1
|
Rysiewicz B, Błasiak E, Mystek P, Dziedzicka-Wasylewska M, Polit A. Beyond the G protein α subunit: investigating the functional impact of other components of the Gαi 3 heterotrimers. Cell Commun Signal 2023; 21:279. [PMID: 37817242 PMCID: PMC10566112 DOI: 10.1186/s12964-023-01307-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Specific interactions between G protein-coupled receptors (GPCRs) and G proteins play a key role in mediating signaling events. While there is little doubt regarding receptor preference for Gα subunits, the preferences for specific Gβ and Gγ subunits and the effects of different Gβγ dimer compositions on GPCR signaling are poorly understood. In this study, we aimed to investigate the subcellular localization and functional response of Gαi3-based heterotrimers with different combinations of Gβ and Gγ subunits. METHODS Live-cell imaging microscopy and colocalization analysis were used to investigate the subcellular localization of Gαi3 in combination with Gβ1 or Gβ2 heterotrimers, along with representative Gγ subunits. Furthermore, fluorescence lifetime imaging microscopy (FLIM-FRET) was used to investigate the nanoscale distribution of Gαi3-based heterotrimers in the plasma membrane, specifically with the dopamine D2 receptor (D2R). In addition, the functional response of the system was assessed by monitoring intracellular cAMP levels and conducting bioinformatics analysis to further characterize the heterotrimer complexes. RESULTS Our results show that Gαi3 heterotrimers mainly localize to the plasma membrane, although the degree of colocalization is influenced by the accompanying Gβ and Gγ subunits. Heterotrimers containing Gβ2 showed slightly lower membrane localization compared to those containing Gβ1, but certain combinations, such as Gαi3β2γ8 and Gαi3β2γ10, deviated from this trend. Examination of the spatial arrangement of Gαi3 in relation to D2R and of changes in intracellular cAMP level showed that the strongest functional response is observed for those trimers for which the distance between the receptor and the Gα subunit is smallest, i.e. complexes containing Gβ1 and Gγ8 or Gγ10 subunit. Deprivation of Gαi3 lipid modifications resulted in a significant decrease in the amount of protein present in the cell membrane, but did not always affect intracellular cAMP levels. CONCLUSION Our studies show that the composition of G protein heterotrimers has a significant impact on the strength and specificity of GPCR-mediated signaling. Different heterotrimers may exhibit different conformations, which further affects the interactions of heterotrimers and GPCRs, as well as their interactions with membrane lipids. This study contributes to the understanding of the complex signaling mechanisms underlying GPCR-G-protein interactions and highlights the importance of the diversity of Gβ and Gγ subunits in G-protein signaling pathways. Video Abstract.
Collapse
Affiliation(s)
- Beata Rysiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ewa Błasiak
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paweł Mystek
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
2
|
Senarath K, Kankanamge D, Samaradivakara S, Ratnayake K, Tennakoon M, Karunarathne A. Regulation of G Protein βγ Signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:133-191. [PMID: 29776603 DOI: 10.1016/bs.ircmb.2018.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) deliver external signals to the cell interior, upon activation by the external signal stimulated G protein-coupled receptors (GPCRs).While the activated GPCRs control several pathways independently, activated G proteins control the vast majority of cellular and physiological functions, ranging from vision to cardiovascular homeostasis. Activated GPCRs dissociate GαGDPβγ heterotrimer into GαGTP and free Gβγ. Earlier, GαGTP was recognized as the primary signal transducer of the pathway and Gβγ as a passive signaling modality that facilitates the activity of Gα. However, Gβγ later found to regulate more number of pathways than GαGTP does. Once liberated from the heterotrimer, free Gβγ interacts and activates a diverse range of signaling regulators including kinases, lipases, GTPases, and ion channels, and it does not require any posttranslation modifications. Gβγ family consists of 48 members, which show cell- and tissue-specific expressions, and recent reports show that cells employ the subtype diversity in Gβγ to achieve desired signaling outcomes. In addition to activated GPCRs, which induce free Gβγ generation and the rate of GTP hydrolysis in Gα, which sequester Gβγ in the heterotrimer, terminating Gβγ signaling, additional regulatory mechanisms exist to regulate Gβγ activity. In this chapter, we discuss structure and function, subtype diversity and its significance in signaling regulation, effector activation, regulatory mechanisms as well as the disease relevance of Gβγ in eukaryotes.
Collapse
|
3
|
Duc NM, Kim HR, Chung KY. Recent Progress in Understanding the Conformational Mechanism of Heterotrimeric G Protein Activation. Biomol Ther (Seoul) 2017; 25:4-11. [PMID: 28035078 PMCID: PMC5207459 DOI: 10.4062/biomolther.2016.169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/26/2016] [Accepted: 09/01/2016] [Indexed: 12/05/2022] Open
Abstract
Heterotrimeric G proteins are key intracellular coordinators that receive signals from cells through activation of cognate G protein-coupled receptors (GPCRs). The details of their atomic interactions and structural mechanisms have been described by many biochemical and biophysical studies. Specifically, a framework for understanding conformational changes in the receptor upon ligand binding and associated G protein activation was provided by description of the crystal structure of the β2-adrenoceptor-Gs complex in 2011. This review focused on recent findings in the conformational dynamics of G proteins and GPCRs during activation processes.
Collapse
Affiliation(s)
- Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Comprehensive analysis of heterotrimeric G-protein complex diversity and their interactions with GPCRs in solution. Proc Natl Acad Sci U S A 2015; 112:E1181-90. [PMID: 25733868 DOI: 10.1073/pnas.1417573112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agonist binding to G-protein-coupled receptors (GPCRs) triggers signal transduction cascades involving heterotrimeric G proteins as key players. A major obstacle for drug design is the limited knowledge of conformational changes upon agonist binding, the details of interaction with the different G proteins, and the transmission to movements within the G protein. Although a variety of different GPCR/G protein complex structures would be needed, the transient nature of this complex and the intrinsic instability against dissociation make this endeavor very challenging. We have previously evolved GPCR mutants that display higher stability and retain their interaction with G proteins. We aimed at finding all G-protein combinations that preferentially interact with neurotensin receptor 1 (NTR1) and our stabilized mutants. We first systematically analyzed by coimmunoprecipitation the capability of 120 different G-protein combinations consisting of αi1 or αsL and all possible βγ-dimers to form a heterotrimeric complex. This analysis revealed a surprisingly unrestricted ability of the G-protein subunits to form heterotrimeric complexes, including βγ-dimers previously thought to be nonexistent, except for combinations containing β5. A second screen on coupling preference of all G-protein heterotrimers to NTR1 wild type and a stabilized mutant indicated a preference for those Gαi1βγ combinations containing γ1 and γ11. Heterotrimeric G proteins, including combinations believed to be nonexistent, were purified, and complexes with the GPCR were prepared. Our results shed new light on the combinatorial diversity of G proteins and their coupling to GPCRs and open new approaches to improve the stability of GPCR/G-protein complexes.
Collapse
|
5
|
Dingus J, Hildebrandt JD. Synthesis and assembly of G protein βγ dimers: comparison of in vitro and in vivo studies. Subcell Biochem 2012; 63:155-80. [PMID: 23161138 DOI: 10.1007/978-94-007-4765-4_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The heterotrimeric GTP-binding proteins (G proteins) are the canonical cellular machinery used with the approximately 700 G protein-coupled receptors (GPCRs) in the human genome to transduce extracellular signals across the plasma membrane. The synthesis of the constituent G protein subunits, and their assembly into Gβγ dimers and G protein heterotrimers, determines the signaling repertoire for G-protein/GPCR signaling in cells. These synthesis/assembly -processes are intimately related to two other overlapping events in the intricate pathway leading to formation of G protein signaling complexes, posttranslational modification and intracellular trafficking of G proteins. The assembly of the Gβγ dimer is a complex process involving multiple accessory proteins and organelles. The mechanisms involved are becoming increasingly appreciated, but are still incompletely understood. In vitro and in vivo (cellular) studies provide different perspectives of these processes, and a comparison of them can provide insight into both our current level of understanding and directions to be taken in future investigations.
Collapse
Affiliation(s)
- Jane Dingus
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | |
Collapse
|
6
|
Delineation of ligand binding and receptor signaling activities of purified P2Y receptors reconstituted with heterotrimeric G proteins. Purinergic Signal 2011; 1:43-9. [PMID: 18404399 PMCID: PMC2096568 DOI: 10.1007/s11302-004-4748-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 10/08/2004] [Accepted: 10/08/2004] [Indexed: 11/30/2022] Open
Abstract
P2Y receptors are G protein coupled receptors that respond to extracellular nucleotides to promote a multitude of signaling events. Our laboratory has purified several P2Y receptors with the goal of providing molecular insight into their: (1) ligand binding properties, (2) G protein signaling selectivities, and (3) regulation by RGS proteins and other signaling cohorts. The human P2Y1 receptor and the human P2Y12 receptor, both of which are intimately involved in ADP-mediated platelet aggregation, were purified to near homogeneity and studied in detail. After high-level expression from recombinant baculovirus infection of Sf9 insect cells, approximately 50% of the receptors were successfully extracted with digitonin. Purification of nearly homogeneous epitope-tagged P2Y receptor was achieved using metal-affinity chromatography followed by other traditional chromatographic steps. Yields of purified P2Y receptors range from 10 to 100 μg/l of infected cells. Once purified, the receptors were reconstituted in model lipid vesicles along with their cognate G proteins to assess receptor function. Agonist-promoted increases in steady-state GTPase assays demonstrated the functional activity of the reconstituted purified receptor. We have utilized this reconstitution system to assess the action of various nucleotide agonists and antagonists, the relative G protein selectivity, and the influence of other proteins, such as phospholipase C, on P2Y receptor-promoted signaling. Furthermore, we have identified the RGS expression profile of platelets and have begun to assess the action of these RGS proteins in a reconstituted P2Y receptor/G protein platelet model.
