1
|
Marzec E, Pięta P, Olszewski J. Dielectric properties of the non-glycated and in vitro methylglyoxal-glycated cornea of the rabbit eye. Bioelectrochemistry 2023; 150:108333. [PMID: 36463591 DOI: 10.1016/j.bioelechem.2022.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
The dielectric properties of the non-glycated and in vitro methylglyoxal-glycated cornea of the rabbit eye were tested in the frequency range of 200 Hz to 100 kHz of the electric field and at temperatures of 25 to 140 °C. The denaturation temperature (Td) for the non-glycated cornea and the non-enzymatically glycated cornea are approximately 45 and 55 °C, respectively. The mechanism of proton conduction up to Td in a glycated cornea requires more energy, i.e. more than twice the activation energy (ΔH) than in non-glycated tissue. The dielectric spectra for both examined tissues showed the same characteristic frequency of about 7 kHz assigned to the orientation relaxation time of the polar side groups inside the corneal stroma. These results may be useful in the surgical treatment of the cornea using conductive keratoplasty and in tissue engineering for clinical applications to regenerate this tissue. The medical use of these physico-biological techniques is important because the human cornea protects all eye tissues from various environmental factors.
Collapse
Affiliation(s)
- E Marzec
- Department of Bionics and Experimental Medical Biology, Poznan University of Medical Sciences, Parkowa 2, 60-775 Poznań, Poland.
| | - P Pięta
- Department of Bionics and Experimental Medical Biology, Poznan University of Medical Sciences, Parkowa 2, 60-775 Poznań, Poland
| | - J Olszewski
- Department of Bionics and Experimental Medical Biology, Poznan University of Medical Sciences, Parkowa 2, 60-775 Poznań, Poland
| |
Collapse
|
2
|
Czech M, Konopacka M, Rogoliński J, Maniakowski Z, Staniszewska M, Łaczmański Ł, Witkowska D, Gamian A. The Genotoxic and Pro-Apoptotic Activities of Advanced Glycation End-Products (MAGE) Measured with Micronuclei Assay Are Inhibited by Their Low Molecular Mass Counterparts. Genes (Basel) 2021; 12:genes12050729. [PMID: 34068126 PMCID: PMC8152725 DOI: 10.3390/genes12050729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
An association between the cancer invasive activities of cells and their exposure to advanced glycation end-products (AGEs) was described early in some reports. An incubation of cells with BSA-AGE (bovine serum albumin-AGE), BSA-carboxymethyllysine and BSA-methylglyoxal (BSA-MG) resulted in a significant increase in DNA damage. We examined the genotoxic activity of new products synthesized under nonaqueous conditions. These were high molecular mass MAGEs (HMW-MAGEs) formed from protein and melibiose and low molecular mass MAGEs (LMW-MAGEs) obtained from the melibiose and N-α-acetyllysine and N-α-acetylarginine. We have observed by measuring of micronuclei in human lymphocytes in vitro that the studied HMW-MAGEs expressed the genotoxicity. The number of micronuclei (MN) in lymphocytes reached 40.22 ± 5.34 promille (MN/1000CBL), compared to 28.80 ± 6.50 MN/1000 CBL for the reference BSA-MG, whereas a control value was 20.66 ± 1.39 MN/1000CBL. However, the LMW-MAGE fractions did not induce micronuclei formation in the culture of lymphocytes and partially protected DNA against damage in the cells irradiated with X-ray. Human melanoma and all other studied cells, such as bronchial epithelial cells, lung cancer cells and colorectal cancer cells, are susceptible to the genotoxic effects of HMW-MAGEs. The LMW-MAGEs are not genotoxic, while they inhibit HMW-MAGE genotoxic activity. With regard to apoptosis, it is induced with the HMW-MAGE compounds, in the p53 independent way, whereas the low molecular mass product inhibits the apoptosis induction. Further investigations will potentially indicate beneficial apoptotic effect on cancer cells.
Collapse
Affiliation(s)
- Monika Czech
- Dr. Józef Rostek Regional Hospital, Gamowska 3, 47-400 Racibórz, Poland;
| | - Maria Konopacka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-100 Gliwice, Poland; (M.K.); (J.R.)
| | - Jacek Rogoliński
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-100 Gliwice, Poland; (M.K.); (J.R.)
| | - Zbigniew Maniakowski
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-100 Gliwice, Poland;
| | - Magdalena Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Natural Sciences and Health, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland;
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (Ł.Ł.); (D.W.)
| | - Łukasz Łaczmański
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (Ł.Ł.); (D.W.)
| | - Danuta Witkowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (Ł.Ł.); (D.W.)
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (Ł.Ł.); (D.W.)
- Wrocław Research Center EIT+, PORT, Stabłowicka 147/149, 54-066 Wrocław, Poland
- Correspondence:
| |
Collapse
|
3
|
Staniszewska M, Bronowicka-Szydełko A, Gostomska-Pampuch K, Szkudlarek J, Bartyś A, Bieg T, Gamian E, Kochman A, Picur B, Pietkiewicz J, Kuropka P, Szeja W, Wiśniewski J, Ziółkowski P, Gamian A. The melibiose-derived glycation product mimics a unique epitope present in human and animal tissues. Sci Rep 2021; 11:2940. [PMID: 33536563 PMCID: PMC7859244 DOI: 10.1038/s41598-021-82585-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
Non-enzymatic modification of proteins by carbohydrates, known as glycation, leads to generation of advanced glycation end-products (AGEs). In our study we used in vitro generated AGEs to model glycation in vivo. We discovered in vivo analogs of unusual melibiose-adducts designated MAGEs (mel-derived AGEs) synthesized in vitro under anhydrous conditions with bovine serum albumin and myoglobin. Using nuclear magnetic resonance spectroscopy we have identified MAGEs as a set of isomers, with open-chain and cyclic structures, of the fructosamine moiety. We generated a mouse anti-MAGE monoclonal antibody and show for the first time that the native and previously undescribed analogous glycation product exists in living organisms and is naturally present in tissues of both invertebrates and vertebrates, including humans. We also report MAGE cross-reactive auto-antibodies in patients with diabetes. We anticipate our approach for modeling glycation in vivo will be a foundational methodology in cell biology. Further studies relevant to the discovery of MAGE may contribute to clarifying disease mechanisms and to the development of novel therapeutic options for diabetic complications, neuropathology, and cancer.
Collapse
Affiliation(s)
- Magdalena Staniszewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland.,Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708, Lublin, Poland
| | | | - Kinga Gostomska-Pampuch
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland.,Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wrocław, Poland
| | - Jerzy Szkudlarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Arkadiusz Bartyś
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Tadeusz Bieg
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Elżbieta Gamian
- Department of Pathomorphology, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Agata Kochman
- Department of Pathology, University Hospital Monklands, Monkscourt Ave, Airdrie, ML6 0JS, UK
| | - Bolesław Picur
- Faculty of Chemistry, University of Wrocław, 50-383, Wrocław, Poland
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wrocław, Poland
| | - Piotr Kuropka
- Department of Anatomy and Histology, Wroclaw University of Environmental and Life Sciences, Norwida 1, 50-375, Wrocław, Poland
| | - Wiesław Szeja
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Jerzy Wiśniewski
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathomorphology, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland. .,Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wrocław, Poland. .,Wroclaw Research Centre EIT+, PORT, Stabłowicka 147/149, 54-066, Wrocław, Poland.
| |
Collapse
|
4
|
Streeter MD, Rowan S, Ray J, McDonald DM, Volkin J, Clark J, Taylor A, Spiegel DA. Generation and Characterization of Anti-Glucosepane Antibodies Enabling Direct Detection of Glucosepane in Retinal Tissue. ACS Chem Biol 2020; 15:2655-2661. [PMID: 32975399 PMCID: PMC10625846 DOI: 10.1021/acschembio.0c00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although there is ample evidence that the advanced glycation end-product (AGE) glucosepane contributes to age-related morbidities and diabetic complications, the impact of glucosepane modifications on proteins has not been extensively explored due to the lack of sufficient analytical tools. Here, we report the development of the first polyclonal anti-glucosepane antibodies using a synthetic immunogen that contains the core bicyclic ring structure of glucosepane. We investigate the recognition properties of these antibodies through ELISAs involving an array of synthetic AGE derivatives and determine them to be both high-affinity and selective in binding glucosepane. We then employ these antibodies to image glucosepane in aging mouse retinae via immunohistochemistry. Our studies demonstrate for the first time accumulation of glucosepane within the retinal pigment epithelium, Bruch's membrane, and choroid: all regions of the eye impacted by age-related macular degeneration. Co-localization studies further suggest that glucosepane colocalizes with lipofuscin, which has previously been associated with lysosomal dysfunction and has been implicated in the development of age-related macular degeneration, among other diseases. We believe that the anti-glucosepane antibodies described in this study will prove highly useful for examining the role of glycation in human health and disease.
Collapse
Affiliation(s)
- Matthew D Streeter
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Sheldon Rowan
- Tufts University, JM-USDA Human Nutrition Research Center on Aging, 711 Washington Street, Boston, Massachusetts 02111, United States
| | - Jason Ray
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - David M McDonald
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Jonathan Volkin
- Tufts University, JM-USDA Human Nutrition Research Center on Aging, 711 Washington Street, Boston, Massachusetts 02111, United States
| | - Jonathan Clark
- Biological Chemistry Laboratory, Babraham Institute, Cambridge CB21 3AT, United Kingdom
| | - Allen Taylor
- Tufts University, JM-USDA Human Nutrition Research Center on Aging, 711 Washington Street, Boston, Massachusetts 02111, United States
| | - David A Spiegel
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
5
|
Jung E, Park SB, Jung WK, Kim HR, Kim J. Antiglycation Activity of Aucubin In Vitro and in Exogenous Methylglyoxal Injected Rats. Molecules 2019; 24:molecules24203653. [PMID: 31658696 PMCID: PMC6832881 DOI: 10.3390/molecules24203653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
Advanced glycation end products (AGEs) is a causative factor of various chronic diseases, including chronic kidney disease and atherosclerosis. AGE inhibitors, such as aminoguanidine and pyridoxamine, have the therapeutic activities for reversing the increase in AGEs burden. This study evaluated the inhibitory effects of aucubin on the formation of methylglyoxal (MGO)-modified AGEs in vitro. We also determined the potential activity of aucubin in reducing the AGEs burden in the kidney, blood vessel, heart, and retina of exogenously MGO-injected rats. Aucubin inhibited the formation of MGO-modified AGE-bovine serum albumin (IC50 = 0.57 ± 0.04 mmol/L) and its cross-links to collagen (IC50 = 0.55 ± 0.02 mmol/L) in a dose-dependent manner. In addition, aucubin directly trapped MGO (IC50 = 0.22 ± 0.01 mmol/L) in vitro. In exogenous MGO-injected rats, aucubin suppressed the formation of circulating AGEs and its accumulation in various tissues. These activities of aucubin on the MGO-derived AGEs in vitro and in vivo showed its pharmacological potential for inhibiting AGEs-related various chronic diseases.
