R, Martín-Belmonte F, Millán J, de Marco MC, Albar JP, Kremer L, Alonso MA. The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. J Biophys Biochem Cytol 1999; 145:141-51. [PMID: 10189374 PMCID: PMC2148211 DOI: 10.1083/jcb.145.1.141] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The MAL (MAL/VIP17) proteolipid is a nonglycosylated integral membrane protein expressed in a restricted pattern of cell types, including T lymphocytes, myelin-forming cells, and polarized epithelial cells. Transport of the influenza virus hemagglutinin (HA) to the apical surface of epithelial Madin-Darby canine kidney (MDCK) cells appears to be mediated by a pathway involving glycolipid- and cholesterol- enriched membranes (GEMs). In MDCK cells, MAL has been proposed previously as being an element of the protein machinery for the GEM-dependent apical transport pathway. Using an antisense oligonucleotide-based strategy and a newly generated monoclonal antibody to canine MAL, herein we have approached the effect of MAL depletion on HA transport in MDCK cells. We have found that MAL depletion diminishes the presence of HA in GEMs, reduces the rate of HA transport to the cell surface, inhibits the delivery of HA to the apical surface, and produces partial missorting of HA to the basolateral membrane. These effects were corrected by ectopic expression of MAL in MDCK cells whose endogenous MAL protein was depleted. Our results indicate that MAL is necessary for both normal apical transport and accurate sorting of HA.
Collapse
Affiliation(s)
- R Puertollano
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid and Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Jacob R, Preuss U, Panzer P, Alfalah M, Quack S, Roth MG, Naim H, Naim HY. Hierarchy of sorting signals in chimeras of intestinal lactase-phlorizin hydrolase and the influenza virus hemagglutinin. J Biol Chem 1999; 274:8061-7. [PMID: 10075706 DOI: 10.1074/jbc.274.12.8061] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lactase-phlorizin hydrolase (LPH) is an apical protein in intestinal cells. The location of sorting signals in LPH was investigated by preparing a series of mutants that lacked the LPH cytoplasmic domain or had the cytoplasmic domain of LPH replaced by sequences that comprised basolateral targeting signals and overlapping internalization signals of various potency. These signals are mutants of the cytoplasmic domain of the influenza hemagglutinin (HA), which have been shown to be dominant in targeting HA to the basolateral membrane. The LPH-HA chimeras were expressed in Madin-Darby canine kidney (MDCK) and colon carcinoma (Caco-2) cells, and their transport to the cell surface was analyzed. All of the LPH mutants were targeted correctly to the apical membrane. Furthermore, the LPH-HA chimeras were internalized, indicating that the HA tails were available to interact with the cytoplasmic components of clathrin-coated pits. The introduction of a strong basolateral sorting signal into LPH was not sufficient to override the strong apical signals of the LPH external domain or transmembrane domains. These results show that basolateral sorting signals are not always dominant over apical sorting signals in proteins that contain each and suggest that sorting of basolateral from apical proteins occurs within a common compartment where competition for sorting signals can occur.
Collapse
Affiliation(s)
- R Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Orzech E, Schlessinger K, Weiss A, Okamoto CT, Aroeti B. Interactions of the AP-1 Golgi adaptor with the polymeric immunoglobulin receptor and their possible role in mediating brefeldin A-sensitive basolateral targeting from the trans-Golgi network. J Biol Chem 1999; 274:2201-15. [PMID: 9890983 DOI: 10.1074/jbc.274.4.2201] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We provide morphological, biochemical, and functional evidence suggesting that the AP-1 clathrin adaptor complex of the trans-Golgi network interacts with the polymeric immunoglobulin receptor in transfected Madin-Darby canine kidney cells. Our results indicate that immunofluorescently labeled gamma-adaptin subunit of the adaptor complex and the polymeric immunoglobulin receptor partially co-localize in polarized and semi-polarized cells. gamma-Adaptin is co-immunoisolated with membranes expressing the wild-type receptor. The entire AP-1 adaptor complex could be chemically cross-linked to the receptor in filter-grown cells. gamma-Adaptin could be co-immunoprecipitated with the wild-type receptor, with reduced efficiency with receptor mutant whose basolateral sorting motif has been deleted, and not with receptor lacking its cytoplasmic tail. Co-immunoprecipitation of gamma-adaptin was inhibited by brefeldin A. Mutation of cytoplasmic serine 726 inhibited receptor interactions with AP-1 but did not abrogate the fidelity of its basolateral targeting from the trans-Golgi network. However, the kinetics of receptor delivery to the basolateral cell surface were slowed by the mutation. Although surface delivery of the wild-type receptor was inhibited by brefeldin A, the delivery of the mutant receptor was insensitive to the drug. Our results are consistent with a working model in which phosphorylated cytoplasmic serine modulates the recruitment of the polymeric immunoglobulin receptor into AP-1/clathrin-coated areas in the trans-Golgi network. This process may regulate the efficiency of receptor targeting from the trans-Golgi network.