Collapse
|
7
|
Wang DB, Sherman NE, Shannon JD, Leonhardt SA, Mayeenuddin LH, Yeager M, McIntire WE. Binding of β4γ5 by adenosine A1 and A2A receptors determined by stable isotope labeling with amino acids in cell culture and mass spectrometry. Biochemistry 2011; 50:207-20. [PMID: 21128647 PMCID: PMC3144317 DOI: 10.1021/bi101227y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Characterization of G protein βγ dimer isoform expression in different cellular contexts has been impeded by low levels of protein expression, broad isoform heterogeneity, and antibodies of limited specificity, sensitivity, or availability. As a new approach, we used quantitative mass spectrometry to characterize native βγ dimers associated with adenosine A(1):α(i1) and adenosine A(2A):α(S) receptor fusion proteins expressed in HEK-293 cells. Cells expressing A(1):α(i1) were cultured in media containing [(13)C(6)]Arg and [(13)C(6)]Lys and βγ labeled with heavy isotopes purified. Heavy βγ was combined with either recombinant βγ purified from Sf9 cells, βγ purified from the A(2A):α(S) expressed in HEK-293 cells cultured in standard media, or an enriched βγ fraction from HEK-293 cells. Samples were separated by SDS-PAGE, protein bands containing β and γ were excised, digested with trypsin, and separated by HPLC, and isotope ratios were analyzed by mass spectrometry. Three β isoforms, β(1), β(2), and β(4), and seven γ isoforms, γ(2), γ(4), γ(5), γ(7), γ(10), γ(11), and γ(12), were identified in the analysis. β(1) and γ(5) were most abundant in the enriched βγ fraction, and this βγ profile was generally mirrored in the fusion proteins. However, both A(2A):α(S) and A(1):α(i1) bound more β(4) and γ(5) compared to the enriched βγ fraction; also, more β(4) was associated with A(2A):α(S) than A(1):α(i1). Both fusion proteins also contained less γ(2), γ(10), and γ(12) than the enriched βγ fraction. These results suggest that preferences for particular βγ isoforms may be driven in part by structural motifs common to adenosine receptor family members.
Collapse
Affiliation(s)
- Dora Bigler Wang
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Nicholas E. Sherman
- W.M. Keck Biomedical Mass Spectrometry Laboratory, University of Virginia Health System, Charlottesville, Virginia 22908
| | - John D. Shannon
- W.M. Keck Biomedical Mass Spectrometry Laboratory, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Susan A. Leonhardt
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Linnia H. Mayeenuddin
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - William E. McIntire
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
8
|
Porter MY, Koelle MR. Insights into RGS protein function from studies in Caenorhabditis elegans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:15-47. [PMID: 20374712 DOI: 10.1016/s1877-1173(09)86002-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nematode worm, Caenorhabditis elegans, contains orthologs of most regulator of G protein signaling (RGS) protein subfamilies and all four G protein α-subunit subfamilies found in mammals. Every C. elegans RGS and Gα gene has been knocked out, and the in vivo functions and Gα targets of a number of RGS proteins have been characterized in detail. This has revealed a complex relationship between the RGS and Gα proteins, in which multiple RGS proteins can regulate the same Gα protein, either by acting redundantly or by exerting control over signaling under different circumstances or in different cells. RGS proteins that are coexpressed can also show specificity for distinct Gα targets in vivo, and the determinants of such specificity can reside outside of the RGS domain. This review will discuss how analysis in C. elegans may aid us in achieving a full understanding of the physiological functions of RGS proteins.
Collapse
Affiliation(s)
- Morwenna Y Porter
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, SHM CE30, New Haven, Connecticut 06520‐8024, USA
| | | |
Collapse
|
9
|
Anderson GR, Posokhova E, Martemyanov KA. The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell Biochem Biophys 2009; 54:33-46. [PMID: 19521673 PMCID: PMC2827338 DOI: 10.1007/s12013-009-9052-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/27/2009] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptor signaling pathways mediate the transmission of signals from the extracellular environment to the generation of cellular responses, a process that is critically important for neurons and neurotransmitter action. The ability to promptly respond to rapidly changing stimulation requires timely inactivation of G proteins, a process controlled by a family of specialized proteins known as regulators of G protein signaling (RGS). The R7 group of RGS proteins (R7 RGS) has received special attention due to their pivotal roles in the regulation of a range of crucial neuronal processes such as vision, motor control, reward behavior, and nociception in mammals. Four proteins in this group, RGS6, RGS7, RGS9, and RGS11, share a common molecular organization of three modules: (i) the catalytic RGS domain, (ii) a GGL domain that recruits G beta(5), an outlying member of the G protein beta subunit family, and (iii) a DEP/DHEX domain that mediates interactions with the membrane anchor proteins R7BP and R9AP. As heterotrimeric complexes, R7 RGS proteins not only associate with and regulate a number of G protein signaling pathway components, but have also been found to form complexes with proteins that are not traditionally associated with G protein signaling. This review summarizes our current understanding of the biology of the R7 RGS complexes including their structure/functional organization, protein-protein interactions, and physiological roles.
Collapse
Affiliation(s)
- Garret R. Anderson
- From the Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Ekaterina Posokhova
- From the Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kirill A. Martemyanov
- From the Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
10
|
Howlett AC, Gray AJ, Hunter JM, Willardson BM. Role of molecular chaperones in G protein beta5/regulator of G protein signaling dimer assembly and G protein betagamma dimer specificity. J Biol Chem 2009; 284:16386-16399. [PMID: 19376773 DOI: 10.1074/jbc.m900800200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G protein betagamma subunit dimer (Gbetagamma) and the Gbeta5/regulator of G protein signaling (RGS) dimer play fundamental roles in propagating and regulating G protein pathways, respectively. How these complexes form dimers when the individual subunits are unstable is a question that has remained unaddressed for many years. In the case of Gbetagamma, recent studies have shown that phosducin-like protein 1 (PhLP1) works as a co-chaperone with the cytosolic chaperonin complex (CCT) to fold Gbeta and mediate its interaction with Ggamma. However, it is not known what fraction of the many Gbetagamma combinations is assembled this way or whether chaperones influence the specificity of Gbetagamma dimer formation. Moreover, the mechanism of Gbeta5-RGS assembly has yet to be assessed experimentally. The current study was undertaken to directly address these issues. The data show that PhLP1 plays a vital role in the assembly of Ggamma2 with all four Gbeta1-4 subunits and in the assembly of Gbeta2 with all twelve Ggamma subunits, without affecting the specificity of the Gbetagamma interactions. The results also show that Gbeta5-RGS7 assembly is dependent on CCT and PhLP1, but the apparent mechanism is different from that of Gbetagamma. PhLP1 seems to stabilize the interaction of Gbeta5 with CCT until Gbeta5 is folded, after which it is released to allow Gbeta5 to interact with RGS7. These findings point to a general role for PhLP1 in the assembly of all Gbetagamma combinations and suggest a CCT-dependent mechanism for Gbeta5-RGS7 assembly that utilizes the co-chaperone activity of PhLP1 in a unique way.
Collapse
Affiliation(s)
- Alyson C Howlett
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Amy J Gray
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Jesse M Hunter
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Barry M Willardson
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602.
| |
Collapse
|
11
|
McIntire WE. Structural determinants involved in the formation and activation of G protein betagamma dimers. Neurosignals 2009; 17:82-99. [PMID: 19212142 DOI: 10.1159/000186692] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 05/13/2008] [Indexed: 01/08/2023] Open
Abstract
Heterotrimeric G proteins, composed of an alpha, beta and gamma subunit, represent one of the most important and dynamic families of signaling proteins. As a testament to the significance of G protein signaling, the hundreds of seven-transmembrane-spanning receptors that interact with G proteins are estimated to occupy 1-2% of the human genome. This broad diversity of receptors is echoed in the number of potential heterotrimer combinations that can arise from the 23 alpha subunit, 7 beta subunit and 12 gamma subunit isoforms that have been identified. The potential for such vast complexity implies that the receptor G protein interface is the site of much regulation. The historical model for the activation of a G protein holds that activated receptor catalyzes the exchange of GDP for GTP on the alpha subunit, inducing a conformational change that substantially lowers the affinity of alpha for betagamma. This decreased affinity enables dissociation of betagamma from alpha and receptor. The free form of betagamma is thought to activate effectors, until the hydrolysis of GTP by G alpha (aided by RGS proteins) allows the subunits to re-associate, effectively deactivating the G protein until another interaction with activated receptor.
Collapse
Affiliation(s)
- William E McIntire
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| |
Collapse
|
12
|
Abstract
G protein betagamma subunits are central participants in G protein-coupled receptor signaling pathways. They interact with receptors, G protein alpha subunits and downstream targets to coordinate multiple, different GPCR functions. Much is known about the biology of Gbetagamma subunits but mysteries remain. Here, we will review what is known about general aspects of structure and function of Gbetagamma as well as discuss emerging mechanisms for regulation of Gbetagamma signaling. Recent data suggest that Gbetagamma is a potential therapeutic drug target. Thus, a thorough understanding of the molecular and physiological functions of Gbetagamma has significant implications.
Collapse
Affiliation(s)
- A V Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| |
Collapse
|
13
|
Abstract
Heterotrimeric G proteins couple the activation of heptahelical receptors at the cell surface to the intracellular signaling cascades that mediate the physiological responses to extracellular stimuli. G proteins are molecular switches that are activated by receptor-catalyzed GTP for GDP exchange on the G protein alpha subunit, which is the rate-limiting step in the activation of all downstream signaling. Despite the important biological role of the receptor-G protein interaction, relatively little is known about the structure of the complex and how it leads to nucleotide exchange. This chapter will describe what is known about receptor and G protein structure and outline a strategy for assembling the current data into improved models for the receptor-G protein complex that will hopefully answer the question as to how receptors flip the G protein switch.
Collapse
Affiliation(s)
- William M Oldham
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
14
|
Yost EA, Mervine SM, Sabo JL, Hynes TR, Berlot CH. Live cell analysis of G protein beta5 complex formation, function, and targeting. Mol Pharmacol 2007; 72:812-25. [PMID: 17596375 DOI: 10.1124/mol.107.038075] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The G protein beta(5) subunit differs from other beta subunits in having divergent sequence and subcellular localization patterns. Although beta(5)gamma(2) modulates effectors, beta(5) associates with R7 family regulators of G protein signaling (RGS) proteins when purified from tissues. To investigate beta(5) complex formation in vivo, we used multicolor bimolecular fluorescence complementation in human embryonic kidney 293 cells to compare the abilities of 7 gamma subunits and RGS7 to compete for interaction with beta(5). Among the gamma subunits, beta(5) interacted preferentially with gamma(2), followed by gamma(7), and efficacy of phospholipase C-beta2 activation correlated with amount of beta(5)gamma complex formation. beta(5) also slightly preferred gamma(2) over RGS7. In the presence of coexpressed R7 family binding protein (R7BP), beta(5) interacted similarly with gamma(2) and RGS7. Moreover, gamma(2) interacted preferentially with beta(1) rather than beta(5). These results suggest that multiple coexpressed proteins influence beta(5) complex formation. Fluorescent beta(5)gamma(2) labeled discrete intracellular structures including the endoplasmic reticulum and Golgi apparatus, whereas beta(5)RGS7 stained the cytoplasm diffusely. Coexpression of alpha(o) targeted both beta(5) complexes to the plasma membrane, and alpha(q) also targeted beta(5)gamma(2) to the plasma membrane. The constitutively activated alpha(o) mutant, alpha(o)R179C, produced greater targeting of beta(5)RGS7 and less of beta(5)gamma(2) than did alpha(o). These results suggest that alpha(o) may cycle between interactions with beta(5)gamma(2) or other betagamma complexes when inactive, and beta(5)RGS7 when active. Moreover, the ability of beta(5)gamma(2) to be targeted to the plasma membrane by alpha subunits suggests that functional beta(5)gamma(2) complexes can form in intact cells and mediate signaling by G protein-coupled receptors.
