1
|
Felodipine Determination by a CdTe Quantum Dot-Based Fluorescent Probe. MICROMACHINES 2022; 13:mi13050788. [PMID: 35630254 PMCID: PMC9142910 DOI: 10.3390/mi13050788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023]
Abstract
In this work, a CdTe quantum dot-based fluorescent probe was synthesized to determine felodipine (FEL). The synthesis conditions, structure, and interaction conditions with FEL of CdTe quantum dots were analysed by fluorescence spectrophotometry, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), UV–visible spectroscopy, and TEM. The CdTe QD concentration was 2.0 × 10−4 mol/L. The amount of quantum dots controlled in the experiment was 0.8 mL. The controlled feeding ratio of N (Cd2+):N (Te2−):N (TGA) was 2:1:4, the heating temperature was 140 °C, the heating time was 60 min, and the pH of the QD precursor was adjusted to 11 for subsequent experiments. The UV–visible spectrum showed that the emission wavelength of CdTe quantum dots at 545 nm was the strongest and symmetric. The particle size of the synthesized quantum dots was approximately 5 nm. In the interaction of CdTe quantum dots with FEL, the FEL dosage was 1.0 mL, the optimal pH value of Tris-HCl buffer was 8.2, the amount of buffer was 1.5 mL, and the reaction time was 20 min. The standard curve of FEL was determined under the optimal synthesis conditions of CdTe quantum dots and reaction of CdTe quantum dots with FEL. The linear equation was Y = 3.9448x + 50.068, the correlation coefficient R2 was 0.9986, and the linear range was 5 × 10−6–1.1 × 10−4 mol/L. A CdTe quantum dot-based fluorescent probe was successfully constructed and could be used to determine the FEL tablet content.
Collapse
|
2
|
Ci W, Wang T, Li T, Wan J. T-614 inhibits human aortic adventitial fibroblast proliferation and promotes interleukin-8 production in vitro. Vascular 2019; 28:314-320. [PMID: 31645204 DOI: 10.1177/1708538119880088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objectives The effect and underlying mechanism of T-614 (iguratimod) on Takayasu’s arteritis (TA) are unknown. Here, we report the effects of T-614 on cell proliferation and interleukin-8 (IL-8) production in human aortic adventitial fibroblasts (HAAFs) in vitro and explore its initial benefit in terms of vascular wall inflammation and remodeling for patients with TA. Methods HAAFs were cultured with 0, 5, 50, 100, or 250 μg/ml T-614 in the absence or presence of tumor necrosis factor-α (TNF-α) in vitro. Cell viability was determined by a modified MTT assay. Supernatant IL-8 levels were measured by enzyme-linked immunosorbent assays. Results In the presence of TNF-α, compared to that in the control group, cell viability of HAAFs significantly decreased in the 50, 100, and 250 μg/ml T-614 treatment groups (OD value: P < 0.01, P < 0.001, P < 0.001, respectively; survival fraction (SF): P < 0.05, P < 0.001, P < 0.001, respectively). However, there was no significant difference in cell viability between TNF-α-stimulated and unstimulated groups at the same concentration of T-614. In the absence or presence of TNF-α, T-614 suppressed HAAF cell viability dose-dependently (OD value: r = −0.915, P = 0.000; r = −0.926, P = 0.000, respectively; SF: r = −0.897, P = 0.000; r = −0.885, P = 0.000, respectively). Compared to that in the control group, in the absence of TNF-α, IL-8 levels in the 5 and 100 μg/ml T-614-treated groups were significantly higher ( P < 0.05); in the presence of TNF-α, IL-8 levels in the 5, 50, and 100 μg/ml T-614-treated groups were significantly higher ( P < 0.001, P < 0.001, P < 0.01, respectively). Further, there was a negative correlation between supernatant IL-8 levels and T-614 concentration in groups stimulated with TNF-α ( r = −0.670, P = 0.000), but there was no significant correlation between these parameters in groups that were not stimulated with TNF-α. Conclusions In the absence or presence of TNF-α, T-614 can inhibit HAAF proliferation and promote IL-8 production in vitro; therefore, it could be used to prevent adventitial thickening of the aorta and improve vascular remodeling in inflammatory environments in vitro and might provide a new immunotherapeutic intervention for TA.