Collapse
Affiliation(s)
- Eunsoo Jung
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Su-Bin Park
- Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Woo Kwon Jung
- Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Hyung Rae Kim
- Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
6
|
Methylglyoxal – An emerging biomarker for diabetes mellitus diagnosis and its detection methods. Biosens Bioelectron 2019; 133:107-124. [DOI: 10.1016/j.bios.2019.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
|
7
|
Jung E, Kang WS, Jo K, Kim J. Ethyl Pyruvate Prevents Renal Damage Induced by Methylglyoxal-Derived Advanced Glycation End Products. J Diabetes Res 2019; 2019:4058280. [PMID: 31737683 PMCID: PMC6815569 DOI: 10.1155/2019/4058280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/08/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
The renal accumulation of advanced glycation end products (AGEs) is a causative factor of various renal diseases, including chronic kidney disease and diabetic nephropathy. AGE inhibitors, such as aminoguanidine and pyridoxamine, have the therapeutic activities for reversing the increase in renal AGE burden. This study evaluated the inhibitory effects of ethyl pyruvate (EP) on methylglyoxal- (MGO-) modified AGE cross-links with proteins in vitro. We also determined the potential activity of EP in reducing the renal AGE burden in exogenously MGO-injected rats. EP inhibited MGO-modified AGE-bovine serum albumin (BSA) cross-links to collagen (IC50 = 0.19 ± 0.03 mM) in a dose-dependent manner, and its activity was stronger than aminoguanidine (IC50 = 35.97 ± 0.85 mM). In addition, EP directly trapped MGO (IC50 = 4.41 ± 0.08 mM) in vitro. In exogenous MGO-injected rats, EP suppressed AGE burden and MGO-induced oxidative injury in renal tissues. These activities of EP on the MGO-mediated AGEs cross-links with protein in vitro and in vivo showed its pharmacological potential for inhibiting AGE-induced renal diseases.
Collapse
Affiliation(s)
- Eunsoo Jung
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Wan Seok Kang
- College Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Kyuhyung Jo
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Junghyun Kim
- College Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
8
|
Dhananjayan K, Gunawardena D, Hearn N, Sonntag T, Moran C, Gyengesi E, Srikanth V, Münch G. Activation of Macrophages and Microglia by Interferon-γ and Lipopolysaccharide Increases Methylglyoxal Production: A New Mechanism in the Development of Vascular Complications and Cognitive Decline in Type 2 Diabetes Mellitus? J Alzheimers Dis 2018; 59:467-479. [PMID: 28582854 DOI: 10.3233/jad-161152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methylglyoxal (MGO), a dicarbonyl compound derived from glucose, is elevated in diabetes mellitus and contributes to vascular complications by crosslinking collagen and increasing arterial stiffness. It is known that MGO contributes to inflammation as it forms advanced glycation end products (AGEs), which activate macrophages via the receptor RAGE. The aim of study was to investigate whether inflammatory activation can increase MGO levels, thereby completing a vicious cycle. In order to validate this, macrophage (RAW264.7, J774A.1) and microglial (N11) cells were stimulated with IFN-γ and LPS (5 + 5 and 10 + 10 IFN-γ U/ml or μg/ml LPS), and extracellular MGO concentration was determined after derivatization with 5,6-Diamino-2,4-dihydroxypyrimidine sulfate by HPLC. MGO levels in activated macrophage cells (RAW264.7) peaked at 48 h, increasing 2.86-fold (3.14±0.4 μM) at 5 U/ml IFN-γ+5 μg/ml LPS, and 4.74-fold (5.46±0.30 μM) at 10 U/ml IFN-γ+10 μg/ml LPS compared to the non-activated controls (1.15±0.02 μM). The other two cell lines, J774A.1 macrophages and N11 microglia, showed a similar response. We suggest that inflammation increases MGO production, possibly exacerbating arterial stiffness, cardiovascular complications, and diabetes-related cognitive decline.
Collapse
Affiliation(s)
- Karthik Dhananjayan
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Dhanushka Gunawardena
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Nerissa Hearn
- Molecular Medicine Research Group, Western Sydney University, Penrith, NSW, Australia
| | - Tanja Sonntag
- Molecular Medicine Research Group, Western Sydney University, Penrith, NSW, Australia
| | - Chris Moran
- Department of Medicine, Peninsula Health & Peninsula Clinical School, Monash University, VIC, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Velandai Srikanth
- Department of Medicine, Peninsula Health & Peninsula Clinical School, Monash University, VIC, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Molecular Medicine Research Group, Western Sydney University, Penrith, NSW, Australia.,National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
9
|
Thompson K, Chen J, Luo Q, Xiao Y, Cummins TR, Bhatwadekar AD. Advanced glycation end (AGE) product modification of laminin downregulates Kir4.1 in retinal Müller cells. PLoS One 2018; 13:e0193280. [PMID: 29474462 PMCID: PMC5825079 DOI: 10.1371/journal.pone.0193280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/07/2018] [Indexed: 11/19/2022] Open
Abstract
Diabetic retinopathy (DR) is a major cause of adult blindness. Retinal Müller cells maintain water homeostasis and potassium concentration via inwardly rectifying Kir4.1 channels. Accumulation of advanced glycation end products (AGEs) is a major pathologic event in DR. While diabetes leads to a decrease in the Kir4.1 channels, it remains unknown whether AGEs-linked to the basement membrane (BM) affect normal Kir4.1 channels. For this study, we hypothesized that AGE-modification of laminin is detrimental to Kir4.1 channels, therefore, disrupting Müller cell function. The AGE-modified laminin-coated substrates were prepared by incubating Petri-dishes with laminin and methylglyoxal for seven days. The rat Müller cells (rMC-1) were propagated on AGE-modified laminin, and Kir4.1 expression and function were evaluated. Quantification of AGEs using ELISA revealed a dose-dependent increase in methylglyoxal-hydro-imidazolone adducts. The rMC-1 propagated on AGE-modified laminin demonstrated a decrease in Kir4.1 levels in immunofluorescence and western blot studies and a decrease in the Kir4.1 channel function. Kir4.1 decrease on AGE-modified laminin resulted in a disorganization of an actin cytoskeleton and disruption of α-dystroglycan-syntrophin-dystrophin complexes. Our studies suggest that AGE-modification of laminin is detrimental to Kir4.1 channels. By studying the role of AGEs in Kir4.1 channels we have identified a novel mechanism of Müller cell dysfunction and its subsequent involvement in DR.
Collapse
Affiliation(s)
- Kayla Thompson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jonathan Chen
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Qianyi Luo
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yucheng Xiao
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, United States of America
| | - Theodore R. Cummins
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, United States of America
| | - Ashay D. Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ishida YI, Kayama T, Kibune Y, Nishimoto S, Koike S, Suzuki T, Horiuchi Y, Miyashita M, Itokawa M, Arai M, Ogasawara Y. Identification of an argpyrimidine-modified protein in human red blood cells from schizophrenic patients: A possible biomarker for diseases involving carbonyl stress. Biochem Biophys Res Commun 2017; 493:573-577. [PMID: 28867194 DOI: 10.1016/j.bbrc.2017.08.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
Argpyrimidine (ARP) is an advanced glycation end product thought to be generated from a reaction between methylglyoxal and arginine residues in proteins. In this study, we observed marked accumulation of an approximately 56 kD protein, reactive to anti-ARP antibodies, in the red blood cells (RBCs) of some patients with refractory schizophrenia. This ARP-modified protein was purified from the blood of schizophrenic patients and identified as selenium binding protein 1 (SBP1) by LC-MS/MS. This is the first report of ARP-modified proteins accumulating in RBCs of patients with diseases involving carbonyl stress. We also observed high accumulation of ARP-modified SBP1 in the RBCs of patients with chronic kidney disease. Therefore, this modified protein may be a novel marker of carbonyl stress.
Collapse
Affiliation(s)
- Y I Ishida
- Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - T Kayama
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - Y Kibune
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - S Nishimoto
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - S Koike
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - T Suzuki
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - Y Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - M Miyashita
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - M Itokawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - M Arai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Y Ogasawara
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan.
| |
Collapse
|
11
|
Prasad C, Davis KE, Imrhan V, Juma S, Vijayagopal P. Advanced Glycation End Products and Risks for Chronic Diseases: Intervening Through Lifestyle Modification. Am J Lifestyle Med 2017; 13:384-404. [PMID: 31285723 DOI: 10.1177/1559827617708991] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022] Open
Abstract
Advanced glycation end products (AGEs) are a family of compounds of diverse chemical nature that are the products of nonenzymatic reactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs bind to one or more of their multiple receptors (RAGE) found on a variety of cell types and elicit an array of biologic responses. In this review, we have summarized the data on the nature of AGEs and issues associated with their measurements, their receptors, and changes in their expression under different physiologic and disease states. Last, we have used this information to prescribe lifestyle choices to modulate AGE-RAGE cycle for better health.
