1
|
Lorenz K, Thom CS, Adurty S, Voight BF. TSABL: Trait Specific Annotation Based Locus predictor. BMC Genomics 2022; 23:444. [PMID: 35705896 PMCID: PMC9202130 DOI: 10.1186/s12864-022-08654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The majority of Genome Wide Associate Study (GWAS) loci fall in the non-coding genome, making causal variants difficult to identify and study. We hypothesized that the regulatory features underlying causal variants are biologically specific, identifiable from data, and that the regulatory architecture that influences one trait is distinct compared to biologically unrelated traits. RESULTS To better characterize and identify these variants, we used publicly available GWAS loci and genomic annotations to build 17 Trait Specific Annotation Based Locus (TSABL) predictors to identify differences between GWAS loci associated with different phenotypic trait groups. We used a penalized binomial logistic regression model to select trait relevant annotations and tested all models on a holdout set of loci not used for training in any trait. We were able to successfully build models for autoimmune, electrocardiogram, lipid, platelet, red blood cell, and white blood cell trait groups. We used these models both to prioritize variants in existing loci and to identify new genomic regions of interest. CONCLUSIONS We found that TSABL models identified biologically relevant regulatory features, and anticipate their future use to enhance the design and interpretation of genetic studies.
Collapse
Affiliation(s)
- Kim Lorenz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher S Thom
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Benjamin F Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183158. [PMID: 31863725 PMCID: PMC7156917 DOI: 10.1016/j.bbamem.2019.183158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.
Collapse
Affiliation(s)
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
3
|
Katoh K. FAK-Dependent Cell Motility and Cell Elongation. Cells 2020; 9:cells9010192. [PMID: 31940873 PMCID: PMC7017285 DOI: 10.3390/cells9010192] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Fibroblastic cells show specific substrate selectivity for typical cell–substrate adhesion. However, focal adhesion kinase (FAK) contributes to controlling the regulation of orientation and polarity. When fibroblasts attach to micropatterns, tyrosine-phosphorylated proteins and FAK are both detected along the inner border between the adhesive micropatterns and the nonadhesive glass surface. FAK likely plays important roles in regulation of cell adhesion to the substrate, as FAK is a tyrosine-phosphorylated protein that acts as a signal transduction molecule at sites of cell–substrate attachment, called focal adhesions. FAK has been suggested to play a role in the attachment of cells at adhesive micropatterns by affecting cell polarity. Therefore, the localization of FAK might play a key role in recognition of the border of the cell with the adhesive micropattern, thus regulating cell polarity and the cell axis. This review discusses the regulation and molecular mechanism of cell proliferation and cell elongation by FAK and its associated signal transduction proteins.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology Tsukuba-city, Ibaraki, Japan
| |
Collapse
|
4
|
Boscher C, Gaonac'h-Lovejoy V, Delisle C, Gratton JP. Polarization and sprouting of endothelial cells by angiopoietin-1 require PAK2 and paxillin-dependent Cdc42 activation. Mol Biol Cell 2019; 30:2227-2239. [PMID: 31141452 PMCID: PMC6743454 DOI: 10.1091/mbc.e18-08-0486] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Binding of angiopoietin-1 (Ang-1) to its receptor Tie2 on endothelial cells (ECs) promotes vessel barrier integrity and angiogenesis. Here, we identify PAK2 and paxillin as critical targets of Ang-1 responsible for EC migration, polarization, and sprouting. We found that Ang-1 increases PAK2-dependent paxillin phosphorylation and remodeling of focal adhesions and that PAK2 and paxillin are required for EC polarization, migration, and angiogenic sprouting in response to Ang-1. Our findings show that Ang-1 triggers Cdc42 activation at the leading edges of migrating ECs, which is dependent on PAK2 and paxillin expression. We also established that the polarity protein Par3 interacts with Cdc42 in response to Ang-1 in a PAK2- and paxillin-dependent manner. Par3 is recruited at the leading edges of migrating cells and in focal adhesion, where it forms a signaling complex with PAK2 and paxillin in response to Ang-1. These results show that Ang-1 triggers EC polarization and angiogenic sprouting through PAK2-dependent paxillin activation and remodeling of focal adhesions, which are necessary for local activation of Cdc42 and the associated polarity complex. We have shown that PAK2 controls a signaling pathway important for angiogenic sprouting that links focal adhesions to polarity signaling in ECs.
Collapse
Affiliation(s)
- Cécile Boscher
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Vanda Gaonac'h-Lovejoy
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Chantal Delisle
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
5
|
Cheung SMS, Ostergaard HL. Pyk2 Controls Integrin-Dependent CTL Migration through Regulation of De-Adhesion. THE JOURNAL OF IMMUNOLOGY 2016; 197:1945-56. [PMID: 27456486 DOI: 10.4049/jimmunol.1501505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 06/24/2016] [Indexed: 11/19/2022]
Abstract
Protein tyrosine kinase 2 (Pyk2) is required for T cell adhesion to ICAM-1; however, the mechanism by which it regulates adhesion remains unexplored. Pyk2 function in murine CTL clones and activated ex vivo CD8(+) T cells was disrupted by pharmacological inhibition, knockdown of expression with small interfering RNA, or expression of the dominant-negative C-terminal domain. We found that Pyk2 is not absolutely required for adhesion of CTL to ICAM-1, but rather delays the initial adhesion. Disruption of Pyk2 function caused cells to display an unusual elongated appearance after 1 h on ICAM-1, consistent with abnormally strong adhesion. Furthermore, the random mobility of CTL on ICAM-1 was severely compromised using all three methods of disrupting Pyk2 function. Live-cell imaging studies revealed that the decreased migration is the result of a defect in the detachment from ICAM-1 at the trailing edge when Pyk2 function is inhibited. Examination of Pyk2 tyrosine phosphorylation in normal polarized cells demonstrated that Pyk2 phosphorylated at Y579 and Y580 preferentially localizes to the leading edge, whereas Y881-phosphorylated Pyk2 is enriched at the trailing edge, suggesting that the tyrosine phosphorylation of Pyk2 is spatially regulated in migrating CTL. Additionally, inhibition of Pyk2 caused cells to form multiple LFA-1-rich tails at the trailing edge, most likely resulting from a defect in LFA-1 release required for forward movement. Our results show that Pyk2 contributes to CTL migration by regulating detachment of CTL at the trailing edge, which could explain why Pyk2 is important for chemotactic and migratory responses.
Collapse
Affiliation(s)
- Samuel M S Cheung
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Hanne L Ostergaard
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
6
|
Betapudi V, Shukla M, Alluri R, Merkulov S, McCrae KR. Novel role for p56/Lck in regulation of endothelial cell survival and angiogenesis. FASEB J 2016; 30:3515-3526. [PMID: 27402674 DOI: 10.1096/fj.201500040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
Abstract
Previous studies have demonstrated that cleaved high-molecular-weight kininogen (HKa) induces endothelial apoptosis and inhibits angiogenesis and have suggested that this occurs through inhibition of Src family kinases. This study assessed the role of tyrosine-protein kinase Lck (p56/Lck) in this pathway. We analyzed early events leading to apoptosis of human endothelial cells exposed to HKa. The role of p56/Lck was investigated using short interfering (si) RNA knockdown and lentivirus expression in assays of endothelial tube formation, sprouting of neovessels from murine aorta, and angiogenesis in Matrigel plugs. HKa stimulated expression and phosphorylation of p56/Lck. siRNA knockdown of p56/Lck promoted endothelial proliferation and blocked HKa-induced apoptosis and activation of p53, Bax, and Bak. Lentivirus expression of p56/Lck in endothelial cells induced apoptosis and blocked tube formation. Expression of p56/Lck in murine aortic rings blocked sprouting angiogenesis. Lentivirus expressing p56/Lck blocked angiogenesis in Matrigel plugs, while p56/Lck short hairpin RNA inhibited the antiangiogenic effect of HKa. Scrambled siRNAs and empty lentiviral vectors were used in all experiments. Apoptosis of proliferating endothelial cells and inhibition of angiogenesis by HKa requires p56/Lck. This suggests a novel role for p56/Lck in regulation of endothelial cell survival and angiogenesis.-Betapudi, V., Shukla, M., Alluri, R., Merkulov, S., McCrae, K. R. Novel role for p56/Lck in regulation of endothelial cell survival and angiogenesis.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Department of Cellular and Molecular Medicine Cleveland Clinic, Cleveland, Ohio, USA; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA; and
| | - Meenal Shukla
- Department of Cellular and Molecular Medicine Cleveland Clinic, Cleveland, Ohio, USA
| | - Ravi Alluri
- Department of Cellular and Molecular Medicine Cleveland Clinic, Cleveland, Ohio, USA
| | - Sergei Merkulov
- Department of Cellular and Molecular Medicine Cleveland Clinic, Cleveland, Ohio, USA
| | - Keith R McCrae
- Department of Cellular and Molecular Medicine Cleveland Clinic, Cleveland, Ohio, USA; Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Chapman NM, Houtman JCD. Functions of the FAK family kinases in T cells: beyond actin cytoskeletal rearrangement. Immunol Res 2015; 59:23-34. [PMID: 24816556 DOI: 10.1007/s12026-014-8527-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
T cells control the focus and extent of adaptive immunity in infectious and pathological diseases. The activation of T cells occurs when the T cell antigen receptor (TCR) and costimulatory and/or adhesion receptors are engaged by their ligands. This process drives signaling that promotes cytoskeletal rearrangement and transcription factor activation, both of which regulate the quality and magnitude of the T cell response. However, it is not fully understood how different receptor-induced signals combine to alter T cell activation. The related non-receptor tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) are phosphorylated downstream of the TCR and several costimulatory and adhesion receptors. FAK family proteins integrate receptor-mediated signals that influence actin cytoskeletal rearrangement and effector T cell responses. In this review, we summarize the receptor-specific roles that FAK and Pyk2 control to influence T cell development and activation.
