1
|
Sreelekshmi PK, Pooja SK, Vidya N, Sinosh S, Thejaswini V. Integrative Investigation of Flavonoids Targeting YBX1 Protein-Protein Interaction Network in Breast Cancer: From Computational Analysis to Experimental Validation. Mol Biotechnol 2024:10.1007/s12033-024-01311-6. [PMID: 39565541 DOI: 10.1007/s12033-024-01311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024]
Abstract
Y-box-binding protein 1 (YBX1) is a multifunctional oncoprotein with its nuclear localization contributing to chemo-resistance in breast cancer. Through its interactions with various proteins and lncRNAs, YBX1 promotes cancer cell migration, invasion, and metastasis. Despite its significant role in cancer progression, studies on YBX1's protein-protein interactions (PPIs) remain limited. Flavonoids are natural compounds with anticancer properties that inhibit metastasis, modulate immunity, and induce apoptosis, with minimal systemic toxicity, making them strong candidates for cancer therapy. Targeting PPIs offers a promising approach for cancer therapy and flavonoids, with their anticancer properties, may modulate these interactions. Our study focused on the YBX1 PPI network, specifically targeting HSPA1A, IGF2BP1, MECP2, G3BP1, EWSR1, PURA, and SYNCRIP. We selected four flavonoids Quercetin, Fisetin, Rutin, and Myricitrin based on literature and conducted 26 docking sessions. Further ADMET analysis indicated Quercetin and Fisetin as more favorable for drug-likeness parameters than Rutin and Myricitrin, which was underscored by MD simulation data. In vitro studies showed that Quercetin and Fisetin downregulated YBX1 expression in a dose-dependent manner (50 μM to 150 μM) in MCF-7 cells. Our study provides a preliminary understanding of YBX1 PPI and the potential of flavonoids to disrupt these interactions. This study investigates the potential of flavonoids to target YBX1 PPIs, providing insights into novel therapeutic strategies for YBX1-driven cancers.
Collapse
Affiliation(s)
- Presanna Kumar Sreelekshmi
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasargod, Kerala, 671320, India
| | - Suresh Kumar Pooja
- Department of Biotechnology, RV College of Engineering 560059, Affiliated to Visvesvaraya Technological University, Belagavi, 590018, Karnataka, India
| | - Niranjan Vidya
- Department of Biotechnology, RV College of Engineering 560059, Affiliated to Visvesvaraya Technological University, Belagavi, 590018, Karnataka, India
| | - Skariyachan Sinosh
- Department of Microbiology, St. Pius X College, Rajapuram, Kasargod, Kerala, India
| | - Venkatesh Thejaswini
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasargod, Kerala, 671320, India.
| |
Collapse
|
2
|
Li F, Zhang H, Huang Y, Li D, Zheng Z, Xie K, Cao C, Wang Q, Zhao X, Huang Z, Chen S, Chen H, Fan Q, Deng F, Hou L, Deng X, Tan W. Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer. Drug Resist Updat 2024; 73:101059. [PMID: 38295753 DOI: 10.1016/j.drup.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 03/08/2024]
Abstract
Patients with bladder cancer (BCa) frequently acquires resistance to platinum-based chemotherapy, particularly cisplatin. This study centered on the mechanism of cisplatin resistance in BCa and highlighted the pivotal role of lactylation in driving this phenomenon. Utilizing single-cell RNA sequencing, we delineated the single-cell landscape of Bca, pinpointing a distinctive subset of BCa cells that exhibit marked resistance to cisplatin with association with glycolysis metabolism. Notably, we observed that H3 lysine 18 lactylation (H3K18la) plays a crucial role in activating the transcription of target genes by enriching in their promoter regions. Targeted inhibition of H3K18la effectively restored cisplatin sensitivity in these cisplatin-resistant epithelial cells. Furthermore, H3K18la-driven key transcription factors YBX1 and YY1 promote cisplatin resistance in BCa. These findings enhance our understanding of the mechanisms underlying cisplatin resistance, offering valuable insights for identifying novel intervention targets to overcome drug resistance in Bca.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Henghui Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yuan Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Dongqing Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Kunfeng Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Chun Cao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xinlei Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zehai Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shijun Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Haiyong Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong R619, 3 Sassoon Road, Pokfulam, Hong Kong, SAR China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Lina Hou
- Department of Healthy Management, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Xiaolin Deng
- Department of Urology, Ganzhou People's Hospital, Ganzhou, PR China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
3
|
Sun X, Gao C, Xu X, Li M, Zhao X, Wang Y, Wang Y, Zhang S, Yan Z, Liu X, Wu C. FBL promotes cancer cell resistance to DNA damage and BRCA1 transcription via YBX1. EMBO Rep 2023; 24:e56230. [PMID: 37489617 PMCID: PMC10481664 DOI: 10.15252/embr.202256230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Fibrillarin (FBL) is a highly conserved nucleolar methyltransferase responsible for methylation of ribosomal RNA and proteins. Here, we reveal a role for FBL in DNA damage response and its impact on cancer proliferation and sensitivity to DNA-damaging agents. FBL is highly expressed in various cancers and correlates with poor survival outcomes in cancer patients. Knockdown of FBL sensitizes tumor cells and xenografts to DNA crosslinking agents, and leads to homologous recombination-mediated DNA repair defects. We identify Y-box-binding protein-1 (YBX1) as a key interacting partner of FBL, and FBL increases the nuclear accumulation of YBX1 in response to DNA damage. We show that FBL promotes the expression of BRCA1 by increasing the binding of YBX1 to the BRCA1 promoter. Our study sheds light on the regulatory mechanism of FBL in tumorigenesis and DNA damage response, providing potential therapeutic targets to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Xiaorui Sun
- College of Life SciencesHebei UniversityBaodingChina
| | - Congwen Gao
- College of Life SciencesHebei UniversityBaodingChina
| | - Xin Xu
- College of Life SciencesHebei UniversityBaodingChina
| | - Mengyuan Li
- College of Life SciencesHebei UniversityBaodingChina
| | - Xinhua Zhao
- College of Life SciencesHebei UniversityBaodingChina
| | - Yanan Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Yun Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Shun Zhang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Zhenzhen Yan
- College of Life SciencesHebei UniversityBaodingChina
| | - Xiuhua Liu
- College of Life SciencesHebei UniversityBaodingChina
| | - Chen Wu
- College of Life SciencesHebei UniversityBaodingChina
- The Key Laboratory of Zoological Systematics and ApplicationHebei UniversityBaodingChina
| |
Collapse
|
4
|
Nöthen T, Sarabi MA, Weinert S, Zuschratter W, Morgenroth R, Mertens PR, Braun-Dullaeus RC, Medunjanin S. DNA-Dependent Protein Kinase Mediates YB-1 (Y-Box Binding Protein)-Induced Double Strand Break Repair. Arterioscler Thromb Vasc Biol 2023; 43:300-311. [PMID: 36475703 DOI: 10.1161/atvbaha.122.317922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND DNA-PK (DNA-dependent protein kinase) is a stress-activated serine/threonine kinase that plays a central role in vascular smooth muscle cell proliferation and vascular proliferative disease processes such as neointimal formation. In this study, we link the activation of DNA-PK to the function of the transcription factor YB-1 (Y-box binding protein). METHODS To identify YB-1 phosphorylation by DNA-PK, we generated different YB-1-expressing vectors. YB-1 nuclear translocation was investigated using immunoblotting and immunofluorescence staining. For YB-1 activity, luciferase assays were performed. RESULTS We show by mutational analysis and kinase assay that the transcriptional regulator YB-1 is a substrate of DNA-PK. Blockade of DNA-PK by specific inhibitors revealed its critical involvement in YB-1phosphorylation as demonstrated by inhibition of an overexpressed YB-1 reporter construct. Using DNA-PK-deficient cells, we demonstrate that the shuttling of YB-1 from the cytoplasm to the nucleus is dependent on DNA-PK and that the N-terminal domain of YB-1 is phosphorylated at threonine 89. Point mutation of YB-1 at this residue abrogated the translocation of YB-1 into the nucleus. The phosphorylation of YB-1 by DNA-PK increased cellular DNA repair after exposure to ionizing radiation. Atherosclerotic tissue specimens were analyzed by immunohistochemistry. The DNA-PK subunits and YB-1 phosphorylated at T89 were found colocalized suggesting their in vivo interaction. In mice, the local application of the specific DNA-PK inhibitor NU7026 via thermosensitive Pluronic F-127 gel around dilated arteries significantly reduced the phosphorylation of YB-1. CONCLUSIONS DNA-PK directly phosphorylates YB-1 and, this way, modulates YB-1 function. This interaction could be demonstrated in vivo, and colocalization in human atherosclerotic plaques suggests clinical relevance of our finding. Phosphorylation of YB-1 by DNA-PK may represent a novel mechanism governing atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Till Nöthen
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Mohsen Abdi Sarabi
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Sönke Weinert
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | | | - Ronnie Morgenroth
- Department of Internal Medicine, Division of Nephrology and Hypertension, Diabetes and Endocrinology (R.M., P.R.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Peter R Mertens
- Department of Internal Medicine, Division of Nephrology and Hypertension, Diabetes and Endocrinology (R.M., P.R.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Ruediger C Braun-Dullaeus
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Senad Medunjanin
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
5
|
Wada M. Role of ABC Transporters in Cancer Development and Malignant Alteration. YAKUGAKU ZASSHI 2022; 142:1201-1225. [DOI: 10.1248/yakushi.22-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Y-Box Binding Protein-1: A Neglected Target in Pediatric Brain Tumors? Mol Cancer Res 2020; 19:375-387. [PMID: 33239357 DOI: 10.1158/1541-7786.mcr-20-0655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
|
7
|
Pleiotropic roles of cold shock proteins with special emphasis on unexplored cold shock protein member of Plasmodium falciparum. Malar J 2020; 19:382. [PMID: 33109193 PMCID: PMC7592540 DOI: 10.1186/s12936-020-03448-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
The cold shock domain (CSD) forms the hallmark of the cold shock protein family that provides the characteristic feature of binding with nucleic acids. While much of the information is available on bacterial, plants and human cold shock proteins, their existence and functions in the malaria parasite remains undefined. In the present review, the available information on functions of well-characterized cold shock protein members in different organisms has been collected and an attempt was made to identify the presence and role of cold shock proteins in malaria parasite. A single Plasmodium falciparum cold shock protein (PfCoSP) was found in P. falciparum which is reported to be essential for parasite survival. Essentiality of PfCoSP underscores its importance in malaria parasite life cycle. In silico tools were used to predict the features of PfCoSP and to identify its homologues in bacteria, plants, humans, and other Plasmodium species. Modelled structures of PfCoSP and its homologues in Plasmodium species were compared with human cold shock protein 'YBOX-1' (Y-box binding protein 1) that provide important insights into their functioning. PfCoSP model was subjected to docking with B-form DNA and RNA to reveal a number of residues crucial for their interaction. Transcriptome analysis and motifs identified in PfCoSP implicate its role in controlling gene expression at gametocyte, ookinete and asexual blood stages of malaria parasite. Overall, this review emphasizes the functional diversity of the cold shock protein family by discussing their known roles in gene expression regulation, cold acclimation, developmental processes like flowering transition, and flower and seed development, and probable function in gametocytogenesis in case of malaria parasite. This enables readers to view the cold shock protein family comprehensively.