Collapse
Affiliation(s)
- Chandan Prasad
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Kathleen E Davis
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Victorine Imrhan
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Shanil Juma
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Parakat Vijayagopal
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| |
Collapse
|
12
|
Bhuiyan MNI, Mitsuhashi S, Sigetomi K, Ubukata M. Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species. Biosci Biotechnol Biochem 2017; 81:882-890. [PMID: 28388357 DOI: 10.1080/09168451.2017.1282805] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Physiological concentration of Mg2+, Cu2+, and Zn2+ accelerated AGE formation only in glucose-mediated conditions, which was effectively inhibited by chelating ligands. Only quercetin (10) inhibited MGO-mediated AGE formation as well as glucose- and ribose-mediated AGE formation among 10 polyphenols (1-10) tested. We performed an additional structure-activity relationship (SAR) study on flavanols (10, 11, 12, 13, and 14). Morin (12) and kaempherol (14) showed inhibitory activity against MGO-mediated AGE formation, whereas rutin (11) and fisetin (13) did not. These observations indicate that 3,5,7,4'-tetrahydroxy and 4-keto groups of 10 are important to yield newly revised mono-MGO adducts (16 and 17) and di-MGO adduct (18) having cyclic hemiacetals, while 3'-hydroxy group is not essential. We propose here a comprehensive inhibitory mechanism of 10 against AGE formation including chelation effect, trapping of MGO, and trapping of reactive oxygen species (ROS), which leads to oxidative degradation of 18 to 3,4-dihydroxybenzoic acid (15) and other fragments.
Collapse
Affiliation(s)
| | - Shinya Mitsuhashi
- a Division of Applied Bioscience, Graduate School of Agriculture , Hokkaido University , Sapporo , Japan
| | - Kengo Sigetomi
- a Division of Applied Bioscience, Graduate School of Agriculture , Hokkaido University , Sapporo , Japan
| | - Makoto Ubukata
- a Division of Applied Bioscience, Graduate School of Agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
13
|
The role of fibrinogen glycation in ATTR: evidence for chaperone activity loss in disease. Biochem J 2016; 473:2225-37. [DOI: 10.1042/bcj20160290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/12/2016] [Indexed: 12/14/2022]
Abstract
Transthyretin amyloidosis (ATTR) belongs to a class of disorders caused by protein misfolding and aggregation. ATTR is a disabling disorder of autosomal dominant trait, where transthyretin (TTR) forms amyloid deposits in different organs, causing dysfunction of the peripheral nervous system. We previously discovered that amyloid fibrils from ATTR patients are glycated by methylglyoxal. Even though no consensus has been reached about the actual role of methylglyoxal-derived advanced glycation end-products in amyloid diseases, evidence collected so far points to a role for protein glycation in conformational abnormalities, being ubiquitously found in amyloid deposits in Alzheimer's disease, dialysis-related amyloidosis and Parkinson's diseases. Human fibrinogen, an extracellular chaperone, was reported to specifically interact with a wide spectrum of stressed proteins and suppress their aggregation, being an interacting protein with TTR. Fibrinogen is differentially glycated in ATTR, leading to its chaperone activity loss. Here we show the existence of a proteostasis imbalance in ATTR linked to fibrinogen glycation by methylglyoxal.
Collapse
|
14
|
Yang K, Fard S, Furrer R, Archer MC, Bruce WR, Lip H, Mehta R, O'Brien PJ, Giacca A, Ward WE, Femia AP, Caderni G, Medline A, Banks K. Risk factors for colorectal cancer in man induce aberrant crypt foci in rats: Preliminary findings. Nutr Cancer 2015; 68:94-104. [PMID: 26709971 PMCID: PMC4784512 DOI: 10.1080/01635581.2016.1115098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epidemiological studies have demonstrated clear associations between specific dietary and environmental risk factors and incidence of colorectal cancer, but the mechanisms responsible for these associations are not known. An animal model could facilitate such an understanding. Both genotoxic and nongenotoxic carcinogens induce aberrant crypt foci (ACF) in the colons of F344 rats. F344 rats were provided with diets that contained putative risk factors for CRC: low calcium and low vitamin D, high iron, high fructose, and decreased light (UV) exposure or a control diet for 14 wk. The rats were then assessed with biochemical measures and by topological examination for evidence of colon abnormalities. Circulating ionized calcium was decreased from 2.85 to 1.69 mmol/L, and ACF were increased from 0.7 to 13.6 lesions/colon (both P < 0.001). Rats exposed to the multiple environmental conditions associated with colon cancer, developed ACF similar to the heterogeneous or ill-defined ACF in the human colon. Heterogeneous ACF are the most frequently seen in humans and are also seen in rats shortly after exposure to the non-genotoxic colon carcinogen, dextransulfate sodium. The rodent model could be used to assess the pathways from diet and environment to colon cancer and to provide guidance for clinical studies.
Collapse
Affiliation(s)
- Kai Yang
- a Faculty of Medicine, University of Toronto , Toronto , Canada
| | - Sara Fard
- b Department of Nutritional Sciences , Faculty of Medicine, University of Toronto , Toronto , Canada
| | - Rudolf Furrer
- b Department of Nutritional Sciences , Faculty of Medicine, University of Toronto , Toronto , Canada
| | - Michael C Archer
- b Department of Nutritional Sciences , Faculty of Medicine, University of Toronto , Toronto , Canada
| | - W Robert Bruce
- b Department of Nutritional Sciences , Faculty of Medicine, University of Toronto , Toronto , Canada
| | - HoYin Lip
- c Department of Pharmaceutical Science , Faculty of Pharmacy, University of Toronto , Toronto , Canada
| | - Rhea Mehta
- c Department of Pharmaceutical Science , Faculty of Pharmacy, University of Toronto , Toronto , Canada
| | - Peter J O'Brien
- c Department of Pharmaceutical Science , Faculty of Pharmacy, University of Toronto , Toronto , Canada
| | - Adria Giacca
- d Department of Physiology , Faculty of Medicine, University of Toronto , Toronto , Canada
| | - Wendy E Ward
- e Centre for Bone and Muscle Health, Brock University , St. Catharines , Canada
| | - A Pietro Femia
- f NEUROFARBA Department , Section of Pharmacology and Toxicology, University of Florence , Florence , Italy
| | - Giovanna Caderni
- f NEUROFARBA Department , Section of Pharmacology and Toxicology, University of Florence , Florence , Italy
| | - Alan Medline
- g Department of Pathology , Humber River Hospital , Toronto , Canada
| | - Kate Banks
- h Division of Comparative Medicine and Department of Physiology, Faculty of Medicine, University of Toronto , Toronto , Canada
| |
Collapse
|
15
|
Schmidt R, Böhme D, Singer D, Frolov A. Specific tandem mass spectrometric detection of AGE-modified arginine residues in peptides. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:613-624. [PMID: 25800199 DOI: 10.1002/jms.3569] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Glycation is a non-enzymatic reaction of protein amino and guanidino groups with reducing sugars or dicarbonyl products of their oxidative degradation. Modification of arginine residues by dicarbonyls such as glyoxal and methylglyoxal results in formation of advanced glycation end-products (AGEs). In mammals, these modifications impact in diabetes mellitus, uremia, atherosclerosis and ageing. However, due to the low abundance of individual AGE-peptides in enzymatic digests, these species cannot be efficiently detected by LC-ESI-MS-based data-dependent acquisition (DDA) experiments. Here we report an analytical workflow that overcomes this limitation. We describe fragmentation patterns of synthetic AGE-peptides and assignment of modification-specific signals required for unambiguous structure retrieval. Most intense signals were those corresponding to unique fragment ions with m/z 152.1 and 166.1, observed in the tandem mass spectra of peptides, containing glyoxal- and methylglyoxal-derived hydroimidazolone AGEs, respectively. To detect such peptides, specific and sensitive precursor ion scanning methods were established for these signals. Further, these precursor ion scans were incorporated in conventional bottom-up proteomic approach based on data-dependent acquisition (DDA) LC-MS/MS experiments. The method was successfully applied for the analysis of human serum albumin (HSA) and human plasma protein tryptic digest with subsequent structure confirmation by targeted LC-MS/MS (DDA). Altogether 44 hydroimidazolone- and dihydroxyimidazolidine-derived peptides representing 42 AGE-modified proteins were identified in plasma digests obtained from type 2 diabetes mellitus (T2DM) patients.
Collapse
Affiliation(s)
- Rico Schmidt
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
16
|
Li X, Zheng T, Sang S, Lv L. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12152-8. [PMID: 25412188 DOI: 10.1021/jf504132x] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Methylglyoxal (MGO) and glyoxal (GO) not only are endogenous metabolites but also exist in exogenous resources, such as foods, beverages, urban atmosphere, and cigarette smoke. They have been identified as reactive dicarbonyl precursors of advanced glycation end products (AGEs), which have been associated with diabetes-related long-term complications. In this study, quercetin, a natural flavonol found in fruits, vegetables, leaves, and grains, could effectively inhibit the formation of AGEs in a dose-dependent manner via trapping reactive dicarbonyl compounds. More than 50.5% of GO and 80.1% of MGO were trapped at the same time by quercetin within 1 h under physiological conditions. Quercetin and MGO (or GO) were combined at different ratios, and the products generated from this reaction were analyzed with LC-MS. Both mono-MGO and di-MGO adducts of quercetin were detected in this assay using LC-MS, but only tiny amounts of mono-GO adducts of quercetin were found. Additionally, di-MGO adducts were observed as the dominant product with prolonged incubation time. In the bovine serum albumin (BSA)-MGO/GO system, quercetin traps MGO and GO directly and then significantly inhibits the formation of AGEs.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Food Science and Technology, Ginling College, Nanjing Normal University , 122 Ninghai Road, Nanjing 210097, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Jung E, Kim J, Kim SH, Kim S, Cho MH. Gemigliptin, a novel dipeptidyl peptidase-4 inhibitor, exhibits potent anti-glycation properties in vitro and in vivo. Eur J Pharmacol 2014; 744:98-102. [PMID: 25448307 DOI: 10.1016/j.ejphar.2014.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 09/27/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022]
Abstract
This study evaluated the inhibitory effects of gemigliptin, a highly selective dipeptidyl peptidase-4 inhibitor, on the formation of advanced glycation end products (AGEs) and AGE cross-links with proteins in in vitro as well as in type 2 diabetic db/db mice. In in vitro assay, gemigliptin dose-dependently inhibited methylglyoxal-modified AGE-bovine serum albumin (BSA) formation (IC50=11.69 mM). AGE-collagen cross-linking assays showed that gemigliptin had a potent inhibitory effect (IC50=1.39 mM) on AGE-BSA cross-links to rat tail tendon collagen, and its activity was stronger than aminoguanidine (IC50=26.4 mM). In addition, gemigliptin directly trapped methylglyoxal in a concentration-dependent manner in vitro. To determine whether gemigliptin inhibits the in vivo glycation processes, gemigliptin (100 mg/kg/day) was orally administered into type 2 diabetic db/db mice for 12 weeks. Elevated serum levels of AGEs in db/db mice were suppressed by the administration of gemigliptin. These inhibitory effects of gemigliptin on the glycation process in both in vitro and in vivo suggest its therapeutic potential for ameliorating AGE-related diabetic complications.