Collapse
Affiliation(s)
- Nicole M Chapman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | | |
Collapse
|
8
|
Adaptors for disorders of the brain? The cancer signaling proteins NEDD9, CASS4, and PTK2B in Alzheimer's disease. Oncoscience 2014; 1:486-503. [PMID: 25594051 PMCID: PMC4278314 DOI: 10.18632/oncoscience.64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022] Open
Abstract
No treatment strategies effectively limit the progression of Alzheimer's disease (AD), a common and debilitating neurodegenerative disorder. The absence of viable treatment options reflects the fact that the pathophysiology and genotypic causes of the disease are not well understood. The advent of genome-wide association studies (GWAS) has made it possible to broadly investigate genotypic alterations driving phenotypic occurrences. Recent studies have associated single nucleotide polymorphisms (SNPs) in two paralogous scaffolding proteins, NEDD9 and CASS4, and the kinase PTK2B, with susceptibility to late-onset AD (LOAD). Intriguingly, NEDD9, CASS4, and PTK2B have been much studied as interacting partners regulating oncogenesis and metastasis, and all three are known to be active in the brain during development and in cancer. However, to date, the majority of studies of these proteins have emphasized their roles in the directly cancer relevant processes of migration and survival signaling. We here discuss evidence for roles of NEDD9, CASS4 and PTK2B in additional processes, including hypoxia, vascular changes, inflammation, microtubule stabilization and calcium signaling, as potentially relevant to the pathogenesis of LOAD. Reciprocally, these functions can better inform our understanding of the action of NEDD9, CASS4 and PTK2B in cancer.
Collapse
|
9
|
St-Pierre J, Ostergaard HL. A role for the protein tyrosine phosphatase CD45 in macrophage adhesion through the regulation of paxillin degradation. PLoS One 2013; 8:e71531. [PMID: 23936270 PMCID: PMC3729947 DOI: 10.1371/journal.pone.0071531] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.
Collapse
Affiliation(s)
- Joëlle St-Pierre
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Hanne L. Ostergaard
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
10
|
Pan X, Geist MM, Rudolph JM, Nickel W, Fackler OT. HIV-1 Nef disrupts membrane-microdomain-associated anterograde transport for plasma membrane delivery of selected Src family kinases. Cell Microbiol 2013; 15:1605-21. [DOI: 10.1111/cmi.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyu Pan
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| | - Miriam M. Geist
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| | - Jochen M. Rudolph
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| | - Walter Nickel
- Biochemistry Center; Heidelberg University; INF 328; 69120; Heidelberg; Germany
| | - Oliver T. Fackler
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| |
Collapse
|
11
|
Lee JH, Wittki S, Bräu T, Dreyer FS, Krätzel K, Dindorf J, Johnston ICD, Gross S, Kremmer E, Zeidler R, Schlötzer-Schrehardt U, Lichtenheld M, Saksela K, Harrer T, Schuler G, Federico M, Baur AS. HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol Cell 2013; 49:668-79. [PMID: 23317503 DOI: 10.1016/j.molcel.2012.12.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/19/2012] [Accepted: 12/06/2012] [Indexed: 12/21/2022]
Abstract
The HIV Nef protein recruits the polycomb protein Eed and mimics an integrin receptor signal for reasons that are not entirely clear. Here we demonstrate that Nef and Eed complex with the integrin effector paxillin to recruit and activate TNFα converting enzyme (TACE alias ADAM 17) and its close relative ADAM10. The activated proteases cleaved proTNFα and were shuttled into extracellular vesicles (EVs). Peripheral blood mononuclear cells that ingested these EVs released TNFα. Analyzing the mechanism, we found that Pak2, an established host cell effector of Nef, phosphorylated paxillin on Ser272/274 to induce TACE-paxillin association and shuttling into EVs via lipid rafts. Conversely, Pak1 phosphorylated paxillin on Ser258, which inhibited TACE association and lipid raft transfer. Interestingly, melanoma cells used an identical mechanism to shuttle predominantly ADAM10 into EVs. We conclude that HIV-1 and cancer cells exploit a paxillin/integrin-controlled mechanism to release TACE/ADAM10-containing vesicles, ensuring better proliferation/growth conditions in their microenvironment.
Collapse
Affiliation(s)
- Jung-Hyun Lee
- Department of Dermatology, University Hospital Erlangen, Hartmannstrasse 14, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ness JK, Snyder KM, Tapinos N. Lck tyrosine kinase mediates β1-integrin signalling to regulate Schwann cell migration and myelination. Nat Commun 2013; 4:1912. [PMID: 23715271 PMCID: PMC3674276 DOI: 10.1038/ncomms2928] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/24/2013] [Indexed: 12/12/2022] Open
Abstract
The interaction between laminin and β1-integrin on the surface of Schwann cells regulates Schwann cell proliferation, maturation and differentiation. However, the signalling mediators that fine-tune these outcomes are not fully elucidated. Here we show that lymphoid cell kinase is the crucial effector of β1-integrin signalling in Schwann cells. Lymphoid cell kinase is activated after laminin treatment of Schwann cells, while downregulation of β1-integrin with short interfering RNAs inhibits lymphoid cell kinase phosphorylation. Treatment of Schwann cells with a selective lymphoid cell kinase inhibitor reveals a pathway that involves paxillin and CrkII, which ultimately elevates Rac-GTP levels to induce radial lamellipodia formation. Inhibition of lymphoid cell kinase in Schwann cell-dorsal root ganglion cocultures and dorsal root ganglions from Lck(-/-) mice show a reduction of Schwann cell longitudinal migration, reduced myelin formation and internode length. Finally, Lck(-/-) mice exhibit delays in myelination, thinner myelin with abnormal g-ratios and aberrant myelin outfoldings. Our data implicate lymphoid cell kinase as a major regulator of cytoskeletal dynamics, migration and myelination in the peripheral nervous system.
Collapse
Affiliation(s)
- Jennifer K. Ness
- Molecular Neuroscience Laboratory, Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| | - Kristin M. Snyder
- Molecular Neuroscience Laboratory, Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| | - Nikos Tapinos
- Molecular Neuroscience Laboratory, Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| |
Collapse
|
13
|
Lee YC, Chang AY, Lin-Feng MH, Tsou WI, Chiang IH, Lai MZ. Paxillin phosphorylation by JNK and p38 is required for NFAT activation. Eur J Immunol 2012; 42:2165-75. [PMID: 22865050 DOI: 10.1002/eji.201142192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Paxillin is an adaptor protein associated with focal adhesion complex, and is activated by tyrosine phosphorylation through focal adhesion kinase (FAK) and Src kinase. Recent studies reveal that serine phosphorylation of paxillin by JNK and p38 MAPK is essential for cell migration or neurite extension, but their cellular targets remain unclear. In this study, we examined the requirement of paxillin phosphorylation by p38 MAPK or JNK in T-cell motility and activation using paxillin mutants at the respective phosphorylation sites, Ser85, and Ser178. (S85A)-paxillin, (S178A)-paxillin, or (S85A/S178A)-paxillin inhibited the motility of NIH/3T3 fibroblasts, but did not interfere with T-cell migration and integrin-mediated T-cell adhesion. In contrast, activation of T cells was effectively suppressed by (S85A/S178A)-paxillin. Transgenic (S85A/S178A)-paxillin expression inhibited T-cell proliferation and reduced the production of IL-2, IFN-γ, and IL-4. In searching for signals modulated by (S85A/S178A)-paxillin, we found that NFAT activation was specifically blocked by (S85A/S178A)-paxillin. This could be partly attributed to diminished stromal interaction molecule 1 (STIM1) expression and attenuated TCR-induced Ca(2+) influx. Our results demonstrate that dual phosphorylation of paxillin by JNK and p38 MAPK is essential for T-cell activation and suggest that NFAT is a functional target of the JNK/p38 phosphorylated paxillin.
