1
|
Down-Regulated CUEDC2 Increases GDNF Expression by Stabilizing CREB Through Reducing Its Ubiquitination in Glioma. Neurochem Res 2020; 45:2915-2925. [PMID: 33125618 DOI: 10.1007/s11064-020-03140-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
Abnormally high expression of glial cell line-derived neurotrophic factor (GDNF) derived from glioma cells has essential impacts on gliomagenesis and development, but the molecular basis underlying increased GDNF expression in glioma cells remain unclear. This work aimed to study the molecular mechanisms that may explain the accumulation of GDNF in glioma. Firstly, we observed that cAMP response element-binding protein (CREB), known as an important transcription factor for binding of GDNF promoter region, was highly expressed with an apparent accumulation into the nucleus of glioma cells, which may contribute to the transcription of GDNF. Secondly, CUE domain-containing protein 2 (CUEDC2), a ubiquitin-regulated protein, could increase the amount of binding between the E3 ligase tripartite motif-containing 21 (TRIM21) and CREB and affect the CREB level. Like our previous study, it showed that there was a significantly down-regulation of CUEDC2 in glioma. Finally, our data suggest that GDNF expression is indirectly regulated by transcription factor ubiquitination. Indeed, down-regulation of CUEDC2, decreased the ubiquitination and degradation of CREB, which was associated to high levels of GDNF. Furthermore, abundant CREB involved in the binding to the GDNF promoter region contributes to GDNF high expression in glioma cells. Collectively, it was verified the GDNF expression was affected by CREB ubiquitination regulated by CUEDC2 level.
Collapse
|
2
|
Islam ABMMK, Mohammad E, Khan MAAK. Aberration of the modulatory functions of intronic microRNA hsa-miR-933 on its host gene ATF2 results in type II diabetes mellitus and neurodegenerative disease development. Hum Genomics 2020; 14:34. [PMID: 32993798 PMCID: PMC7526404 DOI: 10.1186/s40246-020-00285-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNAs are ~ 22-nucleotide-long biological modifiers that act as the post-transcriptional modulator of gene expression. Some of them are identified to be embedded within the introns of protein-coding genes, these miRNAs are called the intronic miRNAs. Previous findings state that these intronic miRNAs are co-expressed with their host genes. This co-expression is necessary to maintain the robustness of the biological system. Till to date, only a few experiments are performed discretely to elucidate the functional relationship between few co-expressed intronic miRNAs and their associated host genes. RESULTS In this study, we have interpreted the underlying modulatory mechanisms of intronic miRNA hsa-miR-933 on its target host gene ATF2 and found that aberration can lead to several disease conditions. A protein-protein interaction network-based approach was adopted, and functional enrichment analysis was performed to elucidate the significantly over-represented biological functions and pathways of the common targets. Our approach delineated that hsa-miR-933 might control the hyperglycemic condition and hyperinsulinism by regulating ATF2 target genes MAP4K4, PRKCE, PEA15, BDNF, PRKACB, and GNAS which can otherwise lead to the development of type II diabetes mellitus. Moreover, we showed that hsa-miR-933 can regulate a target of ATF2, brain-derived neurotrophic factor (BDNF), to modulate the optimal expression of ATF2 in neuron cells to render neuroprotection for the inhibition of neurodegenerative diseases. CONCLUSIONS Our in silico model provides interesting resources for experimentations in a model organism or cell line for further validation. These findings may extend the common perception of gene expression analysis with new regulatory functionality.
Collapse
Affiliation(s)
| | - Eusra Mohammad
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
- Current Affiliation: Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Md. Abdullah-Al-Kamran Khan
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
- Current Affiliation: Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| |
Collapse
|
3
|
Assadsangabi A, Evans CA, Corfe BM, Lobo A. Application of Proteomics to Inflammatory Bowel Disease Research: Current Status and Future Perspectives. Gastroenterol Res Pract 2019; 2019:1426954. [PMID: 30774653 PMCID: PMC6350533 DOI: 10.1155/2019/1426954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing/remitting inflammatory illness of the gastrointestinal tract of unknown aetiology. Despite recent advances in decoding the pathophysiology of IBD, many questions regarding disease pathogenesis remain. Genome-wide association studies (GWAS) and knockout mouse models have significantly advanced our understanding of genetic susceptibility loci and inflammatory pathways involved in IBD pathogenesis. Despite their important contribution to a better delineation of the disease process in IBD, these genetic findings have had little clinical impact to date. This is because the presence of a given gene mutation does not automatically correspond to changes in its expression or final metabolic or structural effect(s). Furthermore, the existence of these gene susceptibility loci in the normal population suggests other driving prerequisites for the disease manifestation. Proteins can be considered the main functional units as almost all intracellular physiological functions as well as intercellular interactions are dependent on them. Proteomics provides methods for the large-scale study of the proteins encoded by the genome of an organism or a cell, to directly investigate the proteins and pathways involved. Understanding the proteome composition and alterations yields insights into IBD pathogenesis as well as identifying potential biomarkers of disease activity, mucosal healing, and cancer progression. This review describes the state of the art in the field with respect to the study of IBD and the potential for translation from biomarker discovery to clinical application.
Collapse
Affiliation(s)
- Arash Assadsangabi
- Gastroenterology Unit, Salford Royal Hospital, Salford, UK
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Caroline A. Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Bernard M. Corfe
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Alan Lobo
- Gastroenterology Unit, Salford Royal Hospital, Salford, UK
| |
Collapse
|
4
|
Zhou J, Zhu Z, Bai C, Sun H, Wang X. Proteomic profiling of lymphocytes in autoimmunity, inflammation and cancer. J Transl Med 2014; 12:6. [PMID: 24397796 PMCID: PMC3895788 DOI: 10.1186/1479-5876-12-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/04/2014] [Indexed: 11/10/2022] Open
Abstract
Lymphocytes play important roles in the balance between body defense and noxious agents involved in a number of diseases, e.g. autoimmune diseases, allergic inflammation and cancer. The proteomic analyses have been applied to identify and validate disease-associated and disease-specific biomarkers for therapeutic strategies of diseases. The proteomic profiles of lymphocytes may provide more information to understand their functions and roles in the development of diseases, although proteomic approaches in lymphocytes are still limited. The present review overviewed the proteomics-based studies on lymphocytes to headlight the proteomic profiles of lymphocytes in diseases, such as autoimmune diseases, allergic inflammation and cancer, with a special focus on lung diseases. We will explore the potential significance of diagnostic biomarkers and therapeutic targets from the current status in proteomic studies of lymphocytes and discuss the value of the currently available proteomic methodologies in the lymphocytes research.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Sun
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China.
| | | |
Collapse
|
5
|
Hoang T, Fenne IS, Madsen A, Bozickovic O, Johannessen M, Bergsvåg M, Lien EA, Stallcup MR, Sagen JV, Moens U, Mellgren G. cAMP response element-binding protein interacts with and stimulates the proteasomal degradation of the nuclear receptor coactivator GRIP1. Endocrinology 2013; 154:1513-27. [PMID: 23462962 PMCID: PMC5393311 DOI: 10.1210/en.2012-2049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucocorticoid receptor interacting protein (GRIP1) belongs to the p160 steroid receptor coactivator family that plays essential roles in nuclear receptor-dependent transcriptional regulation. Previously, we reported that the cAMP-dependent protein kinase (PKA) induces ubiquitination leading to degradation of GRIP1. Here we show that the cAMP response element-binding protein (CREB) downregulates GRIP1 and is necessary for the PKA-stimulated degradation of GRIP1, which leads to changes in the expression of a subset of genes regulated by estrogen receptor-α in MCF-7 breast cancer cells. Our data of domain-mapping and ubiquitination analyses suggest that CREB promotes the proteasomal breakdown of ubiquitinated GRIP1 through 2 functionally independent protein domains containing amino acids 347 to 758 and 1121 to 1462. We provide evidence that CREB interacts directly with GRIP1 and that CREB Ser-133 phosphorylation or transcriptional activity is not required for GRIP1 interaction and degradation. The basic leucine zipper domain (bZIP) of CREB is important for the interaction with GRIP1, and deletion of this domain led to an inability to downregulate GRIP1. We propose that CREB mediates the PKA-stimulated degradation of GRIP1 through protein-protein interaction and stimulation of proteasomal degradation of ubiquitinated GRIP1.