Collapse
Affiliation(s)
- Eunsoo Jung
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea; LG Life Sciences Ltd., R&D Park, Daejeon 305-343, Republic of Korea
| | - Junghyun Kim
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Sung Ho Kim
- LG Life Sciences Ltd., R&D Park, Daejeon 305-343, Republic of Korea
| | - Sanghwa Kim
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea; Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Republic of Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 151-742, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea.
| |
Collapse
|
18
|
Whitcomb EA, Shang F, Taylor A. Common cell biologic and biochemical changes in aging and age-related diseases of the eye: toward new therapeutic approaches to age-related ocular diseases. Invest Ophthalmol Vis Sci 2013; 54:ORSF31-6. [PMID: 24335065 DOI: 10.1167/iovs.13-12808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Elizabeth A Whitcomb
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | | | | |
Collapse
|
19
|
Guilbert M, Said G, Happillon T, Untereiner V, Garnotel R, Jeannesson P, Sockalingum GD. Probing non-enzymatic glycation of type I collagen: A novel approach using Raman and infrared biophotonic methods. Biochim Biophys Acta Gen Subj 2013; 1830:3525-31. [DOI: 10.1016/j.bbagen.2013.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/08/2013] [Accepted: 01/13/2013] [Indexed: 11/25/2022]
|
20
|
Bose T, Bhattacherjee A, Banerjee S, Chakraborti AS. Methylglyoxal-induced modifications of hemoglobin: structural and functional characteristics. Arch Biochem Biophys 2012; 529:99-104. [PMID: 23232081 DOI: 10.1016/j.abb.2012.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/16/2012] [Accepted: 12/01/2012] [Indexed: 01/31/2023]
Abstract
Methylglyoxal (MG) reacts with proteins to form advanced glycation end products (AGEs). Although hemoglobin modification by MG is known, the modified protein is not yet characterized. We have studied the nature of AGE formed by MG on human hemoglobin (HbA(0)) and its effect on structure and function of the protein. After reaction of HbA(0) with MG, the modified protein (MG-Hb) was separated and its properties were compared with those of the unmodified protein HbA(0). As shown by MALDI-mass spectrometry, MG converted Arg-92α and Arg-104β to hydroimidazolones in MG-Hb. Compared to HbA(0), MG-Hb exhibited decreased absorbance around 280nm, reduced tryptophan fluorescence (excitation 285nm) and increased α-helix content. However, MG modification did not change the quaternary structure of the heme protein. MG-Hb appeared to be more thermolabile than HbA(0). The modified protein was found to be more effective than HbA(0) in H(2)O(2)-mediated iron release and oxidative damages involving Fenton reaction. MG-Hb exhibited less peroxidase activity and more esterase activity than HbA(0). MG-induced structural and functional changes of hemoglobin may enhance oxidative stress and associated complications, particularly in diabetes mellitus with increased level of MG.
Collapse
Affiliation(s)
- Tania Bose
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009, India
| | | | | | | |
Collapse
|
21
|
Jia X, Chang T, Wilson TW, Wu L. Methylglyoxal mediates adipocyte proliferation by increasing phosphorylation of Akt1. PLoS One 2012; 7:e36610. [PMID: 22606274 PMCID: PMC3351465 DOI: 10.1371/journal.pone.0036610] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 04/10/2012] [Indexed: 01/06/2023] Open
Abstract
Methylglyoxal (MG) is a highly reactive metabolite physiologically presented in all biological systems. The effects of MG on diabetes and hypertension have been long recognized. In the present study, we investigated the potential role of MG in obesity, one of the most important factors to cause metabolic syndrome. An increased MG accumulation was observed in the adipose tissue of obese Zucker rats. Cell proliferation assay showed that 5–20 µM of MG stimulated the proliferation of 3T3-L1 cells. Further study suggested that accumulated-MG stimulated the phosphorylation of Akt1 and its targets including p21 and p27. The activated Akt1 then increased the activity of CDK2 and accelerated the cell cycle progression of 3T3-L1 cells. The effects of MG were efficiently reversed by advanced glycation end product (AGE) breaker alagebrium and Akt inhibitor SH-6. In summary, our study revealed a previously unrecognized effect of MG in stimulating adipogenesis by up-regulation of Akt signaling pathway and this mechanism might offer a new approach to explain the development of obesity.
Collapse
Affiliation(s)
- Xuming Jia
- Department of Pharmacology, Collage of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Tuanjie Chang
- Department of Pharmacology, Collage of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Thomas W. Wilson
- Department of Medicine, Collage of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Lingyun Wu
- Department of Pharmacology, Collage of Medicine, University of Saskatchewan, Saskatoon, Canada
- Department of Health Sciences, Lakehead University and Thunder Bay Regional Research Institute, Thunder Bay, Canada
- * E-mail:
| |
Collapse
|
22
|
Kowald A. The glyoxalase system as an example of a cellular maintenance pathway with relevance to aging. Aging (Albany NY) 2011; 3:17-8. [PMID: 21266742 PMCID: PMC3047133 DOI: 10.18632/aging.100268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Alex Kowald
- Humboldt University Berlin, Institute for Biology, Theoretical Biophysics, Germany. ‐berlin.de
| |
Collapse
|
23
|
Kim J, Jeong IH, Kim CS, Lee YM, Kim JM, Kim JS. Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking. Arch Pharm Res 2011; 34:495-500. [DOI: 10.1007/s12272-011-0319-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/08/2010] [Accepted: 12/03/2010] [Indexed: 02/02/2023]
|
24
|
Lv L, Shao X, Chen H, Ho CT, Sang S. Genistein Inhibits Advanced Glycation End Product Formation by Trapping Methylglyoxal. Chem Res Toxicol 2011; 24:579-86. [DOI: 10.1021/tx100457h] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lishuang Lv
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food Science and Technology, Ginling College, Nanjing Normal University, 122# Ninghai Road, Nanjing, 210097, P. R. China
| | - Xi Shao
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Huadong Chen
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Shengmin Sang
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
25
|
Du Y, Kowluru A, Kern TS. PP2A contributes to endothelial death in high glucose: inhibition by benfotiamine. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1610-7. [PMID: 20881100 DOI: 10.1152/ajpregu.00676.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endothelial death is critical in diabetic vascular diseases, but regulating factors have been only partially elucidated. Phosphatases play important regulatory roles in cell metabolism, but have not previously been implicated in hyperglycemia-induced cell death. We investigated the role of the phosphatase, type 2A protein phosphatase (PP2A), in hyperglycemia-induced changes in signaling and death in bovine aortic endothelial cells (BAEC). We explored also the influence of benfotiamine on this phosphatase. Activation of PP2A was assessed in BAEC by the extent of methylation and measurement of activity, and the enzyme was inhibited using selective pharmacological (okadaic acid, sodium fostriecin) and molecular (small interfering RNA) approaches. BAECs cultured in 30 mM glucose significantly increased PP2A methylation and activity, and PP2A inhibitors blocked these abnormalities. PP2A activity was increased also in aorta and retina from diabetic rats. NF-κB activity and cell death in BAEC were significantly increased in 30 mM glucose and inhibited by PP2A inhibition. NF-κB played a role in the hyperglycemia-induced death of BAEC, since blocking its translocation with SN50 also inhibited cell death. Inhibition of PP2A blocked the hyperglycemia-induced dephosphorylation of NF-κB and Bad, thus favoring cell survival. Incubation of benfotiamine with BAEC inhibited the high glucose-induced activation of PP2A and NF-κB and cell death, as well as several other metabolic defects, which likewise were inhibited by inhibitors of PP2A. Activation of PP2A contributes to endothelial cell death in high glucose, and beneficial actions of benfotiamine are due, at least in part, to inhibition of PP2A activation.