Collapse
|
8
|
Sangermano F, Delicato A, Calabrò V. Y box binding protein 1 (YB-1) oncoprotein at the hub of DNA proliferation, damage and cancer progression. Biochimie 2020; 179:205-216. [PMID: 33058958 DOI: 10.1016/j.biochi.2020.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The Y Box binding protein 1 (YB-1) belongs to the highly conserved Cold Shock Domain protein family and is a major component of messenger ribonucleoprotein particles (mRNPs) in various organisms and cells. Cold Shock proteins are multifunctional nucleic acids binding proteins involved in a variety of cellular functions. Biological activities of YB-1 range from the regulation of transcription, splicing and translation, to the orchestration of exosomal RNA content. The role of YB-1 in malignant cell transformation and fate transition is the subject of intensive investigation. Besides, emerging evidence indicates that YB-1 participates in several DNA damage repair pathways as a non-canonical DNA repair factor thus pointing out that the protein can allow cancer cells to evade conventional anticancer therapies and avoid cell death. Here, we will attempt to collect and summarize the current knowledge on this subject and provide the basis for further lines of inquiry.
Collapse
Affiliation(s)
- Felicia Sangermano
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy.
| | - Antonella Delicato
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Viola Calabrò
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| |
Collapse
|
9
|
Moxley AH, Reisman D. Context is key: Understanding the regulation, functional control, and activities of the p53 tumour suppressor. Cell Biochem Funct 2020; 39:235-247. [PMID: 32996618 DOI: 10.1002/cbf.3590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
The p53 tumour suppressor is considered one of the most critical genes in cancer biology. By upregulating apoptosis, cell cycle arrest, and DNA damage repair in normal cells, p53 prevents the propagation of cells with tumorigenic potential; therefore, mutations in p53 are associated with carcinogenic transformation and can be accompanied by the accumulation of a novel gain-of-function oncogenic protein, mutant p53. Although p53 is most often understood to utilize context-dependent post-translational modifications to achieve regulation of its many target genes, recent research has also sought to define other mechanisms of regulating p53 gene expression prior to translation and to understand how this alternative regulation of p53 may influence target gene expression and cellular outcome. This review attempts to summarize what is known about p53 regulation at the transcriptional, post-transcriptional, and post-translational levels while paying special attention to the ways in which context may influence p53 regulation and subsequent regulation of its target genes.
Collapse
Affiliation(s)
- Anne H Moxley
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - David Reisman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
10
|
Zhang J, Fan JS, Li S, Yang Y, Sun P, Zhu Q, Wang J, Jiang B, Yang D, Liu M. Structural basis of DNA binding to human YB-1 cold shock domain regulated by phosphorylation. Nucleic Acids Res 2020; 48:9361-9371. [PMID: 32710623 PMCID: PMC7498358 DOI: 10.1093/nar/gkaa619] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Human Y-box binding protein 1 (YB-1) is a multifunctional protein and overexpressed in many types of cancer. It specifically recognizes DNA/RNA through a cold shock domain (CSD) and regulates nucleic acid metabolism. The C-terminal extension of CSD and the phosphorylation of S102 are indispensable for YB-1 function. Until now, the roles of the C-terminal extension and phosphorylation in gene transcription and translation are still largely unknown. Here, we solved the structure of human YB-1 CSD with a C-terminal extension sequence (CSDex). The structure reveals that the extension interacts with several residues in the conventional CSD and adopts a rigid structure instead of being disordered. Either deletion of this extension or phosphorylation of S102 destabilizes the protein and results in partial unfolding. Structural characterization of CSDex in complex with a ssDNA heptamer shows that all the seven nucleotides are involved in DNA-protein interactions and the C-terminal extension provides a unique DNA binding site. Our DNA-binding study indicates that CSDex can recognize more DNA sequences than previously thought and the phosphorylation reduces its binding to ssDNA dramatically. Our results suggest that gene transcription and translation can be regulated by changing the affinity of CSDex binding to DNA and RNA through phosphorylation, respectively.
Collapse
Affiliation(s)
- Jingfeng Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Shuangli Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Peng Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Qinjun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Jiannan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| |
Collapse
|
11
|
Naumenko KN, Sukhanova MV, Hamon L, Kurgina TA, Alemasova EE, Kutuzov MM, Pastré D, Lavrik OI. Regulation of Poly(ADP-Ribose) Polymerase 1 Activity by Y-Box-Binding Protein 1. Biomolecules 2020; 10:E1325. [PMID: 32947956 PMCID: PMC7565162 DOI: 10.3390/biom10091325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Y-box-binding protein 1 (YB-1) is a multifunctional positively charged protein that interacts with DNA or RNA and poly(ADP-ribose) (PAR). YB-1 is poly(ADP-ribosyl)ated and stimulates poly(ADP-ribose) polymerase 1 (PARP1) activity. Here, we studied the mechanism of YB-1-dependent PAR synthesis by PARP1 in vitro using biochemical and atomic force microscopy assays. PAR synthesis activity of PARP1 is known to be facilitated by co-factors such as Mg2+. However, in contrast to an Mg2+-dependent reaction, the activation of PARP1 by YB-1 is accompanied by overall up-regulation of protein PARylation and shortening of the PAR polymer. Therefore, YB-1 and cation co-factors stimulated PAR synthesis in divergent ways. PARP1 autoPARylation in the presence of YB-1 as well as trans-PARylation of YB-1 are greatly affected by the type of damaged DNA, suggesting that PARP1 activation depends on the formation of a PARP1-YB-1-DNA ternary complex. An unstructured C-terminal part of YB-1 involved in an interaction with PAR behaves similarly to full-length YB-1, indicating that both DNA and PAR binding are involved in the stimulation of PARP1 activity by YB-1. Thus, YB-1 is likely linked to the regulation of PARylation events in cells via an interaction with PAR and damaged DNA.
Collapse
Affiliation(s)
- Konstantin N. Naumenko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - Mariya V. Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; (L.H.); (D.P.)
| | - Tatyana A. Kurgina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elizaveta E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - Mikhail M. Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; (L.H.); (D.P.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Decreased expression of FBXW7 by ERK1/2 activation in drug-resistant cancer cells confers transcriptional activation of MDR1 by suppression of ubiquitin degradation of HSF1. Cell Death Dis 2020; 11:395. [PMID: 32457290 PMCID: PMC7251134 DOI: 10.1038/s41419-020-2600-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 01/24/2023]
Abstract
The acquisition of MDR1-mediated chemoresistance poses a major obstacle to the success of conventional chemotherapeutic agents. HSF1 is also involved in chemoresistance, and several studies have demonstrated the relationship between HSF1 and MDR1 but without any consistent results. Paclitaxel- and doxorubicin-resistant cancer cells showed higher expression of MDR1 and HSF1. Depletion of HSF1 decreased mdr1 expression at mRNA level, and HSF1 directly interacted with the promoter site of mdr1, suggesting its role as a transcriptional regulator of MDR1. Phosphorylation of Ser303/307, which was involved in protein stability of HSF1 by FBXW7-mediated degradation, was found to be important for transcriptional activation of mdr1. Drug-resistant cells showed decreased expression of FBXW7, which was mediated by the activation of ERK1/2, thus indicating that over-activation of ERK1/2 in drug-resistant cells decreased FBXW7 protein stability, which finally inhibited protein degradation of pHSF1 at Ser303/307. There was a positive correlation between immunofluorescence data of pHSF1 at Ser303/307 and MDR1 in carcinogen-induced rat mammary tumors and human lung cancers. These findings identified the post-translational mechanisms of HSF1 transcription in MDR1 regulation of drug resistance development.
Collapse
|
13
|
Kothandan VK, Kothandan S, Kim DH, Byun Y, Lee YK, Park IK, Hwang SR. Crosstalk between Stress Granules, Exosomes, Tumour Antigens, and Immune Cells: Significance for Cancer Immunity. Vaccines (Basel) 2020; 8:E172. [PMID: 32276342 PMCID: PMC7349635 DOI: 10.3390/vaccines8020172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
RNA granules and exosomes produced by tumour cells under various stresses in the microenvironment act as critical determinants of cell survival by promoting angiogenesis, cancer metastasis, chemoresistance, and immunosuppression. Meanwhile, developmental cancer/testis (CT) antigens that are normally sequestered in male germ cells of the testes, but which are overexpressed in malignant tumour cells, can function as tumour antigens triggering immune responses. As CT antigens are potential vaccine candidates for use in cancer immunotherapy, they could be targeted together with crosstalk between stress granules, exosomes, and immune cells for a synergistic effect. In this review, we describe the effects of exosomes and exosomal components presented to the recipient cells under different types of stresses on immune cells and cancer progression. Furthermore, we discuss their significance for cancer immunity, as well as the outlook for their future application.
Collapse
Affiliation(s)
- Vinoth Kumar Kothandan
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| | - Sangeetha Kothandan
- Department of Industrial Biotechnology, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Do Hee Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Youngro Byun
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergent Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk 27469, Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 322 Seoyang-ro, Hwasun 58128, Korea
| | - Seung Rim Hwang
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| |
Collapse
|
14
|
Dephosphorylation of YB-1 is Required for Nuclear Localisation During G 2 Phase of the Cell Cycle. Cancers (Basel) 2020; 12:cancers12020315. [PMID: 32013098 PMCID: PMC7072210 DOI: 10.3390/cancers12020315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 01/25/2023] Open
Abstract
Elevated levels of nuclear Y-box binding protein 1 (YB-1) are linked to poor prognosis in cancer. It has been proposed that entry into the nucleus requires specific proteasomal cleavage. However, evidence for cleavage is contradictory and high YB-1 levels are prognostic regardless of cellular location. Here, using confocal microscopy and mass spectrometry, we find no evidence of specific proteolytic cleavage. Doxorubicin treatment, and the resultant G2 arrest, leads to a significant increase in the number of cells where YB-1 is not found in the cytoplasm, suggesting that its cellular localisation is variable during the cell cycle. Live cell imaging reveals that the location of YB-1 is linked to progression through the cell cycle. Primarily perinuclear during G1 and S phases, YB-1 enters the nucleus as cells transition through late G2/M and exits at the completion of mitosis. Atomistic modelling and molecular dynamics simulations show that dephosphorylation of YB-1 at serine residues 102, 165 and 176 increases the accessibility of the nuclear localisation signal (NLS). We propose that this conformational change facilitates nuclear entry during late G2/M. Thus, the phosphorylation status of YB-1 determines its cellular location.