Collapse
Affiliation(s)
- Evan A Yost
- Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822-2623, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
The regulation of presynaptic, voltage-gated calcium channels by activation of heptahelical G protein-coupled receptors exerts a crucial influence on presynaptic calcium entry and hence on neurotransmitter release. Receptor activation subjects presynaptic N- and P/Q-type calcium channels to a rapid, membrane-delimited inhibition-mediated by direct, voltage-dependent interactions between G protein betagamma subunits and the channels-and to a slower, voltage-independent modulation involving soluble second messenger molecules. In turn, the direct inhibition of the channels is regulated as a function of many factors, including channel subtype, ancillary calcium channel subunits, and the types of G proteins and G protein regulatory factors involved. Twenty-five years after this mode of physiological regulation was first described, we review the investigations that have led to our current understanding of its molecular mechanisms.
Collapse
Affiliation(s)
- H William Tedford
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Canada
| | | |
Collapse
|
16
|
McIntire WE, MacCleery G, Murphree LJ, Kerchner KR, Linden J, Garrison JC. Influence of differential stability of G protein βγ dimers containing the γ11 subunit on functional activity at the M1 muscarinic receptor, A1 adenosine receptor, and phospholipase C-β. Biochemistry 2006; 45:11616-31. [PMID: 16981721 DOI: 10.1021/bi0604882] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ggamma11 is an unusual guanine nucleotide-binding regulatory protein (G protein) subunit. To study the effect of different Gbeta-binding partners on gamma11 function, four recombinant betagamma dimers, beta1gamma2, beta4gamma2, beta1gamma11, and beta4gamma11, were characterized in a receptor reconstitution assay with the G(q)-linked M1 muscarinic and the G(i1)-linked A1 adenosine receptors. The beta4gamma11 dimer was up to 30-fold less efficient than beta4gamma2 at promoting agonist-dependent binding of [35S]GTPgammaS to either alpha(q) or alpha(i1). Using a competition assay to measure relative affinities of purified betagamma dimers for alpha, the beta4gamma11 dimer had a 15-fold lower affinity for G(i1) alpha than beta4gamma2. Chromatographic characterization of the beta4gamma11 dimer revealed that the betagamma is stable in a heterotrimeric complex with G(i1) alpha; however, upon activation of alpha with MgCl2 and GTPgammaS under nondenaturing conditions, the beta4 and gamma11 subunits dissociate. Activation of purified G(i1) alpha:beta4gamma11 with Mg+2/GTPgammaS following reconstitution into lipid vesicles and incubation with phospholipase C (PLC)-beta resulted in stimulation of PLC-beta activity; however, when this activation preceded reconstitution into vesicles, PLC-beta activity was markedly diminished. In a membrane coupling assay designed to measure the ability of G protein to promote a high-affinity agonist-binding conformation of the A1 adenosine receptor, beta4gamma11 was as effective as beta4gamma2 when coexpressed with G(i1) alpha and receptor. However, G(i1) alpha:beta4gamma11-induced high-affinity binding was up to 20-fold more sensitive to GTPgammaS than G(i1) alpha:beta4gamma2-induced high-affinity binding. These results suggest that the stability of the beta4gamma11 dimer can modulate G protein activity at the receptor and effector.
Collapse
Affiliation(s)
- William E McIntire
- Department of Pharmacology, University of Virginia Health System, Post Office Box 800735, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Twizere JC, Springael JY, Boxus M, Burny A, Dequiedt F, Dewulf JF, Duchateau J, Portetelle D, Urbain P, Van Lint C, Green PL, Mahieux R, Parmentier M, Willems L, Kettmann R. Human T-cell leukemia virus type-1 Tax oncoprotein regulates G-protein signaling. Blood 2006; 109:1051-60. [PMID: 16990599 PMCID: PMC1785145 DOI: 10.1182/blood-2006-06-026781] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and neurological syndromes. HTLV-1 encodes the oncoprotein Tax-1, which modulates viral and cellular gene expression leading to T-cell transformation. Guanine nucleotide-binding proteins (G proteins) and G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins known and are involved in the regulation of most biological functions. Here, we report an interaction between HTLV-1 Tax oncoprotein and the G-protein beta subunit. Interestingly, though the G-protein beta subunit inhibits Tax-mediated viral transcription, Tax-1 perturbs G-protein beta subcellular localization. Functional evidence for these observations was obtained using conditional Tax-1-expressing transformed T-lymphocytes, where Tax expression correlated with activation of the SDF-1/CXCR4 axis. Our data indicated that HTLV-1 developed a strategy based on the activation of the SDF-1/CXCR4 axis in the infected cell; this could have tremendous implications for new therapeutic strategies.
Collapse
|
18
|
Mayeenuddin LH, McIntire WE, Garrison JC. Differential sensitivity of P-Rex1 to isoforms of G protein betagamma dimers. J Biol Chem 2005; 281:1913-20. [PMID: 16301321 DOI: 10.1074/jbc.m506034200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-Rex1 is a specific guanine nucleotide exchange factor (GEF) for Rac, which is present in high abundance in brain and hematopoietic cells. P-Rex1 is dually regulated by phosphatidylinositol (3,4,5)-trisphosphate and the Gbetagamma subunits of heterotrimeric G proteins. We examined which of the multiple G protein alpha and betagamma subunits activate P-Rex1-mediated Rac guanine nucleotide exchange using pure, recombinant proteins reconstituted into synthetic lipid vesicles. AlF(-)(4) activated G(s),G(i),G(q),G(12), or G(13) alpha subunits were unable to activate P-Rex1. Gbetagamma dimers containing Gbeta(1-4) complexed with gamma(2) stimulated P-Rex1 activity with EC(50) values ranging from 10 to 20 nm. Gbeta(5)gamma(2) was not able to stimulate P-Rex1 GEF activity. Dimers containing the beta(1) subunit complexed with a panel of different Ggamma subunits varied in their ability to stimulate P-Rex1. The beta(1)gamma(3), beta(1)gamma(7), beta(1)gamma(10), and beta(1)gamma(13HA) dimers all activated P-Rex1 with EC(50) values ranging from 20 to 38 nm. Dimers composed of beta(1)gamma(12) had lower EC(50) values (approximately 112 nm). The farnesylated gamma(11) subunit is highly expressed in hematopoietic cells; surprisingly, dimers containing this subunit (beta(1)gamma(11)) were also less effective at activating P-Rex1. These findings suggest that the composition of the Gbetagamma dimer released by receptor activation may differentially activate P-Rex1.
Collapse
Affiliation(s)
- Linnia H Mayeenuddin
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
19
|
Abstract
Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Galpha.GDP/Gbetagamma heterotrimers to promote GDP release and GTP binding, resulting in liberation of Galpha from Gbetagamma. Galpha.GTP and Gbetagamma target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Galpha and heterotrimer reformation - a cycle accelerated by 'regulators of G-protein signaling' (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) beta is activated by Galpha(q) and Gbetagamma, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Galpha nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways.
Collapse
Affiliation(s)
- C R McCudden
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.
| | | | | | | | | |
Collapse
|
20
|
Kerchner KR, Clay RL, McCleery G, Watson N, McIntire WE, Myung CS, Garrison JC. Differential Sensitivity of Phosphatidylinositol 3-Kinase p110γ to Isoforms of G Protein βγ Dimers. J Biol Chem 2004; 279:44554-62. [PMID: 15322106 DOI: 10.1074/jbc.m406071200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The ability of G protein alpha and betagamma subunits to activate the p110gamma isoform of phosphatidylinositol 3-kinase (PtdIns 3-kinase) was examined using pure, recombinant G proteins and the p101/p110gamma form of PtdIns 3-kinase reconstituted into synthetic lipid vesicles. GTP-activated Gs, Gi, Gq, or Go alpha subunits were unable to activate PtdIns 3-kinase. Dimers containing Gbeta(1-4) complexed with gamma2-stimulated PtdIns 3-kinase activity about 26-fold with EC50 values ranging from 4 to 7 nm. Gbeta5gamma2 was not able to stimulate PtdIns 3-kinase despite producing a 10-fold activation of avian phospholipase Cbeta. A series of dimers with beta subunits containing point mutations in the amino acids that undergo a conformational change upon interaction of betagamma with phosducin (beta1H311Agamma2, beta1R314Agamma2, and beta1W332Agamma2) was tested, and only beta1W332Agamma2 inhibited the ability of the dimer to stimulate PtdIns 3-kinase. Dimers containing the beta1 subunit complexed with a panel of different Ggamma subunits displayed variation in their ability to stimulate PtdIns 3-kinase. The beta1gamma2, beta1gamma10, beta1gamma12, and beta1gamma13 dimers all activated PtdIns 3-kinase about 26-fold with 4-25 nm EC50 values. The beta1gamma11 dimer, which contains the farnesyl isoprenoid group and is highly expressed in tissues containing the p101/p110gamma form of PtdIns 3-kinase, was ineffective. The role of the prenyl group on the gamma subunit in determining the activation of PtdIns 3-kinase was examined using gamma subunits with altered CAAX boxes directing the addition of farnesyl to the gamma2 subunit and geranylgeranyl to the gamma1 and gamma11 subunits. Replacement of the geranylgeranyl group of the gamma2 subunit with farnesyl inhibited the activity of beta1gamma2 on PtdIns 3-kinase. Conversely, replacement of the farnesyl group on the gamma1 and gamma11 subunit with geranylgeranyl restored almost full activity. These findings suggest that all beta subunits, with the exception of beta5, interact equally well with PtdIns 3-kinase. In contrast, the composition of the gamma subunit and its prenyl group markedly affects the ability of the betagamma dimer to stimulate PtdIns 3-kinase.