Collapse
Affiliation(s)
- Tuyen Hoang
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lau E, Ronai ZA. ATF2 - at the crossroad of nuclear and cytosolic functions. J Cell Sci 2012; 125:2815-24. [PMID: 22685333 DOI: 10.1242/jcs.095000] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An increasing number of transcription factors have been shown to elicit oncogenic and tumor suppressor activities, depending on the tissue and cell context. Activating transcription factor 2 (ATF2; also known as cAMP-dependent transcription factor ATF-2) has oncogenic activities in melanoma and tumor suppressor activities in non-malignant skin tumors and breast cancer. Recent work has shown that the opposing functions of ATF2 are associated with its subcellular localization. In the nucleus, ATF2 contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. ATF2 can also translocate to the cytosol, primarily following exposure to severe genotoxic stress, where it impairs mitochondrial membrane potential and promotes mitochondrial-based cell death. Notably, phosphorylation of ATF2 by the epsilon isoform of protein kinase C (PKCε) is the master switch that controls its subcellular localization and function. Here, we summarize our current understanding of the regulation and function of ATF2 in both subcellular compartments. This mechanism of control of a non-genetically modified transcription factor represents a novel paradigm for 'oncogene addiction'.
Collapse
Affiliation(s)
- Eric Lau
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92130, USA.
| | | |
Collapse
|
7
|
Ribas VT, Arruda-Carvalho M, Linden R, Chiarini LB. Early c-Jun N-terminal kinase-dependent phosphorylation of activating transcription factor-2 is associated with degeneration of retinal ganglion cells. Neuroscience 2011; 180:64-74. [PMID: 21300140 DOI: 10.1016/j.neuroscience.2011.01.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 12/12/2022]
Abstract
Neuron death due to deprivation of target-derived neurotrophic factors depends on protein synthesis regulated by transcription factor activity. We investigated the content and phosphorylation of activating transcription factor 2 (ATF-2) in axon-damaged retinal ganglion cells of neonatal rats. In the retina of neonatal rats, the ATF-2 protein is predominantly located in the nucleus of the ganglion cells. A gradual loss of the immunoreactivity for ATF-2 occurred after explantation. ATF-2 is phosphorylated early after explantation, with a peak within 3 hours, preceding the peak of cell death that occurs at 18 hours. Both the phosphorylation of ATF-2 and ganglion cell death were blocked by treatment with an inhibitor of c-Jun N-terminal kinase (JNK), whereas an inhibitor of p38 reduced only slightly the rate of ganglion cell death with no effect upon phosphorylation of ATF-2. Inhibitors of phosphatidyl inositol 3 kinase (PI-3K), protein kinase C (PKC) or extracellular regulated kinase (ERK) had no effect. Finally, the inhibitor of JNK blocked the upregulation of both c-Jun and Hrk in the GCL after retinal explantation. The data show that phosphorylation of ATF-2 by JNK is associated with retinal ganglion cell death after axon damage.
Collapse
Affiliation(s)
- V T Ribas
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brasil
| | | | | | | |
Collapse
|
8
|
Structure of Importin13-Ubc9 complex: nuclear import and release of a key regulator of sumoylation. EMBO J 2010; 30:427-38. [PMID: 21139563 DOI: 10.1038/emboj.2010.320] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/10/2010] [Indexed: 01/09/2023] Open
Abstract
Importin13 (Imp13) is an unusual β-karyopherin that is able to both import and export cargoes in and out of the nucleus. In the cytoplasm, Imp13 associates with different cargoes such as Mago-Y14 and Ubc9, and facilitates their import into the nucleus where RanGTP binding promotes the release of the cargo. In this study, we present the 2.8 Å resolution crystal structure of Imp13 in complex with the SUMO E2-conjugating enzyme, Ubc9. The structure shows an uncommon mode of cargo-karyopherin recognition with Ubc9 binding at the N-terminal portion of Imp13, occupying the entire RanGTP-binding site. Comparison of the Imp13-Ubc9 complex with Imp13-Mago-Y14 shows the remarkable plasticity of Imp13, whose conformation changes from a closed ring to an open superhelix when bound to the two different cargoes. The structure also shows that the binding mode is compatible with the sumoylated states of Ubc9. Indeed, we find that Imp13 is able to bind sumoylated Ubc9 in vitro and suppresses autosumoylation activity in the complex.
Collapse
|
9
|
Abstract
Cooperation among transcription factors is central for their ability to execute specific transcriptional programmes. The AP1 complex exemplifies a network of transcription factors that function in unison under normal circumstances and during the course of tumour development and progression. This Perspective summarizes our current understanding of the changes in members of the AP1 complex and the role of ATF2 as part of this complex in tumorigenesis.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Instituto de Biologia y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires1428, Argentina,
| | - Eric Lau
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA,
| | - Ze'ev Ronai
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Xu J, Watkins T, Reddy A, Reddy ESP, Rao VN. A novel mechanism whereby BRCA1/1a/1b fine tunes the dynamic complex interplay between SUMO-dependent/independent activities of Ubc9 on E2-induced ERalpha activation/repression and degradation in breast cancer cells. Int J Oncol 2009; 34:939-49. [PMID: 19287951 DOI: 10.3892/ijo_00000220] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BRCA1 dysfunction is associated with hormone-responsive cancers. We have identified a consensus SUMO modification site in the amino-terminal region of BRCA1/1a/1b proteins and the mutation in this potential SUMO acceptor site (K 109 to R) impaired their ability to bind and repress ligand-dependent ERalpha transcriptional activity in breast cancer cells. Furthermore, we have found SUMO E2-conjugating enzyme Ubc9 to bind BRCA1 proteins. We have mapped BRCA1 [within amino acids (aa) 1-182] as the minimum domain that is sufficient for in vitro binding to Ubc9 as well as for regulating ERalpha activity. BRCA1 Mutant #1 (K109 to R) was impaired in its ability to both bind, as well as modulate Ubc9 mediated SUMO-dependent/independent E2-induced ERalpha transcriptional activity in breast cancer cells. Similarly, BRCA1 cancer-predisposing mutation (61Cys-Gly) abrogated the ability to both bind Ubc9 as well as inhibit ERalpha activity suggesting physiological significance. Addition of BRCA1 but not Mutant #1 to E2-induced ERalpha in the presence of SUMO-1 and Ubc9 resulted in the degradation of ERalpha suggesting BRCA1 to be a putative SUMO-1 and Ubc9-dependent E3 ubiquitin ligase for ERalpha. This is the first report demonstrating the participation of Ubc9 in BRCA1 E3 ubiquitin ligase mediated degradation of ERalpha. These results suggest a novel function for BRCA1 in regulating the dynamic cycles of SUMO and ubiquitin modifications required for ERalpha turn over and deregulation of this molecular switch due to lack of BRCA1 results in ERalpha-negative/positive breast cancers. This study will help in designing novel BRCA1 function-based targeted treatment for breast cancers.
Collapse
Affiliation(s)
- J Xu
- Cancer Biology Program, Department of OB/GYN, Morehouse School of Medicine, Georgia Cancer Center for Excellence, Grady Health System, Atlanta, GA 30303, USA
| | | | | | | | | |
Collapse
|
11
|
Bhoumik A, Singha N, O'Connell MJ, Ronai ZA. Regulation of TIP60 by ATF2 modulates ATM activation. J Biol Chem 2008; 283:17605-14. [PMID: 18397884 DOI: 10.1074/jbc.m802030200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
TIP60 (HTATIP) is a histone acetyltransferase (HAT) whose function is critical in regulating ataxia-telangiectasia mutated (ATM) activation, gene expression, and chromatin acetylation in DNA repair. Here we show that under non-stressed conditions, activating transcription factor-2 (ATF2) in cooperation with Cul3 ubiquitin ligase promotes degradation of TIP60, thereby attenuating its HAT activity. Inhibiting either ATF2 or Cul3 expression by small interfering RNA stabilizes the TIP60 protein. ATF2 association with TIP60 on chromatin is decreased following exposure to ionizing radiation (IR), resulting in enhanced TIP60 stability and activity. We also identified a panel of melanoma and prostate cancer cell lines whose ATF2 expression is inversely correlated with TIP60 levels and ATM activation after IR. Inhibition of ATF2 expression in these lines restored TIP60 protein levels and both basal and IR-induced levels of ATM activity. Our study provides novel insight into regulation of ATM activation by ATF2-dependent control of TIP60 stability and activity.