Collapse
Affiliation(s)
- Yu-Chi Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan ROC
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Romanova LY, Mushinski JF. Central role of paxillin phosphorylation in regulation of LFA-1 integrins activity and lymphocyte migration. Cell Adh Migr 2012; 5:457-62. [PMID: 22274710 DOI: 10.4161/cam.5.6.18219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coordinated changes of actin cytoskeleton and cell adhesion accompany maturation of lymphoid cells, their migration through lymphoid organs and to sites of inflammation, as well as metastasis of transformed cells. Here we discuss the central role of the actin-regulating adaptor protein, paxillin, during lymphocyte transition from a polarized, motile cell phenotype with partially active LFA-1 integrins to a round and immobile one with fully active LFA-1. In Baf3 murine pro-B lymphocytes, the former phenotype is induced by IL-3 that stimulates a FAK-mediated phosphorylation of paxillin at tyrosines (Y) 31 and 118 and a consequent Rac1 activation. Rearrangements of actin cytoskeleton that lead to the cell's acquisition of a spherical shape and LFA-1 activation are achieved upon activation of PKC-δ that binds and directly phosphorylates paxillin at threonine (T) 538 with consequent RhoA activation. This is accompanied by dephosphorylation of paxillin Y31/118 and by Rac1 inactivation. We propose a model of signaling cascades that reflects the interplay between the IL-3- and PKC-δ-mediated pathways.
Collapse
Affiliation(s)
- Larisa Y Romanova
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
16
|
Xu J, Kurup P, Bartos JA, Patriarchi T, Hell JW, Lombroso PJ. Striatal-enriched protein-tyrosine phosphatase (STEP) regulates Pyk2 kinase activity. J Biol Chem 2012; 287:20942-56. [PMID: 22544749 DOI: 10.1074/jbc.m112.368654] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr(1472). Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr(402). In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr(402). STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr(402) and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
17
|
Robertson LK, Ostergaard HL. Paxillin associates with the microtubule cytoskeleton and the immunological synapse of CTL through its leucine-aspartic acid domains and contributes to microtubule organizing center reorientation. THE JOURNAL OF IMMUNOLOGY 2011; 187:5824-33. [PMID: 22043013 DOI: 10.4049/jimmunol.1003690] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cytoskeletal adaptor protein paxillin localizes to the microtubule organizing center (MTOC) in T cells and, upon target cell binding, is recruited to the supramolecular activation complex (SMAC). We mapped the region of paxillin that associates with both the MTOC and SMAC to the leucine-aspartic acid (LD) domains and showed that a protein segment containing LD2-4 was sufficient for MTOC and SMAC recruitment. Examination of the localization of paxillin at the SMAC revealed that paxillin localizes to the peripheral area of the SMAC along with LFA-1, suggesting that LFA-1 may contribute to its recruitment. LFA-1 or CD3 engagement alone was insufficient for paxillin recruitment because there was no paxillin accumulation at the site of CTL contact with anti-LFA-1- or anti-CD3-coated beads. In contrast, paxillin accumulation was detected when beads coated with both anti-CD3 and anti-LFA-1 were bound to CTL, suggesting that signals from both the TCR and LFA-1 are required for paxillin accumulation. Paxillin was shown to be phosphorylated downstream of ERK, but when we generated a mutation (S83A/S130A) that abolished the mobility shift as a result of phosphorylation, we found that paxillin still bound to the MTOC and was recruited to the SMAC. Furthermore, ERK was not absolutely required for MTOC reorientation in CTL that require ERK for killing. Finally, expression of the LD2-4 region of paxillin substantially reduced MTOC reorientation. These studies demonstrated that paxillin is recruited, through its LD domains, to sites of integrin engagement and may contribute to MTOC reorientation required for directional degranulation.
Collapse
Affiliation(s)
- Leslie K Robertson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2S2, Alberta, Canada
| | | |
Collapse
|
18
|
Wong NK, Lai JC, Maeshima N, Johnson P. CD44-mediated elongated T cell spreading requires Pyk2 activation by Src family kinases, extracellular calcium, phospholipase C and phosphatidylinositol-3 kinase. Cell Signal 2011; 23:812-9. [DOI: 10.1016/j.cellsig.2011.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/16/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
|
19
|
St-Pierre J, Lysechko TL, Ostergaard HL. Hypophosphorylated and inactive Pyk2 associates with paxillin at the microtubule organizing center in hematopoietic cells. Cell Signal 2011; 23:718-30. [DOI: 10.1016/j.cellsig.2010.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/13/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
|
20
|
Davidson D, Shi X, Zhong MC, Rhee I, Veillette A. The phosphatase PTP-PEST promotes secondary T cell responses by dephosphorylating the protein tyrosine kinase Pyk2. Immunity 2010; 33:167-80. [PMID: 20727793 DOI: 10.1016/j.immuni.2010.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 05/21/2010] [Accepted: 06/23/2010] [Indexed: 11/29/2022]
Abstract
PTP-PEST (encoded by Ptpn12) is an intracellular protein tyrosine phosphatase belonging to the same family as LYP. LYP inhibits secondary T cell responses by suppressing Src family protein tyrosine kinases and is implicated in human autoimmunity. To determine the function of PTP-PEST in T cells, we generated mice with a conditionally deleted allele of Ptpn12. By removing PTP-PEST in T cells, we determined that PTP-PEST was not necessary for T cell development or primary responses. However, PTP-PEST was required for secondary T cell responses, anergy prevention, and autoimmunity induction. PTP-PEST specifically regulated the phosphorylation of Pyk2, a substrate of the Src family kinase Fyn. It also promoted the formation of T cell homoaggregates, which are known to enhance T cell activation. Thus, PTP-PEST controls Pyk2 activity and is a positive regulator of secondary T cell activation. These data illustrate the critical role of protein tyrosine phosphatases in T cell regulation.
Collapse
Affiliation(s)
- Dominique Davidson
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec H2W 1R7, Canada.
| | | | | | | | | |
Collapse
|
21
|
Lasserre R, Alcover A. Cytoskeletal cross-talk in the control of T cell antigen receptor signaling. FEBS Lett 2010; 584:4845-50. [PMID: 20828561 DOI: 10.1016/j.febslet.2010.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/19/2010] [Accepted: 09/01/2010] [Indexed: 11/25/2022]
Abstract
T cell antigen receptor signaling is triggered and controlled in specialized cellular interfaces formed between T cells and antigen-presenting cells named immunological synapses. Both microtubules and actin cytoskeleton rearrange at the immunological synapse in response to T cell receptor triggering, ensuring in turn the accuracy of intracellular signaling. Recent reports show that the cross-talk between the cortical actin cytoskeleton and microtubule networks is key for structuring the immunological synapse and for controlling T cell receptor signaling. Immunological synapse architecture and the interaction between the signaling machinery and various cytoskeletal elements are therefore crucial for the fine-tuning of T cell signaling.