Collapse
Affiliation(s)
- Kristi R Kerchner
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908-0735, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Lukov GL, Myung CS, McIntire WE, Shao J, Zimmerman SS, Garrison JC, Willardson BM. Role of the isoprenyl pocket of the G protein beta gamma subunit complex in the binding of phosducin and phosducin-like protein. Biochemistry 2004; 43:5651-60. [PMID: 15134439 DOI: 10.1021/bi035903u] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosducin (Pdc) and phosducin-like protein (PhLP) regulate G protein-mediated signaling by binding to the betagamma subunit complex of heterotrimeric G proteins (Gbetagamma) and removing the dimer from cell membranes. The binding of Pdc induces a conformational change in the beta-propeller structure of Gbetagamma, creating a pocket between blades 6 and 7. It has been proposed that the isoprenyl group of Gbetagamma inserts into this pocket, stabilizing the Pdc.Gbetagamma structure and decreasing the affinity of the complex for the lipid bilayer. To test this hypothesis, the binding of Pdc and PhLP to several Gbetagamma dimers containing variants of the beta or gamma subunit was measured. These variants included modifications of the isoprenyl group (gamma), residues involved in the conformational change (beta), and residues lining the proposed prenyl pocket (beta). Switching prenyl groups from farnesyl to geranylgeranyl or vice versa had little effect on binding. However, alanine substitution of one residue in the beta subunit involved in the conformational change (W332) decreased binding 5-fold. Alanine substitution of certain residues within the prenyl pocket caused only minor decreases in binding, while a lysine substitution of T329 within the pocket inhibited binding 10-fold. Molecular modeling of the binding energy of the Pdc.Gbeta(1)gamma(2) complex required insertion of the geranylgeranyl group into the prenyl pocket in order to accurately predict the effects of prenyl pocket amino acid substitutions. Finally, a dimer containing a gamma subunit with no prenyl group (gamma(2)-C68S) decreased binding by nearly 20-fold. These results support the structural model in which the prenyl group escapes contact with the aqueous milieu by inserting into the prenyl pocket and stabilizing the Pdc-binding conformation of Gbetagamma.
Collapse
Affiliation(s)
- Georgi L Lukov
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Hynes TR, Tang L, Mervine SM, Sabo JL, Yost EA, Devreotes PN, Berlot CH. Visualization of G protein betagamma dimers using bimolecular fluorescence complementation demonstrates roles for both beta and gamma in subcellular targeting. J Biol Chem 2004; 279:30279-86. [PMID: 15136579 DOI: 10.1074/jbc.m401432200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the role of subcellular localization in regulating the specificity of G protein betagamma signaling, we have applied the strategy of bimolecular fluorescence complementation (BiFC) to visualize betagamma dimers in vivo. We fused an amino-terminal yellow fluorescent protein fragment to beta and a carboxyl-terminal yellow fluorescent protein fragment to gamma. When expressed together, these two proteins produced a fluorescent signal in human embryonic kidney 293 cells that was not obtained with either subunit alone. Fluorescence was dependent on betagamma assembly in that it was not obtained using beta2 and gamma1, which do not form a functional dimer. In addition to assembly, BiFC betagamma complexes were functional as demonstrated by more specific plasma membrane labeling than was obtained with individually tagged fluorescent beta and gamma subunits and by their abilities to potentiate activation of adenylyl cyclase by alpha(s) in COS-7 cells. To investigate isoform-dependent targeting specificity, the localization patterns of dimers formed by pair-wise combinations of three different beta subunits with three different gamma subunits were compared. BiFC betagamma complexes containing either beta1 or beta2 localized to the plasma membrane, whereas those containing beta5 accumulated in the cytosol or on intracellular membranes. These results indicate that the beta subunit can direct trafficking of the gamma subunit. Taken together with previous observations, these results show that the G protein alpha, beta, and gamma subunits all play roles in targeting each other. This method of specifically visualizing betagamma dimers will have many applications in sorting out roles for particular betagamma complexes in a wide variety of cell types.
Collapse
Affiliation(s)
- Thomas R Hynes
- The Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2623, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Bavec A. Novel features of amphiphilic peptide Mas7 in signalling via heterotrimeric G-proteins. J Pept Sci 2004; 10:691-9. [PMID: 15568683 DOI: 10.1002/psc.579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amphiphilic peptide Mas7, a structural analogue of mastoparan is a known activator of heterotrimeric Gi-proteins and its downstream effectors. This study investigated the functional interaction of Mas7 with a plasma membrane protein from CHO cells, the endogenous mono-ADP-ribosyltransferase. The substrate of endogenous mono-ADP-ribosyltransferase was the ADP-ribosylated protein with a molecular mass of 36 kDa, which corresponded to the beta subunit of heterotrimeric G-proteins. The effect of Mas7 on endogenous mono-ADP-ribosyltransferase activity was in the micromolar range with a maximal activation of 205% over the basal. In pertussis treated plasma membranes, it was found that the effect of Mas7 on endogenous mono-ADP-ribosyltransferase was partially blocked, which suggests the involvement of G-proteins, such as Gi or G0. In addition, an immunoassay was developed for the visualization of interaction between the a subunit and the betagamma dimer of G-protein on a Ni-NTA support. The physical interaction was tested of Mas7 with the heterotrimeric G-protein alphai2 subunit, which was overexpressed together with beta1gamma2-His6 subunits in sf9 cells. An interaction between Gi2 heterotrimer and Mas7 was not observed, which was not in accordance with previously reported results of mastoparan obtained for Gi-proteins from bovine brain. In conclusion, the signal is mediated from Mas7 to endogenous mono-ADP-ribosyltransferase via pertussis sensitive G-proteins. Furthermore, it is hypothesized that Gi2 G-proteins are not involved in the process.
Collapse
Affiliation(s)
- Aljosa Bavec
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
24
|
Abstract
Calcium influx into any cell requires fine tuning to guarantee the correct balance between activation of calcium-dependent processes, such as muscle contraction and neurotransmitter release, and calcium-induced cell damage. G protein-coupled receptors play a critical role in negative feedback to modulate the activity of the CaV2 subfamily of the voltage-dependent calcium channels, which are largely situated on neuronal and neuro-endocrine cells. The basis for the specificity of the relationships among membrane receptors, G proteins, and effector calcium channels will be discussed, as well as the mechanism by which G protein-mediated inhibition is thought to occur. The inhibition requires free G beta gamma dimers, and the cytoplasmic linker between domains I and II of the CaV2 alpha 1 subunits binds G beta gamma dimers, whereas the intracellular N terminus of CaV2 alpha 1 subunits provides essential determinants for G protein modulation. Evidence suggests a key role for the beta subunits of calcium channels in the process of G protein modulation, and the role of a class of proteins termed "regulators of G protein signaling" will also be described.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Pharmacology, University College London, Gower St., London WC1E 6BT, UK.
| |
Collapse
|
25
|
Zhou JY, Toth PT, Miller RJ. Direct interactions between the heterotrimeric G protein subunit G beta 5 and the G protein gamma subunit-like domain-containing regulator of G protein signaling 11: gain of function of cyan fluorescent protein-tagged G gamma 3. J Pharmacol Exp Ther 2003; 305:460-6. [PMID: 12606627 DOI: 10.1124/jpet.102.048637] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used fluorescence resonance energy transfer imaging of enhanced cyan fluorescent protein (CFP)-tagged and enhanced yellow fluorescent protein (YFP)-tagged protein pairs to examine the hypothesis that G protein gamma subunit-like (GGL) domain-containing regulators of G protein signaling (RGS) can directly bind to the Gbeta5 subunit of heterotrimeric G proteins in vivo. We observed that Gbeta5 could interact with Ggamma2 and Ggamma13, after their expression in human embryonic kidney 293 cells. Interestingly, although untagged Ggamma3 did not interact with Gbeta5, CFP-tagged Ggamma3 strongly interacted with YFP-tagged Gbeta5 in FRET studies. Moreover, CFP-Ggamma3 supported Ca(2+) channel inhibition when paired with Gbeta5 or YFP-Gbeta5, indicating a "gain of function" for CFP-Ggamma3. Gbeta5 could also interact with RGS11 and its N-terminal, but not its C-terminal domain. On the other hand, RGS11 did not interact with Gbeta1. These studies demonstrate that the GGL domain-containing N terminus of RGS 11 can directly interact with Gbeta5 in vivo and supports the hypothesis that this interaction may contribute to the specificity of Gbeta5 interactions with cellular effector molecules.
Collapse
Affiliation(s)
- Janice Y Zhou
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | |
Collapse
|
26
|
Rojkova AM, Woodard GE, Huang TC, Combs CA, Zhang JH, Simonds WF. Ggamma subunit-selective G protein beta 5 mutant defines regulators of G protein signaling protein binding requirement for nuclear localization. J Biol Chem 2003; 278:12507-12. [PMID: 12551930 DOI: 10.1074/jbc.m207302200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signal transducing function of Gbeta(5) in brain is unknown. When studied in vitro Gbeta(5) is the only heterotrimeric Gbeta subunit known to interact with both Ggamma subunits and regulators of G protein signaling (RGS) proteins. When tested with Ggamma, Gbeta(5) interacts with other classical components of heterotrimeric G protein signaling pathways such as Galpha and phospholipase C-beta. We recently demonstrated nuclear expression of Gbeta(5) in neurons and brain (Zhang, J. H., Barr, V. A., Mo, Y., Rojkova, A. M., Liu, S., and Simonds, W. F. (2001) J. Biol. Chem. 276, 10284-10289). To gain further insight into the mechanism of Gbeta(5) nuclear localization, we generated a Gbeta(5) mutant deficient in its ability to interact with RGS7 while retaining its ability to bind Ggamma, and we compared its properties to the wild-type Gbeta(5). In HEK-293 cells co-transfection of RGS7 but not Ggamma(2) supported expression in the nuclear fraction of transfected wild-type Gbeta(5). In contrast the Ggamma-preferring Gbeta(5) mutant was not expressed in the HEK-293 cell nuclear fraction with either co-transfectant. The Ggamma-selective Gbeta(5) mutant was also excluded from the cell nucleus of transfected PC12 cells analyzed by laser confocal microscopy. These results define a requirement for RGS protein binding for Gbeta(5) nuclear expression.