Collapse
Affiliation(s)
- Anindita Bhoumik
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
12
|
Bhoumik A, Lopez-Bergami P, Ronai Z. ATF2 on the double - activating transcription factor and DNA damage response protein. ACTA ACUST UNITED AC 2008; 20:498-506. [PMID: 17935492 DOI: 10.1111/j.1600-0749.2007.00414.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Signal transduction pathways play a key role in the regulation of key cellular processes, including survival and death. Growing evidence points to changes in signaling pathway that occur during skin tumor development and progression. Such changes impact the activity of downstream substrates, including transcription factors. The activating transcription factor 2 (ATF2) has been implicated in malignant and non-malignant skin tumor developments. ATF2 mediates both transcription and DNA damage control, through its phosphorylation by JNK/p38 or ATM/ATR respectively. Here, we summarize our present understanding of ATF2 regulation, function and contribution to malignant and non-malignant skin tumor development.
Collapse
Affiliation(s)
- Anindita Bhoumik
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA, USA
| | | | | |
Collapse
|
13
|
Lawrence CL, Maekawa H, Worthington JL, Reiter W, Wilkinson CRM, Jones N. Regulation of Schizosaccharomyces pombe Atf1 protein levels by Sty1-mediated phosphorylation and heterodimerization with Pcr1. J Biol Chem 2007; 282:5160-70. [PMID: 17182615 DOI: 10.1074/jbc.m608526200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Atf1 transcription factor plays a vital role in the ability of Schizosaccharomyces pombe cells to respond to various stress conditions. It regulates the expression of many genes in a stress-dependent manner, and its function is dependent upon the stress-activated MAPK, Sty1/Spc1. Moreover, Atf1 is directly phosphorylated by Sty1. Here we have investigated the role of such phosphorylation. Atf1 protein accumulates following stress, and this accumulation is lost in a strain defective in the Sty1 signaling pathway. In addition, accumulation of a mutant Atf1 protein that can no longer be phosphorylated is lost. Measurement of the half-life of Atf1 demonstrates that changes in Atf1 stability are responsible for this accumulation. Atf1 stability is also regulated by its heterodimeric partner, Pcr1. Similarly, Pcr1 levels are regulated by Atf1. Thus multiple pathways exist that ensure that Atf1 levels are appropriately regulated. Phosphorylation of Atf1 is important for cells to mount a robust response to H(2)O(2) stress, because the Atf1 phospho-mutant displays sensitivity to this stress, and induction of gene expression is lower than that observed in wild-type cells. Surprisingly, however, loss of Atf1 phosphorylation does not lead to the complete loss of stress-activated expression of Atf1 target genes. Accordingly, the Atf1 phospho-mutant does not display the same overall stress sensitivities as the atf1 deletion mutant. Taken together, these data suggest that Sty1 phosphorylation of Atf1 is not required for activation of Atf1 per se but rather for modulating its stability.
Collapse
Affiliation(s)
- Clare L Lawrence
- Cancer Research UK Cell Regulation Laboratory, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Pan X, Li H, Zhang P, Jin B, Man J, Tian L, Su G, Zhao J, Li W, Liu H, Gong W, Zhou T, Zhang X. Ubc9 interacts with SOX4 and represses its transcriptional activity. Biochem Biophys Res Commun 2006; 344:727-34. [PMID: 16631117 DOI: 10.1016/j.bbrc.2006.03.194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 03/26/2006] [Indexed: 10/24/2022]
Abstract
SOX4 is a member of SOX transcriptional factor family that is crucial for many cellular processes. In this study, a yeast two-hybrid screening of human mammary cDNA library identified human ubiquitin-conjugating enzyme 9 (hUbc9) that interacted with SOX4. This interaction was confirmed by GST pull-down in vitro and co-immunoprecipitation assays in vivo. Deletion mapping demonstrated that HMG-box domain of SOX4 is required to mediate the interaction with Ubc9 in yeast. Furthermore, confocal microscopy showed that Ubc9 co-localized with SOX4 in the nucleus. Luciferase assays found that Ubc9 specifically repressed SOX4 transcriptional activity in 293T cells. We further demonstrated that Ubc9 could functionally repress the transcriptional activity of endogenous SOX4 induced by progesterone in T47D cells. The C93S mutant of Ubc9, which abrogates SUMO-1 conjugation activity, did not abolish the ability to repress SOX4 activity. It shows that Ubc9 interacts with SOX4 and represses its transcriptional activity independent of its SUMO-1-conjugating activity.
Collapse
Affiliation(s)
- Xin Pan
- National Center of Biomedical Analysis, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gaikwad A, Poblenz A, Haridas V, Zhang C, Duvic M, Gutterman J. Triterpenoid electrophiles (avicins) suppress heat shock protein-70 and x-linked inhibitor of apoptosis proteins in malignant cells by activation of ubiquitin machinery: implications for proapoptotic activity. Clin Cancer Res 2005; 11:1953-62. [PMID: 15756021 DOI: 10.1158/1078-0432.ccr-04-1704] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Avicins are plant-derived triterpenoid stress metabolites that have both proapoptotic and cytoprotective properties. Avicins induce apoptosis in Jurkat T leukemia cells by targeting mitochondria and release of cytochrome c that occurs in a p53-independent manner. However, postmitochondrial antiapoptotic barriers, such as increased expression of heat shock proteins (Hsp) and X-linked inhibitor of apoptosis proteins (XIAP), frequently exist in cancer cells and often account for resistance to chemotherapy and a poor prognosis. In this article, we show the role of avicins in the activation of stress-regulated ubiquitination and degradation of Hsp70 and XIAP. This is the first report showing the regulation of Hsp70 via the ubiquitin/proteasome pathway. We also show the induction of E3alpha ubiquitin ligase in avicin-treated Jurkat T leukemia cells, and its involvement in the degradation of XIAP. Avicin-mediated suppression of Hsp70 and XIAP was further confirmed in other leukemic/lymphoma cell lines and freshly isolated peripheral blood lymphocytes from Sezary syndrome patients. No change in the Hsp70 and XIAP proteins was observed in peripheral blood lymphocytes from normal donors. We propose that the ability of avicins to induce ubiquitination and regulate the degradation of Hsp70 and XIAP in leukemia cells could have important implications in the treatment of drug-resistant neoplasia and inflammatory disorders.
Collapse
Affiliation(s)
- Amos Gaikwad
- Department of Molecular Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
16
|
Argasinska J, Zhou K, Donnelly RJ, Hay RT, Lee CG. A functional interaction between RHA and Ubc9, an E2-like enzyme specific for Sumo-1. J Mol Biol 2004; 341:15-25. [PMID: 15312759 DOI: 10.1016/j.jmb.2004.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 05/26/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
RNA helicase A (RHA) is a member of the DEAH helicase family of proteins. Recent studies imply the role of RHA in the regulation of the topology of chromatin DNA, which could influence diverse nuclear processes such as transcription activity of the chromatin DNA and chromosome condensation. We previously reported that Ubc9, an E2-like enzyme specific for small ubiquitin-like modifier 1 (Sumo-1), is required for the interaction between RHA and topoisomerase IIalpha. Here, we describe that Ubc9 is a novel factor that functionally interacts with RHA and activates the transcription activity of RHA, measured in the CREB-mediated pathway. We demonstrate that the N-terminal domain of RHA, encompassing amino acid residues 1-137, is sufficient for its interaction with Ubc9. Our data also show that interaction with Ubc9 leads to the Sumo-1 conjugation of RHA both in vitro and in vivo. However, the catalytic activity of Ubc9 seems to be dispensable for the transcription activation activity of RHA. Our observation suggests multiple roles for Ubc9 in the regulation of the RHA function.
Collapse
Affiliation(s)
- Joanna Argasinska
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
17
|
Sevilla A, Santos CR, Vega FM, Lazo PA. Human vaccinia-related kinase 1 (VRK1) activates the ATF2 transcriptional activity by novel phosphorylation on Thr-73 and Ser-62 and cooperates with JNK. J Biol Chem 2004; 279:27458-65. [PMID: 15105425 DOI: 10.1074/jbc.m401009200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the human kinome, vaccinia-related kinase-1 (VRK1) is a new Ser-Thr kinase associated with proliferating tissues. VRK1 colocalizes with ATF2 in the nucleus and can form a stable complex. We have studied the phosphorylation of the transcription factor ATF2, which regulates gene expression by forming dimers with proteins with basic region-leucine zipper domains and recognizing cAMP-response element or AP1 sequences implicated in cellular responses to stress. VRK1 phosphorylates ATF2 mainly on Thr-73, stabilizing the ATF2 protein and increasing its intracellular level. Mutagenesis studies showed that Thr-73 and Ser-62 are implicated in ATF2 transcriptional activation by VRK1 detected in a functional assay based on ATF2 dimerization. VRK1 can activate the collagenase gene promoter that is regulated by ATF2 in a dose-dependent manner. Loss of kinase activity (K179E mutant) or the T73A substitution in ATF2 prevents both its accumulation and activation of transcription. VRK1 and JNK, which phosphorylates ATF2 in Thr-69 and Thr-71, have an additive effect on ATF2-dependent transcription at suboptimal doses. Therefore, two groups of amino acids in the ATF2 amino-terminal region can integrate different cellular signals mediated by at least five different kinases. VRK1 is an element of a novel signaling pathway that regulates gene transcription.