Collapse
Affiliation(s)
- Rémi Lasserre
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, Paris, France.
| | | |
Collapse
|
22
|
Lysechko TL, Cheung SMS, Ostergaard HL. Regulation of the tyrosine kinase Pyk2 by calcium is through production of reactive oxygen species in cytotoxic T lymphocytes. J Biol Chem 2010; 285:31174-84. [PMID: 20688918 DOI: 10.1074/jbc.m110.118265] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pyk2 was identified as a Ca(2+)-dependent kinase, however, the regulation of Pyk2 by Ca(2+) in T cells remains controversial. We found that Ca(2+) mobilization preferentially induced Pyk2 phosphorylation in cytotoxic T lymphocytes (CTL). Furthermore, Pyk2 phosphorylation in CTL was not absolutely Ca(2+) dependent but relied on the strength of T cell receptor stimulation. Ionomycin-stimulated Pyk2 phosphorylation did not require calmodulin activity, because phosphorylation was not inhibited by the calmodulin inhibitor W7, and we detected no Ca(2+)-regulated association between Pyk2 and calmodulin. Ca(2+)-stimulated Pyk2 phosphorylation was dependent on Src-family kinase activity, even at the Pyk2 autophosphorylation site. We sought to identify a Ca(2+)-regulated pathway that could trigger Pyk2 phosphorylation in T cells and found that ionomycin stimulated the production of reactive oxygen species and an H(2)O(2) scavenger inhibited ionomycin-induced Pyk2 phosphorylation. Additionally, H(2)O(2) induced strong Erk activation and ionomycin-stimulated Pyk2 phosphorylation was Erk dependent. These data support the conclusion that Ca(2+) mobilization induces the production of reactive oxygen species, which in turn activate the Erk pathway, leading to Src-family kinase-dependent Pyk2 phosphorylation. Our data demonstrate that Pyk2 is not a Ca(2+)-dependent kinase in T cells but instead, increased intracellular Ca(2+) induces Pyk2 phosphorylation through production of reactive oxygen species. These findings are consistent with the possibility that Pyk2 acts as an early sensor of numerous extracellular signals that trigger a Ca(2+) flux and/or reactive oxygen species to amplify tyrosine phosphorylation signaling events.
Collapse
Affiliation(s)
- Tara L Lysechko
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2S2, Canada
| | | | | |
Collapse
|
23
|
Huang MC, Tullo AB, Hillarby MC. Increased Rac2 mRNA expression in peripheral blood during human corneal graft rejection. Eye (Lond) 2009; 23:461-9. [PMID: 18849916 DOI: 10.1038/eye.2008.306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Allograft rejection is the main cause of graft failure in human corneal transplantation, for which underlying pathomechanism is not yet clear. We compared gene expression in the peripheral blood of patients who after undergoing corneal transplantation experienced graft rejection with those patients who accepted grafts. METHODS Sixty-six patients who underwent corneal transplantation were studied including 18 patients who suffered subsequent graft rejection. cDNA array technology was used to survey and quantify transcript expression. A semiquantitative reverse transcriptase-PCR (RT-PCR) was used to confirm the gene expression pattern measured by a cDNA array of selected genes. RESULTS Among 265 genes present on the array, eight genes were found to be differentially expressed. Four genes (Rac 2, RhoA, paxillin, and CD18) were further analysed by semiquantitative RT-PCR, and significant differences in mRNA expression levels in the rejection group were confirmed. CONCLUSIONS Our study demonstrated that the expression of Rac2 mRNA was upregulated in the peripheral blood of patients experiencing corneal transplantation rejection compared to those patients who had no rejection episodes. In addition, three genes, RhoA, paxillin, and CD18, showed decreased expression in rejecting patients. cDNA array technology provides a potentially useful approach to identify novel genes that might participate in pathogenic pathways during corneal graft rejection.
Collapse
Affiliation(s)
- M-C Huang
- Department of Medical Genetics, University of Manchester, UK
| | | | | |
Collapse
|
24
|
Structural Basis for the Interaction between Focal Adhesion Kinase and CD4. J Mol Biol 2008; 375:1320-8. [DOI: 10.1016/j.jmb.2007.11.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/09/2007] [Accepted: 11/13/2007] [Indexed: 12/16/2022]
|
25
|
Filby A, Seddon B, Kleczkowska J, Salmond R, Tomlinson P, Smida M, Lindquist JA, Schraven B, Zamoyska R. Fyn regulates the duration of TCR engagement needed for commitment to effector function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:4635-44. [PMID: 17878361 DOI: 10.4049/jimmunol.179.7.4635] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In naive T cells, engagement of the TCR with agonist peptide:MHC molecules leads to phosphorylation of key intracellular signaling intermediates within seconds and this peaks within minutes. However, the cell does not commit to proliferation and IL-2 cytokine production unless receptor contact is sustained for several hours. The biochemical basis for this transition to full activation may underlie how T cells receive survival signals while maintaining tolerance, and is currently not well understood. We show here that for CD8 T cells commitment to proliferation and cytokine production requires sustained activation of the Src family kinase Lck and is opposed by the action of Fyn. Thus, in the absence of Fyn, commitment to activation occurs more rapidly, the cells produce more IL-2, and undergo more rounds of division. Our data demonstrate a role for Fyn in modulating the response to Ag in primary T cells.
Collapse
Affiliation(s)
- Andrew Filby
- Division of Molecular Immunology, Medical Research Council, National Institute for Medical Research, The Ridgeway, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Manevich E, Grabovsky V, Feigelson SW, Alon R. Talin 1 and Paxillin Facilitate Distinct Steps in Rapid VLA-4-mediated Adhesion Strengthening to Vascular Cell Adhesion Molecule 1. J Biol Chem 2007; 282:25338-48. [PMID: 17597073 DOI: 10.1074/jbc.m700089200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VLA-4 (alpha4beta1) is a key integrin in lymphocytes, interacting with endothelial vascular cell adhesion molecule 1 (VCAM-1) on blood vessels and stroma. To dissect the contribution of the two cytoskeletal VLA-4 adaptor partners paxillin and talin to VLA-4 adhesiveness, we transiently knocked them down in Jurkat T cells and primary resting human T cells by small interfering RNA silencing. Paxillin was required for VLA-4 adhesiveness to low density VCAM-1 under shear stress conditions and was found to control mechanical stability of bonds mediated by the alpha4 subunit but did not affect the integrin affinity or avidity to VCAM-1 in shear-free conditions. Talin 1 maintained VLA-4 in a high affinity conformation, thereby promoting rapid VLA-4 adhesion strengthening to VCAM-1 under both shear stress and shear-free conditions. Talin 1, but not paxillin, was required for VLA-4 to undergo optimal stimulation by the prototypic chemokine, CXCL12, under shear stress conditions. Interestingly, talin 1 and paxillin played the same distinct roles in VLA-4 adhesions of primary T lymphocytes, although VLA-4 affinity to VCAM-1 was at least 200-fold lower in these cells than in Jurkat cells. Collectively, our results suggest that whereas paxillin is a mechanical regulator of VLA-4 bonds generated in the absence of chemokine signals and low VCAM-1 occupancy, talin 1 is a versatile VLA-4 affinity regulator implicated in both spontaneous and chemokine-triggered rapid adhesions to VCAM-1.
Collapse
Affiliation(s)
- Eugenia Manevich
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
27
|
Ostergaard HL, Lysechko TL. Focal adhesion kinase-related protein tyrosine kinase Pyk2 in T-cell activation and function. Immunol Res 2006; 31:267-82. [PMID: 15888917 DOI: 10.1385/ir:31:3:267] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pyk2 is a protein tyrosine kinase expressed primarily in brain and hematopoietic cells. It becomes activated in response to stimulation through numerous receptors, including integrins, chemokine receptors, and antigen receptors, and is found in association with src-family kinases. Although this enzyme associates with many proteins known to be important for activation and has many characteristics of a scaffolding protein, its function remains elusive. A number of studies in non-T-cells suggest that Pyk2 is important for cell spreading, cell migration, and integrin function; however, a defined role in T-cells has not been established. Here, we discuss evidence that implicates Pyk2 in directionality of signaling, which is essential to establishment of the directional killing mediated by cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Hanne L Ostergaard
- Department of Medical Microbiology & Immunology, University of Alberta, 670 Heritage Medicval Centre, Edmonton, Alberta T6G 2S2, Canada.
| | | |
Collapse
|
28
|
Robertson LK, Mireau LR, Ostergaard HL. A Role for Phosphatidylinositol 3-Kinase in TCR-Stimulated ERK Activation Leading to Paxillin Phosphorylation and CTL Degranulation. THE JOURNAL OF IMMUNOLOGY 2005; 175:8138-45. [PMID: 16339552 DOI: 10.4049/jimmunol.175.12.8138] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PI3K is an important regulator of a number of cellular processes. We examined the contribution of PI3K to mouse CTL signaling, leading to degranulation. We show that TCR-triggered, but not phorbol ester and calcium ionophore-induced, CTL degranulation is dependent on PI3K activity. Although PI3K activity is required for optimal LFA-1-mediated adhesion and cell spreading, this most likely does not account for its full contribution to degranulation. We demonstrate that PI3K is required for TCR-stimulated ERK activation in CTL, which we have shown previously to be required for CTL degranulation. We thus define a pathway through which PI3K most likely regulates degranulation and in which ERK appears to be a key signaling molecule. Furthermore, we identified the cytoskeletal adaptor paxillin as a target of ERK downstream of TCR stimulation. Consistent with a role in degranulation, we demonstrate that paxillin is localized to the microtubule organizing center in resting cells and upon target cell binding is recruited to the contact point with the target cell. These studies demonstrate that PI3K regulates ERK activity leading to CTL degranulation, and identify paxillin as a target of ERK downstream of the TCR. That paxillin is independently phosphorylated by both tyrosine kinase(s) and ERK downstream of the TCR and localized both at the microtubule organizing center and at the target cell contact point suggests an important role for paxillin in CTL-mediated killing.