Collapse
Affiliation(s)
- Alexandra M Rojkova
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wieland T, Mittmann C. Regulators of G-protein signalling: multifunctional proteins with impact on signalling in the cardiovascular system. Pharmacol Ther 2003; 97:95-115. [PMID: 12559385 DOI: 10.1016/s0163-7258(02)00326-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regulator of G-protein signalling (RGS) proteins form a superfamily of at least 25 proteins, which are highly diverse in structure, expression patterns, and function. They share a 120 amino acid homology domain (RGS domain), which exhibits GTPase accelerating activity for alpha-subunits of heterotrimeric G-proteins, and thus, are negative regulators of G-protein-mediated signalling. Based on the organisation of the Rgs genes, structural similarities, and differences in functions, they can be divided into at least six subfamilies of RGS proteins and three more families of RGS-like proteins. Many of these proteins regulate signalling processes within cells, not only via interaction with G-protein alpha-subunits, but are G-protein-regulated effectors, Gbetagamma scavenger, or scaffolding proteins in signal transduction complexes as well. The expression of at least 16 different RGS proteins in the mammalian or human myocardium have been described. A subgroup of at least eight was detected in a single atrial myocyte. The exact functions of these proteins remain mostly elusive, but RGS proteins such as RGS4 are involved in the regulation of G(i)-protein betagamma-subunit-gated K(+) channels. An up-regulation of RGS4 expression has been consistently found in human heart failure and some animal models. Evidence is increasing that the enhanced RGS4 expression counter-regulates the G(q/11)-induced signalling caused by hypertrophic stimuli. In the vascular system, RGS5 seems to be an important signalling regulator. It is expressed in vascular endothelial cells, but not in cultured smooth muscle cells. Its down-regulation, both in a model of capillary morphogenesis and in an animal model of stroke, render it a candidate gene, which may be involved in the regulation of capillary growth, angiogenesis, and in the pathophysiology of stroke.
Collapse
Affiliation(s)
- Thomas Wieland
- Institut für Pharmakologie und Toxikologie, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Maybachstrasse 14-16, D-68169 Mannheim, Germany.
| | | |
Collapse
|
28
|
Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 2002; 145:47-179. [PMID: 12224528 DOI: 10.1007/bfb0116431] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peter R Stanfield
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
29
|
Hou Y, Chang V, Gautam N. Determining G protein heterotrimer formation. Methods Enzymol 2002; 344:505-12. [PMID: 11771406 DOI: 10.1016/s0076-6879(02)44736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Yongmin Hou
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
30
|
Abstract
This review focuses on the coupling specificity of the Galpha and Gbetagamma subunits of pertussis toxin (PTX)-sensitive G(i/o) proteins that mediate diverse signaling pathways, including regulation of ion channels and other effectors. Several lines of evidence indicate that specific combinations of G protein alpha, beta and gamma subunits are required for different receptors or receptor-effector networks, and that a higher degree of specificity for Galpha and Gbetagamma is observed in intact systems than reported in vitro. The structural determinants of receptor-G protein specificity remain incompletely understood, and involve receptor-G protein interaction domains, and perhaps other scaffolding processes. By identifying G protein specificity for individual receptor signaling pathways, ligands targeted to disrupt individual pathways of a given receptor could be developed.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Health Research Institute, Neuroscience, University of Ottawa, 451 Smyth Road, K1H-8M5, Ottawa, ON, Canada.
| | | |
Collapse
|
31
|
Blake BL, Wing MR, Zhou JY, Lei Q, Hillmann JR, Behe CI, Morris RA, Harden TK, Bayliss DA, Miller RJ, Siderovski DP. G beta association and effector interaction selectivities of the divergent G gamma subunit G gamma(13). J Biol Chem 2001; 276:49267-74. [PMID: 11675383 DOI: 10.1074/jbc.m106565200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G gamma(13) is a divergent member of the G gamma subunit family considered to be a component of the gustducin G-protein heterotrimer involved in bitter and sweet taste reception in taste bud cells. G gamma(13) contains a C-terminal asparagine-proline-tryptophan (NPW) tripeptide, a hallmark of RGS protein G gamma-like (GGL) domains which dimerize exclusively with G beta(5) subunits. In this study, we investigated the functional range of G gamma(13) assembly with G beta subunits using multiple assays of G beta association and G beta gamma effector modulation. G gamma(13) was observed to associate with all five G beta subunits (G beta(1-5)) upon co-translation in vitro, as well as function with all five G beta subunits in the modulation of Kir3.1/3.4 (GIRK1/4) potassium and N-type (alpha(1B)) calcium channels. Multiple G beta/G gamma(13) pairings were also functional in cellular assays of phospholipase C (PLC) beta 2 activation and inhibition of G alpha(q)-stimulated PLC beta 1 activity. However, upon cellular co-expression of G gamma(13) with different G beta subunits, only G beta(1)/G gamma(13), G beta(3)/G gamma(13), and G beta(4)/G gamma(13) pairings were found to form stable dimers detectable by co-immunoprecipitation under high-detergent cell lysis conditions. Collectively, these data indicate that G gamma(13) forms functional G beta gamma dimers with a range of G beta subunits. Coupled with our detection of G gamma(13) mRNA in mouse and human brain and retina, these results imply that this divergent G gamma subunit can act in signal transduction pathways other than that dedicated to taste reception in sensory lingual tissue.
Collapse
Affiliation(s)
- B L Blake
- Department of Pharmacology, University of North Carolina Neuroscience Center, Chapel Hill, North Carolina 27599-7365, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The C terminus of the Ca channel alpha1B subunit mediates selective inhibition by G-protein-coupled receptors. J Neurosci 2001. [PMID: 11567049 DOI: 10.1523/jneurosci.21-19-07587.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition of calcium channels by G-protein-coupled receptors depends on the nature of the Galpha subunit, although the Gbetagamma complex is thought to be responsible for channel inhibition. Ca currents in hypothalamic neurons and N-type calcium channels expressed in HEK-293 cells showed robust inhibition by G(i)/G(o)-coupled galanin receptors (GalR1), but not by Gq-coupled galanin receptors (GalR2). However, deletions in the C terminus of alpha(1B-1) produced Ca channels that were inhibited after activation of both GalR1 and GalR2. Inhibition of protein kinase C (PKC) also revealed Ca current modulation by GalR2. Imaging studies using green fluorescent protein fusions of the C terminus of alpha(1B) demonstrated that activation of the GalR2 receptor caused translocation of the C terminus of alpha(1B-1) to the membrane and co-localization with Galphaq and PKC. Similar translocation was not seen with a C-terminal truncated splice variant, alpha(1B-2). Immunoprecipitation experiments demonstrated that Galphaq interacts directly with the C terminus of the alpha(1B) subunit. These results are consistent with a model in which local activation of PKC by channel-associated Galphaq blocks modulation of the channel by Gbetagamma released by Gq-coupled receptors.
Collapse
|
33
|
Evanko DS, Thiyagarajan MM, Siderovski DP, Wedegaertner PB. Gbeta gamma isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Galphas and Galphaq. J Biol Chem 2001; 276:23945-53. [PMID: 11294873 DOI: 10.1074/jbc.m101154200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutation of Galpha(q) or Galpha(s) N-terminal contact sites for Gbetagamma resulted in alpha subunits that failed to localize at the plasma membrane or undergo palmitoylation when expressed in HEK293 cells. We now show that overexpression of specific betagamma subunits can recover plasma membrane localization and palmitoylation of the betagamma-binding-deficient mutants of alpha(s) or alpha(q). Thus, the betagamma-binding-defective alpha is completely dependent on co-expression of exogenous betagamma for proper membrane localization. In this report, we examined the ability of beta(1-5) in combination with gamma(2) or gamma(3) to promote proper localization and palmitoylation of mutant alpha(s) or alpha(q). Immunofluorescence localization, cellular fractionation, and palmitate labeling revealed distinct subtype-specific differences in betagamma interactions with alpha subunits. These studies demonstrate that 1) alpha and betagamma reciprocally promote the plasma membrane targeting of the other subunit; 2) beta(5), when co-expressed with gamma(2) or gamma(3), fails to localize to the plasma membrane or promote plasma membrane localization of mutant alpha(s) or alpha(q); 3) beta(3) is deficient in promoting plasma membrane localization of mutant alpha(s) and alpha(q), whereas beta(4) is deficient in promoting plasma membrane localization of mutant alpha(q); 4) both palmitoylation and interactions with betagamma are required for plasma membrane localization of alpha.
Collapse
Affiliation(s)
- D S Evanko
- Department of Microbiology and Immunology and Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
34
|
Sondek J, Siderovski DP. Ggamma-like (GGL) domains: new frontiers in G-protein signaling and beta-propeller scaffolding. Biochem Pharmacol 2001; 61:1329-37. [PMID: 11331068 DOI: 10.1016/s0006-2952(01)00633-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The standard model of signal transduction from G-protein-coupled receptors (GPCRs) involves guanine nucleotide cycling by a heterotrimeric G-protein assembly composed of Galpha, Gbeta, and Ggamma subunits. The WD-repeat beta-propeller protein Gbeta and the alpha-helical, isoprenylated polypeptide Ggamma are considered obligate dimerization partners; moreover, conventional Gbetagamma heterodimers are considered essential to the functional coupling of Galpha subunits to receptors. However, our recent discovery of a Gbeta5 binding site (the Ggamma-like or "GGL" domain) within several regulators of G-protein signaling (RGS) proteins revealed the potential for functional GPCR/Galpha coupling in the absence of a conventional Ggamma subunit. In addition, we posit that the interaction between Gbeta5 isoforms and the GGL domains of RGS proteins represents a general mode of binding between beta-propeller proteins and their partners, extending beyond the realm of G-protein-linked signal transduction.