Collapse
Affiliation(s)
- Ana Sevilla
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | | | | |
Collapse
|
18
|
Comerford KM, Leonard MO, Karhausen J, Carey R, Colgan SP, Taylor CT. Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc Natl Acad Sci U S A 2003; 100:986-91. [PMID: 12552083 PMCID: PMC298713 DOI: 10.1073/pnas.0337412100] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation-dependent ubiquitination combined with proteasomal degradation of transcriptional regulators is a recently appreciated mechanism for control of a number of inflammatory genes. Far less is known about the counterregulatory mechanisms that repress transcriptional activity in these pathways during resolution. Here, we investigated the transient nature of hypoxia-induced tumor necrosis factor (TNF)alpha in T84 cells, a process we have previously shown to involve phosphorylation-dependent degradation of the cAMP-response element-binding protein (CREB). Initial studies indicate hypoxia-induced TNFalpha to be a transient event, the resolution of which is associated with the appearance of a higher molecular weight modified form of CREB. Gene array analysis of mRNA derived from hypoxic cells identified a time-dependent induction of small ubiquitin-related modifier (SUMO)-1 mRNA. In prolonged hypoxia, CREB is posttranslationally modified by SUMO-1. Furthermore, SUMO-1 overexpression stabilizes CREB in hypoxia and enhances CREB-dependent reporter gene activity. Site-directed mutagenesis of lysine residues K285 and K304 identifies them as SUMO acceptors in vivo and in vitro. Mutation of K304 also results in loss of CREB nuclear localization, implying a role for SUMO-1 modification at this site in the subcellular localization of CREB. Thus, in prolonged hypoxia, CREB is modified by association with SUMO-1. Furthermore, we hypothesize that such an event stabilizes and promotes nuclear localization of CREB and thus complements an endogenous resolution phase for hypoxia-induced inflammatory processes.
Collapse
Affiliation(s)
- Katrina M Comerford
- The Conway Institute for Biomolecular and Biomedical Research, University College, Dublin, D4 Ireland
| | | | | | | | | | | |
Collapse
|
19
|
Saitoh H, Pizzi MD, Wang J. Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J Biol Chem 2002; 277:4755-63. [PMID: 11709548 DOI: 10.1074/jbc.m104453200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ubc9, a conjugation enzyme for the ubiquitin-related modifier SUMO, is present predominantly in the nucleus and at the nuclear pore complex. The functional significance of its subcellular compartmentalization, however, remains to be elucidated. Here, we define a Pro-Glu-Asp-Ser-Thr-rich element containing 129 amino acid residues, designated IR1+2, on the human nucleoporin RanBP2/Nup358, which binds directly to Ubc9 with high affinity both in vitro and in vivo. When IR1+2 tagged with green fluorescence protein at its amino terminus (GFP-IR1+2) was transfected into COS-7 cells, we found that approximately 90% of the nuclear Ubc9 was sequestered in the cytoplasm. We also observed that both SUMO-1 and SUMO-2/3 were mislocalized, and promyelocytic leukemia protein PML formed an enlarged aggregate in the nucleus. Moreover, the homologous recombination protein Rad51 mislocalized to the cytoplasm, and Rad51 foci, a hallmark of functional association of Rad51 with damaged DNA, did not form efficiently even in the presence of a DNA strand breaker. These findings emphasize that the IR1+2 domain is a useful tool for manipulating the nuclear localization of Ubc9 and perturbing the subcellular localization of SUMOs and/or SUMOlated proteins, and they emphasize the important role of nuclear Ubc9 in the Rad51-mediated homologous recombination pathway, possibly by modulating intracellular trafficking of Rad51.
Collapse
Affiliation(s)
- Hisato Saitoh
- The Picower Institute for Medical Research, Manhasset, New York 11030, USA.
| | | | | |
Collapse
|
20
|
Miethe J, Schwartz C, Wottrich K, Wenning D, Klempnauer KH. Crosstalk between Myc and activating transcription factor 2 (ATF2): Myc prolongs the half-life and induces phosphorylation of ATF2. Oncogene 2001; 20:8116-24. [PMID: 11781825 DOI: 10.1038/sj.onc.1204966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2001] [Revised: 09/05/2001] [Accepted: 09/13/2001] [Indexed: 01/07/2023]
Abstract
Myc is a key regulator of cell growth, differentiation and apoptosis, and affects cell fate decisions by activating as well as by inhibiting the expression of cellular genes. Myc is a member of the basic region-helix-loop-helix-leucine zipper (b-HLH-Zip) class of transcription factors, which heterodimerizes with the Max protein and recognizes a consensus Myc binding motif. Stimulation of gene expression by Myc is thought to be mediated by direct binding of Myc-Max heterodimers to specific target genes. So far, only a few genes have been identified as direct binding targets of Myc, raising the possibility that Myc affects gene expression also by indirect mechanisms. In this work we present evidence that v-Myc encoded by the avian retrovirus MC29 stimulates activating transcription factor 2 (ATF2)-dependent transcription. Analysis of the effect of Myc on ATF2 shows that v-Myc prolongs the half-life of ATF2 and induces the phosphorylation of N-terminal sites of ATF2 (Thr-69 and Thr-71) which have previously been identified as the target sites of stress-activated protein kinases and implicated in the regulation of ATF2 activity. Taken together, our results suggest that v-Myc can affect gene expression indirectly by modulating the activity of ATF2.
Collapse
Affiliation(s)
- J Miethe
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
21
|
Buschmann T, Lerner D, Lee CG, Ronai Z. The Mdm-2 amino terminus is required for Mdm2 binding and SUMO-1 conjugation by the E2 SUMO-1 conjugating enzyme Ubc9. J Biol Chem 2001; 276:40389-95. [PMID: 11384992 DOI: 10.1074/jbc.m103786200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Covalent attachment of SUMO-1 to Mdm2 requires the activation of a heterodimeric Aos1-Uba2 enzyme (ubiquitin-activating enzyme (E1)) followed by the conjugation of Sumo-1 to Mdm2 by Ubc9, a protein with a strong sequence similarity to ubiquitin carrier proteins (E2s). Upon Sumo-1 conjugation, Mdm2 is protected from self-ubiquitination and elicits greater ubiquitin-protein isopeptide ligase (E3) activity toward p53, thereby increasing its oncogenic potential. Because of the biological implication of Mdm2 sumoylation, we mapped Ubc9 binding on Mdm2. Here we demonstrate that Ubc9 can associate with Mdm2 only if amino acids 40-59 within the N terminus of Mdm2 are present. Mdm2 from which amino acids 40-59 have been deleted can no longer be sumoylated. Furthermore, addition of a peptide that corresponds to amino acids 40-59 on Mdm2 to a sumoylation reaction efficiently inhibits Mdm2 sumoylation in vitro and in vivo. In UV-treated cells Mdm2 exhibits reduced association with Ubc9, which coincides with decreased Mdm2 sumoylation. Our findings regarding the association of Ubc9 with Mdm2, and the effect of UV-irradiation on Ubc9 binding, point to an additional level in the regulation of Mdm2 sumoylation under normal growth conditions as well as in response to stress conditions.