Collapse
Affiliation(s)
- Leslie K Robertson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
29
|
Shen A, Puente LG, Ostergaard HL. Tyrosine kinase activity and remodelling of the actin cytoskeleton are co-temporally required for degranulation by cytotoxic T lymphocytes. Immunology 2005; 116:276-86. [PMID: 16162276 PMCID: PMC1817816 DOI: 10.1111/j.1365-2567.2005.02222.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this study, we examined the contribution of the actin cytoskeleton to T-cell receptor (TCR)-initiated signalling in cytotoxic T lymphocytes (CTLs). We demonstrate that cytoskeletal remodelling is required for sustaining TCR-stimulated signals that lead to degranulation by CTLs. Disruption of the actin cytoskeleton in CTLs already undergoing signalling responses results in an almost immediate loss of essentially all protein tyrosine phosphorylation. This signal reversal is not restricted to tyrosine phosphorylation, as disruption of the actin cytoskeleton also reverses the phosphorylation of the more downstream serine/threonine kinase extracellular signal regulated kinase (Erk). An intact cytoskeleton and cell spreading are not sufficient for maintaining signals, as stabilization of actin filaments, at a point when peak tyrosine phosphorylation is occurring, also leads to the rapid loss of protein tyrosine phosphorylation. Disruption of tyrosine kinase activity after TCR signals are maximally induced causes the immediate reversal of tyrosine phosphorylation as well as cytoskeletal disruption, as indicated by loss of cell spreading, adhesion and CTL degranulation. Taken together, our results indicate that actin remodelling occurs co-temporally with ongoing tyrosine kinase activity, leading to CTL degranulation. We hypothesize that continuous actin remodelling is important for sustaining productive signals, even after downstream signalling molecules such as Erk have been activated, and that the actin cytoskeleton is not solely required for initiating and maintaining the T cell in contact with its stimulus.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
30
|
Viard M, Parolini I, Rawat SS, Fecchi K, Sargiacomo M, Puri A, Blumenthal R. The role of glycosphingolipids in HIV signaling, entry and pathogenesis. Glycoconj J 2005; 20:213-22. [PMID: 15090735 DOI: 10.1023/b:glyc.0000024253.48791.d9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although HIV uses CD4 and coreceptors (CCR5 and CXCR4) for productive infection of T cells, glycosphingolipids (GSL) may play ancillary roles in lymphoid and non-lymphoid cells. Interactions of the HIV Envelope Glycoprotein (Env) with GSL may help HIV in various steps of its pathogenesis. Physical-chemical aspects of the interactions between HIV Env and GSL leading to CD4-dependent entry into lymphocytes, the role of GSL in HIV transcytosis, and CD4-independent entry into non-lymphoid cells are reviewed. An overview of signaling properties of HIV receptors is provided with some speculation on how GSL may play a role in these events by virtue of being in membrane rafts. Finally, we summarize how interactions between HIV and coreceptors leading to signaling and/or fusion can be analyzed by the use of various tyrosine kinase and cytoskeletal inhibitors.
Collapse
Affiliation(s)
- Mathias Viard
- Laboratory of Experimental and Computational Biology, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Lysechko TL, Ostergaard HL. Differential Src family kinase activity requirements for CD3 zeta phosphorylation/ZAP70 recruitment and CD3 epsilon phosphorylation. THE JOURNAL OF IMMUNOLOGY 2005; 174:7807-14. [PMID: 15944285 DOI: 10.4049/jimmunol.174.12.7807] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The current model of T cell activation is that TCR engagement stimulates Src family tyrosine kinases (SFK) to phosphorylate CD3zeta. CD3zeta phosphorylation allows for the recruitment of the tyrosine kinase ZAP70, which is phosphorylated and activated by SFK, leading to the phosphorylation of downstream targets. We stimulated mouse CTLs with plate-bound anti-CD3 and, after cell lysis, recovered proteins that associated with the CD3 complex. The protein complexes were not preformed, and a number of tyrosine-phosphorylated proteins were inducibly and specifically associated with the TCR/CD3 complex. These results suggest that complex formation only occurs at the site of TCR engagement. The recruitment and tyrosine phosphorylation of most proteins were abolished when T cells were stimulated in the presence of the SFK inhibitor PP2. Surprisingly, CD3zeta, but not CD3epsilon, was inducibly tyrosine phosphorylated in the presence of PP2. Furthermore, ZAP70 was recruited, but not phosphorylated, after TCR stimulation in the presence of PP2, thus confirming the phosphorylation status of CD3zeta. These data suggest that there is a differential requirement for SFK activity in phosphorylation of CD3zeta vs CD3epsilon. Consistent with this possibility, ZAP70 recruitment was also detected with anti-CD3-stimulated, Lck-deficient human Jurkat T cells. We conclude that TCR/CD3-induced CD3zeta phosphorylation and ZAP70 recruitment do not absolutely require Lck or other PP2-inhibitable SFK activity, but that SFK activity is absolutely required for CD3epsilon and ZAP70 phosphorylation. These data reveal the potential for regulation of signaling through the TCR complex by the differential recruitment or activation of SFK.
Collapse
Affiliation(s)
- Tara L Lysechko
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
32
|
Doucey MA, Legler DF, Faroudi M, Boucheron N, Baumgaertner P, Naeher D, Cebecauer M, Hudrisier D, Rüegg C, Palmer E, Valitutti S, Bron C, Luescher IF. The beta1 and beta3 integrins promote T cell receptor-mediated cytotoxic T lymphocyte activation. J Biol Chem 2003; 278:26983-91. [PMID: 12690105 DOI: 10.1074/jbc.m302709200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recognition by CD8+ cytotoxic T lymphocytes (CTLs) of antigenic peptides bound to major histocompatibility class (MHC) I molecules on target cells leads to sustained calcium mobilization and CTL degranulation resulting in perforin-dependent killing. We report that beta1 and beta3 integrin-mediated adhesion to extracellular matrix proteins on target cells and/or surfaces dramatically promotes CTL degranulation. CTLs, when adhered to fibronectin but not CTL in suspension, efficiently degranulate upon exposure to soluble MHC.peptide complexes, even monomeric ones. This adhesion induces recruitment and activation of the focal adhesion kinase Pyk2, the cytoskeleton linker paxillin, and the Src kinases Lck and Fyn in the contact site. The T cell receptor, by association with Pyk2, becomes part of this adhesion-induced activation cluster, which greatly increases its signaling.