Collapse
Affiliation(s)
- E Orzech
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
32
|
Zheng X, Lu D, Sadler JE. Apical sorting of bovine enteropeptidase does not involve detergent-resistant association with sphingolipid-cholesterol rafts. J Biol Chem 1999; 274:1596-605. [PMID: 9880538 DOI: 10.1074/jbc.274.3.1596] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enteropeptidase is a heterodimeric type II membrane protein of the brush border of duodenal enterocytes. In this location, enteropeptidase cleaves and activates trypsinogen, thereby initiating the activation of other intestinal digestive enzymes. Recombinant bovine enteropeptidase was sorted directly to the apical surface of polarized Madin-Darby canine kidney cells. Replacement of the cytoplasmic and signal anchor domains with a cleavable signal peptide (mutant proenteropeptidase lacking the amino-terminal signal anchor domain (dSA-BEK)) caused apical secretion. The additional amino-terminal deletion of a mucin-like domain (HL-BEK) resulted in secretion both apically and basolaterally. Further deletion of the noncatalytic heavy chain (L-BEK) resulted in apical secretion. Thus enteropeptidase appears to have at least three distinct sorting signals as follows: the light chain (L-BEK) directs apical sorting, addition of most of the heavy chain (HL-BEK) inhibits apical sorting, and addition of the mucin-like domain (dSA-BEK) restores apical sorting. Inhibition of N-linked glycosylation with tunicamycin or disruption of microtubules with colchicine caused L-BEK to be secreted equally into apical and basolateral compartments, whereas brefeldin A caused basolateral secretion of L-BEK. Full-length BEK was not found in detergent-resistant raft domains of Madin-Darby canine kidney cells or baby hamster kidney cells. These results suggest apical sorting of enteropeptidase depends on N-linked glycosylation of the serine protease domain and an amino-terminal segment that includes an O-glycosylated mucin-like domain and three potential N-glycosylation sites. In contrast to many apically targeted proteins, enteropeptidase does not form detergent-resistant associations with sphingolipid-cholesterol rafts.
Collapse
Affiliation(s)
- X Zheng
- Division of Hematology and Oncology, Department of Medicine and Barnes-Jewish Hospital, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
33
|
Saunders C, Keefer JR, Bonner CA, Limbird LE. Targeting of G protein-coupled receptors to the basolateral surface of polarized renal epithelial cells involves multiple, non-contiguous structural signals. J Biol Chem 1998; 273:24196-206. [PMID: 9727043 DOI: 10.1074/jbc.273.37.24196] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Truncations and chimeras of the alpha2A-adrenergic receptor (alpha2AAR) were evaluated to identify membrane domains responsible for its direct basolateral targeting in Madin-Darby canine kidney cells. An alpha2AAR truncation, encoding transmembrane (TM) regions 1-5, was first delivered basolaterally, but within minutes appeared apically, and at steady-state was primarily lateral in its immunocytochemical localization. A TM 1-5 truncation with the third intracellular loop revealed more intense lateral localization than for the TM 1-5 structure, consistent with the role of the third intracellular loop in alpha2AAR stabilization. Addition of TM 6-7 of A1 adenosine receptor (A1AdoR) to alpha2AARTM1-5 creates a chimera, alpha2AARTM1-5/A1AdoRTM6-7, which was first delivered apically, resulting either from loss of alpha2AAR sorting information in TM 6-7 or acquisition of apical trafficking signals within A1AdoRTM6-7. Evidence that alpha2AARTM6-7 imparts basolateral targeting information is revealed by the significant basolateral localization of the A1AdoRTM1-5/alpha2AARTM6-7 and A1AdoRTM1-5/alpha2AARTM6-7+i3 chimeras, in contrast to the dominant apical localization of A1AdoR. These results reveal that sequences within TM 1-5 and within TM 6-7 of the alpha2AAR confer basolateral targeting, providing the first evidence that alpha2AAR basolateral localization is not conferred by a single region but by non-contiguous membrane-embedded or proximal sequences.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Membrane/metabolism
- Cell Polarity/physiology
- Dogs
- Epithelial Cells/metabolism
- GTP-Binding Proteins/metabolism
- Kidney/metabolism
- Models, Molecular
- Protein Structure, Secondary
- Receptors, Adrenergic, alpha-2/chemistry
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Purinergic P1/chemistry
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Sequence Deletion
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- C Saunders
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | |
Collapse
|