Collapse
Affiliation(s)
- T Buschmann
- Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
22
|
Bellanger S, Demeret C, Goyat S, Thierry F. Stability of the human papillomavirus type 18 E2 protein is regulated by a proteasome degradation pathway through its amino-terminal transactivation domain. J Virol 2001; 75:7244-51. [PMID: 11461997 PMCID: PMC114960 DOI: 10.1128/jvi.75.16.7244-7251.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2001] [Accepted: 05/08/2001] [Indexed: 11/20/2022] Open
Abstract
The E2 proteins of papillomaviruses regulate both viral transcription and DNA replication. The human papillomavirus type 18 (HPV18) E2 protein has been shown to repress transcription of the oncogenic E6 and E7 genes, inducing growth arrest in HeLa cells. Using HPV18 E2 fused to the green fluorescent protein (GFP), we showed that this protein was short-lived in transfected HeLa cells. Real-time microscopy experiments indicated that the E2-dependent signal increased for roughly 24 h after transfection and then rapidly disappeared, indicating that E2 was unstable in HeLa cells and could confer instability to GFP. Similar studies done with a protein lacking the transactivation domain indicated that this truncation strongly stabilizes the E2 protein. In vitro, full-length E2 or the transactivation domain alone was efficiently ubiquitinated, whereas deletion of the transactivation domain strongly decreased the ubiquitination of the E2 protein. Proteasome inhibition in cells expressing E2 increased its half-life about sevenfold, which was comparable to the half-life of the amino-terminally truncated protein. These characteristics of E2 instability were independent of the E2-mediated G(1) growth arrest in HeLa cells, as they were reproduced in MCF7 cells, where E2 does not affect the cell cycle. Altogether, these experiments showed that the HPV18 E2 protein was degraded by the ubiquitin-proteasome pathway through its amino-terminal transactivation domain. Tight regulation of the stability of the HPV 18 E2 protein may be essential to avoid accumulation of a potent transcriptional repressor and antiproliferative agent during the viral vegetative cycle.
Collapse
Affiliation(s)
- S Bellanger
- Unité des Virus Oncogènes, Département des Biotechnologies, URA 1644 du CNRS, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
23
|
Hai T, Hartman MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 2001; 273:1-11. [PMID: 11483355 DOI: 10.1016/s0378-1119(01)00551-0] [Citation(s) in RCA: 646] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mammalian ATF/CREB family of transcription factors represents a large group of basic region-leucine zipper (bZip) proteins which was originally defined in the late 1980s by their ability to bind to the consensus ATF/CRE site 'TGACGTCA'. Over the past decade, cDNA clones encoding identical or homologous proteins have been isolated by different laboratories and given different names. These proteins can be grouped into subgroups according to their amino acid similarity. In this review, we will briefly describe the classification of these proteins with a historical perspective of their nomenclature. We will then review three members of the ATF/CREB family of proteins: ATF3, ATF4 and ATF6. We will address four issues for each protein: (a) homologous proteins and alternative names, (b) dimer formation with other bZip proteins, (c) transcriptional activity, and (d) potential physiological functions. Although the name Activating Transcription Factor (ATF) implies that they are transcriptional activators, some of these proteins are transcriptional repressors. ATF3 homodimer is a transcriptional repressor and ATF4 has been reported to be either an activator or a repressor. We will review the reports on the transcriptional activities of ATF4, and propose potential explanations for the discrepancy. Although the physiological functions of these proteins are not well understood, some clues can be gained from studies with different approaches. When the data are available, we will address the following questions. (a) How is the expression (at the mRNA level or protein level) regulated? (b) How are the transcriptional activities regulated? (c) What are the interacting proteins (other than bZip partners)? (d) What are the consequences of ectopically expressing the gene (gain-of-function) or deleting the gene (loss-of-function)? Although answers to these questions are far from being complete, together they provide clues to the functions of these ATF proteins. Despite the diversity in the potential functions of these proteins, one common theme is their involvement in cellular responses to extracellular signals, indicating a role for these ATF proteins in homeostasis.
Collapse
Affiliation(s)
- T Hai
- Department of Molecular and Cellular Biochemistry, Neurobiotechnology Center, Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
24
|
Ivanova AV, Ivanov SV, Danilkovitch-Miagkova A, Lerman MI. Regulation of STRA13 by the von Hippel-Lindau tumor suppressor protein, hypoxia, and the UBC9/ubiquitin proteasome degradation pathway. J Biol Chem 2001; 276:15306-15. [PMID: 11278694 DOI: 10.1074/jbc.m010516200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we focus on different modes of regulation of STRA13, a human ortholog of the mouse basic helix-loop-helix transcriptional factor, previously identified by us as a new von Hippel-Lindau tumor suppressor gene (VHL) target. The gene was overexpressed in VHL-deficient cell lines and tumors, specifically clear cell renal carcinomas and hemangioblastomas. Introduction of wild type VHL transgene into clear cell renal carcinoma restored low level expression of STRA13. Overexpression was also detected in many common malignancies with an intact VHL gene, suggesting the existence of another, VHL-independent pathway of STRA13 regulation. Similar to many other von Hippel-Lindau tumor-suppressor protein (pVHL) targets, the expression of STRA13 on the mRNA level was hypoxia-sensitive, indicating oxygen-dependent regulation of the gene, presumably through the pVHL/hypoxia-inducible factor 1 (HIF-1) pathway. The yeast two-hybrid screening revealed interaction of the STRA13 protein with the human ubiquitin-conjugating enzyme (UBC9) protein, the specificity of which was confirmed in mammalian cells. By adding the proteasome inhibitor acetyl-leucinyl-leucinyl-norleucinal, we demonstrated that the 26 S proteasome pathway regulates the stability of pSTRA13. Co-expression of STRA13 and UBC9 led to an increase of the pSTRA13 ubiquitination and subsequent degradation. These data established that UBC9/STRA13 association in cells is of physiological importance, presenting direct proof of UBC9 involvement in the ubiquitin-dependent degradation of pSTRA13. Hypoxia treatment of mammalian cells transiently expressing STRA13 protein showed that stability of pSTRA13 is not affected by hypoxia or VHL. Thus, STRA13, a new pVHL target, is regulated in cells on multiple levels. We propose that STRA13 may play a critical role in carcinogenesis, since it is a potent transcriptional regulator, abundant in a variety of common tumors.
Collapse
Affiliation(s)
- A V Ivanova
- Laboratory of Immunobiology, NCI-Frederick Cancer Research Development Center, Frederick, Maryland 21702, USA.
| | | | | | | |
Collapse
|
25
|
Rodriguez MS, Dargemont C, Hay RT. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 2001; 276:12654-9. [PMID: 11124955 DOI: 10.1074/jbc.m009476200] [Citation(s) in RCA: 593] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
SUMO-1 is a small ubiquitin-related modifier that is covalently linked to many cellular protein targets. Proteins modified by SUMO-1 and the SUMO-1-activating and -conjugating enzymes are located predominantly in the nucleus. Here we define a transferable sequence containing the PsiKXE motif, where Psi represents a large hydrophobic amino acid, that confers the ability to be SUMO-1-modified on proteins to which it is linked. Whereas addition of short sequences from p53 and IkappaBalpha, containing the PsiKXE motif, to a carrier protein is sufficient for modification in vitro, modification in vivo requires the additional presence of a nuclear localization signal. Thus, protein substrates must be targeted to the nucleus to undergo SUMO-1 conjugation.
Collapse
Affiliation(s)
- M S Rodriguez
- School of Biology, Biomolecular Sciences Building, University of St. Andrews, St. Andrews, Fife KY169ST, United Kingdom
| | | | | |
Collapse
|
26
|
Abstract
SUMO (small ubiquitin-related modifier) is the best-characterized member of a growing family of ubiquitin-related proteins. It resembles ubiquitin in its structure, its ability to be ligated to other proteins, as well as in the mechanism of ligation. However, in contrast to ubiquitination-often the first step on a one-way road to protein degradation-SUMOlation does not seem to mark proteins for degradation. In fact, SUMO may even function as an antagonist of ubiquitin in the degradation of selected proteins. While most SUMO targets are still at large, available data provide compelling evidence for a role of SUMO in the regulation of protein-protein interactions and/or subcellular localization.
Collapse
Affiliation(s)
- F Melchior
- Max-Planck Institute for Biochemistry, Am Klopferspitz 18a, Martinsried bei München, D-82152 Germany.
| |
Collapse
|
27
|
Lassot I, Ségéral E, Berlioz-Torrent C, Durand H, Groussin L, Hai T, Benarous R, Margottin-Goguet F. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(betaTrCP) ubiquitin ligase. Mol Cell Biol 2001; 21:2192-202. [PMID: 11238952 PMCID: PMC86853 DOI: 10.1128/mcb.21.6.2192-2202.2001] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitin-proteasome pathway regulates gene expression through protein degradation. Here we show that the F-box protein betaTrCP, the receptor component of the SCF E3 ubiquitin ligase responsible for IkappaBalpha and beta-catenin degradation, is colocalized in the nucleus with ATF4, a member of the ATF-CREB bZIP family of transcription factors, and controls its stability. Association between the two proteins depends on ATF4 phosphorylation and on ATF4 serine residue 219 present in the context of DSGXXXS, which is similar but not identical to the motif found in other substrates of betaTrCP. ATF4 ubiquitination in HeLa cells is enhanced in the presence of betaTrCP. The F-box-deleted betaTrCP protein behaves as a negative transdominant mutant that inhibits ATF4 ubiquitination and degradation and, subsequently, enhances its activity in cyclic AMP-mediated transcription. ATF4 represents a novel substrate for the SCF(betaTrCP) complex, which is the first mammalian E3 ubiquitin ligase identified so far for the control of the degradation of a bZIP transcription factor.