Collapse
Affiliation(s)
- Marie-Agnès Doucey
- Institute for Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fernandis AZ, Cherla RP, Ganju RK. Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45. J Biol Chem 2003; 278:9536-43. [PMID: 12519755 DOI: 10.1074/jbc.m211803200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemokine receptor CXCR4 and its cognate ligand, stromal cell-derived factor-1alpha (CXCL12), regulate lymphocyte trafficking and play an important role in host immune surveillance. However, the molecular mechanisms involved in CXCL12-induced and CXCR4-mediated chemotaxis of T-lymphocytes are not completely elucidated. In the present study, we examined the role of the membrane tyrosine phosphatase CD45, which regulates antigen receptor signaling in CXCR4-mediated chemotaxis and mitogen-activated protein kinase (MAPK) activation in T-cells. We observed a significant reduction in CXCL12-induced chemotaxis in the CD45-negative Jurkat cell line (J45.01) as compared with the CD45-positive control (JE6.1) cells. Expression of a chimeric protein containing the intracellular phosphatase domain of CD45 was able to partially restore CXCL12-induced chemotaxis in the J45.01 cells. However, reconstitution of CD45 into the J45.01 cells restored the CXCL12-induced chemotaxis to about 90%. CD45 had no significant effect on CXCL12 or human immunodeficiency virus gp120-induced internalization of the CXCR4 receptor. Furthermore, J45.01 cells showed a slight enhancement in CXCL12-induced MAP kinase activity as compared with the JE6.1 cells. We also observed that CXCL12 treatment enhanced the tyrosine phosphorylation of CD45 and induced its association with the CXCR4 receptor. Pretreatment of T-cells with the lipid raft inhibitor, methyl-beta-cyclodextrin, blocked the association between CXCR4 and CD45 and markedly abolished CXCL12-induced chemotaxis. Comparisons of signaling pathways induced by CXCL12 in JE6.1 and J45.01 cells revealed that CD45 might moderately regulate the tyrosine phosphorylation of the focal adhesion components the related adhesion focal tyrosine kinase/Pyk2, focal adhesion kinase, p130Cas, and paxillin. CD45 has also been shown to regulate CXCR4-mediated activation and phosphorylation of T-cell receptor downstream effectors Lck, ZAP-70, and SLP-76. Our results show that CD45 differentially regulates CXCR4-mediated chemotactic activity and MAPK activation by modulating the activities of focal adhesion components and the downstream effectors of the T-cell receptor.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Blotting, Western
- Cell Line
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemotaxis
- Dose-Response Relationship, Drug
- Enzyme Activation
- Flow Cytometry
- Gene Expression Regulation
- Humans
- Jurkat Cells
- Leukocyte Common Antigens/metabolism
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphocytes/metabolism
- MAP Kinase Signaling System
- Microscopy, Confocal
- Microscopy, Fluorescence
- Phosphoproteins/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CXCR4/metabolism
- Signal Transduction
- T-Lymphocytes/metabolism
- Time Factors
- Tyrosine/metabolism
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Aaron Z Fernandis
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
34
|
Belka C, Gruber C, Jendrossek V, Wesselborg S, Budach W. The tyrosine kinase Lck is involved in regulation of mitochondrial apoptosis pathways. Oncogene 2003; 22:176-85. [PMID: 12527887 DOI: 10.1038/sj.onc.1206103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The induction of apoptosis requires the activation of a highly coordinated signaling network ultimately leading to the activation of caspases. In previous experiments we and others have shown that the tyrosine kinase Lck is required for adequate apoptosis induction in response to ionizing radiation, ceramide incubation and overexpression of the HIV-TAT protein. However, the position of Lck within given apoptotic signaling cascades remains unclear. We therefore aimed to define the role of Lck during radiation-induced apoptosis. Apoptosis induction in response to ionizing radiation, CD95 or TRAIL receptor stimulation was determined in Jurkat T-cells, the Lck-deficient Jurkat clone JCaM1.6- and Lck-retransfected JCaM1.6/Lck. No apoptosis, release of cytochrome c, breakdown of the mitochondrial potential were detectable during the first 48 h after irradiation of JCaM1.6 cells. In parallel, no activation of caspase-9, -8 and -3 was detectable. Since mitochondrial apoptosis pathways act within a feedback mechanism during death-receptor-mediated apoptosis, the influence of the Lck defect on CD95/Fas/Apo-1-L or TRAIL-induced apoptosis was also tested. Both stimuli induced apoptosis in Lck-deficient cells. However, the kinetics of apoptosis induction determined by caspase-8, -9 and -3 activation as well as deltapsi(m) breakdown was slowed. We conclude that the Lck deficiency influences early steps during radiation-induced mitochondrial alterations.
Collapse
Affiliation(s)
- Claus Belka
- Department of Radiation Oncology, University of Tübingen, Germany.
| | | | | | | | | |
Collapse
|
35
|
Samstag Y, Eibert SM, Klemke M, Wabnitz GH. Actin cytoskeletal dynamics in T lymphocyte activation and migration. J Leukoc Biol 2003; 73:30-48. [PMID: 12525560 DOI: 10.1189/jlb.0602272] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dynamic rearrangements of the actin cytoskeleton are crucial for the function of numerous cellular elements including T lymphocytes. They are required for migration of T lymphocytes through the body to scan for the presence of antigens, as well as for the formation and stabilization of the immunological synapse at the interface between antigen-presenting cells and T lymphocytes. Supramolecular activation clusters within the immunological synapse play an important role for the initiation of T cell responses and for the execution of T cell effector functions. In addition to the T cell receptor/CD3 induced actin nucleation via Wasp/Arp2/3-activation, signals through accessory receptors of the T cell (i.e., costimulation) regulate actin cytoskeletal dynamics. In this regard, the actin-binding proteins cofilin and L-plastin represent prominent candidates linking accessory receptor stimulation to the rearrangement of the actin cytoskeleton. Cofilin enhances actin polymerization via its actin-severing activity, and as a long-lasting effect, cofilin generates novel actin monomers through F-actin depolymerization. L-plastin stabilizes actin filament structures by means of its actin-bundling activity.
Collapse
Affiliation(s)
- Yvonne Samstag
- Institute for Immunology, Ruprecht-Karls-University, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
36
|
Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, Hung CH, Thomas G. HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 2002; 111:853-66. [PMID: 12526811 DOI: 10.1016/s0092-8674(02)01162-5] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The HIV-1 Nef-mediated downregulation of cell surface MHC-I molecules to the trans-Golgi network (TGN) enables HIV-1 to escape immune surveillance. However, the cellular pathway used by Nef to downregulate MHC-I is unknown. Here, we show that Nef and PACS-1 combine to usurp the ARF6 endocytic pathway by a PI3K-dependent process and downregulate cell surface MHC-I to the TGN. This mechanism requires the hierarchical actions of three Nef motifs-the acidic cluster 62EEEE(65), the SH3 domain binding site 72PXXP(75), and M(20)-in controlling PACS-1-dependent sorting to the TGN, ARF6 activation, and sequestering internalized MHC-I to the TGN, respectively. These data provide new insights into the cellular basis of HIV-1 immunoevasion.
Collapse
|
37
|
Abstract
Paxillin is a focal adhesion-associated, phosphotyrosine-containing protein that may play a role in several signaling pathways. Paxillin contains a number of motifs that mediate protein-protein interactions, including LD motifs, LIM domains, an SH3 domain-binding site and SH2 domain-binding sites. These motifs serve as docking sites for cytoskeletal proteins, tyrosine kinases, serine/threonine kinases, GTPase activating proteins and other adaptor proteins that recruit additional enzymes into complex with paxillin. Thus paxillin itself serves as a docking protein to recruit signaling molecules to a specific cellular compartment, the focal adhesions, and/or to recruit specific combinations of signaling molecules into a complex to coordinate downstream signaling. The biological function of paxillin coordinated signaling is likely to regulate cell spreading and motility.
Collapse
Affiliation(s)
- M D Schaller
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, NC 27599, USA.
| |
Collapse
|
38
|
Sorokin A, Kozlowski P, Graves L, Philip A. Protein-tyrosine kinase Pyk2 mediates endothelin-induced p38 MAPK activation in glomerular mesangial cells. J Biol Chem 2001; 276:21521-8. [PMID: 11278444 DOI: 10.1074/jbc.m008869200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelin-1 (ET-1), a member of a family of 21 amino acid peptides possessing vasoconstrictor properties, is known to stimulate mesangial cell proliferation. In this study, ET-1 (100 nm) induced a rapid activation of p21(ras) in human glomerular mesangial cells (HMC). Inhibition of Src family tyrosine kinase activation with [4-Amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] or chelation of intracellular free calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester significantly decreased ET-1dependent p21(ras) activation and suggested the involvement of the cytoplasmic proline-rich tyrosine kinase Pyk2. We have observed that Pyk2 was expressed in HMC and was tyrosine-phosphorylated within 5 min of ET-1 treatment. ET-1-induced activation of Pyk2 was further confirmed using phospho-specific anti-Pyk2 antibodies. Surprisingly, Src kinase activity was required upstream of ET-1-induced autophosphorylation of Pyk2. To determine whether Pyk2 autophosphorylation mediated ET-1-dependent p21(ras) activation, adenovirus-mediated transfer was employed to express a dominant-negative form of Pyk2 (CRNK). CRNK expression inhibited ET-1-induced endogenous Pyk2 autophosphorylation, but did not abolish ET-1-mediated increases in GTP-bound p21(ras) levels. ET-1-induced activation of the p38 MAPK (but not ERK) pathway was inhibited in HMC and in rat glomerular mesangial cells expressing the dominant-negative form of Pyk2. These findings suggest that the engagement of Pyk2 is important for ET-1-mediated p38 MAPK activation and hence the biological effect of this peptide in mesangial cells.