Collapse
Affiliation(s)
- Y Du
- Department of Medicine, Center for Diabetes Research, Case Western Reserve University, Cleveland, Ohio 44106-4951, USA
| | | | | |
Collapse
|
26
|
Avila F, Friguet B, Silva E. Simultaneous chemical and photochemical protein crosslinking induced by irradiation of eye lens proteins in the presence of ascorbate: the photosensitizing role of an UVA-visible-absorbing decomposition product of vitamin C. Photochem Photobiol Sci 2010; 9:1351-8. [PMID: 20734005 DOI: 10.1039/c0pp00048e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure to light has been implicated as a risk factor during aging of the eye lens and in cataract generation. In order to visualize the actual effect of UVA-visible light on this tissue, we incubated water-soluble eye lens proteins with ascorbate in the presence and absence of UVA-visible light for 3, 6 and 9 days at low oxygen concentration. The samples incubated in the presence of light were characterized by an initially small but continuous increase over time of the protein crosslinking. This was not the result of more extensive glycation because the decrease in amino group content of the proteins and the decomposition of ascorbate was the same in both irradiated and unirradiated samples. The augmented crosslinking capacity observed in the presence of UVA-visible light is due to the generation of a chromophore from the decomposition of ascorbate. This chromophore, obtained after 3, 6 and 9 days of incubation of solutions containing only ascorbate, induces both protein-crosslinking and oxidation after exposure to UVA-visible light in the presence of lens proteins. The extent of the crosslinking was proportional to the amount of the chromophore present in the solution. The presence of this chromophore was also determined when ascorbate was incubated with four-fold higher concentrations of N-α-acetyl lysine and N-α-acetyl arginine. When these samples were used as photosensitizers, the crosslinking degree was conditioned by the presence of this chromophore; nonetheless, the ascorbate-mediated advanced glycation end product (AGE) generation also made a contribution. The results of this work indicate that ascorbate oxidation, which generates the AGEs responsible for the chemical crosslinking of the lens proteins, also simultaneously produces a chromophore that can act as a photosensitizer, further increasing the protein crosslinking.
Collapse
Affiliation(s)
- Felipe Avila
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago de Chile
| | | | | |
Collapse
|
27
|
Jacobsen JN, Steffensen B, Häkkinen L, Krogfelt KA, Larjava HS. Skin wound healing in diabetic β6 integrin-deficient mice. APMIS 2010; 118:753-64. [PMID: 20854469 DOI: 10.1111/j.1600-0463.2010.02654.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Integrin αvβ6 is a heterodimeric cell surface receptor, which is absent from the normal epithelium, but is expressed in wound-edge keratinocytes during re-epithelialization. However, the function of the αvβ6 integrin in wound repair remains unclear. Impaired wound healing in patients with diabetes constitutes a major clinical problem worldwide and has been associated with the accumulation of advanced glycated endproducts (AGEs) in the tissues. AGEs may account for aberrant interactions between integrin receptors and their extracellular matrix ligands such as fibronectin (FN). In this study, we compared healing of experimental excisional skin wounds in wild-type (WT) and β6-knockout (β6(-/-) ) mice with streptozotocin-induced diabetes. Results showed that diabetic β6(-/-) mice had a significant delay in early wound closure rate compared with diabetic WT mice, suggesting that αvβ6 integrin may serve as a protective role in re-epithelialization of diabetic wounds. To mimic the glycosylated wound matrix, we generated a methylglyoxal (MG)-glycated variant of FN. Keratinocytes utilized αvβ6 and β1 integrins for spreading on both non-glycated and FN-MG, but their spreading was reduced on FN-MG. These findings indicated that glycation of FN and possibly other integrin ligands could hamper keratinocyte interactions with the provisional matrix proteins during re-epithelialization of diabetic wounds.
Collapse
Affiliation(s)
- Jasper N Jacobsen
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
28
|
Yuen A, Laschinger C, Talior I, Lee W, Chan M, Birek J, Young EW, Sivagurunathan K, Won E, Simmons CA, McCulloch C. Methylglyoxal-modified collagen promotes myofibroblast differentiation. Matrix Biol 2010; 29:537-48. [DOI: 10.1016/j.matbio.2010.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 04/13/2010] [Accepted: 04/15/2010] [Indexed: 01/09/2023]
|
29
|
Sankaralingam S, Xu H, Jiang Y, Sawamura T, Davidge ST. Evidence for increased methylglyoxal in the vasculature of women with preeclampsia: role in upregulation of LOX-1 and arginase. Hypertension 2009; 54:897-904. [PMID: 19687346 DOI: 10.1161/hypertensionaha.109.135228] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is characterized by vascular endothelial dysfunction partly attributed to oxidative stress. In the vasculature of preeclamptic women, we have shown increased lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) and arginase expression, which can contribute to vascular oxidative stress. However, the mechanisms of such upregulation are unknown. Methylglyoxal (MG) that plays a role in the vascular complications of diabetes mellitus and the development of hypertension can be one potential factor that can affect LOX-1 and arginase through its ability to induce oxidative stress in vascular cells. MG also reacts with lysine residues in proteins to generate advanced glycation end product, N(epsilon)-carboxy ethyl lysine, which also serves as a marker of MG. We hypothesized that markers of MG formation will be increased in the vasculature of preeclamptic women and that exogenous MG will induce oxidative stress by the upregulation of LOX-1 via arginase. We observed increased N(epsilon)-carboxy ethyl lysine expression in the vasculature of women with preeclampsia in comparison with normotensive pregnant women. Moreover, glyoxalase I and II, enzymes that detoxify MG, and glutathione reductase, which generates reduced glutathione, a cofactor for glyoxalase, are also reduced in preeclampsia. In cultured endothelial cells, MG increased arginase expression by 6 hours and LOX-1 expression by 24 hours. Inhibition of arginase or NO synthase significantly reduced MG-induced LOX-1 expression, superoxide levels, and nitrotyrosine staining. In conclusion, MG-induced LOX-1 expression is mediated via arginase upregulation likely because of uncoupling of NO synthase, which may have implications in preeclampsia.
Collapse
|
30
|
Murillo J, Wang Y, Xu X, Klebe RJ, Chen Z, Zardeneta G, Pal S, Mikhailova M, Steffensen B. Advanced glycation of type I collagen and fibronectin modifies periodontal cell behavior. J Periodontol 2009; 79:2190-9. [PMID: 18980529 DOI: 10.1902/jop.2008.080210] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Advanced glycation end products (AGEs) have been linked to pathogenic mechanisms of diabetes mellitus. However, little is known about the contribution of protein glycation to periodontal disease in patients with diabetes. Therefore, this study investigated whether glycation of type I collagen (COLI) and fibronectin (FN) modified the behavior of human gingival fibroblasts (hGFs) and periodontal ligament fibroblasts (hPDLs). METHODS Procedures for rapid in vitro glycation of COLI and FN used methylglyoxal (MG). Formation of AGEs was analyzed by changes in protein migration using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting with antibodies specific for MG-glycated proteins. Experiments then characterized the effects of glycated FN and COLI on the behavior of hGFs and hPDLs. RESULTS MG glycated COLI and FN in <6 hours. Confirming the specificity of the reactions, antibodies specific for MG-induced AGEs reacted with glycated FN and COLI but not with control proteins. In cell culture experiments, glycated FN was significantly less efficient in supporting the attachment of hGFs and hPDLs (P <0.05). Moreover, the morphologic parameters, including length, area, perimeter, and shape factor, were altered (P <0.001) for cells on both glycated proteins. Finally, cell migration was reduced on glycated FN and COLI (P <0.001). CONCLUSIONS MG treatment efficiently glycated COLI and FN, providing a new tool to study the effects of diabetes on periodontal disease. The substantial effects of glycated COLI and FN on hGF and hPDL behavior indicated that protein glycation contributed to the pathogenesis and altered periodontal wound healing observed in patients with diabetes.
Collapse
Affiliation(s)
- Jesse Murillo
- Department of Periodontics, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cai W, He JC, Zhu L, Chen X, Zheng F, Striker GE, Vlassara H. Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:327-36. [PMID: 18599606 DOI: 10.2353/ajpath.2008.080152] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We previously showed that the content of advanced glycation end products (AGEs) in the diet correlates with serum AGE levels, oxidant stress (OS), organ dysfunction, and lifespan. We now show that the addition of a chemically defined AGE (methyl-glyoxal-BSA) to low-AGE mouse chow increased serum levels of AGEs and OS, demonstrating that dietary AGEs are oxidants that can induce systemic OS. OS predisposes to the development of cardiovascular and chronic kidney diseases; calorie restriction (CR) is the most studied means to decrease OS, increase longevity, and reduce OS-related organ damage in mammals. Because reduction of food intake also decreases oxidant AGE s intake, we asked whether the beneficial effects of CR in mammals are related to the restriction of oxidants or energy. Pair-fed mice were provided either a CR diet or a high-AGE CR diet in which AGEs were elevated by brief heat treatment (CR-high). Old CR-high mice developed high levels of 8-isoprostanes, AGEs, RAGE, and p66(shc), coupled with low AGER1 and GSH/GSSG levels, insulin resistance, marked myocardial and renal fibrosis, and shortened lifespan. In contrast, old CR mice had low OS, p66(shc), RAGE, and AGE levels, but high AGER1 levels, coupled with longer lifespan. Therefore, the beneficial effects of a CR diet may be partly related to reduced oxidant intake, a principal determinant of oxidant status in aging mice, rather than decreased energy intake.
Collapse
Affiliation(s)
- Weijing Cai
- Department of Geriatrics,Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Chetyrkin SV, Mathis ME, Ham AJL, Hachey DL, Hudson BG, Voziyan PA. Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine. Free Radic Biol Med 2008; 44:1276-85. [PMID: 18374270 DOI: 10.1016/j.freeradbiomed.2007.09.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/09/2007] [Accepted: 09/21/2007] [Indexed: 02/02/2023]
Abstract
Nonenzymatic modification of proteins is one of the key pathogenic factors in diabetic complications. Uncovering the mechanisms of protein damage caused by glucose is fundamental to understanding this pathogenesis and in the development of new therapies. We investigated whether the mechanism involving reactive oxygen species can propagate protein damage in glycation reactions beyond the classical modifications of lysine and arginine residues. We have demonstrated that glucose can cause specific oxidative modification of tryptophan residues in lysozyme and inhibit lysozyme activity. Furthermore, modification of tryptophan residues was also induced by purified albumin-Amadori, a ribose-derived model glycation intermediate. The AGE inhibitor pyridoxamine (PM) prevented the tryptophan modification, whereas another AGE inhibitor and strong carbonyl scavenger, aminoguanidine, was ineffective. PM specifically inhibited generation of hydroxyl radical from albumin-Amadori and protected tryptophan from oxidation by hydroxyl radical species. We conclude that oxidative degradation of either glucose or the protein-Amadori intermediate causes oxidative modification of protein tryptophan residues via hydroxyl radical and can affect protein function under physiologically relevant conditions. This oxidative stress-induced structural and functional protein damage can be ameliorated by PM via sequestration of catalytic metal ions and scavenging of hydroxyl radical, a mechanism that may contribute to the reported therapeutic effects of PM in the complications of diabetes.