Collapse
Affiliation(s)
- I Lassot
- INSERM Unite 529, Interactions Moléculaires Hôte-pathogène, 75014 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Reimold AM, Kim J, Finberg R, Glimcher LH. Decreased immediate inflammatory gene induction in activating transcription factor-2 mutant mice. Int Immunol 2001; 13:241-8. [PMID: 11157857 DOI: 10.1093/intimm/13.2.241] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Transcription factor activating transcription factor (ATF)-2 is activated by inflammatory signals transduced by the JNK and p38 MAP kinase pathways. To better define the role of ATF-2 in inflammation, adult mice expressing small amounts of a mutant ATF-2 protein were challenged with lipopolysaccharide (LPS), anti-CD3 antibody or virus. Within 3 h of challenge by LPS, ATF-2 mutant mice had decreased induction of the adhesion molecules E-selectin, P-selectin and VCAM-1 as well as the cytokines tumor necrosis factor-alpha, IL-1beta and IL-6 compared with control mice. Stimulation of T lymphocytes by anti-CD3 antibody also showed less induction of IL-1 and IL-6 in ATF-2 mutant tissues. ATF-2 mutant thymocytes treated with anti-CD3 antibody in vitro demonstrated reduced induction of c-Jun, JunB, JunD and Fra-2. However, similar to what was observed after p38 kinase inhibition in normal mice, relative ATF-2 deficiency did not prevent the development of a mononuclear cell infiltrate in the week following an inflammatory stimulus. ATF-2 mutant mice proved more susceptible to death than control mice from LPS plus D-galactosamine injection or Coxsackievirus B3 infection and had a higher incidence of mononuclear pulmonary infiltrates after exposure to Herpes simplex virus-1. ATF-2 is essential for maximal immediate induction of adhesion molecules and cytokine genes, but at later time points may even protect against overactive immune responses.
Collapse
Affiliation(s)
- A M Reimold
- Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA
| | | | | | | |
Collapse
|
29
|
Jin C, Ugai H, Song J, Murata T, Nili F, Sun K, Horikoshi M, Yokoyama KK. Identification of mouse Jun dimerization protein 2 as a novel repressor of ATF-2. FEBS Lett 2001; 489:34-41. [PMID: 11231009 DOI: 10.1016/s0014-5793(00)02387-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mouse cDNA that encodes a DNA-binding protein was identified by yeast two-hybrid screening, using activating transcription factor-2 (ATF-2) as the bait. The protein contained a bZIP (basic amino acid-leucine zipper region) domain and its amino acid sequence was almost identical to that of rat Jun dimerization protein 2 (JDP2). Mouse JDP2 interacted with ATF-2 both in vitro and in vivo via its bZIP domain. It was encoded by a single gene and various transcripts were expressed in all tested tissues of adult mice, as well as in embryos, albeit at different levels in various tissues. Furthermore, mouse JDP2 bound to the cAMP-response element (CRE) as a homodimer or as a heterodimer with ATF-2, and repressed CRE-dependent transcription that was mediated by ATF-2. JDP2 was identified as a novel repressor protein that affects ATF-2-mediated transcription.
Collapse
Affiliation(s)
- C Jin
- RIKEN, The Institute of Physical and Chemical Research, Tsukuba Institute, Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Taylor CT, Furuta GT, Synnestvedt K, Colgan SP. Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia. Proc Natl Acad Sci U S A 2000; 97:12091-6. [PMID: 11035795 PMCID: PMC17299 DOI: 10.1073/pnas.220211797] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hypoxia activates a number of gene products through degradation of the transcriptional coactivator cAMP response element binding protein (CREB). Other transcriptional regulators (e.g., beta-catenin and NF-kappa B) are controlled through phosphorylation-targeted proteasomal degradation, and thus, we hypothesized a similar degradative pathway for CREB. Differential display analysis of mRNA derived from hypoxic epithelia revealed a specific and time-dependent repression of protein phosphatase 1 (PP1), a serine phosphatase important in CREB dephosphorylation. Subsequent studies identified a previously unappreciated proteasomal-targeting motif within the primary structure of CREB (DSVTDS), which functions as a substrate for PP1. Ambient hypoxia resulted in temporally sequential CREB serine phosphorylation, ubiquitination, and degradation (in vitro and in vivo). HIV-tat peptide-facilitated loading of intact epithelia with phosphopeptides corresponding to this proteasome targeting motif resulted in inhibition of CREB ubiquitination. Further studies revealed that PP1 inhibitors mimicked hypoxia-induced gene expression, whereas proteasome inhibitors reversed the hypoxic phenotype. Thus, hypoxia establishes conditions that target CREB to proteasomal degradation. These studies may provide unique insight into a general mechanism of transcriptional regulation by hypoxia.
Collapse
Affiliation(s)
- C T Taylor
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
31
|
Machon O, Backman M, Julin K, Krauss S. Yeast two-hybrid system identifies the ubiquitin-conjugating enzyme mUbc9 as a potential partner of mouse Dac. Mech Dev 2000; 97:3-12. [PMID: 11025202 DOI: 10.1016/s0925-4773(00)00402-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using a yeast two hybrid system and pull-down assays we demonstrate that mouse Dac (mDac) specifically binds to mouse ubiquitin-conjugating enzyme mUbc9. In contrast to a direct interaction between Drosophila dachshund (dac) and eyes absent (eya)gene products, we cannot detect by the same methods that mDac binds to mEya2, a functional mouse homologue of the Drosophila Eya. Immunostaining of various cell lines that were transfected with mDac reveals that mDac protein is found predominantly in the nucleus but translocates to the cytoplasm and condensates along the nuclear membrane in a cell-cycle dependent manner. Deletion analysis of mDac show the intracellular localization and protein stability correlates with the binding to mUbc9. The C-terminal half of mDac, which associates with mUbc9, remains cytoplasmic and is degraded in proteasome whereas the non-interacting N-terminus is exclusively nuclear and more stable than the full-length mDac or its C-terminal portion. In situ hybridization on whole-mount embryos or tissue sections detects mUbc9 transcripts in complementary and overlapping areas with mDac expression, particularly in the proliferation zone of the limb buds, the spinal cord and forebrain. Mouse embryos stained with an anti-mDac antibody document that mDac is localized both in the nucleus and the cytoplasm with a cytoplasmic predominance in migrating neural crest cells. In the proliferation zone, visible nuclear envelopes are not formed and mDac is detected throughout the cells.
Collapse
Affiliation(s)
- O Machon
- The National Hospital, Section for Gene Therapy, N-0027, Oslo, Norway
| | | | | | | |
Collapse
|
32
|
Zimmermann J, Erdmann D, Lalande I, Grossenbacher R, Noorani M, Fürst P. Proteasome inhibitor induced gene expression profiles reveal overexpression of transcriptional regulators ATF3, GADD153 and MAD1. Oncogene 2000; 19:2913-20. [PMID: 10871842 DOI: 10.1038/sj.onc.1203606] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ubiquitin/proteasome pathway has been implicated in a wide variety of cellular processes and the number of substrates degraded by the proteasome is impressive. Most prominently, the stability of a large number of transcription factors is regulated by ubiquitination. To elucidate pathways regulated by the proteasome, gene expression profiles were generated, comparing changes of mRNA expression of 7900 genes from the UniGene collection upon exposure of cells to the proteasome inhibitors Lactacystin, Lactacystin-beta-lactone or MG132 by means of microarray based cDNA hybridization. The three profiles were very similar, but differed significantly from a gene expression profile generated with the histone deacetylase inhibitor Trapoxin A, indicating that the observed alterations were indeed due to proteasome inhibition. Two of the most prominently induced genes encoded the growth arrest and DNA damage inducible protein Gadd153 and the activating transcription factor ATF3, both transcription factors of the CCAAT/enhancer binding protein (C/EBP) family. A third gene encoded for the transcriptional repressor and c-Myc antagonist Mad1. Our results suggest that proteasome inhibition leads to upregulation of specific members of transcription factor families controlling cellular stress response and proliferation. Oncogene (2000).