Collapse
|
15
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Yang XJ, Zhu H, Mu SR, Wei WJ, Yuan X, Wang M, Liu Y, Hui J, Huang Y. Crystal structure of a Y-box binding protein 1 (YB-1)-RNA complex reveals key features and residues interacting with RNA. J Biol Chem 2019; 294:10998-11010. [PMID: 31160337 PMCID: PMC6635445 DOI: 10.1074/jbc.ra119.007545] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/26/2019] [Indexed: 01/07/2023] Open
Abstract
The Y-box binding protein 1 (YB-1) is a member of the cold shock domain (CSD) protein family and is recognized as an oncogenic factor in several solid tumors. By binding to RNA, YB-1 participates in several steps of posttranscriptional regulation of gene expression, including mRNA splicing, stability, and translation; microRNA processing; and stress granule assembly. However, the mechanisms in YB-1-mediated regulation of RNAs are unclear. Previously, we used both systematic evolution of ligands by exponential enrichment (SELEX) and individual-nucleotide resolution UV cross-linking and immunoprecipitation coupled RNA-Seq (iCLIP-Seq) analyses, which defined the RNA-binding consensus sequence of YB-1 as CA(U/C)C. We also reported that through binding to its core motif CAUC in primary transcripts, YB-1 regulates the alternative splicing of a CD44 variable exon and the biogenesis of miR-29b-2 during both Drosha and Dicer steps. To elucidate the molecular basis of the YB-1-RNA interactions, we report high-resolution crystal structures of the YB-1 CSD in complex with different RNA oligos at 1.7 Å resolution. The structure revealed that CSD interacts with RNA mainly through π-π stacking interactions assembled by four highly conserved aromatic residues. Interestingly, YB-1 CSD forms a homodimer in solution, and we observed that two residues, Tyr-99 and Asp-105, at the dimer interface are important for YB-1 CSD dimerization. Substituting these two residues with Ala reduced CSD's RNA-binding activity and abrogated the splicing activation of YB-1 targets. The YB-1 CSD-RNA structures presented here at atomic resolution provide mechanistic insights into gene expression regulated by CSD-containing proteins.
Collapse
Affiliation(s)
- Xiao-Juan Yang
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and ,the Shanghai Key Laboratory of Molecular Andrology, Shanghai 200031, China
| | - Hong Zhu
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Shi-Rong Mu
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Wen-Juan Wei
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Xun Yuan
- the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and ,the Shanghai Key Laboratory of Molecular Andrology, Shanghai 200031, China
| | - Meng Wang
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Yanchao Liu
- the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and ,the Shanghai Key Laboratory of Molecular Andrology, Shanghai 200031, China
| | - Jingyi Hui
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and , To whom correspondence may be addressed:
Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China. Tel.:
86-21-54921354; E-mail:
| | - Ying Huang
- the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and ,the Shanghai Key Laboratory of Molecular Andrology, Shanghai 200031, China, To whom correspondence may be addressed:
Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China. Tel.:
86-21-20778200; E-mail:
| |
Collapse
|
17
|
Li X, Yang J, Qiao Y, Duan Y, Xin Y, Nian Y, Zhu L, Liu G. Effects of Radiation on Drug Metabolism: A Review. Curr Drug Metab 2019; 20:350-360. [PMID: 30961479 DOI: 10.2174/1389200220666190405171303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/18/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Radiation is the fourth most prevalent type of pollution following the water, air and noise pollution. It can adversely affect normal bodily functions. Radiation alters the protein and mRNA expression of drugmetabolizing enzymes and drug transporters and the pharmacokinetic characteristics of drugs, thereby affecting drug absorption, distribution, metabolism, and excretion. Therefore, it is important to study the pharmacokinetic changes in drugs under radiation. METHODS To update data on the effects of ionizing radiation and non-ionizing radiation caused by environmental pollution or clinical treatments on the protein and mRNA expression of drug-metabolizing enzymes and drug transporters. Data and information on pharmacokinetic changes in drugs under radiation were analyzed and summarized. RESULTS The effect of radiation on cytochrome P450 is still a subject of debate. The widespread belief is that higherdose radiation increased the expression of CYP1A1 and CYP1B1 of rat, zebrafish or human, CYP1A2, CYP2B1, and CYP3A1 of rat, and CYP2E1 of mouse or rat, and decreased that of rat's CYP2C11 and CYP2D1. Radiation increased the expression of multidrug resistance protein, multidrug resistance-associated protein, and breast cancer resistance protein. The metabolism of some drugs, as well as the clearance, increased during concurrent chemoradiation therapy, whereas the half-life, mean residence time, and area under the curve decreased. Changes in the expression of cytochrome P450 and drug transporters were consistent with the changes in the pharmacokinetics of some drugs under radiation. CONCLUSION The findings of this review indicated that radiation caused by environmental pollution or clinical treatments can alter the pharmacokinetic characteristics of drugs. Thus, the pharmacokinetics of drugs should be rechecked and the optimal dose should be re-evaluated after radiation.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,Medical College, Qinghai University, Xining, China
| | - Jianxin Yang
- Medical College, Qinghai University, Xining, China
| | - Yijie Qiao
- Medical College, Qinghai University, Xining, China
| | - Yabin Duan
- Medical College, Qinghai University, Xining, China
| | - Yuanyao Xin
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
| | - Yongqiong Nian
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
| | - Lin Zhu
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
| | - Guiqin Liu
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
| |
Collapse
|
18
|
Kuwano M, Shibata T, Watari K, Ono M. Oncogenic Y-box binding protein-1 as an effective therapeutic target in drug-resistant cancer. Cancer Sci 2019; 110:1536-1543. [PMID: 30903644 PMCID: PMC6500994 DOI: 10.1111/cas.14006] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
Y-box binding protein-1 (YBX1), a multifunctional oncoprotein containing an evolutionarily conserved cold shock domain, dysregulates a wide range of genes involved in cell proliferation and survival, drug resistance, and chromatin destabilization by cancer. Expression of a multidrug resistance-associated ATP binding cassette transporter gene, ABCB1, as well as growth factor receptor genes, EGFR and HER2/ErbB2, was initially discovered to be transcriptionally activated by YBX1 in cancer cells. Expression of other drug resistance-related genes, MVP/LRP, TOP2A, CD44, CD49f, BCL2, MYC, and androgen receptor (AR), is also transcriptionally activated by YBX1, consistently indicating that YBX1 is involved in tumor drug resistance. Furthermore, there is strong evidence to support that nuclear localization and/or overexpression of YBX1 can predict poor outcomes in patients with more than 20 different tumor types. YBX1 is phosphorylated by kinases, including AKT, p70S6K, and p90RSK, and translocated into the nucleus to promote the transcription of resistance- and malignancy-related genes. Phosphorylated YBX1, therefore, plays a crucial role as a potent transcription factor in cancer. Herein, a novel anticancer therapeutic strategy is presented by targeting activated YBX1 to overcome drug resistance and malignant progression.
Collapse
Affiliation(s)
- Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Han Y, Xu Z, Liu Y, Wei D, Zhang J, Xue L, Zhang X, Qin J, Deng H, Song L. Molecular cloning and characterization of a novel Y-box gene from planarian Dugesia japonica. Biochem Biophys Res Commun 2018; 505:1084-1089. [PMID: 30314702 DOI: 10.1016/j.bbrc.2018.09.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/21/2018] [Indexed: 11/28/2022]
Abstract
Y-box binding protein (YB protein) is an ancient conserved multifunctional DNA/RNA-binding protein. A novel YB protein DjY2 gene from planarian Dugesia japonica was cloned by RACE method and characterized. This cDNA contains 689 bp with a putative open reading frame of 197 amino acids. It has a predicted molecular mass of 22.14 kDa and an isoelectric point of 9.67. Whole-mount in situ hybridization and relative quantitative real-time PCR were used to study the spatial and temporal expression pattern of DjY2 in the process of planarian regeneration. Results showed that DjY2 was expressed in many parts of the body in intact planarian, but the expression level was low in head and pharynx. The transcripts of DjY2 was significantly increased both at the head parts and the tail parts after amputation, especially at the site of cutting. The spatial expression gradually recovered to the state of intact planarian with the time of regeneration. Our results indicated that DjY2 might participate in the process of regeneration in planarian.
Collapse
Affiliation(s)
- Yahong Han
- College of Life Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255049, China
| | - Zhenbiao Xu
- College of Life Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255049, China
| | - Yanan Liu
- College of Life Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255049, China
| | - Da Wei
- College of Life Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255049, China
| | - Jing Zhang
- College of Life Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255049, China
| | - Le Xue
- College of Life Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255049, China
| | - Xiangmin Zhang
- College of Life Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255049, China
| | - Jie Qin
- College of Life Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255049, China
| | - Hongkuan Deng
- College of Life Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255049, China
| | - Linxia Song
- College of Life Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255049, China.