Collapse
Affiliation(s)
- J Sondek
- Department of Pharmacology, CB#7365, University of North Carolina School of Medicine, Mary Ellen Jones Bldg., Room 1106, Chapel Hill, NC 27599-7365, USA
| | | |
Collapse
|
35
|
Lei Q, Talley EM, Bayliss DA. Receptor-mediated inhibition of G protein-coupled inwardly rectifying potassium channels involves G(alpha)q family subunits, phospholipase C, and a readily diffusible messenger. J Biol Chem 2001; 276:16720-30. [PMID: 11279027 DOI: 10.1074/jbc.m100207200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled inwardly rectifying K+ (GIRK) channels can be activated or inhibited by distinct classes of receptor (G(alpha)i/o- and G(alpha)q-coupled), providing dynamic regulation of cellular excitability. Receptor-mediated activation involves direct effects of G(beta)gamma subunits on GIRK channels, but mechanisms involved in GIRK channel inhibition have not been fully elucidated. An HEK293 cell line that stably expresses GIRK1/4 channels was used to test G protein mechanisms that mediate GIRK channel inhibition. In cells transiently or stably cotransfected with 5-HT1A (G(alpha)i/o-coupled) and TRH-R1 (G(alpha)q-coupled) receptors, 5-HT (5-hydroxytryptamine; serotonin) enhanced GIRK channel currents, whereas thyrotropin-releasing hormone (TRH) inhibited both basal and 5-HT-activated GIRK channel currents. Inhibition of GIRK channel currents by TRH primarily involved signaling by G(alpha)q family subunits, rather than G(beta)gamma dimers: GIRK channel current inhibition was diminished by Pasteurella multocida toxin, mimicked by constitutively active members of the G(alpha)q family, and reduced by minigene constructs that disrupt G(alpha)q signaling, but was completely preserved in cells expressing constructs that interfere with signaling by G(beta)gamma subunits. Inhibition of GIRK channel currents by TRH and constitutively active G(alpha)q was reduced by, an inhibitor of phospholipase C (PLC). Moreover, TRH- R1-mediated GIRK channel inhibition was diminished by minigene constructs that reduce membrane levels of the PLC substrate phosphatidylinositol bisphosphate, further implicating PLC. However, we found no evidence for involvement of protein kinase C, inositol trisphosphate, or intracellular calcium. Although these downstream signaling intermediaries did not contribute to receptor-mediated GIRK channel inhibition, bath application of TRH decreased GIRK channel activity in cell-attached patches. Together, these data indicate that receptor-mediated inhibition of GIRK channels involves PLC activation by G(alpha) subunits of the G(alpha)q family and suggest that inhibition may be communicated at a distance to GIRK channels via unbinding and diffusion of phosphatidylinositol bisphosphate away from the channel.
Collapse
MESH Headings
- Bacterial Proteins
- Bacterial Toxins/pharmacology
- Cell Line
- Cell Membrane/physiology
- Dimerization
- Enzyme Inhibitors/pharmacology
- Estrenes/pharmacology
- G Protein-Coupled Inwardly-Rectifying Potassium Channels
- GTP-Binding Protein alpha Subunits, Gq-G11
- Heterotrimeric GTP-Binding Proteins/chemistry
- Heterotrimeric GTP-Binding Proteins/physiology
- Humans
- Indoles/pharmacology
- Inositol 1,4,5-Trisphosphate/metabolism
- Maleimides/pharmacology
- Membrane Potentials/drug effects
- Pasteurella multocida
- Phorbol Esters/pharmacology
- Potassium Channel Blockers
- Potassium Channels/physiology
- Potassium Channels, Inwardly Rectifying
- Protein Subunits
- Pyrrolidinones/pharmacology
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/physiology
- Receptors, Serotonin, 5-HT1
- Receptors, Thyrotropin-Releasing Hormone/drug effects
- Receptors, Thyrotropin-Releasing Hormone/physiology
- Recombinant Proteins/metabolism
- Serotonin/pharmacology
- Thyrotropin-Releasing Hormone/pharmacology
- Transfection
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Q Lei
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908-0735, USA
| | | | | |
Collapse
|
36
|
McIntire WE, MacCleery G, Garrison JC. The G protein beta subunit is a determinant in the coupling of Gs to the beta 1-adrenergic and A2a adenosine receptors. J Biol Chem 2001; 276:15801-9. [PMID: 11278863 DOI: 10.1074/jbc.m011233200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signaling specificity of five purified G protein betagamma dimers, beta(1)gamma(2), beta(2)gamma(2), beta(3)gamma(2), beta(4)gamma(2), and beta(5)gamma(2), was explored by reconstituting them with G(s) alpha and receptors or effectors in the adenylyl cyclase cascade. The ability of the five betagamma dimers to support receptor-alpha-betagamma interactions was examined using membranes expressing the beta(1)-adrenergic or A2a adenosine receptors. These receptors discriminated among the defined heterotrimers based solely on the beta isoform. The beta(4)gamma(2) dimer demonstrated the highest coupling efficiency to either receptor. The beta(5)gamma(2) dimer coupled poorly to each receptor, with EC(50) values 40-200-fold higher than those observed with beta(4)gamma(2). Strikingly, whereas the EC(50) of the beta(1)gamma(2) dimer at the beta(1)-adrenergic receptor was similar to beta(4)gamma(2), its EC(50) was 20-fold higher at the A2a adenosine receptor. Inhibition of adenylyl cyclase type I (AC1) and stimulation of type II (AC2) by the betagamma dimers were measured. betagamma dimers containing Gbeta(1-4) were able to stimulate AC2 similarly, and beta(5)gamma(2) was much less potent. beta(1)gamma(2), beta(2)gamma(2), and beta(4)gamma(2) inhibited AC1 equally; beta(3)gamma(2) was 10-fold less effective, and beta(5)gamma(2) had no effect. These data argue that the beta isoform in the betagamma dimer can determine the specificity of signaling at both receptors and effectors.
Collapse
Affiliation(s)
- W E McIntire
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
37
|
Zhang JH, Barr VA, Mo Y, Rojkova AM, Liu S, Simonds WF. Nuclear localization of G protein beta 5 and regulator of G protein signaling 7 in neurons and brain. J Biol Chem 2001; 276:10284-9. [PMID: 11152459 DOI: 10.1074/jbc.m009247200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role that Gbeta(5) regulator of G protein signaling (RGS) complexes play in signal transduction in brain remains unknown. The subcellular localization of Gbeta(5) and RGS7 was examined in rat PC12 pheochromocytoma cells and mouse brain. Both nuclear and cytosolic localization of Gbeta(5) and RGS7 was evident in PC12 cells by immunocytochemical staining. Subcellular fractionation of PC12 cells demonstrated Gbeta(5) immunoreactivity in the membrane, cytosolic, and nuclear fractions. Analysis by limited proteolysis confirmed the identity of Gbeta(5) in the nuclear fraction. Subcellular fractionation of mouse brain demonstrated Gbeta(5) and RGS7 but not Ggamma(2/3) immunoreactivity in the nuclear fraction. RGS7 and Gbeta(5) were tightly complexed in the brain nuclear extract as evidenced by their coimmunoprecipitation with anti-RGS7 antibodies. Chimeric protein constructs containing green fluorescent protein fused to wild-type Gbeta(5) but not green fluorescent fusion proteins with Gbeta(1) or a mutant Gbeta(5) impaired in its ability to bind to RGS7 demonstrated nuclear localization in transfected PC12 cells. These findings suggest that Gbeta(5) undergoes nuclear translocation in neurons via an RGS-dependent mechanism. The novel intracellular distribution of Gbeta(5).RGS protein complexes suggests a potential role in neurons communicating between classical heterotrimeric G protein subunits and/or their effectors at the plasma membrane and the cell nucleus.
Collapse
Affiliation(s)
- J H Zhang
- Metabolic Diseases Branch and the Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
38
|
Oh P, Schnitzer JE. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell 2001; 12:685-98. [PMID: 11251080 PMCID: PMC30973 DOI: 10.1091/mbc.12.3.685] [Citation(s) in RCA: 305] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2000] [Accepted: 01/17/2001] [Indexed: 11/11/2022] Open
Abstract
Select lipid-anchored proteins such as glycosylphosphatidylinositol (GPI)-anchored proteins and nonreceptor tyrosine kinases may preferentially partition into sphingomyelin-rich and cholesterol-rich plasmalemmal microdomains, thereby acquiring resistance to detergent extraction. Two such domains, caveolae and lipid rafts, are morphologically and biochemically distinct, contain many signaling molecules, and may function in compartmentalizing cell surface signaling. Subfractionation and confocal immunofluorescence microscopy reveal that, in lung tissue and in cultured endothelial and epithelial cells, heterotrimeric G proteins (G(i), G(q), G(s), and G(betagamma)) target discrete cell surface microdomains. G(q) specifically concentrates in caveolae, whereas G(i) and G(s) concentrate much more in lipid rafts marked by GPI-anchored proteins (5' nucleotidase and folate receptor). G(q), apparently without G(betagamma) subunits, stably associates with plasmalemmal and cytosolic caveolin. G(i) and G(s) interact with G(betagamma) subunits but not caveolin. G(i) and G(s), unlike G(q), readily move out of caveolae. Thus, caveolin may function as a scaffold to trap, concentrate, and stabilize G(q) preferentially within caveolae over lipid rafts. In N2a cells lacking caveolae and caveolin, G(q), G(i), and G(s) all concentrate in lipid rafts as a complex with G(betagamma). Without effective physiological interaction with caveolin, G proteins tend by default to segregate in lipid rafts. The ramifications of the segregated microdomain distribution and the G(q)-caveolin complex without G(betagamma) for trafficking, signaling, and mechanotransduction are discussed.
Collapse
Affiliation(s)
- P Oh
- Sidney Kimmel Cancer Center, San Diego, CA 92121, USA
| | | |
Collapse
|
39
|
Selective regulation of N-type Ca channels by different combinations of G-protein beta/gamma subunits and RGS proteins. J Neurosci 2001. [PMID: 11007869 DOI: 10.1523/jneurosci.20-19-07143.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the effects of G-protein beta and gamma subunit heterodimers on human alpha(1B) (N-type) Ca channels expressed in HEK293 cells. All of the known beta subunits (beta1-beta5) produced voltage-dependent inhibition of alpha(1B) Ca channels, depending on the gamma subunit found in the heterodimer. beta1-beta4 subunits inhibited Ca channels when paired with gamma1-gamma3. However, beta5 subunits only produced inhibition when paired with gamma2. In contrast, heterodimers between beta5 subunits and RGS (regulators of G-protein signaling) proteins containing GGL domains did not produce inhibition of Ca channels. However, GGL domain-containing RGS proteins (e.g., RGS6 and RGS11) did block the ability of Gbeta5/gamma2 heterodimers to inhibit Ca channels. Because all of the G-protein beta subunits are found in the nervous system, we conclude that they may all potentially participate in Ca channel inhibition. The interaction of GGL-containing RGS proteins with Gbeta5gamma2 suggests a novel way in which Ca channels can be regulated.