Collapse
Affiliation(s)
- J Zimmermann
- Novartis Pharma AG, Oncology Research, WKL-125.13.14, CH-4002 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Ubiquitin is a small polypeptide that covalently modifies other cellular proteins and targets them to the proteasome for degradation. In recent years, ubiquitin-dependent proteolysis has been demonstrated to play a critical role in the regulation of many cellular processes, such as cell cycle progression, cell signaling, and immune recognition. The recent discovery of three new ubiquitin-like proteins, NEDD8, Sentrin/SUMO, and Apg12, has further broadened the horizon of this type of post-translational protein modification. This review will focus on the biology and biochemistry of the Sentrin/SUMO and NEDD8 modification pathways, which are clearly distinct from the ubiquitination pathway and have unique biological functions.
Collapse
Affiliation(s)
- E T Yeh
- Divisions of Cardiology and Molecular Medicine, Medical School, and Research Center for Cardiovascular Diseases, Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas-Houston Health Science Center, Houston, USA
| | | | | |
Collapse
|
34
|
Fuchs SY, Tappin I, Ronai Z. Stability of the ATF2 transcription factor is regulated by phosphorylation and dephosphorylation. J Biol Chem 2000; 275:12560-4. [PMID: 10777545 DOI: 10.1074/jbc.275.17.12560] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Trans-activation of the activating transcription factor-2 (ATF2) in response to cellular stress requires the N-terminal phosphorylation of ATF2 by stress-activated protein kinases (SAPK). In this study, we investigated the role of ATF2 phosphorylation in the maintenance of ATF2 stability. Activation of SAPK by forced expression of DeltaMEKK1 increased overall ATF2 ubiquitination, presumably because of the enhanced dimerization of ATF2. Treatment of DeltaMEKK1-expressing cells with okadaic acid led to the increase in N-terminal phosphorylation, protection from ubiquitination, and accumulation of exogenously expressed ATF2, indicating the role of protein phosphatases in balancing the effects of stress kinases. Analysis of ubiquitination and degradation of the constitutively dimerized ATF2 mutant (ATF2(Delta150-248)) showed that activation of JNK or p38 kinase renders ATF2 resistant to ubiquitination and degradation. This effect is mediated by JNK/p38-dependent phosphorylation of ATF2 at Thr-69 and Thr-71, because the phosphorylation-deficient mutant (ATF2(Delta150-248-T69A,T71A)) was not protected from ubiquitination and degradation by the activation of SAPK. Treatment of cells with okadaic acid elevated the tumor necrosis factor alpha-induced ATF2 level and the extent of its specific N-terminal phosphorylation. Cycloheximide, which activates SAPK, while inhibiting protein synthesis, stabilized endogenous ATF2. However, treatment of cells with the high dose of SB203580, which inhibits JNK and p38 kinase, resulted in efficient degradation of ATF2 in cells exposed to cycloheximide. This degradation was abrogated by co-treatment with the proteasome inhibitor MG132. Our findings suggest that N-terminal phosphorylation of ATF2 dimers protect ATF2 from ubiquitination and degradation. We propose the hypothesis that the balance between SAPK and protein phosphatases affects the duration and magnitude of ATF2 transcriptional output because of the effect on substrate recognition for ubiquitination and degradation.
Collapse
Affiliation(s)
- S Y Fuchs
- Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
35
|
Xu W, Gong L, Haddad MM, Bischof O, Campisi J, Yeh ET, Medrano EE. Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp Cell Res 2000; 255:135-43. [PMID: 10694430 DOI: 10.1006/excr.2000.4803] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basic helix-loop-helix/leucine zipper (bHLH/ZIP) microphthalmia-associated transcription factor (MITF) regulates transcription of genes encoding enzymes essential for melanin biosynthesis in melanocytes and retinal pigmented epithelial cells. To determine how MITF activity is regulated, we used the yeast two-hybrid system to identify proteins expressed by human melanoma cells that interact with MITF. The majority of clones that showed positive interaction with a 158-amino-acid region of MITF containing the bHLH/ZIP domain (aa 168-325) encoded the ubiquitin conjugating enzyme hUBC9. The association of MITF with hUBC9 was further confirmed by an in vitro GST pull-down assay. Although hUBC9 is known to interact preferentially with SENTRIN/SUMO1, in vitro transcription/translation analysis demonstrated greater association of MITF with ubiquitin than with SENTRIN. Importantly, cotransfection of MITF and hUBC9 expression vectors resulted in MITF protein degradation. MITF protein was stabilized by the proteasome inhibitor MG132, indicating the role of the ubiquitin-proteasome system in MITF degradation. Serine 73, which is located in a region rich in proline, glutamic acid, serine, and threonine (PEST), regulates MITF protein stability, since a serine to alanine mutation prevented hUBC9-mediated MITF (S73A) degradation. Furthermore, we identified lysine 201 as a potential ubiquitination site. A lysine to arginine mutation abolished MITF (K201R) degradation by hUBC9 in vivo. Our experiments indicate that by targeting MITF for proteasome degradation, hUBC9 is a critical regulator of melanocyte differentiation.
Collapse
Affiliation(s)
- W Xu
- Roy M. and Phyllis Gough Huffington Center on Aging, Department of Cell Biology, Baylor College of Medicine, One Baylor Plaza M320 and VAMC, Houston, Texas, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Feuerstein N, Chen F, Madaio M, Maldonado M, Eisenberg RA. Induction of Autoimmunity in a Transgenic Model of B Cell Receptor Peripheral Tolerance: Changes in Coreceptors and B Cell Receptor-Induced Tyrosine-Phosphoproteins. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Abrogation of peripheral tolerance in transgenic mice that express a uniform B-cell receptor may create a powerful tool to examine the molecular mechanisms that underlie the autoimmune response in B cells. Here we report that processes that induce a systemic lupus erythematosus-like syndrome in normal mice, namely chronic graft vs host reaction, trigger systemic autoimmunity in a well-established transgenic mice model of B cell receptor peripheral tolerance. The induction of graft vs host reaction in mice that carry both a rearranged B cell Ag receptors specific for hen egg lysozyme and expressing chronically circulating hen egg lysozyme Ag resulted in induction of high and sustained levels of circulating anti-hen egg lysoyme autoantibodies and glomerulonephritis with proteinuria. This was associated with marked changes in expression of cell-surface proteins, such as CD23 and complement receptor 2. B cells from the graft vs host-induced mice could proliferate in vitro in response to self-Ag, and upon stimulation with anti-IgD demonstrated rapid phosphotyrosine phosphorylation of specific proteins, which could not be induced in the anergic double transgenic B cells. Conversely, loss of tolerance was not associated with a higher induction in the level of Syk kinase phosphorylation following stimulation with anti-IgD. Taken collectively, these data establish that 1) processes that induce a systemic lupus erythematosus-like syndrome in normal mice can abrogate peripheral tolerance in transgenic mice expressing self-tolerized B cells, and that 2) loss of tolerance in this model is associated with marked changes in surface expression of B cell coreceptors as well as with selective changes in IgD-induced signaling by discrete tyrosine-phosphoproteins, but not Syk kinase.
Collapse
Affiliation(s)
- Nili Feuerstein
- *Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Fangqi Chen
- *Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Michael Madaio
- *Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Michael Maldonado
- †Division of Renal-Electrolyte and Hypertension, Department of Medicine, University of Pennsylvania, PA 19104
| | - Robert A. Eisenberg
- *Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
37
|
Tintut Y, Parhami F, Le V, Karsenty G, Demer LL. Inhibition of osteoblast-specific transcription factor Cbfa1 by the cAMP pathway in osteoblastic cells. Ubiquitin/proteasome-dependent regulation. J Biol Chem 1999; 274:28875-9. [PMID: 10506130 DOI: 10.1074/jbc.274.41.28875] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP pathway, a major intracellular pathway mediating parathyroid hormone signal, regulates osteoblastic function. Parathyroid hormone (through activation of protein kinase A) has also been shown to stimulate ubiquitin/proteasome activity in osteoblasts. Since the osteoblast-specific transcription factor Osf2/Cbfa1 is important for differentiation of osteoblastic cells, we examined the roles of the cAMP and ubiquitin/proteasome pathways in regulation of Cbfa1. In the osteoblastic cell line, MC3T3-E1, continuous treatment with cAMP elevating agents inhibited both osteoblastic differentiation based on alkaline phosphatase assay and DNA binding ability of Cbfa1 based on a gel retardation assay. Cbfa1 inhibition was paralleled by an inhibitory effect of forskolin on Cbfa1-regulated genes. Northern and Western blot analyses suggested that the inhibition of Cbfa1 by forskolin was mainly at the protein level. Pretreatment with proteasome inhibitors prior to forskolin treatment reversed the effect of forskolin. Furthermore, addition of proteasome inhibitors to forskolin-pretreated samples resulted in recovery of Cbfa1 protein levels and accumulation of polyubiquitinated forms of Cbfa1, indicating a role for the proteasome pathway in the degradation of Cbfa1. These results suggest that suppression of osteoblastic function by the cAMP pathway is through proteolytic degradation of Cbfa1 involving a ubiquitin/proteasome-dependent mechanism.