| |
Collapse
|
20
|
Antonio-Andrés G, Rangel-Santiago J, Tirado-Rodríguez B, Martinez-Ruiz GU, Klunder-Klunder M, Vega MI, Lopez-Martinez B, Jiménez-Hernández E, Torres Nava J, Medina-Sanson A, Huerta-Yepez S. Role of Yin Yang-1 (YY1) in the transcription regulation of the multi-drug resistance ( MDR1) gene. Leuk Lymphoma 2018; 59:2628-2638. [PMID: 29616858 DOI: 10.1080/10428194.2018.1448083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/24/2018] [Accepted: 02/17/2018] [Indexed: 10/17/2022]
Abstract
Resistance to chemotherapy hinders the successful treatment of acute lymphoblastic leukemia (ALL). The multi-drug resistance-1 (MDR1/ABCB1) gene encodes P-glycoprotein (P-gp), which plays an important role in chemoresistance; however, its transcriptional regulation remains unclear. We investigated the role of YY1 in the regulation of MDR1 and its relation to ALL outcomes. Analysis of the MDR1 promoter revealed four putative YY1-binding sites, which we analyzed using a reporter system and ChIP analysis. YY1 silencing resulted in the inhibition of MDR1 expression and function. The clinical roles of YY1 and MDR1 expression were evaluated in children with ALL. Expression of both proteins was increased in ALL patients compared to controls. We identified a positive correlation between YY1 and MDR1 expression. High levels of YY1 were associated with decreased overall survival. Our results demonstrated that YY1 regulates the transcription of MDR1. Therefore, YY1 may serve as a useful prognostic and/or therapeutic target.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Adolescent
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Biomarkers, Tumor/analysis
- Cell Proliferation
- Child
- Child, Preschool
- Cohort Studies
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Etoposide/pharmacology
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Infant
- Infant, Newborn
- Male
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Prognosis
- Promoter Regions, Genetic
- Survival Rate
- Tumor Cells, Cultured
- YY1 Transcription Factor/genetics
- YY1 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Gabriela Antonio-Andrés
- a Unidad de Investigación en Enfermedades Oncológicas , Hospital Infantil de México, Federico Gómez , Mexico City , Mexico
| | - Jesus Rangel-Santiago
- a Unidad de Investigación en Enfermedades Oncológicas , Hospital Infantil de México, Federico Gómez , Mexico City , Mexico
| | - Belen Tirado-Rodríguez
- a Unidad de Investigación en Enfermedades Oncológicas , Hospital Infantil de México, Federico Gómez , Mexico City , Mexico
| | - Gustavo U Martinez-Ruiz
- a Unidad de Investigación en Enfermedades Oncológicas , Hospital Infantil de México, Federico Gómez , Mexico City , Mexico
- b Facultad de Medicina , Universidad Nacional Autonoma de México , Mexico City , Mexico
| | - Miguel Klunder-Klunder
- c Departamento de Investigación en Salud Comunitaria , Hospital Infantil de México, Federico Gómez , Mexico City , Mexico
| | - Mario I Vega
- d Department of Medicine, Hematology-Oncology Division , VA West Los Angeles Medical Center BBRI, UCLA Medical Center, Jonsson Comprehensive Cancer Center , Los Angeles , CA , USA
- e Molecular Signal Pathway in Cancer Laboratory , UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS , México City , México
| | | | | | - Jose Torres Nava
- g Servicio de Hemato-Oncología , Hospital Infantil de Moctezuma , Mexico City , Mexico
| | - Aurora Medina-Sanson
- h Departamento de Hemato-Oncologia , Hospital Infantil de Mexico, Federico Gomez , Mexico City , Mexico
| | - Sara Huerta-Yepez
- a Unidad de Investigación en Enfermedades Oncológicas , Hospital Infantil de México, Federico Gómez , Mexico City , Mexico
| |
Collapse
|
21
|
Guarino AM, Troiano A, Pizzo E, Bosso A, Vivo M, Pinto G, Amoresano A, Pollice A, La Mantia G, Calabrò V. Oxidative Stress Causes Enhanced Secretion of YB-1 Protein that Restrains Proliferation of Receiving Cells. Genes (Basel) 2018; 9:genes9100513. [PMID: 30360431 PMCID: PMC6210257 DOI: 10.3390/genes9100513] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 01/03/2023] Open
Abstract
The prototype cold-shock Y-box binding protein 1 (YB-1) is a multifunctional protein that regulates a variety of fundamental biological processes including cell proliferation and migration, DNA damage, matrix protein synthesis and chemotaxis. The plethora of functions assigned to YB-1 is strictly dependent on its subcellular localization. In resting cells, YB-1 localizes to cytoplasm where it is a component of messenger ribonucleoprotein particles. Under stress conditions, YB-1 contributes to the formation of stress granules (SGs), cytoplasmic foci where untranslated messenger RNAs (mRNAs) are sorted or processed for reinitiation, degradation, or packaging into ribonucleoprotein particles (mRNPs). Following DNA damage, YB-1 translocates to the nucleus and participates in DNA repair thereby enhancing cell survival. Recent data show that YB-1 can also be secreted and YB-1-derived polypeptides are found in plasma of patients with sepsis and malignancies. Here we show that in response to oxidative insults, YB-1 assembly in SGs is associated with an enhancement of YB-1 protein secretion. An enriched fraction of extracellular YB-1 (exYB-1) significantly inhibited proliferation of receiving cells and such inhibition was associated to a G2/M cell cycle arrest, induction of p21WAF and reduction of ΔNp63α protein level. All together, these data show that acute oxidative stress causes sustained release of YB-1 as a paracrine/autocrine signal that stimulate cell cycle arrest.
Collapse
Affiliation(s)
- Andrea Maria Guarino
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Annaelena Troiano
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Elio Pizzo
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Andrea Bosso
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Maria Vivo
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Gabriella Pinto
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Angela Amoresano
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Alessandra Pollice
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Girolama La Mantia
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Viola Calabrò
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, 80126 Napoli, Italy.
| |
Collapse
|
22
|
Sun J, Yan L, Shen W, Meng A. Maternal Ybx1 safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation. Development 2018; 145:dev.166587. [PMID: 30135188 DOI: 10.1242/dev.166587] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022]
Abstract
Maternal mRNAs and proteins dictate early embryonic development before zygotic genome activation. In the absence of transcription, elaborate control of maternal mRNA translation is of particular importance for oocyte maturation and early embryogenesis. By analyzing zebrafish ybx1 mutants with a null allele, we demonstrate an essential role of maternal ybx1 in repressing global translation in oocytes and embryos. Loss of maternal Ybx1 leads to impaired oocyte maturation and egg activation. Maternal ybx1 (Mybx1) mutant embryos fail to undergo normal cleavage and the maternal-to-zygotic transition (MZT). Morpholino knockdown of ybx1 also results in MZT loss and epiboly failure, suggesting the postfertilization requirement of Ybx1. In addition, elevated global translation level and the unfolded protein response were found in Ybx1-depleted embryos. Supplementing translational repression by eIF4E inhibition markedly rescues the Mybx1 phenotype. Mechanistically, Ybx1 in embryos may associate with processing body components and repress translation when tethered to target mRNAs. Collectively, our results identify maternal Ybx1 as a global translational repressor required for oocyte maturation and early embryogenesis.
Collapse
Affiliation(s)
- Jiawei Sun
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Yan
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Tanaka T, Kasai M, Kobayashi S. Mechanism responsible for inhibitory effect of indirubin 3′-oxime on anticancer agent-induced YB-1 nuclear translocation in HepG2 human hepatocellular carcinoma cells. Exp Cell Res 2018; 370:454-460. [DOI: 10.1016/j.yexcr.2018.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022]
|
24
|
Pagano C, di Martino O, Ruggiero G, Maria Guarino A, Mueller N, Siauciunaite R, Reischl M, Simon Foulkes N, Vallone D, Calabrò V. The tumor-associated YB-1 protein: new player in the circadian control of cell proliferation. Oncotarget 2018; 8:6193-6205. [PMID: 28008157 PMCID: PMC5351623 DOI: 10.18632/oncotarget.14051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
Correct spatial and temporal control of cell proliferation is of fundamental importance for tissue homeostasis. Its deregulation has been associated with several pathological conditions. In common with almost every aspect of plant and animal biology, cell proliferation is dominated by day-night rhythms generated by the circadian clock. However, our understanding of the crosstalk between the core clock and cell cycle control mechanisms remains incomplete. In this study, using zebrafish as a vertebrate model system, we show that the nuclear localization of the Y-box binding protein 1 (YB-1), a regulator of cyclin expression and a hallmark of certain cancers, is robustly regulated by the circadian clock. We implicate clock-controlled changes in YB-1 SUMOylation as one of the mechanisms regulating its periodic nuclear entry at the beginning of the light phase. Furthermore, we demonstrate that YB-1 nuclear protein is able to downregulate cyclin A2 mRNA expression in zebrafish via its direct interaction with the cyclin A2 promoter. Thus, by acting as a direct target of cyclic posttranslational regulatory mechanisms, YB-1 serves as one bridge between the circadian clock and its cell cycle control.
Collapse
Affiliation(s)
- Cristina Pagano
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Orsola di Martino
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Gennaro Ruggiero
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | - Nathalie Mueller
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rima Siauciunaite
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Markus Reischl
- Institute for Applied Computer Science (IAI) Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nicholas Simon Foulkes
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Daniela Vallone
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Viola Calabrò
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| |
Collapse
|
25
|
The transcriptional factor YB-1 positively regulates Hsc70 transcription in Crassostrea hongkongensis. Biochem Biophys Res Commun 2018; 495:2404-2409. [DOI: 10.1016/j.bbrc.2017.12.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 11/15/2022]
|
26
|
Rossi A, Moro A, Tebaldi T, Cornella N, Gasperini L, Lunelli L, Quattrone A, Viero G, Macchi P. Identification and dynamic changes of RNAs isolated from RALY-containing ribonucleoprotein complexes. Nucleic Acids Res 2017; 45:6775-6792. [PMID: 28379492 PMCID: PMC5499869 DOI: 10.1093/nar/gkx235] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/30/2017] [Indexed: 12/13/2022] Open
Abstract
RALY is a member of the heterogeneous nuclear ribonucleoprotein family (hnRNP), a large family of RNA-binding proteins involved in many aspects of RNA metabolism. Although RALY interactome has been recently characterized, a comprehensive global analysis of RALY-associated RNAs is lacking and the biological function of RALY remains elusive. Here, we performed RIP-seq analysis to identify RALY interacting RNAs and assessed the role of RALY in gene expression. We demonstrate that RALY binds specific coding and non-coding RNAs and associates with translating mRNAs of mammalian cells. Among the identified transcripts, we focused on ANXA1 and H1FX mRNAs, encoding for Annexin A1 and for the linker variant of the histone H1X, respectively. Both proteins are differentially expressed by proliferating cells and are considered as markers for tumorigenesis. We demonstrate that cells lacking RALY expression exhibit changes in the levels of H1FX and ANXA1 mRNAs and proteins in an opposite manner. We also provide evidence for a direct binding of RALY to the U-rich elements present within the 3΄UTR of both transcripts. Thus, our results identify RALY as a poly-U binding protein and as a regulator of H1FX and ANXA1 in mammalian cells.