Collapse
Affiliation(s)
- Sergei V Chetyrkin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
33
|
Burcham PC. Potentialities and pitfalls accompanying chemico-pharmacological strategies against endogenous electrophiles and carbonyl stress. Chem Res Toxicol 2008; 21:779-86. [PMID: 18275160 DOI: 10.1021/tx700399q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of powerful analytical technologies to detect endogenous carbonyls formed as byproducts of oxidative cell injury has revealed that these species contribute to many human diseases. As electrophiles, they are attacked by reactive centers in cell macromolecules to form adducts, the levels of which serve as useful biomarkers of oxidative cell injury. Because the pathobiological significance of such damage is often unclear, the possibility of using low molecular weight drugs as exploratory sacrificial nucleophiles to intercept reactive carbonyls within cells and tissues is appealing. This perspective highlights the potential benefits of using carbonyl scavengers to evaluate the significance of endogenous carbonyls in particular diseases but also canvasses a number of challenges confronting this therapeutic strategy. Chief among the latter is the task of confirming that carbonyl sequestration underlies any suppression of disease symptoms elicited by these multipotent reagents, an issue needing clarification if these compounds are to command consideration as drug interventions in humans. Other problems include adverse consequences of reactions between carbonyl scavengers and important endogenous carbonyls (e.g., neurotoxicity due to pyridoxal depletion), as well as the potential for drugs to form ternary complexes with carbonylated cell proteins, raising the prospect of immunotoxicological outcomes. Strategies for moving carbonyl sequestering reagents from the laboratory bench to a clinical testing environment are discussed within the context of the search for new treatments for spinal cord injury, one of the most debilitating medical conditions sustainable by humans. This condition seems an appropriate test case for assessing carbonyl sequestering drugs given growing evidence for noxious carbonyls in the wave of neuronal cell death that follows traumatic injury to the spinal cord.
Collapse
Affiliation(s)
- Philip C Burcham
- Pharmacology and Anaesthesiology Unit, School of Medicine and Pharmacology, the University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
34
|
The tandem of free radicals and methylglyoxal. Chem Biol Interact 2008; 171:251-71. [DOI: 10.1016/j.cbi.2007.11.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/02/2007] [Accepted: 11/19/2007] [Indexed: 11/19/2022]
|
35
|
Ispolnov K, Gomes RA, Silva MS, Freire AP. Extracellular methylglyoxal toxicity in Saccharomyces cerevisiae: role of glucose and phosphate ions. J Appl Microbiol 2008; 104:1092-102. [PMID: 18194258 DOI: 10.1111/j.1365-2672.2007.03641.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM The purpose of this study was to investigate the behaviour of Saccharomyces cerevisiae in response to extracellular methylglyoxal. METHODS AND RESULTS Cell survival to methylglyoxal and the importance of phosphates was investigated. The role of methylglyoxal detoxification systems and methylglyoxal-derived protein glycation were studied and the relation to cell survival or death was evaluated. Extracellular methylglyoxal decreased cell viability, and the presence of phosphate enhanced this effect. D-glucose seems to exert a protective effect towards this toxicity. Methylglyoxal-induced cell death was not apoptotic and was not related to intracellular glycation processes. The glyoxalases and aldose reductase were important in methylglyoxal detoxification. Mutants lacking glyoxalase I and II showed increased sensitivity to methylglyoxal, while strains overexpressing these genes had increased resistance. CONCLUSIONS Extracellular methylglyoxal induced non-apoptotic cell death, being unrelated to glycation. Inactivation of methylglyoxal-detoxifying enzymes by phosphate is one probable cause. Phosphate and D-glucose may also act through their complex involvement in stress response mechanisms. SIGNIFICANCE AND IMPACT OF THE STUDY These findings contribute to elucidate the mechanisms of cell toxicity by methylglyoxal. This information could be useful to on-going studies using yeast as a eukaryotic cell model to investigate methylglyoxal-derived glycation and its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- K Ispolnov
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | | | | | | |
Collapse
|
36
|
|
37
|
Bechara EJH, Dutra F, Cardoso VES, Sartori A, Olympio KPK, Penatti CAA, Adhikari A, Assunção NA. The dual face of endogenous alpha-aminoketones: pro-oxidizing metabolic weapons. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:88-110. [PMID: 16920403 DOI: 10.1016/j.cbpc.2006.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 06/26/2006] [Accepted: 07/06/2006] [Indexed: 11/29/2022]
Abstract
Amino metabolites with potential prooxidant properties, particularly alpha-aminocarbonyls, are the focus of this review. Among them we emphasize 5-aminolevulinic acid (a heme precursor formed from succinyl-CoA and glycine), aminoacetone (a threonine and glycine metabolite), and hexosamines and hexosimines, formed by Schiff condensation of hexoses with basic amino acid residues of proteins. All these metabolites were shown, in vitro, to undergo enolization and subsequent aerobic oxidation, yielding oxyradicals and highly cyto- and genotoxic alpha-oxoaldehydes. Their metabolic roles in health and disease are examined here and compared in humans and experimental animals, including rats, quail, and octopus. In the past two decades, we have concentrated on two endogenous alpha-aminoketones: (i) 5-aminolevulinic acid (ALA), accumulated in acquired (e.g., lead poisoning) and inborn (e.g., intermittent acute porphyria) porphyric disorders, and (ii) aminoacetone (AA), putatively overproduced in diabetes mellitus and cri-du-chat syndrome. ALA and AA have been implicated as contributing sources of oxyradicals and oxidative stress in these diseases. The end product of ALA oxidation, 4,5-dioxovaleric acid (DOVA), is able to alkylate DNA guanine moieties, promote protein cross-linking, and damage GABAergic receptors of rat brain synaptosome preparations. In turn, methylglyoxal (MG), the end product of AA oxidation, is also highly cytotoxic and able to release iron from ferritin and copper from ceruloplasmin, and to aggregate proteins. This review covers chemical and biochemical aspects of these alpha-aminoketones and their putative roles in the oxidative stress associated with porphyrias, tyrosinosis, diabetes, and cri-du-chat. In addition, we comment briefly on a side prooxidant behaviour of hexosamines, that are known to constitute building blocks of several glycoproteins and to be involved in Schiff base-mediated enzymatic reactions.
Collapse
Affiliation(s)
- Etelvino J H Bechara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil.
| | - Fernando Dutra
- Centro de Ciências Biológicas e da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| | - Vanessa E S Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| | - Adriano Sartori
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| | - Kelly P K Olympio
- Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Avishek Adhikari
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nilson A Assunção
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
38
|
Schmitt A, Nöller J, Schmitt J. The binding of advanced glycation end products to cell surfaces can be measured using bead-reconstituted cellular membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1389-99. [PMID: 17481574 DOI: 10.1016/j.bbamem.2007.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 03/23/2007] [Accepted: 03/23/2007] [Indexed: 11/30/2022]
Abstract
Advanced glycation end products (AGEs) that arise from the reaction of sugars with protein side chains are supposed to be involved in the pathogenesis of several diseases and therefore the effects of AGEs on cells are the objective of numerous investigations. Although different cellular responses to AGEs can be measured in cell culture studies, knowledge about the nature of AGE-binding and the involved cell surface receptors is poor. The measurement of AGE-binding to cell surfaces bears the potential to gain a deeper understanding about the nature of AGE-binding to cell surface proteins and could be applied as a preliminary test before performing cell culture studies on AGE effects. Herein, a new material and method for the detection of AGE-binding to cell surfaces is introduced, which has the potential to facilitate the detection of binding. In the present paper, the detection of AGE-binding to cell surface proteins using an artificial system of cellular membrane proteins reconstituted on beads (TRANSIL CaCo-2) is described. The binding of a BSA-AGE derived from a 37 degrees C incubation with 500 mM Glc (BSA-Glc 500) and the corresponding control to this artificial system was compared with the binding to intact cells and was found to be in good agreement. Additionally, the K(d) for the binding of the BSA-Glc 500 used in the study to CaCo-2 surfaces was determined using FITC-labelled samples in a flow cytometric approach. Competitive binding studies were performed using a set of non-labelled BSA-AGEs to compete with FITC-labelled BSA-Glc 500 for the cell surface binding sites. The binding was found to be inhibited to different extends, virtually depending on the degree of arginine modifications within the modified protein used for competition. Additionally, the effects of all AGEs used in the study on CaCo-2 cells was measured using the detection of reactive oxygen species (ROS), which are known to be induced as a primary result of AGE-receptor binding. The induction of ROS was found to linearly correlate to the capacity of the individual AGE to displace FITC-labelled BSA-Glc 500 in competitive binding studies. Therefore, the data indicate, that at least in case of CaCo-2 cells the detection of cell surface binding can serve as a reliable preliminary test for a potential cell-damaging effect of AGEs.