Collapse
Affiliation(s)
- Y Tintut
- Division of Cardiology, Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
38
|
Huggins GS, Chin MT, Sibinga NE, Lee SL, Haber E, Lee ME. Characterization of the mUBC9-binding sites required for E2A protein degradation. J Biol Chem 1999; 274:28690-6. [PMID: 10497239 DOI: 10.1074/jbc.274.40.28690] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian Ubc9 (mUbc9) is required for rapid degradation of the E2A proteins E12 and E47 by the ubiquitin-proteasome system. We have shown elsewhere that mUbc9 interacts with amino acids 477-530 of E12/E47. Here we test the hypothesis that this region, rich in proline, glutamic acid, serine, and threonine (PEST) residues, serves as the E2A protein degradation domain (DD). An E2A protein lacking this region, E47Delta(478-531), was significantly more stable than wild-type E47(half-life of more than 6 h versus 55 min). Deletion of the E2A DD had no effect on the E-box-binding and transcriptional activity of E47. We mapped two discreet mUbc9-interacting regions within the E2A DD: amino acids 476-494 and 505-513. E2A(505-513) interacted with mUbc9 but not with human Ubc5, MyoD, Id3, or the polymyositis-scleroderma autoantigen. Substitution of the E2A(505-513) central hydrophobic residues with basic residues abolished interaction with mUbc9. Also, full-length E47 lacking the second mUbc9-interacting region was significantly more stable than wild-type E47. Reintroduction of the E2A DD into the long-lived, naturally occurring chimeric oncoprotein E2A-HLF (hepatic leukemic factor) destabilized it, suggesting that this domain can transfer a degradation signal to a heterologous protein. E2A-HLF-DD chimeric protein was stabilized by the proteasome inhibitor LLNL, indicating the role of the ubiquitin-proteasome system mediating degradation through the E2A degradation domain. Our experiments indicate that the E2A DD mediates E2A protein interactions with the ubiquitin-proteasome system and that the E2A DD is required for metabolism of these widely expressed proteins.
Collapse
Affiliation(s)
- G S Huggins
- Cardiovascular Biology Laboratory, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
39
|
Poukka H, Aarnisalo P, Karvonen U, Palvimo JJ, Jänne OA. Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J Biol Chem 1999; 274:19441-6. [PMID: 10383460 DOI: 10.1074/jbc.274.27.19441] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubc9, a homologue of the class E2 ubiquitin-conjugating enzymes, has recently been shown to catalyze conjugation of a small ubiquitin-like molecule-1 (SUMO-1) to a variety of target proteins. SUMO-1 modifications have been implicated in the targeting of proteins to the nuclear envelope and certain intranuclear structures and in converting proteins resistant to ubiquitin-mediated degradation. In the present work, we find that Ubc9 interacts with the androgen receptor (AR), a member of the steroid receptor family of ligand-activated transcription factors. In transiently transfected COS-1 cells, AR-dependent but not basal transcription is enhanced by the coexpression of Ubc9. The N-terminal half of the AR hinge region containing the C-terminal part of the bipartite nuclear localization signal is essential for the interaction with Ubc9. Deletion of this part of the nuclear localization signal, which does not completely prevent the transfer of AR to the nucleus, abolishes the AR-Ubc9 interaction and attenuates the transcriptional response to cotransfected Ubc9. The C93S substitution of Ubc9, which prevents SUMO-1 conjugation by abrogating the formation of a thiolester bond between SUMO-1 and Ubc9, does not influence the capability of Ubc9 to stimulate AR-dependent transactivation, implying that Ubc9 is able to act as an AR coregulator in a fashion independent of its ability to catalyze SUMO-1 conjugation.
Collapse
Affiliation(s)
- H Poukka
- Department of Physiology, Institute of Biomedicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
40
|
Chakrabarti SR, Sood R, Ganguly S, Bohlander S, Shen Z, Nucifora G. Modulation of TEL transcription activity by interaction with the ubiquitin-conjugating enzyme UBC9. Proc Natl Acad Sci U S A 1999; 96:7467-72. [PMID: 10377438 PMCID: PMC22109 DOI: 10.1073/pnas.96.13.7467] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1998] [Accepted: 04/21/1999] [Indexed: 11/18/2022] Open
Abstract
The E-26 transforming specific (ETS)-related gene TEL, also known as ETV6, is involved in a large number of chromosomal rearrangements associated with leukemia and congenital fibrosarcoma. The encoded protein contains two functional domains: a helix-loop-helix (HLH) domain (also known as pointed domain) located at the N terminus and a DNA-binding domain located at the C terminus. The HLH domain is involved in protein-protein interaction with itself and other members of the ETS family of transcription factors such as FLI1. TEL is a transcription factor, and we and others have shown that it is a repressor of gene expression. To understand further the role of TEL in the cell, we have used an in vivo interaction system to identify proteins that interact with TEL. We show that a protein, UBC9, interacts specifically with TEL in vitro and in vivo. UBC9 is a member of the family of ubiquitin-conjugating enzymes. These enzymes usually are involved in proteosome-mediated degradation; however, our data suggest that interaction of TEL with UBC9 does not lead to TEL degradation. Our studies show that UBC9 binds to TEL exclusively through the HLH domain of TEL. We also show that TEL expressed as fusion to the DNA-binding domain of Gal4 completely represses a Gal4-responsive promoter, but that the coexpression of UBC9 in the same system restores the activity of the promoter. Targeted point mutation of conserved amino acids in UBC9 essential for enzymatic ubiquitination of proteins does not affect interaction nor transcriptional activity. Based on our data, we conclude that UBC9 physically interacts with TEL through the HLH domain and that the interaction leads to modulation of the transcription activity of TEL.
Collapse
Affiliation(s)
- S R Chakrabarti
- Cardinal Bernardin Cancer Center, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Ubiquitination and proteasome-dependent degradation are key determinants of the half-lives of many transcription factors. Homo- or heterodimerization of basic region-leucine zipper (bZIP) transcription factors is required for their transcriptional activities. Here we show that activating transcription factor 2 (ATF2) heterodimerization with specific bZIP proteins is an important determinant of the ubiquitination and proteasome-dependent degradation of ATF2. Depletion of c-Jun as one of the ATF2 heterodimer partners from the targeting proteins decreased the efficiency of ATF2 ubiquitination in vitro, whereas the addition of exogenously purified c-Jun restored it. Similarly, overexpression of c-Jun in 293T human embryo kidney cells increased ATF2 ubiquitination in vivo and reduced its half-life in a dose-dependent manner. Mutations of ATF2 that disrupt its dimerization inhibited ATF2 ubiquitination in vitro and in vivo. Conversely, removal of residues 150 to 248, as in a constitutively active ATF2 spliced form, enhanced ATF2 dimerization and transactivation, which coincided with increased ubiquitination and decreased stability. Our findings indicate the increased sensitivity of transcriptionally active dimers of ATF2 to ubiquitination and proteasome-dependent degradation. Based on these observations, we conclude that increased targeting of a transcriptionally active ATF2 form indicates the mechanism by which the magnitude and the duration of the cellular stress response are regulated.
Collapse
Affiliation(s)
- S Y Fuchs
- The Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
42
|
Abstract
Ubiquitination of key cellular proteins involved in signal transduction, gene transcription and cell-cycle regulation usually condemns those proteins to proteasomal or lysosomal degradation. Additionally, cycles of reversible ubiquitination regulate the function of certain proteins in a manner analogous to phosphorylation. In this short review we describe the current methodology for measuring ubiquitin and ubiquitination, provide examples which illustrate how various techniques have been used to study protein ubiquination, alert the readers of pitfalls to avoid, and offer guidelines to investigators newly interested in this novel post-translational protein modification.
Collapse
Affiliation(s)
- E G Mimnaugh
- Tumor Cell Biology Section, Medicine Branch, National Cancer Institute, National Institutes of Health, Key West Center, Rockville, MD 20850, USA.
| | | | | |
Collapse
|