Collapse
Affiliation(s)
- Annalisa Rossi
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| | - Albertomaria Moro
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| | - Toma Tebaldi
- Laboratory of Translational Genomics, CIBIO - Centre for Integrative Biology, University of Trento, Italy
| | - Nicola Cornella
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| | - Lisa Gasperini
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| | - Lorenzo Lunelli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (TN), Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, CIBIO - Centre for Integrative Biology, University of Trento, Italy
| | - Gabriella Viero
- Institute of Biophysics, CNR-Italian National Council for Research, via Sommarive 18, 38123 Trento (TN), Italy
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| |
Collapse
|
27
|
Boichuk S, Galembikova A, Sitenkov A, Khusnutdinov R, Dunaev P, Valeeva E, Usolova N. Establishment and characterization of a triple negative basal-like breast cancer cell line with multi-drug resistance. Oncol Lett 2017; 14:5039-5045. [PMID: 29085518 DOI: 10.3892/ol.2017.6795] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast carcinoma (TNBC) is one of the most aggressive subtypes of breast cancer and is associated with an unfavorable prognosis. The management of TNBC is currently based on the use of classical cytotoxic drugs, i.e., anthracyclines and/or microtubule-binding agents (TBAs). However, conventional chemotherapy is not always effective in these tumors and a systemic relapse is often observed, potentially due to the development of multi-drug resistance (MDR). Therefore, an improved understanding of MDR mechanisms may improve the therapeutic strategies for TNBC. In the present study, a paclitaxel-resistant (TxR) breast cancer cell subline of HCC1806 TNBC cells was established and characterized. The resistance index of this subline was calculated according to the IC50 of HCC1806-TxR relative to the parental HCC1806 cells (16.86-fold). TxR-cells also exhibited cross-resistance to vinblastin, doxorubicin and etoposide (~14-, ~4- and ~3-fold, respectively). As assessed with reverse transcription-quantitative polymerase chain reaction, TxR-resistant cells exhibited the upregulated expression of a number of multidrug resistance-associated genes, including MDR-1, MRP-1, -5, -6 and YB-1. The TxR cells also exhibited an increased expression of MDR-related proteins including MDR1 and MRP-1, which led to a substantial increase (5.4-fold) of the paclitaxel efflux from TxR-cells. In addition, the pro-apoptotic protein Fas was downregulated, whereas the anti-apoptotic Bcl-2 was upregulated, in TxR-cells. This may explain why a reduced extent of apoptosis was observed when TxR cells were exposed to TBAs and topoisomerase type II inhibitors, relative to the parental HCC1806 cells. Thus, the HCC1806-TxR cell line may serve as an appropriate model for the analysis of chemoresistance mechanisms in TNBCs, and for the investigation of novel anticancer agents for overcoming MDR-mediated mechanisms in TNBC.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Alexandr Sitenkov
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Ramil Khusnutdinov
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Elena Valeeva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Natalia Usolova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| |
Collapse
|
28
|
Yamashita T, Higashi M, Momose S, Morozumi M, Tamaru JI. Nuclear expression of Y box binding-1 is important for resistance to chemotherapy including gemcitabine in TP53-mutated bladder cancer. Int J Oncol 2017; 51:579-586. [PMID: 28714514 DOI: 10.3892/ijo.2017.4031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/26/2017] [Indexed: 11/05/2022] Open
Abstract
The development and acquisition of multiple drug resistance in cancer cells remain a major obstacle in the treatment of bladder cancer. Nuclear translocation of Y box binding-1 (YB-1), which is a member of a family of DNA-binding proteins that contain a cold shock domain, plays a significant role in the acquisition of drug resistance by upregulating expression of the multidrug resistance-1 (MDR-1) gene product, p-glycoprotein. The tumor suppressor protein p53 is thought to be essential for nuclear translocation of YB-1. We hypothesized that nuclear translocation of YB-1 might be associated with drug resistance of bladder cancer with an abnormality of the TP53 gene that results in a mutated p53 protein. To test this hypothesis, we analyzed the association of YB-1 with drug resistance of TP53-mutated bladder cancer, including immunohistochemical analysis of YB-1, p-glycoprotein and p53 in vivo as well as the function of YB-1 nuclear translocation and regulation of its translocation by p53 in vitro. Additionally, we examined the association between the nuclear translocation of YB-1 and gemcitabine, a major anticancer-drug for bladder cancer, in cancer cell lines. Nuclear expression of YB-1 was correlated with the expression of p-glycoprotein and p53 in bladder cancer cases (p<0.05). In vitro, both introduction of TP53 and gemcitabine induced nuclear translocation of YB-1. These data indicate that YB-1 translocates to the nucleus coordinately with p53 expression and is involved in gemcitabine resistance in bladder cancer. Nuclear expression of YB-1 is important for resistance to chemotherapy including gemcitabine in TP53-mutated bladder cancer.
Collapse
Affiliation(s)
- Takahisa Yamashita
- Department of Pathology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| | - Morihiro Higashi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| | - Makoto Morozumi
- Department of Urology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| |
Collapse
|
29
|
Lim JP, Shyamasundar S, Gunaratne J, Scully OJ, Matsumoto K, Bay BH. YBX1 gene silencing inhibits migratory and invasive potential via CORO1C in breast cancer in vitro. BMC Cancer 2017; 17:201. [PMID: 28302118 PMCID: PMC5356414 DOI: 10.1186/s12885-017-3187-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/10/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Y-box binding protein-1 is an evolutionary conserved transcription and translation regulating protein that is overexpressed in various human malignancies, including breast cancer. Despite reports of YB-1 and its association with distant spread of breast cancer, the intrinsic mechanism underlying this observation remains elusive. This study investigates the role of YB-1 in mediating metastasis in highly invasive breast cancer cell lines. METHODS Silencing the YBX1 gene (which encodes the YB-1 protein) by small interfering RNA (siRNA) was performed in MDA-MB-231 and Hs578T breast cancer cell lines, followed by phenotypic assays including cell migration and invasion assays. Gene expression profiling using Affymetrix GeneChip® Human Transcriptome 2.0 array was subsequently carried out in YB-1 silenced MDA-MB-231 cells. Overexpression and silencing of YBX1 were performed to assess the expression of CORO1C, one of the differentially regulated genes from the transcriptomic analysis. A Gaussia luciferase reporter assay was used to determine if CORO1C is a putative YB-1 downstream target. siRNA-mediated silencing of CORO1C and down-regulation of YBX1 in CORO1C overexpressing MDA-MB-231 cells were performed to evaluate cell migration and invasion. RESULTS Downregulation of the YB-1 protein inhibited cell migration and invasion in MDA-MB-231 breast cancer cells. Global gene expression profiling in the YBX1 silenced MDA-MB-231 cells identified differential expression of several genes, including CORO1C (which encodes for an actin binding protein, coronin-1C) as a potential downstream target of YB-1. While knockdown of YBX1 gene decreased CORO1C gene expression, the opposite effects were seen in YB-1 overexpressing cells. Subsequent verification using the reporter assay revealed that CORO1C is an indirect downstream target of YB-1. Silencing of CORO1C by siRNA in MDA-MB-231 cells was also observed to reduce cell migration and invasion. Silencing of YBX1 caused a similar reduction in CORO1C expression, concomitant with a significant decrease in migration in Hs578T cells. In coronin-1C overexpressing MDA-MB-231 cells, increased migration and invasion were abrogated by YB-1 knockdown. CONCLUSION It would appear that YB-1 could regulate cell invasion and migration via downregulation of its indirect target coronin-1C. The association between YB-1 and coronin-1C offers a novel approach by which metastasis of breast cancer cells could be targeted and abrogated.
Collapse
Affiliation(s)
- Jia Pei Lim
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore, 117594 Singapore
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore
| | - Sukanya Shyamasundar
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore, 117594 Singapore
| | - Jayantha Gunaratne
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore, 117594 Singapore
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore
| | - Olivia Jane Scully
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore, 117594 Singapore
| | - Ken Matsumoto
- Laboratory of Cellular Biochemistry, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore, 117594 Singapore
| |
Collapse
|
30
|
Efferth T, Volm M. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers. Arch Toxicol 2017; 91:2515-2538. [DOI: 10.1007/s00204-017-1938-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
|
31
|
Li S, Chen M, Xiong Q, Zhang J, Cui Z, Ge F. Characterization of the Translationally Controlled Tumor Protein (TCTP) Interactome Reveals Novel Binding Partners in Human Cancer Cells. J Proteome Res 2016; 15:3741-3751. [PMID: 27607350 DOI: 10.1021/acs.jproteome.6b00556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved housekeeping protein present in eukaryotic organisms. It is involved in regulating many fundamental processes and plays a critical role in tumor reversion and tumorigenesis. Increasing evidence suggests that TCTP plays a role in the regulation of cell fate determination and is a promising therapeutic target for cancer. To decipher the exact mechanisms by which TCTP functions and how all these functions are integrated, we analyzed the interactome of TCTP in HeLa cells by coimmunoprecipitation (IP) and mass spectrometry (MS). A total of 98 proteins were identified. We confirmed the in vitro and in vivo association of TCTP with six of the identified binding proteins using reciprocal IP and bimolecular fluorescence complementation (BiFC) analysis, respectively. Moreover, TCTP interacted with Y-box-binding protein 1 (YBX1), and their interaction was localized to the N-terminal region of TCTP and the 1-129 amino acid (aa) residues of YBX1. The YBX1 protein plays an important role in cell proliferation, RNA splicing, DNA repair, drug resistance, and stress response to extracellular signals. These data suggest that the interaction of TCTP with YBX1 might cooperate or coordinate their functions in the control of diverse regulatory pathways in cancer cells. Taken together, our results not only reveal a large number of TCTP-associated proteins that possess pleiotropic functions, but also provide novel insights into the molecular mechanisms of TCTP in tumorigenesis.
Collapse
Affiliation(s)
- Siting Li
- Graduate University, Chinese Academy of Sciences , Beijing 100049, China
| | - Minghai Chen
- Graduate University, Chinese Academy of Sciences , Beijing 100049, China
| | | | | | | | | |
Collapse
|
32
|
Su BH, Shieh GS, Tseng YL, Shiau AL, Wu CL. Etoposide enhances antitumor efficacy of MDR1-driven oncolytic adenovirus through autoupregulation of the MDR1 promoter activity. Oncotarget 2016; 6:38308-26. [PMID: 26515462 PMCID: PMC4742001 DOI: 10.18632/oncotarget.5702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Conditionally replicating adenoviruses (CRAds), or oncolytic adenoviruses, such as E1B55K-deleted adenovirus, are attractive anticancer agents. However, the therapeutic efficacy of E1B55K-deleted adenovirus for refractory solid tumors has been limited. Environmental stress conditions may induce nuclear accumulation of YB-1, which occurs in multidrug-resistant and adenovirus-infected cancer cells. Overexpression and nuclear localization of YB-1 are associated with poor prognosis and tumor recurrence in various cancers. Nuclear YB-1 transactivates the multidrug resistance 1 (MDR1) genes through the Y-box. Here, we developed a novel E1B55K-deleted adenovirus driven by the MDR1 promoter, designed Ad5GS3. We tested the feasibility of using YB-1 to transcriptionally regulate Ad5GS3 replication in cancer cells and thereby to enhance antitumor efficacy. We evaluated synergistic antitumor effects of oncolytic virotherapy in combination with chemotherapy. Our results show that adenovirus E1A induced E2F-1 activity to augment YB-1 expression, which shut down host protein synthesis in cancer cells during adenovirus replication. In cancer cells infected with Ad5WS1, an E1B55K-deleted adenovirus driven by the E1 promoter, E1A enhanced YB-1 expression, and then further phosphorylated Akt, which, in turn, triggered nuclear translocation of YB-1. Ad5GS3 in combination with chemotherapeutic agents facilitated nuclear localization of YB-1 and, in turn, upregulated the MDR1 promoter activity and enhanced Ad5GS3 replication in cancer cells. Thus, E1A, YB-1, and the MDR1 promoter form a positive feedback loop to promote Ad5GS3 replication in cancer cells, and this regulation can be further augmented when chemotherapeutic agents are added. In the in vivo study, Ad5GS3 in combination with etoposide synergistically suppressed tumor growth and prolonged survival in NOD/SCID mice bearing human lung tumor xenografts. More importantly, Ad5GS3 exerted potent oncolytic activity against clinical advanced lung adenocarcinoma, which was associated with elevated levels of nuclear YB-1 and cytoplasmic MDR1 expression in the advanced tumors. Therefore, Ad5GS3 may have therapeutic potential for cancer treatment, especially in combination with chemotherapy. Because YB-1 is expressed in a broad spectrum of cancers, this oncolytic adenovirus may be broadly applicable.