Collapse
|
40
|
Muscarinic stimulation of alpha1E Ca channels is selectively blocked by the effector antagonist function of RGS2 and phospholipase C-beta1. J Neurosci 2001. [PMID: 11007872 DOI: 10.1523/jneurosci.20-19-07167.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal alpha1E Ca channel subunits are widely expressed in mammalian brain, where they are thought to form R-type Ca channels. Recent studies have demonstrated that R-type channels contribute to neurosecretion and dendritic Ca influx, but little is known concerning their modulation. Here we show that alpha1E channels are strongly stimulated, and only weakly inhibited, through M1 muscarinic acetylcholine receptors. Both forms of channel modulation are mediated by pertussis toxin-insensitive G-proteins. Channel stimulation is blocked by regulator of G-protein signaling 2 (RGS2) or the C-terminal region of phospholipase C-beta1 (PLCbeta1ct), which have been previously shown to function as GTPase-activating proteins for Galphaq. In contrast, RGS2 and PLCbeta1ct do not block inhibition of alpha1E through M1 receptors. Inhibition is prevented, however, by the C-terminal region of beta-adrenergic receptor kinase 1, which sequesters Gbetagamma dimers. Thus, stimulation of alpha1E is mediated by a pertussis toxin-insensitive Galpha subunit (e.g., Galphaq), whereas inhibition is mediated by Gbetagamma. The ability of RGS2 and PLCbeta1ct to selectively block stimulation indicates these proteins functioned primarily as effector antagonists. In support of this interpretation, RGS2 prevented stimulation of alpha1E with non-hydrolyzable guanosine 5'-0-(3-thiotriphosphate). We also report strong muscarinic stimulation of rbE-II, a variant alpha1E Ca channel that is insensitive to voltage-dependent inhibition. Our results predict that Galphaq-coupled receptors predominantly stimulate native R-type Ca channels. Receptor-mediated enhancement of R-type Ca currents may have important consequences for neurosecretion, dendritic excitability, gene expression, or other neuronal functions.
Collapse
|
41
|
Chase DL, Patikoglou GA, Koelle MR. Two RGS proteins that inhibit Galpha(o) and Galpha(q) signaling in C. elegans neurons require a Gbeta(5)-like subunit for function. Curr Biol 2001; 11:222-31. [PMID: 11250150 DOI: 10.1016/s0960-9822(01)00071-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Gbeta proteins have traditionally been thought to complex with Ggamma proteins to function as subunits of G protein heterotrimers. The divergent Gbeta(5) protein, however, can bind either Ggamma proteins or regulator of G protein signaling (RGS) proteins that contain a G gamma-like (GGL) domain. RGS proteins inhibit G protein signaling by acting as Galpha GTPase activators. While Gbeta(5) appears to bind RGS proteins in vivo, its association with Ggamma proteins in vivo has not been clearly demonstrated. It is unclear how Gbeta(5) might influence RGS activity. In C. elegans there are exactly two GGL-containing RGS proteins, EGL-10 and EAT-16, and they inhibit Galpha(o) and Galpha(q) signaling, respectively. RESULTS We knocked out the gene encoding the C. elegans Gbeta(5) ortholog, GPB-2, to determine its physiological roles in G protein signaling. The gpb-2 mutation reduces the functions of EGL-10 and EAT-16 to levels comparable to those found in egl-10 and eat-16 null mutants. gpb-2 knockout animals are viable, and exhibit no obvious defects beyond those that can be attributed to a reduction of EGL-10 or EAT-16 function. GPB-2 protein is nearly absent in eat-16; egl-10 double mutants, and EGL-10 protein is severely diminished in gpb-2 mutants. CONCLUSIONS Gbeta(5) functions in vivo complexed with GGL-containing RGS proteins. In the absence of Gbeta(5), these RGS proteins have little or no function. The formation of RGS-Gbeta(5) complexes is required for the expression or stability of both the RGS and Gbeta(5) proteins. Appropriate RGS-Gbeta(5) complexes regulate both Galpha(o) and Galpha(q) proteins in vivo.
Collapse
Affiliation(s)
- D L Chase
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
42
|
He W, Lu L, Zhang X, El-Hodiri HM, Chen CK, Slep KC, Simon MI, Jamrich M, Wensel TG. Modules in the photoreceptor RGS9-1.Gbeta 5L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability. J Biol Chem 2000; 275:37093-100. [PMID: 10978345 DOI: 10.1074/jbc.m006982200] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS (regulators of G protein signaling) proteins regulate G protein signaling by accelerating GTP hydrolysis, but little is known about regulation of GTPase-accelerating protein (GAP) activities or roles of domains and subunits outside the catalytic cores. RGS9-1 is the GAP required for rapid recovery of light responses in vertebrate photoreceptors and the only mammalian RGS protein with a defined physiological function. It belongs to an RGS subfamily whose members have multiple domains, including G(gamma)-like domains that bind G(beta)(5) proteins. Members of this subfamily play important roles in neuronal signaling. Within the GAP complex organized around the RGS domain of RGS9-1, we have identified a functional role for the G(gamma)-like-G(beta)(5L) complex in regulation of GAP activity by an effector subunit, cGMP phosphodiesterase gamma and in protein folding and stability of RGS9-1. The C-terminal domain of RGS9-1 also plays a major role in conferring effector stimulation. The sequence of the RGS domain determines whether the sign of the effector effect will be positive or negative. These roles were observed in vitro using full-length proteins or fragments for RGS9-1, RGS7, G(beta)(5S), and G(beta)(5L). The dependence of RGS9-1 on G(beta)(5) co-expression for folding, stability, and function has been confirmed in vivo using transgenic Xenopus laevis. These results reveal how multiple domains and regulatory polypeptides work together to fine tune G(talpha) inactivation.
Collapse
Affiliation(s)
- W He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Robillard L, Ethier N, Lachance M, Hébert TE. Gbetagamma subunit combinations differentially modulate receptor and effector coupling in vivo. Cell Signal 2000; 12:673-82. [PMID: 11080620 DOI: 10.1016/s0898-6568(00)00118-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vitro, little specificity is seen for modulation of effectors by different combinations of Gbetagamma subunits from heterotrimeric G proteins. Here, we demonstrate that the coupling of specific combinations of Gbetagamma subunits to different receptors leads to a differential ability to modulate effectors in vivo. We have shown that the beta(1)AR and beta(2)AR can activate homomultimers of the human inwardly rectifying potassium channel Kir 3.2 when coexpressed in Xenopus oocytes, and that this requires a functional mammalian Gs heterotrimer. Modulation was independent of cAMP production, suggesting a membrane-delimited mechanism. To analyze further the importance of different Gbetagamma combinations, we have tested the facilitation of Kir 3.2 activation by betaAR mediated by different Gbetagamma subunits. The subunits tested were Gbeta(1,5) and Ggamma(1,2,7,11). These experiments demonstrated significant variation between the ability of the Gbetagamma combinations to activate the channels after receptor stimulation. This was in marked contrast to the situation in vitro where little specificity for binding of a Kir 3.1 C-terminal GST fusion protein by different Gbetagamma combinations was detected. More importantly, neither receptor, although homologous both structurally and functionally, shared the same preference for Gbetagamma subunits. In the presence of beta(1)AR, Gbeta(5)gamma(1) and Gbeta(5)gamma(11) activated Kir 3.2 to the greatest extent, while for the beta(2)AR, Gbeta(1)gamma(7), Gbeta(1)gamma(11,) and Gbeta(5)gamma(2) produced the greatest responses. Interestingly, no preference was seen in the ability of different Gbetagamma subunits to facilitate receptor-stimulated GTPase activity of the Gsalpha. These results suggest that it is not the receptor/G protein alpha subunit interaction or the Gbetagamma/effector interaction that is altered by Gbetagamma, but rather that the ability of the receptor to interact productively with the Gbetagamma subunit directly and/or the G protein/effector complex is dependent on the specific G protein heterotrimer associated with the receptor.
Collapse
Affiliation(s)
- L Robillard
- Centre de recherche, Institut de cardiologie de Montréal et Département d'anésthesie-réanimation, Université de Montréal 5000 rue Bélanger est, H1T 1C8, Montréal, PQ, Canada
| | | | | | | |
Collapse
|
44
|
Abstract
Members of the newly discovered regulator of G protein signaling (RGS) families of proteins have a common RGS domain. This RGS domain is necessary for conferring upon RGS proteins the capacity to regulate negatively a variety of Galpha protein subunits. However, RGS proteins are more than simply negative regulators of signaling. RGS proteins can function as effector antagonists, and recent evidence suggests that RGS proteins can have positive effects on signaling as well. Many RGS proteins possess additional C- and N-terminal modular protein-binding domains and motifs. The presence of these additional modules within the RGS proteins provides for multiple novel regulatory interactions performed by these molecules. These regions are involved in conferring regulatory selectivity to specific Galpha-coupled signaling pathways, enhancing the efficacy of the RGS domain, and the translocation or targeting of RGS proteins to intracellular membranes. In other instances, these domains are involved in cross-talk between different Galpha-coupled signaling pathways and, in some cases, likely serve to integrate small GTPases with these G protein signaling pathways. This review discusses these C- and N-terminal domains and their roles in the biology of the brain-enriched RGS proteins. Methods that can be used to investigate the function of these domains are also discussed.
Collapse
Affiliation(s)
- S A Burchett
- Department of Pharmacology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
45
|
Diversé-Pierluissi M, McIntire WE, Myung CS, Lindorfer MA, Garrison JC, Goy MF, Dunlap K. Selective coupling of G protein beta gamma complexes to inhibition of Ca2+ channels. J Biol Chem 2000; 275:28380-5. [PMID: 10880514 DOI: 10.1074/jbc.m003571200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several mechanisms couple heterotrimeric guanine nucleotide-binding proteins (G proteins) to cellular effectors. Although alpha subunits of G proteins (Galpha) were the first recognized mediators of receptor-effector coupling, Gbetagamma regulation of effectors is now well known. Five Gbeta and 12 Ggamma subunit genes have been identified, suggesting through their diversity that specific subunits couple selectively to effectors. The molecular determinants of Gbetagamma-effector coupling, however, are not well understood, and most studies of G protein-effector coupling do not support selectivity of Gbetagamma action. To explore this issue further, we have introduced recombinant Gbetagamma complexes into avian sensory neurons and measured the inhibition of Ca(2+) currents mediated by an endogenous phospholipase Cbeta- (PLCbeta) and protein kinase C-dependent pathway. Activities of Gbetagamma in the native cells were compared with enzyme assays performed in vitro. We report a surprising selective activation of the PLCbeta pathway by Gbetagamma complexes containing beta(1) subunits, whereas beta(2)-containing complexes produced no activation. In contrast, when assayed in vitro, PLCbeta and type II adenylyl cyclase did not discriminate among these same Gbetagamma complexes, suggesting the possibility that additional cellular determinants confer specificity in vivo.