Collapse
Affiliation(s)
- A Sorokin
- Department of Medicine, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|
39
|
Nakamura K, Yano H, Schaefer E, Sabe H. Different modes and qualities of tyrosine phosphorylation of Fak and Pyk2 during epithelial-mesenchymal transdifferentiation and cell migration: analysis of specific phosphorylation events using site-directed antibodies. Oncogene 2001; 20:2626-35. [PMID: 11420674 DOI: 10.1038/sj.onc.1204359] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Revised: 01/25/2001] [Accepted: 02/07/2001] [Indexed: 01/05/2023]
Abstract
Integrin signaling is activated during epithelial-mesenchymal transdifferentiation (EMT) and cell migration, processes serving as models for carcinogenesis. We have shown that paxillin and p130Cas become highly tyrosine phosphorylated during these processes in NMuMG cells. Here, we examined the regulation of Fak and Pyk2, kinases implicated in this phosphorylation. Pyk2 became phosphorylated at the major autophosphorylation site (Tyr-402) and the potential Grb2-binding site (Tyr-881) during EMT. In contrast, phosphorylation of Fak at the corresponding autophosphorylation site (Tyr-397) occurred even in sedentary epithelial cells, whereas phosphorylation at Tyr-407 and Tyr-861 was induced during EMT. During cell migration, these phosphorylation events, except Fak Tyr-397, were augmented further, and phosphorylation of Fak Tyr-577 and the corresponding Pyk2 Tyr-580, both within the kinase activation loops, was also induced. In all cases, phosphorylation of the putative Grb2-binding site in Fak (Tyr-925) was almost undetectable. Although Fak and Pyk2 have several phosphorylation sites in common, Tyr-407 and Tyr-861 are unique to Fak. Our results revealed that Fak and Pyk2 are non-equivalent in the tyrosine phosphorylation events and thereby likely to evoke different downstream signaling cascades during EMT and cell migration of NMuMG cells. We also show that Fak Tyr-397 phosphorylation occurs exclusively at the cytoplasm, but not at focal contacts, in the sedentary epithelial cells. In contrast, all other tyrosine phosphorylated forms of Fak and Pyk2 are predominantly localized to focal adhesions and the cell periphery in motile cells, all colocalized with paxillin and p130Cas.
Collapse
Affiliation(s)
- K Nakamura
- Department of Molecular Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
| | | | | | | |
Collapse
|
40
|
Ku GM, Yablonski D, Manser E, Lim L, Weiss A. A PAK1-PIX-PKL complex is activated by the T-cell receptor independent of Nck, Slp-76 and LAT. EMBO J 2001; 20:457-65. [PMID: 11157752 PMCID: PMC133476 DOI: 10.1093/emboj/20.3.457] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Given the importance of the Rho GTPase family member Rac1 and the Rac1/Cdc42 effector PAK1 in T-cell activation, we investigated the requirements for their activation by the T-cell receptor (TCR). Rac1 and PAK1 activation required the tyrosine kinases ZAP-70 and Syk, but not the cytoplasmic adaptor Slp-76. Surprisingly, PAK1 was activated in the absence of the transmembrane adaptor LAT while Rac1 was not. However, efficient PAK1 activation required its binding sites for Rho GTPases and for PIX, a guanine nucleotide exchange factor for Rho GTPases. The overexpression of ssPIX that either cannot bind PAK1 or lacks GEF function blocked PAK1 activation. These data suggest that a PAK1-PIX complex is recruited to appropriate sites for activation and that PIX is required for Rho family GTPase activation upstream of PAK1. Furthermore, we detected a stable trimolecular complex of PAK1, PIX and the paxillin kinase linker p95PKL. Taken together, these data show that PAK1 contained in this trimolecular complex is activated by a novel LAT- and Slp-76-independent pathway following TCR stimulation.
Collapse
Affiliation(s)
| | - Deborah Yablonski
- Howard Hughes Medical Institute, Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143-0414, USA,
Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609 and Institute of Neurology, University College London, London WC1N 1PJ, UK Corresponding author e-mail:
| | - Edward Manser
- Howard Hughes Medical Institute, Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143-0414, USA,
Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609 and Institute of Neurology, University College London, London WC1N 1PJ, UK Corresponding author e-mail:
| | - Louis Lim
- Howard Hughes Medical Institute, Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143-0414, USA,
Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609 and Institute of Neurology, University College London, London WC1N 1PJ, UK Corresponding author e-mail:
| | - Arthur Weiss
- Howard Hughes Medical Institute, Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143-0414, USA,
Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609 and Institute of Neurology, University College London, London WC1N 1PJ, UK Corresponding author e-mail:
| |
Collapse
|
41
|
Anfosso F, Bardin N, Vivier E, Sabatier F, Sampol J, Dignat-George F. Outside-in signaling pathway linked to CD146 engagement in human endothelial cells. J Biol Chem 2001; 276:1564-9. [PMID: 11036077 DOI: 10.1074/jbc.m007065200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
CD146 (S-Endo 1 Ag or MUC18) is a transmembrane glycoprotein expressed on endothelial cells on the whole vascular tree. CD146 is located at the intercellular junction where it plays a role in the cohesion of the endothelial monolayer. CD146 engagement initiates an outside-in signaling pathway involving the protein tyrosine kinases FYN and FAK as well as paxillin. Here we report that CD146 engagement by its specific monoclonal antibody in human umbilical vein endothelial cells induces a Ca(2+) influx that is sensitive to thapsigargin and EGTA treatment, indicating that CD146 engagement initiates a store-operated calcium mobilization. In addition, biochemical and pharmacological analysis revealed that CD146 engagement initiates the tyrosine phosphorylation of phospholipase C-gamma, Pyk2, and p130(Cas). Pharmacological inhibition of Ca(2+) flux with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acetoxymethyl ester and EGTA indicated that an increase in Ca(2+) is required for Pyk2 and p130(Cas) tyrosine phosphorylation. Moreover, a complex association was observed between Pyk2, p130(Cas), and paxillin. These results indicate that CD146 is coupled to a FYN-dependent pathway that triggers Ca(2+) flux via phospholipase C-gamma activation leading subsequently to the tyrosine phosphorylation of downstream targets such as Pyk2, p130(Cas), FAK, and paxillin. In addition to its role in cell-cell adhesion, CD146 is a signaling molecule involved in the dynamics of actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- F Anfosso
- INSERM EMI 00-19 Physiopathologie de l'Endothélium, UFR Pharmacie, Université de la Mediterranée, 13385 Marseille, France.
| | | | | | | | | | | |
Collapse
|
42
|
Nakamura K, Yano H, Uchida H, Hashimoto S, Schaefer E, Sabe H. Tyrosine Phosphorylation of Paxillin α Is Involved in Temporospatial Regulation of Paxillin-containing Focal Adhesion Formation and F-actin Organization in Motile Cells. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61492-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
43
|
Herreros L, Rodríguez-Fernandez JL, Brown MC, Alonso-Lebrero JL, Cabañas C, Sánchez-Madrid F, Longo N, Turner CE, Sánchez-Mateos P. Paxillin localizes to the lymphocyte microtubule organizing center and associates with the microtubule cytoskeleton. J Biol Chem 2000; 275:26436-40. [PMID: 10840040 DOI: 10.1074/jbc.m003970200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Paxillin is a focal adhesion-associated protein that functions as a multi-domain adapter protein, binding several structural and signaling molecules. alpha-Tubulin was identified as an interacting protein in a two-hybrid screen using the paxillin C-terminal LIM domain as a bait. In vitro binding assays with glutathione S-transferase-paxillin demonstrated an interaction of alpha-tubulin with the C terminus of paxillin. Another member of the tubulin family, gamma-tubulin, bound to both the N and the C terminus of paxillin. The interaction between paxillin and both alpha- and gamma-tubulin in vivo was confirmed by co-immunoprecipitation from human T lymphoblasts. Immunofluorescence studies revealed that, in adherent T cells, paxillin localized to sites of cell-matrix interaction as well as to a large perinuclear region. Confocal microscopy revealed that this region corresponds to the lymphocyte microtubule organizing center, where paxillin colocalizes with alpha- and gamma-tubulin. The localization of paxillin to this area was observed in cells in suspension as well as during adhesion to integrin ligands. These data constitute the first characterization of the interaction of paxillin with the microtubule cytoskeleton, and suggest that paxillin, in addition to its well established role at focal adhesions, could also be associated with the lymphocyte microtubule network.