Collapse
Affiliation(s)
- Bing-Hua Su
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gia-Shing Shieh
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
33
|
Lasham A, Mehta SY, Fitzgerald SJ, Woolley AG, Hearn JI, Hurley DG, Ruza I, Algie M, Shelling AN, Braithwaite AW, Print CG. A novel EGR-1 dependent mechanism for YB-1 modulation of paclitaxel response in a triple negative breast cancer cell line. Int J Cancer 2016; 139:1157-70. [PMID: 27072400 DOI: 10.1002/ijc.30137] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/18/2022]
Abstract
Chemotherapy with taxanes such as paclitaxel (PTX) is a key component of triple negative breast cancer (TNBC) treatment. PTX is used in combination with other drugs in both the adjuvant setting and in advanced breast cancer. Because a proportion of patients respond poorly to PTX or relapse after its use, a greater understanding of the mechanisms conferring resistance to PTX is required. One protein shown to be involved in drug resistance is Y-box binding protein 1 (YB-1). High levels of YB-1 have previously been associated with resistance to PTX in TNBCs. In this study, we aimed to determine mechanisms by which YB-1 confers PTX resistance. We generated isogenic TNBC cell lines that differed by YB-1 levels and treated these with PTX. Using microarray analysis, we identified EGR1 as a potential target of YB-1. We found that low EGR1 mRNA levels are associated with poor breast cancer patient prognosis, and that EGR1 and YBX1 mRNA expression was inversely correlated in a TNBC line and in a proportion of TNBC tumours. Reducing the levels of EGR1 caused TNBC cells to become more resistant to PTX. Given that PTX targets cycling cells, we propose a model whereby high YB-1 levels in some TNBC cells can lead to reduced levels of EGR1, which in turn promotes slow cell cycling and resistance to PTX. Therefore YB-1 and EGR1 levels are biologically linked and may provide a biomarker for TNBC response to PTX.
Collapse
Affiliation(s)
- Annette Lasham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Sunali Y Mehta
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Sandra J Fitzgerald
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Adele G Woolley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - James I Hearn
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Daniel G Hurley
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,Bioinformatics Institute, University of Auckland, Auckland, New Zealand.,Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| | - Igor Ruza
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael Algie
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Antony W Braithwaite
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Cristin G Print
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Kretov DA, Curmi PA, Hamon L, Abrakhi S, Desforges B, Ovchinnikov LP, Pastré D. mRNA and DNA selection via protein multimerization: YB-1 as a case study. Nucleic Acids Res 2015; 43:9457-73. [PMID: 26271991 PMCID: PMC4627072 DOI: 10.1093/nar/gkv822] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/29/2015] [Indexed: 12/16/2022] Open
Abstract
Translation is tightly regulated in cells for keeping adequate protein levels, this task being notably accomplished by dedicated mRNA-binding proteins recognizing a specific set of mRNAs to repress or facilitate their translation. To select specific mRNAs, mRNA-binding proteins can strongly bind to specific mRNA sequences/structures. However, many mRNA-binding proteins rather display a weak specificity to short and redundant sequences. Here we examined an alternative mechanism by which mRNA-binding proteins could inhibit the translation of specific mRNAs, using YB-1, a major translation regulator, as a case study. Based on a cooperative binding, YB-1 forms stable homo-multimers on some mRNAs while avoiding other mRNAs. Via such inhomogeneous distribution, YB-1 can selectively inhibit translation of mRNAs on which it has formed stable multimers. This novel mechanistic view on mRNA selection may be shared by other proteins considering the elevated occurrence of multimerization among mRNA-binding proteins. Interestingly, we also demonstrate how, by using the same mechanism, YB-1 can form multimers on specific DNA structures, which could provide novel insights into YB-1 nuclear functions in DNA repair and multi-drug resistance.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM U1204 and Université Evry-Val d'Essonne, Evry, 91025 France Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Patrick A Curmi
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM U1204 and Université Evry-Val d'Essonne, Evry, 91025 France
| | - Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM U1204 and Université Evry-Val d'Essonne, Evry, 91025 France
| | - Sanae Abrakhi
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM U1204 and Université Evry-Val d'Essonne, Evry, 91025 France
| | - Bénédicte Desforges
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM U1204 and Université Evry-Val d'Essonne, Evry, 91025 France
| | - Lev P Ovchinnikov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM U1204 and Université Evry-Val d'Essonne, Evry, 91025 France
| |
Collapse
|
35
|
Inoue K, Fry EA, Frazier DP. Transcription factors that interact with p53 and Mdm2. Int J Cancer 2015; 138:1577-85. [PMID: 26132471 DOI: 10.1002/ijc.29663] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/22/2015] [Indexed: 01/21/2023]
Abstract
The tumor suppressor p53 is activated upon cellular stresses such as DNA damage, oncogene activation, hypoxia, which transactivates sets of genes that induce DNA repair, cell cycle arrest, apoptosis, or autophagy, playing crucial roles in the prevention of tumor formation. The central regulator of the p53 pathway is Mdm2 which inhibits transcriptional activity, nuclear localization and protein stability. More than 30 cellular p53-binding proteins have been isolated and characterized including Mdm2, Mdm4, p300, BRCA1/2, ATM, ABL and 53BP-1/2. Most of them are nuclear proteins; however, not much is known about p53-binding transcription factors. In this review, we focus on transcription factors that directly interact with p53/Mdm2 through direct binding including Dmp1, E2F1, YB-1 and YY1. Dmp1 and YB-1 bind only to p53 while E2F1 and YY1 bind to both p53 and Mdm2. Dmp1 has been shown to bind to p53 and block all the known functions for Mdm2 on p53 inhibition, providing a secondary mechanism for tumor suppression in Arf-null cells. Although E2F1-p53 binding provides a checkpoint mechanism to silence hyperactive E2F1, YB-1 or YY1 interaction with p53 subverts the activity of p53, contributing to cell cycle progression and tumorigenesis. Thus, the modes and consequences for each protein-protein interaction vary from the viewpoint of tumor development and suppression.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| | - Elizabeth A Fry
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| | - Donna P Frazier
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| |
Collapse
|
36
|
Silva R, Vilas-Boas V, Carmo H, Dinis-Oliveira RJ, Carvalho F, de Lourdes Bastos M, Remião F. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 2015; 149:1-123. [PMID: 25435018 DOI: 10.1016/j.pharmthera.2014.11.013] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2023]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene in humans, known to mediate multidrug resistance of neoplastic cells to cancer therapy. For several decades, P-gp inhibition has drawn many significant research efforts in an attempt to overcome this phenomenon. However, P-gp is also constitutively expressed in normal human epithelial tissues and, due to its broad substrate specificity, to its cellular polarized expression in many excretory and barrier tissues, and to its great efflux capacity, it can play a crucial role in limiting the absorption and distribution of harmful xenobiotics, by decreasing their intracellular accumulation. Such a defense mechanism can be of particular relevance at the intestinal level, by significantly reducing the intestinal absorption of the xenobiotic and, consequently, avoiding its access to the target organs. In this review, the current knowledge on this important efflux pump is summarized, and a new focus is brought on the therapeutic interest of inducing and/or activating P-gp for limiting the toxicity caused by its substrates. Several in vivo and in vitro studies validating the use of such a therapeutic strategy are discussed. An extensive literature search for reported P-gp inducers/activators and for the experimental models used in their characterization was conducted. Those studies demonstrate that effective antidotal pathways can be achieved by efficiently promoting the P-gp-mediated efflux of deleterious xenobiotics, resulting in a significant reduction in their intracellular levels and, consequently, in a significant reduction of their toxicity.
Collapse
Affiliation(s)
- Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; INFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences - North (ISCS-N), CESPU, CRL, Gandra, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
37
|
Somasekharan SP, El-Naggar A, Leprivier G, Cheng H, Hajee S, Grunewald TGP, Zhang F, Ng T, Delattre O, Evdokimova V, Wang Y, Gleave M, Sorensen PH. YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. ACTA ACUST UNITED AC 2015; 208:913-29. [PMID: 25800057 PMCID: PMC4384734 DOI: 10.1083/jcb.201411047] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
YB-1, which is upregulated in human sarcomas, controls the availability of the stress granule nucleator G3BP1 and thereby controls stress granule assembly. Under cell stress, global protein synthesis is inhibited to preserve energy. One mechanism is to sequester and silence mRNAs in ribonucleoprotein complexes known as stress granules (SGs), which contain translationally silent mRNAs, preinitiation factors, and RNA-binding proteins. Y-box binding protein 1 (YB-1) localizes to SGs, but its role in SG biology is unknown. We now report that YB-1 directly binds to and translationally activates the 5′ untranslated region (UTR) of G3BP1 mRNAs, thereby controlling the availability of the G3BP1 SG nucleator for SG assembly. YB-1 inactivation in human sarcoma cells dramatically reduces G3BP1 and SG formation in vitro. YB-1 and G3BP1 expression are highly correlated in human sarcomas, and elevated G3BP1 expression correlates with poor survival. Finally, G3BP1 down-regulation in sarcoma xenografts prevents in vivo SG formation and tumor invasion, and completely blocks lung metastasis in mouse models. Together, these findings demonstrate a critical role for YB-1 in SG formation through translational activation of G3BP1, and highlight novel functions for SGs in tumor progression.