Collapse
Affiliation(s)
- M Diversé-Pierluissi
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Lei Q, Jones MB, Talley EM, Schrier AD, McIntire WE, Garrison JC, Bayliss DA. Activation and inhibition of G protein-coupled inwardly rectifying potassium (Kir3) channels by G protein beta gamma subunits. Proc Natl Acad Sci U S A 2000; 97:9771-6. [PMID: 10944236 PMCID: PMC16940 DOI: 10.1073/pnas.97.17.9771] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled inwardly rectifying potassium (GIRK) channels can be activated or inhibited by different classes of receptors, suggesting a role for G proteins in determining signaling specificity. Because G protein betagamma subunits containing either beta1 or beta2 with multiple Ggamma subunits activate GIRK channels, we hypothesized that specificity might be imparted by beta3, beta4, or beta5 subunits. We used a transfection assay in cell lines expressing GIRK channels to examine effects of dimers containing these Gbeta subunits. Inwardly rectifying K(+) currents were increased in cells expressing beta3 or beta4, with either gamma2 or gamma11. Purified, recombinant beta3gamma2 and beta4gamma2 bound directly to glutathione-S-transferase fusion proteins containing N- or C-terminal cytoplasmic domains of GIRK1 and GIRK4, indicating that beta3 and beta4, like beta1, form dimers that bind to and activate GIRK channels. By contrast, beta5-containing dimers inhibited GIRK channel currents. This inhibitory effect was obtained with either beta5gamma2 or beta5gamma11, was observed with either GIRK1,4 or GIRK1,2 channels, and was evident in the context of either basal or agonist-induced currents, both of which were mediated by endogenous Gbetagamma subunits. In cotransfection assays, beta5gamma2 suppressed beta1gamma2-activated GIRK currents in a dose-dependent manner consistent with competitive inhibition. Moreover, we found that beta5gamma2 could bind to the same GIRK channel cytoplasmic domains as other, activating Gbetagamma subunits. Thus, beta5-containing dimers inhibit Gbetagamma-stimulated GIRK channels, perhaps by directly binding to the channels. This suggests that beta5-containing dimers could act as competitive antagonists of other Gbetagamma dimers on GIRK channels.
Collapse
Affiliation(s)
- Q Lei
- Department of Pharmacology, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Witherow DS, Wang Q, Levay K, Cabrera JL, Chen J, Willars GB, Slepak VZ. Complexes of the G protein subunit gbeta 5 with the regulators of G protein signaling RGS7 and RGS9. Characterization in native tissues and in transfected cells. J Biol Chem 2000; 275:24872-80. [PMID: 10840031 DOI: 10.1074/jbc.m001535200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel protein class, termed regulators of G protein signaling (RGS), negatively regulates G protein pathways through a direct interaction with Galpha subunits and stimulation of GTP hydrolysis. An RGS subfamily including RGS6, -7, -9, and -11, which contain a characteristic Ggamma -like domain, also has the unique ability to interact with the G protein beta subunit Gbeta(5). Here, we examined the behavior of Gbeta(5), RGS7, RGS9, and Galpha in tissue extracts using immunoprecipitation and conventional chromatography. Native Gbeta(5) and RGS7 from brain, as well as photoreceptor-specific Gbeta(5)L and RGS9, always co-purified as tightly associated dimers, and neither RGS-free Gbeta(5) nor Gbeta(5)-free RGS could be detected. Co-expression in COS-7 cells of Gbeta(5) dramatically increased the protein level of RGS7 and vice versa, indicating that cells maintain Gbeta(5):RGS stoichiometry in a manner similar to Gbetagamma complexes. This mechanism is non-transcriptional and is based on increased protein stability upon dimerization. Thus, analysis of native Gbeta(5)-RGS and their coupled expression argue that in vivo, Gbeta(5) and Ggamma-like domain-containing RGSs only exist as heterodimers. Native Gbeta(5)-RGS7 did not co-precipitate or co-purify with Galpha(o) or Galpha(q); nor did Gbeta(5)L-RGS9 with Galpha(t). However, in transfected cells, RGS7 and Gbeta(5)-RGS7 inhibited Galpha(q)-mediated Ca(2+) response to muscarinic M3 receptor activation. Thus, Gbeta(5)-RGS dimers differ from other RGS proteins in that they do not bind to Galpha with high affinity, but they can still inhibit G protein signaling.
Collapse
Affiliation(s)
- D S Witherow
- Department of Molecular and Cellular Pharmacology and the Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Myung CS, Garrison JC. Role of C-terminal domains of the G protein beta subunit in the activation of effectors. Proc Natl Acad Sci U S A 2000; 97:9311-6. [PMID: 10922079 PMCID: PMC16864 DOI: 10.1073/pnas.97.16.9311] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prenyl group on the G protein gamma subunit is an important determinant of protein-protein interactions between the betagamma dimer and its targets, such as alpha subunits, receptors, and effectors. In an effort to identify domains of the beta subunit important for the activation of effectors, we have prepared two types of mutants, one set in the domain suggested to form a hydrophobic prenyl-binding pocket for the gamma subunit's prenyl group (prenyl pocket mutants) and the other set in a domain between Gly(306) and Gly(319) in the beta propeller, which undergoes a conformational change when the dimer binds to phosducin (conformational change mutants). Recombinant baculoviruses for each set of mutants were prepared, and the nine mutant beta subunits were overexpressed with either the gamma(2) subunit (modified with geranylgeranyl) or the gamma(2-L71S) subunit (gamma(2) with altered CAAX sequence and modified with farnesyl). The purified dimers were tested for their ability to couple Galpha(i1) to the A1 adenosine receptor and to activate phospholipase C-beta or type II adenylyl cyclase. All dimers containing mutant beta subunits were indistinguishable from wild-type beta(1)gamma(2) or beta(1)gamma(2-L71S) in coupling the receptor to Galpha(i1). The prenyl pocket mutants expressed with gamma(2) were 10-fold less potent in activating phospholipase C-beta and adenylyl cyclase than beta(1)gamma(2) and had similar activities to beta(1)gamma(2-L71S). The conformational change mutants caused a 15- to 23-fold decrease in EC(50) values for activation of these two effectors. Overall, the results suggest that the sites in Gbeta identified by these mutants are very important in the activation of effectors. Furthermore, the nature of the prenyl group on Ggamma may play an important role in the conformational change leading to the activity of Gbetagamma on effectors.
Collapse
Affiliation(s)
- C S Myung
- Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | |
Collapse
|
49
|
Zhang JH, Lai Z, Simonds WF. Differential expression of the G protein beta(5) gene: analysis of mouse brain, peripheral tissues, and cultured cell lines. J Neurochem 2000; 75:393-403. [PMID: 10854285 DOI: 10.1046/j.1471-4159.2000.0750393.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A neurally expressed heterotrimeric G protein beta subunit, Gbeta(5), has been found to exhibit functional specialization with respect to its interactions with effector targets and Galpha subunits. A splice variant of Gbeta(5) that contains an N-terminal 42-residue extension, Gbeta(5)-long, has been described in the retina. To define better the potential range of its specialized interactions, analysis of Gbeta(5) gene transcript and protein expression in mouse brain and other tissues and cell lines was performed. Quantification by ribonuclease protection assay of Gbeta(5) transcript expression in the developing brain demonstrates a fivefold increase that occurs postnatally. Analysis of transcript expression by in situ hybridization and ribonuclease protection assay indicates that the Gbeta(5) gene is differentially expressed among multiple adult mouse brain regions, including the motor and occipital cortex, the olfactory bulb and associated rhinencephalic structures, hypothalamus, pontine cochlear nuclei, and Purkinje cells in the cerebellum. Gbeta(5) is also expressed in several cultured cell lines of neuroendocrine origin, including murine alphaT3-1 pituitary gonadotrophs and GT1-7 hypothalamic cells, and rat PC12 pheochromocytoma cells. Immunoblotting of tissue homogenates with antibodies to two peptides common to Gbeta(5) and Gbeta(5)-long confirmed expression of Gbeta(5) in multiple brain regions and in spinal cord and expression of Gbeta(5)-long in retina. Taken together, these results suggest that the specialized molecular properties of Gbeta(5) have been adapted to diverse neural functions in the adult brain.
Collapse
Affiliation(s)
- J H Zhang
- Metabolic Diseases. Genetics and Biochemistry Branches, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
50
|
Maier U, Babich A, Macrez N, Leopoldt D, Gierschik P, Illenberger D, Nurnberg B. Gbeta 5gamma 2 is a highly selective activator of phospholipid-dependent enzymes. J Biol Chem 2000; 275:13746-54. [PMID: 10788495 DOI: 10.1074/jbc.275.18.13746] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, Gbeta specificity in the regulation of Gbetagamma-sensitive phosphoinositide 3-kinases (PI3Ks) and phospholipase Cbeta (PLCbeta) isozymes was examined. Recombinant mammalian Gbeta(1-3)gamma(2) complexes purified from Sf9 membranes stimulated PI3Kgamma lipid kinase activity with similar potency (10-30 nm) and efficacy, whereas transducin Gbetagamma was less potent. Functionally active Gbeta(5)gamma(2) dimers were purified from Sf9 cell membranes following coexpression of Gbeta(5) and Ggamma(2-His). This preparation as well as Gbeta(1)gamma(2-His) supported pertussis toxin-mediated ADP-ribosylation of Galpha(i1). Gbeta(1)gamma(2-His) stimulated PI3Kgamma lipid and protein kinase activities at nanomolar concentrations, whereas Gbeta(5)gamma(2-His) had no effect. Accordingly, Gbeta(1)gamma(2-His), but not Gbeta(5)gamma(2-His), significantly stimulated the lipid kinase activity of PI3Kbeta in the presence or absence of tyrosine-phosphorylated peptides derived from the p85-binding domain of the platelet derived-growth factor receptor. Conversely, both preparations were able to stimulate PLCbeta(2) and PLCbeta(1). However, Gbeta(1)gamma(2-His), but not Gbeta(5)gamma(2-His), activated PLCbeta(3). Experimental evidence suggests that the mechanism of Gbeta(5)-dependent effector selectivity may differ between PI3K and PLCbeta. In conclusion, these data indicate that Gbeta subunits are able to discriminate among effectors independently of Galpha due to selective protein-protein interaction.
Collapse
Affiliation(s)
- U Maier
- Institut für Pharmakologie, Freie Universität Berlin, Thielallee 69-73, 14195 Berlin (Dahlem), Germany
| | | | | | | | | | | | | |
Collapse
|