Collapse
Affiliation(s)
- Annett Schmitt
- Interdisciplinary Centre of Clinical Research at the Faculty of Medicine of the University of Leipzig, Inselstr. 22, 04103 Leipzig, Germany
| | | | | |
Collapse
|
39
|
Vasdev S, Gill V, Singal PK. Beneficial effect of low ethanol intake on the cardiovascular system: possible biochemical mechanisms. Vasc Health Risk Manag 2007; 2:263-76. [PMID: 17326332 PMCID: PMC1993980 DOI: 10.2147/vhrm.2006.2.3.263] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Low ethanol intake is known to have a beneficial effect on cardiovascular disease. In cardiovascular disease, insulin resistance leads to altered glucose and lipid metabolism resulting in an increased production of aldehydes, including methylglyoxal. Aldehydes react non-enzymatically with sulfhydryl and amino groups of proteins forming advanced glycation end products (AGEs), altering protein structure and function. These alterations cause endothelial dysfunction with increased cytosolic free calcium, peripheral vascular resistance, and blood pressure. AGEs produce atherogenic effects including oxidative stress, platelet adhesion, inflammation, smooth muscle cell proliferation and modification of lipoproteins. Low ethanol intake attenuates hypertension and atherosclerosis but the mechanism of this effect is not clear. Ethanol at low concentrations is metabolized by low Km alcohol dehydrogenase and aldehyde dehydrogenase, both reactions resulting in the production of reduced nicotinamide adenine dinucleotide (NADH). This creates a reductive environment, decreasing oxidative stress and secondary production of aldehydes through lipid peroxidation. NADH may also increase the tissue levels of the antioxidants cysteine and glutathione, which bind aldehydes and stimulate methylglyoxal catabolism. Low ethanol improves insulin resistance, increases high-density lipoprotein and stimulates activity of the antioxidant enzyme, paraoxonase. In conclusion, we suggest that chronic low ethanol intake confers its beneficial effect mainly through its ability to increase antioxidant capacity and lower AGEs.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, St.John's, Newfoundland, Canada.
| | | | | |
Collapse
|
40
|
Miller AG, Smith DG, Bhat M, Nagaraj RH. Glyoxalase I is critical for human retinal capillary pericyte survival under hyperglycemic conditions. J Biol Chem 2006; 281:11864-71. [PMID: 16505483 DOI: 10.1074/jbc.m513813200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinal capillary pericytes undergo premature death, possibly by apoptosis, during the early stages of diabetic retinopathy. The alpha-oxoaldehyde, methylglyoxal (MGO), has been implicated as a cause of cell damage in diabetes. We have investigated the role of MGO and its metabolizing enzyme, glyoxalase I, in high glucose-induced apoptosis (annexin V binding) of human retinal pericyte (HRP). HRP incubated with high glucose (30 mm d-glucose) for 7 days did not undergo apoptosis despite accumulation of MGO. However, treatment with a combination of high glucose and S-p-bromobenzylglutathione cyclopentyl diester, a competitive inhibitor of glyoxalase I, resulted in apoptosis along with a dramatic increase in MGO. Overexpression of glyoxalase I in HRP protected against S-p-bromobenzylglutathione cyclopentyl diester-induced apoptosis under high glucose conditions. Incubation of HRP with high concentrations of MGO resulted in an increase of apoptosis relative to untreated controls. We found an elevation of nitric oxide (NO.) in HRP that was incubated with high glucose when compared with those incubated with either the l-glucose or untreated controls. When HRP were incubated with an NO. donor, DETANONOATE ((Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), we observed both decreased glyoxalase I expression and activity relative to untreated control cells. Further studies showed that HRP underwent apoptosis when incubated with DETANONOATE and that apoptosis increased further on co-incubation with high glucose. Our findings indicate that glyoxalase I is critical for pericyte survival under hyperglycemic conditions, and its inactivation and/or down-regulation by NO. may contribute to pericyte death by apoptosis during the early stages of diabetic retinopathy.
Collapse
Affiliation(s)
- Antonia G Miller
- Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
41
|
Puttaiah S, Zhang Y, Pilch HA, Pfahler C, Oya-Ito T, Sayre LM, Nagaraj RH. Detection of dideoxyosone intermediates of glycation using a monoclonal antibody: characterization of major epitope structures. Arch Biochem Biophys 2005; 446:186-96. [PMID: 16406213 DOI: 10.1016/j.abb.2005.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/01/2005] [Accepted: 12/03/2005] [Indexed: 10/25/2022]
Abstract
Glycation or the Maillard reaction in proteins forms advanced glycation end products (AGEs) that contribute to age- and diabetes-associated changes in tissues. Dideoxyosones, which are formed by the long-range carbonyl shift of the Amadori product, are newly discovered intermediates in the process of AGE formation in proteins. They react with o-phenylenediamine (OPD) to produce quinoxalines. We developed a monoclonal antibody against 2-methylquinoxaline-6-carboxylate coupled to keyhole limpet hemocyanin. The antibody reacted strongly with ribose and fructose (+OPD)-modified RNase A and weakly with glucose and ascorbate (+OPD)-modified RNase A. Reaction with substituted quinoxalines indicated that this antibody favored the 2-methyl group on the quinoxaline ring. We used high performance liquid chromatography to isolate and purify three antibody-reactive products from a reaction mixture of N alpha-hippuryl-L-lysine+ribose+OPD. The two most reactive products were identified as diastereoisomers of N1-benzoylglycyl-N6-(2-hydroxy-3-quinoxalin-2-ylpropyl)lysine and the other less reactive product as N1-benzoylglycyl-N6-[2-hydroxy-2-(3-methylquinoxalin-2-yl)ethyl]lysine. Our study confirms that dideoxyosone intermediates form during glycation and offers a new tool for the study of this important pathway in diabetes and aging.
Collapse
Affiliation(s)
- Shivaprakash Puttaiah
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Kiho T, Kato M, Usui S, Hirano K. Effect of buformin and metformin on formation of advanced glycation end products by methylglyoxal. Clin Chim Acta 2005; 358:139-45. [PMID: 15946656 DOI: 10.1016/j.cccn.2005.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 02/14/2005] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND The formation and accumulation of advanced glycation end products (AGE) in various tissues are known to be involved in the aging process and complications of long-term diabetes. Aminoguanidine as AGE inhibitors was first studied, and metformin as biguanide compounds have been reported to react with reactive dicarbonyl precursors such as methylglyoxal. METHODS We studied the effects of the biguanides of buformin and metformin on AGE formation by the methods of specific fluorescence, and enzyme-linked immunosorbent assay and a Western blot analysis using the anti-AGE antibody after incubating BSA or RNase with methylglyoxal. RESULTS Buformin is a more potent inhibitor of AGE formation than metformin, and suggests that the amino group of buformin trap the carbonyl group of methylglyoxal to suppress formation of AGE. CONCLUSION In addition to that of metformin, buformin may be clinically useful to prevent diabetic complications.
Collapse
Affiliation(s)
- Tadashi Kiho
- Gifu Prefectural Institute of Health and Environmental Sciences, 1-1 Naka-fudogaoka, Kakamigahara 504-0838, Japan.
| | | | | | | |
Collapse
|
43
|
van Heijst JWJ, Niessen HWM, Musters RJ, van Hinsbergh VWM, Hoekman K, Schalkwijk CG. Argpyrimidine-modified Heat shock protein 27 in human non-small cell lung cancer: a possible mechanism for evasion of apoptosis. Cancer Lett 2005; 241:309-19. [PMID: 16337338 DOI: 10.1016/j.canlet.2005.10.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 10/24/2005] [Indexed: 12/20/2022]
Abstract
Tumors generally display a high glycolytic rate. One consequence of increased glycolysis is the non-enzymatic glycation of proteins leading to the formation of advanced glycation end-products (AGEs). Therefore, we studied the presence of AGEs in non-small cell lung cancer and consequences thereof. We show the presence of two AGEs, i.e. the major AGE N(epsilon)-(carboxymethyl)lysine (CML) and the methylglyoxal-arginine adduct argpyrimidine, in human non-small cell lung cancer tissues by immunohistochemistry. We found in squamous cell carcinoma and adenocarcinoma tissues a strong CML positivity in both tumour cells and tumour-surrounding stroma. In contrast, argpyrimidine positivity was predominantly found in tumor cells and was strong in squamous cell carcinomas, but only weak in adenocarcinomas (2.6+/-0.5 vs. 1.2+/-0.4, respectively; P<0.005). In accordance, argpyrimidine was found in the human lung squamous carcinoma cell line SW1573, while it was almost absent in the adenocarcinoma cell line H460. Heat shock protein 27 (Hsp27) was identified as a major argpyrimidine-modified protein. In agreement with a previously described anti-apoptotic activity of argpyrimidine-modified Hsp27, the percentage of active caspase-3 positive tumor cells in squamous cell carcinomas was significantly lower when compared to adenocarcinomas. In addition, incubation with cisplatin induced almost no caspase-3 activation in SW1573 cells while a strong activation was seen in H460 cells; which was significantly reduced by incubation with an inhibitor of glyoxalase I, the enzyme that catalyzes the conversion of methylglyoxal. These findings suggest that a high level of argpyrimidine-modified Hsp27 is a mechanism of cancer cells for evasion of apoptosis.
Collapse
Affiliation(s)
- Jeroen W J van Heijst
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Genuth S, Sun W, Cleary P, Sell DR, Dahms W, Malone J, Sivitz W, Monnier VM. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes 2005; 54:3103-11. [PMID: 16249432 PMCID: PMC2622724 DOI: 10.2337/diabetes.54.11.3103] [Citation(s) in RCA: 323] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several mechanistic pathways linking hyperglycemia to diabetes complications, including glycation of proteins and formation of advanced glycation end products (AGEs), have been proposed. We investigated the hypothesis that skin collagen glycation and AGEs predict the risk of progression of microvascular disease. We measured glycation products in the skin collagen of 211 Diabetes Control and Complications Trial (DCCT) volunteers in 1992 who continued to be followed in the Epidemiology of Diabetes Interventions and Complications study for 10 years. We determined whether the earlier measurements of glycated collagen and AGE levels correlated with the risk of progression of retinopathy and nephropathy from the end of the DCCT to 10 years later. In multivariate analyses, the combination of furosine (glycated collagen) and carboxymethyllysine (CML) predicted the progression of retinopathy (chi2 = 59.4, P < 0.0001) and nephropathy (chi2 = 18.2, P = 0.0001), even after adjustment for mean HbA(1c) (A1C) (chi2 = 32.7, P < 0.0001 for retinopathy) and (chi2 = 12.8, P = 0.0016 for nephropathy). The predictive effect of A1C vanished after adjustment for furosine and CML (chi2 = 0.0002, P = 0.987 for retinopathy and chi2 = 0.0002, P = 0.964 for nephropathy). Furosine explained more of the variation in the 10-year progression of retinopathy and nephropathy than did CML. These results strengthen the role of glycation of proteins and AGE formation in the pathogenesis of retinopathy and nephropathy. Glycation and subsequent AGE formation may explain the risk of these complications associated with prior A1C and provide a rational basis for the phenomenon of "metabolic memory" in the pathogenesis of these diabetes complications.