Collapse
Affiliation(s)
- Syam Prakash Somasekharan
- Department of Pathology and Laboratory Medicine and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Amal El-Naggar
- Department of Pathology and Laboratory Medicine and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Gabriel Leprivier
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Hongwei Cheng
- Department of Pathology and Laboratory Medicine and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Shamil Hajee
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Thomas G P Grunewald
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 830, Genetics and Biology of Cancers, Institute Curie Research Center, 75248 Paris, France
| | - Fan Zhang
- Department of Pathology and Laboratory Medicine and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Tony Ng
- Department of Pathology and Laboratory Medicine and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Olivier Delattre
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 830, Genetics and Biology of Cancers, Institute Curie Research Center, 75248 Paris, France
| | - Valentina Evdokimova
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Yuzhuo Wang
- Department of Pathology and Laboratory Medicine and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Martin Gleave
- Department of Pathology and Laboratory Medicine and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Department of Pathology and Laboratory Medicine and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| |
Collapse
|
38
|
Zhang Y, Zhao PW, Feng G, Xie G, Wang AQ, Yang YH, Wang D, Du XB. The expression level and prognostic value of Y-box binding protein-1 in rectal cancer. PLoS One 2015; 10:e0119385. [PMID: 25790262 PMCID: PMC4366156 DOI: 10.1371/journal.pone.0119385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
The aims of this study were to simultaneously evaluate the expression of Y-box binding protein-1 (YB-1) in non-neoplastic rectal tissue and rectal cancer tissue, and to collect clinical follow-up data for individual patients. Additionally, we aimed to investigate the developmental functions and prognostic value of YB-1 in rectal cancer. We performed immunohistochemical studies to examine YB-1 expression in tissue samples from 80 patients with rectal cancer, 30 patients with rectal tubular adenoma, and 30 patients with rectitis. The mean YB-1 histological scores for rectal cancer, rectal tubular adenoma, and rectitis tissue specimens were 205.5, 164.3, and 137.7, respectively. Shorter disease-free and overall survival times were found in patients with rectal cancer who had higher YB-1 expression than in those with lower expression (38.2 months vs. 52.4 months, P = 0.013; and 44.4 months vs. 57.3 months, P = 0.008, respectively). Our results indicate that YB-1 expression is higher in rectal cancer tissue than in rectal tubular adenoma and rectitis tissue and that it may be an independent prognostic factor for rectal cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oncology, MianYang Central Hospital, MianYang, People’s Republic of China
- Department of Surgery, LuZhou Medical College, LuZhou, People’s Republic of China
| | - Ping-Wu Zhao
- Department of Surgery, MianYang Central Hospital, MianYang, People’s Republic of China
| | - Gang Feng
- Department of Oncology, MianYang Central Hospital, MianYang, People’s Republic of China
| | - Gang Xie
- Department of Pathology, MianYang Central Hospital, MianYang, People’s Republic of China
| | - An-Qun Wang
- Department of Pathology, MianYang Central Hospital, MianYang, People’s Republic of China
| | - Yong-Hong Yang
- Department of Pathology, MianYang Central Hospital, MianYang, People’s Republic of China
| | - Dong Wang
- Department of Surgery, LuZhou Medical College, LuZhou, People’s Republic of China
- Department of Surgery, MianYang Central Hospital, MianYang, People’s Republic of China
- * E-mail: (DW); (XBD)
| | - Xiao-Bo Du
- Department of Oncology, MianYang Central Hospital, MianYang, People’s Republic of China
- * E-mail: (DW); (XBD)
| |
Collapse
|
39
|
Fomina EE, Pestryakov PE, Maltseva EA, Petruseva IO, Kretov DA, Ovchinnikov LP, Lavrik OI. Y-box binding protein 1 (YB-1) promotes detection of DNA bulky lesions by XPC-HR23B factor. BIOCHEMISTRY (MOSCOW) 2015; 80:219-27. [DOI: 10.1134/s000629791502008x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Wu Y, Wang KY, Li Z, Liu YP, Izumi H, Uramoto H, Nakayama Y, Ito KI, Kohno K. Y-box binding protein 1 enhances DNA topoisomerase 1 activity and sensitivity to camptothecin via direct interaction. J Exp Clin Cancer Res 2014; 33:112. [PMID: 25539742 PMCID: PMC4308875 DOI: 10.1186/s13046-014-0112-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Y-box binding protein 1 (YB-1) possesses pleiotropic functions through its interactions with various cellular proteins, and its high expression levels make it a potential useful prognostic biomarker for cancer cells. Eukaryotic DNA topoisomerases, such as DNA topoisomerase 1 (TOPO1) and DNA topoisomerase 2 (TOPO2), are the essential DNA metabolism regulators that usually overexpressed in cancer cells, and multiple proteins have been reported to regulate the enzyme activity and the clinical efficacy of their inhibitors. The present study unraveled the interaction of YB-1 with TOPO1, and further investigated the related function and potential mechanisms during the interaction. METHODS The direct association of TOPO1 with specific domain of YB-1 was explored by co-immunoprecipitation and GST pull-down assays. The interaction function was further clarified by DNA relaxation assays, co-immunoprecipitation and WST-8 assays with in vitro gain- and loss- of function models. RESULTS We found that YB-1 interacts directly with TOPO1 (but not with TOPO2) and promotes TOPO1 catalytic activity. Interactions between YB-1 and TOPO1 increased when cancer cells were treated with the TOPO1 inhibitor, camptothecin (CPT), but not with the TOPO2 inhibitor, adriamycin (ADM). Furthermore, we found that the interaction is prevented by pretreatment with the antioxidant agent, N-acetyl cysteine, and that YB-1 downregulation renders cells resistant to CPT. CONCLUSIONS Our findings suggest that nuclear YB-1 serves as an intracellular promoter of TOPO1 catalytic activity that enhances CPT sensitivity through its direct interaction with TOPO1.
Collapse
Affiliation(s)
- Ying Wu
- Department of Medical Oncology, the First Hospital, China Medical University, Shenyang, China.
- The President Laboratory, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.
| | - Ke-yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.
| | - Zhi Li
- Department of Medical Oncology, the First Hospital, China Medical University, Shenyang, China.
| | - Yun-peng Liu
- Department of Medical Oncology, the First Hospital, China Medical University, Shenyang, China.
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.
| | - Hidetaka Uramoto
- Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.
| | - Yoshifumi Nakayama
- Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.
| | - Ken-ichi Ito
- Department of Surgery, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan.
| | - Kimitoshi Kohno
- The President Laboratory, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.
| |
Collapse
|
41
|
Perera Y, Toro ND, Gorovaya L, Fernandez-DE-Cossio J, Farina HG, Perea SE. Synergistic interactions of the anti-casein kinase 2 CIGB-300 peptide and chemotherapeutic agents in lung and cervical preclinical cancer models. Mol Clin Oncol 2014; 2:935-944. [PMID: 25279177 DOI: 10.3892/mco.2014.338] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/13/2014] [Indexed: 11/06/2022] Open
Abstract
CIGB-300 is a novel clinical-stage synthetic peptide that impairs the casein kinase 2 (CK2)-mediated phosphorylation of B23/nucleophosmin in different experimental settings and cancer models. As a single agent, CIGB-300 induces apoptosis in vitro and in vivo and modulates an array of proteins that are mainly involved in drug resistance, cell proliferation and apoptosis, as determined by proteomic analysis. However, the clinical oncology practice and cumulative knowledge on tumor biology suggest that drug combinations are more likely to cope with tumor complexity compared to single agents. In this study, we investigated the antiproliferative effect of CIGB-300 when combined with different anticancer drugs, such as cisplatin (alkylating), paclitaxel (antimitotic), doxorubicin (antitopoisomerase II) or 5-fluorouracil (DNA/RNA antimetabolite) in cell lines derived from lung and cervical cancer. Of note, using a Latin square design and subsequent analysis by CalcuSyn software, we observed that paclitaxel and cisplatin exhibited the best synergistic/additive profile when combined with CIGB-300, according to the combination and dose reduction indices. Such therapeutically favorable profiles may be explained by a direct cytotoxic effect and also by the observed cell cycle impairment following incubation of tumor cells with selected drug combinations. Importantly, on in vivo dose-finding schedules in human cervical tumors xenografted in nude mice, we observed that concomitant administration of CIGB-300 and cisplatin increased mice survival compared to single-agent treatment. Collectively, these findings provide a rationale for combining the anti-CK2 CIGB-300 peptide with currently available anticancer agents in the clinical setting and indicate platins and taxanes as compounds with major perspectives.
Collapse
Affiliation(s)
- Yasser Perera
- Laboratory of Molecular Oncology, Division of Pharmaceuticals, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba
| | - Neylen Del Toro
- Laboratory of Molecular Oncology, Division of Pharmaceuticals, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba
| | - Larisa Gorovaya
- Animal Facility Unit, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba
| | - Jorge Fernandez-DE-Cossio
- Department of Bioinformatics, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba
| | - Hernan G Farina
- Laboratory of Molecular Oncology, Quilmes National University, Bernal, Buenos Aires B1876BXD, Argentina
| | - Silvio E Perea
- Laboratory of Molecular Oncology, Division of Pharmaceuticals, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba
| |
Collapse
|
42
|
Zhao Z, Liao Y, Li J, Wu J, Zhang Y, Feng G, Tan B, Reng S, Zhang Z, Feng X, Wang J, Du X. Association between higher expression of YB-1 and poor prognosis in early-stage extranodal nasal-type natural killer/T-cell lymphoma. Biomark Med 2014; 8:581-8. [PMID: 24796623 DOI: 10.2217/bmm.14.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aim: A recent study shows that YB-1-related biomarkers affect the prognosis of patients with natural killer/T-cell lymphoma (NKTCL). The aim of this study was to determine whether there is an association between YB-1 expression and the prognosis of patients with early-stage extranodal nasal-type NKTCL. Materials & methods: To clarify the roles of YB-1 in early-stage extranodal nasal-type NKTCL, we used immunohistochemical studies to examine YB-1 expression in 36 early-stage extranodal nasal-type NKTCL specimens. Results: Subsequently, YB-1 expression was correlated with clinicopathologic parameters. Higher expression of YB-1 was associated with an increased potential for relapse, poor disease-free survival and reduced overall survival. Discussion: Higher expression of YB-1 could be an independent risk factor for poor prognosis in patients with early-stage extranodal nasal-type NKTCL. Understanding the biology of YB-1-mediated pathways may lead to novel therapeutic strategies for early-stage extranodal nasal-type NKTCL.
Collapse
Affiliation(s)
- Zhenhua Zhao
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
| | - Yao Liao
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
- The Second Internal Department, The Affiliated Tumor Hospital of Guangzhou Medical College, Guangzhou, People’s Republic of China
| | - Jie Li
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
- Department of Oncology, Attached Hospital to North Sichuan Medical College, Sichuan, People’s Republic of China
| | - Jingbo Wu
- Department of Oncology, Affiliated Hospital of Luzhou Medical College, Sichuan, People’s Republic of China
| | - Yu Zhang
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
| | - Gang Feng
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
| | - Bangxian Tan
- Department of Oncology, Attached Hospital to North Sichuan Medical College, Sichuan, People’s Republic of China
| | - Surong Reng
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
| | - Zhikui Zhang
- Guangzhou Kingmed Center For Clinical Laboratory, Guangzhou, People’s Republic of China
| | - Xioaodong Feng
- Guangzhou Kingmed Center For Clinical Laboratory, Guangzhou, People’s Republic of China
| | - Jin Wang
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
| | - Xiaobo Du
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
| |
Collapse
|
43
|
Y-box binding protein 1--a prognostic marker and target in tumour therapy. Eur J Cell Biol 2013; 93:61-70. [PMID: 24461929 DOI: 10.1016/j.ejcb.2013.11.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/22/2013] [Accepted: 11/28/2013] [Indexed: 01/11/2023] Open
Abstract
Y-box binding protein 1 (YB-1) is a multifunctional protein involved in various cellular processes including both transcriptional and translational regulation of target gene expression. Significantly increased YB-1 levels have been reported in a number of human malignancies and shown to be associated with poor prognosis and disease recurrence. Indeed, YB-1 can act as a versatile oncoprotein playing an important role in tumour cell proliferation and progression. Consequently, YB-1 not only proves to be a good prognostic tumour marker, but also may be a promising emerging molecular target for the development of new therapeutical strategies. In this review, we discuss both the role of YB-1 in cancer and specifically in malignant melanoma as well as possible translations into the clinics derived thereof.