Collapse
Affiliation(s)
- L Herreros
- Servicio de Inmunologia, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Williams LM, Ridley AJ. Lipopolysaccharide induces actin reorganization and tyrosine phosphorylation of Pyk2 and paxillin in monocytes and macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2028-36. [PMID: 10657655 DOI: 10.4049/jimmunol.164.4.2028] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The bacterial endotoxin LPS is a potent stimulator of monocyte and macrophage activation and induces adhesion of monocytes. Morphological changes in response to LPS have not been characterized in detail, however, nor have the signaling pathways mediating LPS-induced adhesion been elucidated. We have found that LPS rapidly induced adhesion and spreading of peripheral blood monocytes, and that this was inhibited by the Src family kinase inhibitor PP1 and the phosphatidylinositide 3-kinase inhibitor LY294002. LPS also stimulated actin reorganization, leading to the formation of filopodia, lamellipodia, and membrane ruffles in Bac1 mouse macrophages. Proline-rich tyrosine kinase 2 (Pyk2), a tyrosine kinase related to focal adhesion kinase, and paxillin, a cytoskeletal protein that interacts with Pyk2, were both tyrosine phosphorylated in response to LPS in monocytes and macrophages. Both tyrosine phosphorylation events were inhibited by PP1 and LY294002. Adhesion also stimulated tyrosine phosphorylation of Pyk2 and paxillin in monocytes, and this was further enhanced by LPS. Finally, Pyk2 and paxillin colocalized within membrane ruffles in LPS-stimulated cells. These results indicate that LPS stimulation of monocytes and macrophages results in rapid morphological changes and suggest that Pyk2 and/or paxillin play a role in this response.
Collapse
Affiliation(s)
- L M Williams
- Ludwig Institute for Cancer Research, Royal Free and University College Medical School, London, United Kingdom
| | | |
Collapse
|
45
|
Tsuchida M, Manthei ER, Alam T, Knechtle SJ, Hamawy MM. Regulation of T cell receptor- and CD28-induced tyrosine phosphorylation of the focal adhesion tyrosine kinases Pyk2 and Fak by protein kinase C. A role for protein tyrosine phosphatases. J Biol Chem 2000; 275:1344-50. [PMID: 10625683 DOI: 10.1074/jbc.275.2.1344] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The T cell receptor (TCR)-CD3 complex and the costimulatory molecule CD28 are critical for T cell function. Both receptors utilize protein tyrosine kinases (PTKs) for the phosphorylation of various signaling molecules, a process that is critical for the function of both receptors. The PTKs of the focal adhesion family, Pyk2 and Fak, have been implicated in the signaling of TCR and CD28. We show here evidence for the regulation of TCR- and CD28-induced tyrosine phosphorylation of the focal adhesion PTKs by protein kinase C (PKC). Thus, treating Jurkat T cells with the PKC activator phorbol 12-myristate 13-acetate (PMA) rapidly and strongly reversed receptor-induced tyrosine phosphorylation of the focal adhesion PTKs. In contrast, PMA did not affect TCR-induced tyrosine phosphorylation of CD3zeta or the PTKs Fyn and Zap-70. However, PMA induced a strong and rapid dephosphorylation of the linker molecule for activation of T cells. PMA failed to induce the dephosphorylation of proteins in PKC-depleted cells or in cells pretreated with the PKC inhibitor Ro-31-8220, confirming the role of PKC in mediating the PMA effect on receptor-induced protein tyrosine phosphorylation. The involvement of protein tyrosine phosphatases (PTPases) in mediating the dephosphorylation of the focal adhesion PTKs was confirmed by the failure of PMA to dephosphorylate Pyk2 in cells pretreated with the PTPase inhibitor orthovanadate. These results implicate PKC in the regulation of receptor-induced tyrosine phosphorylation of the focal adhesion PTKs in T cells. The data also suggest a role for PTPases in the PKC action.
Collapse
Affiliation(s)
- M Tsuchida
- Department of Surgery, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | | | | | |
Collapse
|
46
|
Ohashi H, Takei M, Kita H, Gleich GJ, Serizawa I, Fukamachi H. β2 Integrin-dependent tyrosine phosphorylation of proline-rich tyrosine kinase 2 in platelet-activating factor-activated eosinophils. Allergol Int 2000. [DOI: 10.1046/j.1440-1592.2000.00188.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
da Cruz LA, Penfold S, Zhang J, Somani AK, Shi F, McGavin MK, Song X, Siminovitch KA. Involvement of the lymphocyte cytoskeleton in antigen-receptor signaling. Curr Top Microbiol Immunol 1999; 245:135-67. [PMID: 10533312 DOI: 10.1007/978-3-642-57066-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L A da Cruz
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Belka C, Marini P, Lepple-Wienhues A, Budach W, Jekle A, Los M, Lang F, Schulze-Osthoff K, Gulbins E, Bamberg M. The tyrosine kinase lck is required for CD95-independent caspase-8 activation and apoptosis in response to ionizing radiation. Oncogene 1999; 18:4983-92. [PMID: 10490833 DOI: 10.1038/sj.onc.1202878] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Induction of apoptosis is a hallmark of cytostatic drug and radiation-induced cell death in human lymphocytes and lymphoma cells. However, the mechanisms leading to apoptosis are not well understood. We provide evidence that ionizing radiation induces a rapid activation of caspase-8 (FLICE) followed by apoptosis independently of CD95 ligand/receptor interaction. The radiation induced cleavage pattern of procaspase-8 into mature caspase-8 resembled that following CD95 crosslinking and resulted in cleavage of the proapoptotic substrate BID. Overexpression of dominant-negative caspase-8 interfered with radiation-induced apoptosis. Caspase-8 activation by ionizing radiation was not observed in cells genetically defective for the Src-like tyrosine kinase Lck. Cells lacking Lck also displayed a marked resistance towards apoptosis induction upon ionizing radiation. After retransfection of Lck, caspase-8 activation and the capability to undergo apoptosis in response to ionizing radiation was restored. We conclude that radiation activates caspase-8 via an Lck-controlled pathway independently of CD95 ligand expression. This is a novel signaling event required for radiation induced apoptosis in T lymphoma cells.
Collapse
Affiliation(s)
- C Belka
- Department of Radiation Oncology, University of Tuebingen (Germany), Hoppe Seyler Str. 3, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Thomas ML, Brown EJ. Positive and negative regulation of Src-family membrane kinases by CD45. IMMUNOLOGY TODAY 1999; 20:406-11. [PMID: 10462740 DOI: 10.1016/s0167-5699(99)01506-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M L Thomas
- Howard Hughes Medical Institute, Dept of Pathology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|
50
|
Fuortes M, Melchior M, Han H, Lyon GJ, Nathan C. Role of the tyrosine kinase pyk2 in the integrin-dependent activation of human neutrophils by TNF. J Clin Invest 1999; 104:327-35. [PMID: 10430614 PMCID: PMC408415 DOI: 10.1172/jci6018] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Secretion of inflammatory products from neutrophils can be induced by a combination of signals from ligated integrins and receptors for soluble, physiological agonists such as TNF. Here we identify pyk2 in primary human neutrophils; localize it to focal adhesions and podosomes; and demonstrate its tyrosine phosphorylation, activation, and association with paxillin during stimulation of adherent cells by TNF. Tyrphostin A9 emerged as the most potent and selective of 51 tyrosine kinase inhibitors tested against the TNF-induced respiratory burst. Tyrphostin A9 inhibited TNF-induced tyrosine phosphorylation of pyk2 without blocking the cells' bactericidal activity. Wortmannin, an inhibitor of phosphatidylinositol-3-kinase, potently blocked the TNF-induced respiratory burst and selectively inhibited tyrosine phosphorylation of pyk2. Thus, pyk2 appears to play an essential role in the ability of neutrophils to integrate signals from beta(2) integrins and TNF receptors.
Collapse
Affiliation(s)
- M Fuortes
- Department of Cell Biology, Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York 10021, USA.
| | | | | | | | | |
Collapse
|