Collapse
Affiliation(s)
- Saul Genuth
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
van Heijst JWJ, Niessen HWM, Hoekman K, Schalkwijk CG. Advanced glycation end products in human cancer tissues: detection of Nepsilon-(carboxymethyl)lysine and argpyrimidine. Ann N Y Acad Sci 2005; 1043:725-33. [PMID: 16037299 DOI: 10.1196/annals.1333.084] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumors are generally characterized by an increased glucose uptake and a high rate of glycolysis. Since one consequence of an elevated glycolysis is the nonenzymatic glycation of proteins, we studied the presence of advanced glycation end products (AGEs) in human cancer tissues. We detected the presence of the AGEs N(epsilon)-(carboxymethyl)lysine (CML) and argpyrimidine in several human tumors using specific antibodies. Because AGEs have been associated with the etiology of a variety of different diseases, these results suggest that CML and argpyrimidine could be implicated in the biology of human cancer.
Collapse
Affiliation(s)
- Jeroen W J van Heijst
- Department of Internal Medicine, University Hospital Maastricht, Debeyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | | | | | | |
Collapse
|
46
|
Pedchenko VK, Chetyrkin SV, Chuang P, Ham AJL, Saleem MA, Mathieson PW, Hudson BG, Voziyan PA. Mechanism of perturbation of integrin-mediated cell-matrix interactions by reactive carbonyl compounds and its implication for pathogenesis of diabetic nephropathy. Diabetes 2005; 54:2952-60. [PMID: 16186398 DOI: 10.2337/diabetes.54.10.2952] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Perturbation of interactions between cells and the extracellular matrix (ECM) of renal glomeruli may contribute to characteristic histopathological lesions found in the kidneys of patients with diabetic nephropathy. However, the mechanism by which the diabetic conditions may affect cell-ECM interactions is unknown. Existing hypotheses suggest a role of glucose in direct modification of ECM. Here, we have demonstrated that carbonyl compound methylglyoxal (MGO) completely inhibited endothelial cell adhesion to recombinant alpha3 noncollagenous 1 domain of type IV collagen mediated via a short collagenous region containing RGD (Arg-Gly-Asp) sequence as well as binding of purified alpha(v)beta(3) integrin to this protein. Specific MGO adducts of the arginine residue were detected within RGD sequence using mass spectrometry. Modification by carbonyl compounds glyoxal or glycolaldehyde had similar but smaller effects. MGO strongly inhibited adhesion of renal glomerular cells, podocytes, and mesangial cells to native collagen IV and laminin-1 as well as binding of collagen IV to its major receptor in glomerular cells, alpha(1)beta(1) integrin. In contrast, modification of these proteins by glucose had no effect on cell adhesion. Pyridoxamine, a promising drug for treatment of diabetic nephropathy, protected cell adhesion and integrin binding from inhibition by MGO. We suggest that in diabetes, perturbation of integrin-mediated cell-matrix interactions occurs via the modification of critical arginine residues in renal ECM by reactive carbonyl compounds. This mechanism may contribute to the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Vadim K Pedchenko
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2372, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kingkeohoi S, Chaplen FWR. Analysis of Methylglyoxal Metabolism in CHO Cells Grown in Culture. Cytotechnology 2005; 48:1-13. [PMID: 19003028 PMCID: PMC3449724 DOI: 10.1007/s10616-005-1920-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 07/29/2005] [Indexed: 11/29/2022] Open
Abstract
Recent evidence suggests that several unknown or ill-characterized factors strongly influence cell growth and function in culture. Isolating these factors is necessary in order to maximize culture productivities. Methylglyoxal (MG), a potent protein and nucleic acid modifying agent, has been identified as a player in the signaling pathways associated with cell death and is known to be detrimental to cultured cells. This compound is produced in all mammalian systems by spontaneous phosphate elimination from glycolytic pathway intermediates. A kinetic model that qualitatively describes the cellular distribution of protein-associated MG in the absence of enzymatic adduct formation predicted far lower levels of reversibly bound MG than measured in cultured CHO cells. This suggests that the targeted modification of proteins through enzymatically mediated mechanisms is a significant sink for cellular methylglyoxal. The model was validated with measurements of carbon flux through the glyoxalase pathway to d-lactic acid, a unique end product of MG metabolism in mammalian systems. Fluxes to d-lactic acid of up to 16.8 mmol ml-packed cells(-1) day(-1) were measured with CHO cells grown in batch culture or 100-fold more than found in normal tissues.
Collapse
Affiliation(s)
- Sarocha Kingkeohoi
- Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, 97331-3906 Corvallis, OR USA
| | - Frank W. R. Chaplen
- Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, 97331-3906 Corvallis, OR USA
| |
Collapse
|
48
|
Valencia JV, Mone M, Zhang J, Weetall M, Buxton FP, Hughes TE. Divergent pathways of gene expression are activated by the RAGE ligands S100b and AGE-BSA. Diabetes 2004; 53:743-51. [PMID: 14988260 DOI: 10.2337/diabetes.53.3.743] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Activation of the receptor for advanced glycation end products (RAGE) reportedly triggers a variety of proinflammatory responses. However, our previous work revealed that RAGE-binding AGEs free of endotoxin were incapable of inducing vascular cell adhesion molecule-1 (VCAM-1) or tumor necrosis factor-alpha (TNF-alpha) expression. Thus, the objective of this study was to clarify the role of AGEs in cell activation through gene expression profiling using both in vitro and in vivo model systems. Endothelial cells treated with AGE-BSA, previously shown to bind RAGE with high affinity, did not show gene expression changes indicative of an inflammatory response. In contrast, the alternate RAGE ligand, S100b, triggered an increase in endothelial mRNA expression of a variety of immune-related genes. The effects of AGEs were studied in vivo using healthy mice exposed to two different treatment conditions: 1) intravenous injection of a single dose of model AGEs or 2) four intraperitoneal injections of model AGEs (once per day). In both cases, the liver was extracted for gene expression profiling. Both of the short-term AGE treatments resulted in a moderate increase in liver mRNA levels for genes involved in macrophage-based clearance/detoxification of foreign agents. Our findings using AGEs with strong RAGE-binding properties indicate that AGEs may not uniformly play a role in cellular activation.
Collapse
Affiliation(s)
- Jessica V Valencia
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
49
|
Kessel L, Hougaard JL, Kyvik KO, Sander B, Sørensen TIA, Larsen M. Corneal fluorescence in relation to genetic and environmental factors: a twin study. ACTA ACUST UNITED AC 2003; 81:508-13. [PMID: 14510800 DOI: 10.1034/j.1600-0420.2003.00089.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE Corneal fluorescence is believed to be caused by advanced glycation end products formed by non-enzymatic glycation on corneal proteins. The purpose of the present twin study was to examine whether the process is related to genetic or environmental factors. METHODS Corneal fluorescence was measured in 59 monozygotic and 54 dizygotic twin pairs. The influences of genetic and environmental factors were estimated using structural equation modelling. RESULTS Interindividual variation in corneal fluorescence was attributable to environmental factors, whereas the effect of genetic factors was of little or no significance. Corneal fluorescence correlated significantly with smoking habits (r = 0.38) and the 2-hour oral glucose tolerance test response (r = 0.27), and increased with age (p < 0.0001). CONCLUSION Fluorophore accumulation in the cornea was attributable to age and environmental effects, of which smoking was the most conspicuous identifiable factor, although glucose was also of relevance. However, the greater part of interindividual variation in corneal fluorescence remains unexplained.
Collapse
Affiliation(s)
- Line Kessel
- Department of Ophthalmology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark.
| | | | | | | | | | | |
Collapse
|
50
|
Knott HM, Brown BE, Davies MJ, Dean RT. Glycation and glycoxidation of low-density lipoproteins by glucose and low-molecular mass aldehydes. Formation of modified and oxidized particles. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3572-82. [PMID: 12919321 DOI: 10.1046/j.1432-1033.2003.03742.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Patients with diabetes mellitus suffer from an increased incidence of complications including cardiovascular disease and cataracts; the mechanisms responsible for this are not fully understood. One characteristic of such complications is an accumulation of advanced glycation end-products formed by the adduction of glucose or species derived from glucose, such as low-molecular mass aldehydes, to proteins. These reactions can be nonoxidative (glycation) or oxidative (glycoxidation) and result in the conversion of low-density lipoproteins (LDL) to a form that is recognized by the scavenger receptors of macrophages. This results in the accumulation of cholesterol and cholesteryl esters within macrophages and the formation of foam cells, a hallmark of atherosclerosis. The nature of the LDL modifications required for cellular recognition and unregulated uptake are poorly understood. We have therefore examined the nature, time course, and extent of LDL modifications induced by glucose and two aldehydes, methylglyoxal and glycolaldehyde. It has been shown that these agents modify Arg, Lys and Trp residues of the apoB protein of LDL, with the extent of modification induced by the two aldehydes being more rapid than with glucose. These processes are rapid and unaffected by low concentrations of copper ions. In contrast, lipid and protein oxidation are slow processes and occur to a limited extent in the absence of added copper ions. No evidence was obtained for the stimulation of lipid or protein oxidation by glucose or methylglyoxal in the presence of copper ions, whereas glycolaldehyde stimulated such reactions to a modest extent. These results suggest that the earliest significant events in this system are metal ion-independent glycation (modification) of the protein component of LDL, whilst oxidative events (glycoxidation or direct oxidation of lipid or proteins) only occur to any significant extent at later time points. This 'carbonyl-stress' may facilitate the formation of foam cells and the vascular complications of diabetes.
Collapse
|