Collapse
|
44
|
Tanaka T, Ohashi S, Kobayashi S. Roles of YB-1 under arsenite-induced stress: translational activation of HSP70 mRNA and control of the number of stress granules. Biochim Biophys Acta Gen Subj 2013; 1840:985-92. [PMID: 24231679 DOI: 10.1016/j.bbagen.2013.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/30/2013] [Accepted: 11/03/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND When cells become stressed, they form stress granules (SGs) and show an increase of the molecular chaperone HSP70. The translational regulator YB-1 is a component of SGs, but it is unclear whether it contributes to the translational induction of HSP70 mRNA. Here we examined the roles of YB-1 in SG assembly and translational regulation of HSP70 mRNA under arsenite-induced stress. METHOD Using arsenite-treated NG108-15 cells, we examined whether YB-1 was included in SGs with GluR2 mRNA, a target of YB-1, and investigated the interaction of YB-1 with HSP70 mRNA and its effect on translation of the mRNA. We also investigated the distribution of these mRNAs to SGs or polysomes, and evaluated the role of YB-1 in SG assembly. RESULTS Arsenite treatment reduced the translation level of GluR2 mRNA; concomitantly, YB-1-bound HSP70 mRNA was increased and its translation was induced. Sucrose gradient analysis revealed that the distribution of GluR2 mRNA was shifted from heavy-sedimenting to much lighter fractions, and also to SG-containing non-polysomal fractions. Conversely, HSP70 mRNA was shifted from the non-polysomal to polysome fractions. YB-1 depletion abrogated the arsenite-responsive activation of HSP70 synthesis, but SGs harboring both mRNAs were still assembled. The number of SGs was increased by YB-1 depletion and decreased by its overexpression. CONCLUSION In arsenite-treated cells, YB-1 mediates the translational activation of HSP70 mRNA and also controls the number of SGs through inhibition of their assembly. GENERAL SIGNIFICANCE Under stress conditions, YB-1 exerts simultaneous but opposing actions on the regulation of translation via SGs and polysomes.
Collapse
Affiliation(s)
- Toru Tanaka
- Department of Biochemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Sachiyo Ohashi
- Department of Biochemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Shunsuke Kobayashi
- Department of Biochemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan.
| |
Collapse
|
45
|
Regulation of major vault protein expression by upstream stimulating factor 1 in SW620 human colon cancer cells. Oncol Rep 2013; 31:197-201. [PMID: 24173679 DOI: 10.3892/or.2013.2818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/26/2013] [Indexed: 11/05/2022] Open
Abstract
Major vault protein (MVP) is the main constituent of the vault ribonucleoprotein particle and is identical to lung resistance-related protein (LRP). Although MVP is also expressed in several types of normal tissues, little is known about its physiological role. In the present study, we identified the crucial MVP promoter elements that regulate MVP expression. An examination of tissue expression profiles revealed that MVP was expressed in the heart, placenta, lung, liver, kidney and pancreas. Elements of the MVP promoter contain binding sites for transcription factors, STAT, p53, Sp1, E-box, GATA, MyoD and Y-box. By deletion analysis, a conserved proximal E-box binding site was demonstrated to be important for human MVP promoter transactivation. Introduction of siRNA against upstream stimulating factor (USF) 1, which is known to bind the E-box binding site, decreased the expression of MVP in SW620 and ACHN cells. Using a chromatin immunoprecipitation (ChIP) assay, USF1 bound the MVP promoter in SW620 cells. These findings suggest that USF1 binding to an E-box element may be critical for basal MVP promoter activation. The results of the present study are useful in understanding the molecular mechanisms regulating MVP gene expression, and may aid in elucidating the physiological functions of MVP.
Collapse
|
46
|
Kim ER, Selyutina AA, Buldakov IA, Evdokimova V, Ovchinnikov LP, Sorokin AV. The proteolytic YB-1 fragment interacts with DNA repair machinery and enhances survival during DNA damaging stress. Cell Cycle 2013; 12:3791-803. [PMID: 24107631 PMCID: PMC3905071 DOI: 10.4161/cc.26670] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Y-box binding protein 1 (YB-1) is a DNA/RNA-binding nucleocytoplasmic shuttling protein whose regulatory effect on many DNA and RNA-dependent events is determined by its localization in the cell. We have shown previously that YB-1 is cleaved by 20S proteasome between E219 and G220, and the truncated N-terminal YB-1 fragment accumulates in the nuclei of cells treated with DNA damaging drugs. We proposed that appearance of truncated YB-1 in the nucleus may predict multiple drug resistance. Here, we compared functional activities of the full-length and truncated YB-1 proteins and showed that the truncated form was more efficient in protecting cells against doxorubicin treatment. Both forms of YB-1 induced changes in expression of various genes without affecting those responsible for drug resistance. Interestingly, although YB-1 cleavage did not significantly affect its DNA binding properties, truncated YB-1 was detected in complexes with Mre11 and Rad50 under genotoxic stress conditions. We conclude that both full-length and truncated YB-1 are capable of protecting cells against DNA damaging agents, and the truncated form may have an additional function in DNA repair.
Collapse
Affiliation(s)
- Ekaterina R Kim
- Institute of Protein Research; Russian Academy of Sciences; Pushchino, Moscow Region, Russian Federation
| | - Anastasia A Selyutina
- Institute of Protein Research; Russian Academy of Sciences; Pushchino, Moscow Region, Russian Federation; University of Tartu; Institute of Technology; Tartu, Estonia
| | - Ilya A Buldakov
- Institute of Protein Research; Russian Academy of Sciences; Pushchino, Moscow Region, Russian Federation
| | - Valentina Evdokimova
- Institute of Protein Research; Russian Academy of Sciences; Pushchino, Moscow Region, Russian Federation; Department of Molecular Oncology; British Columbia Cancer Research Centre; Vancouver, British Columbia, Canada
| | - Lev P Ovchinnikov
- Institute of Protein Research; Russian Academy of Sciences; Pushchino, Moscow Region, Russian Federation
| | - Alexey V Sorokin
- Institute of Protein Research; Russian Academy of Sciences; Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
47
|
Tenzer S, Moro A, Kuharev J, Francis AC, Vidalino L, Provenzani A, Macchi P. Proteome-wide characterization of the RNA-binding protein RALY-interactome using the in vivo-biotinylation-pulldown-quant (iBioPQ) approach. J Proteome Res 2013; 12:2869-84. [PMID: 23614458 DOI: 10.1021/pr400193j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RALY is a member of the heterogeneous nuclear ribonucleoproteins, a family of RNA-binding proteins generally involved in many processes of mRNA metabolism. No quantitative proteomic analysis of RALY-containing ribonucleoparticles (RNPs) has been performed so far, and the biological role of RALY remains elusive. Here, we present a workflow for the characterization of RALY's interaction partners, termed iBioPQ, that involves in vivo biotinylation of biotin acceptor peptide (BAP)-fused protein in the presence of the prokaryotic biotin holoenzyme synthetase of BirA so that it can be purified using streptavidin-coated magnetic beads, circumventing the need for specific antibodies and providing efficient pulldowns. Protein eluates were subjected to tryptic digestion and identified using data-independent acquisition on an ion-mobility enabled high-resolution nanoUPLC-QTOF system. Using label-free quantification, we identified 143 proteins displaying at least 2-fold difference in pulldown compared to controls. Gene Ontology overrepresentation analysis revealed an enrichment of proteins involved in mRNA metabolism and translational control. Among the most abundant interacting proteins, we confirmed RNA-dependent interactions of RALY with MATR3, PABP1 and ELAVL1. Comparative analysis of pulldowns after RNase treatment revealed a protein-protein interaction of RALY with eIF4AIII, FMRP, and hnRNP-C. Our data show that RALY-containing RNPs are much more heterogeneous than previously hypothesized.
Collapse
Affiliation(s)
- Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Dolfini D, Mantovani R. Targeting the Y/CCAAT box in cancer: YB-1 (YBX1) or NF-Y? Cell Death Differ 2013; 20:676-85. [PMID: 23449390 PMCID: PMC3619239 DOI: 10.1038/cdd.2013.13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/11/2013] [Accepted: 01/18/2013] [Indexed: 01/14/2023] Open
Abstract
The Y box is an important sequence motif found in promoters and enhancers containing a CCAAT box - one of the few elements enriched in promoters of large sets of genes overexpressed in cancer. The search for the transcription factor(s) acting on it led to the biochemical purification of the nuclear factor Y (NF-Y) heterotrimer, and to the cloning - through the screening of expression libraries - of Y box-binding protein 1 (YB-1), an oncogene, overexpressed in aggressive tumors and associated with drug resistance. These two factors have been associated with Y/CCAAT-dependent activation of numerous growth-related genes, notably multidrug resistance protein 1. We review two decades of data indicating that NF-Y ultimately acts on Y/CCAAT in cancer cells, a notion recently confirmed by genome-wide data. Other features of YB-1, such as post-transcriptional control of mRNA biology, render it important in cancer biology.
Collapse
Affiliation(s)
- D Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| | - R Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
49
|
Egr-1 enhances drug resistance of breast cancer by modulating MDR1 expression in a GGPPS-independent manner. Biomed Pharmacother 2013; 67:197-202. [DOI: 10.1016/j.biopha.2013.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022] Open
|
50
|
Abstract
Hanahan and Weinberg have proposed the ‘hallmarks of cancer’ to cover the biological changes required for the development and persistence of tumours [Hanahan and Weinberg (2011) Cell 144, 646–674]. We have noted that many of these cancer hallmarks are facilitated by the multifunctional protein YB-1 (Y-box-binding protein 1). In the present review we evaluate the literature and show how YB-1 modulates/regulates cellular signalling pathways within each of these hallmarks. For example, we describe how YB-1 regulates multiple proliferation pathways, overrides cell-cycle check points, promotes replicative immortality and genomic instability, may regulate angiogenesis, has a role in invasion and metastasis, and promotes inflammation. We also argue that there is strong and sufficient evidence to suggest that YB-1 is an excellent molecular marker of cancer progression that could be used in the clinic, and that YB-1 could be a useful target for cancer therapy.
Collapse
|