Collapse
Affiliation(s)
- Weiping Ci
- Department of Rheumatology and Immunology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tian Wang
- Department of Rheumatology and Immunology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Taotao Li
- Department of Rheumatology and Immunology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jin Wan
- Department of Rheumatology and Immunology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Lovely CB, Swartz ME, McCarthy N, Norrie JL, Eberhart JK. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish. Development 2016; 143:2000-11. [PMID: 27122171 DOI: 10.1242/dev.129379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face.
Collapse
Affiliation(s)
- C Ben Lovely
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Mary E Swartz
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Neil McCarthy
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Johann K Eberhart
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Heparin/Heparan sulfate proteoglycans glycomic interactome in angiogenesis: biological implications and therapeutical use. Molecules 2015; 20:6342-88. [PMID: 25867824 PMCID: PMC6272510 DOI: 10.3390/molecules20046342] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called "angiogenesis glycomic interactome". The decoding of the angiogenesis glycomic interactome, achievable by a systematic study of the interactions occurring among angiogenic modulators and sugars, may help to design novel antiangiogenic therapies with implications in the cure of angiogenesis-dependent diseases.
Collapse
|
5
|
Linton NF, Wessels JM, Cnossen SA, Croy BA, Tayade C. Immunological mechanisms affecting angiogenesis and their relation to porcine pregnancy success. Immunol Invest 2008; 37:611-29. [PMID: 18716940 DOI: 10.1080/08820130802191540] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Prenatal mortality due to loss of lymphocyte-promoted endometrial angiogenesis is being investigated as a major cause of litter reductions during pregnancy in pigs. This review discusses immune mechanisms influencing porcine endometrial angiogenesis as well as additional signalling molecules that may play important roles in the compromise of peri-implantation and mid-gestation fetal pig survival. These include dendritic cells, signalling molecules such as toll-like receptors, chemokines and ficolins. Together these cells and molecules regulate immune responses and, ideally, protect the mother and prevent immune-based conceptus losses. Dendritic cells were recently shown to be angiogenic. Their tolerogenic role at the maternal-fetal interface coupled with the ability to secrete and respond to angiogenic factors suggests that dendritic cells are the key coordinators of angiogenesis at the porcine maternal-fetal interface. Chemokines coordinate the localization of immune effector and endothelial cells. The balance between pro-angiogenic and anti-angiogenic chemokines is addressed in relation to conceptus viability. Ficolins, components of the lectin-mediated complement activation pathway, are used for self/non-self recognition. Together, these components of the immune system could regulate lymphocyte- and non-lymphocyte-promoted endometrial angiogenesis to determine conceptus survival.
Collapse
Affiliation(s)
- Nicola F Linton
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
6
|
Wu HT, Lin SH, Chen YH. Inhibition of cell proliferation and in vitro markers of angiogenesis by indole-3-carbinol, a major indole metabolite present in cruciferous vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:5164-9. [PMID: 15969492 DOI: 10.1021/jf050034w] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A variety of studies have suggested a cancer protective role of cruciferous vegetables. In the present study, we investigated the effect of indole-3-carbinol (I3C), a major indole metabolite in cruciferous vegetables, on cell proliferation and in vitro markers of angiogenesis in phorbol myristate acetate (PMA)-stimulated endothelial EA hy926 cells. The results showed that I3C inhibited the growth of EA hy926 cells in a concentration-dependent manner. The capillary-like tube formation by PMA-activated endothelial cells was significantly suppressed by I3C, and such inhibition was associated with decreased vascular endothelial growth factor (VEGF) and increased interleukin-8 (IL-8) secretion, but not with the expression of VEGF receptor-2 protein. Additionally, gelatin zymography analysis indicated that I3C suppressed activities of matrix metalloproteinases-2 (MMP-2) and MMP-9 stimulated by PMA. These results suggest that the dietary I3C may be useful in the treatment of human cancers and angiogenic diseases.
Collapse
Affiliation(s)
- Hsiao-Ting Wu
- School of Nutrition and Health Sciences, Taipei Medical University, Taiwan, ROC
| | | | | |
Collapse
|
7
|
Huang YC, Chen CT, Chen SC, Lai PH, Liang HC, Chang Y, Yu LC, Sung HW. A Natural Compound (Ginsenoside Re) Isolated from Panax ginseng as a Novel Angiogenic Agent for Tissue Regeneration. Pharm Res 2005; 22:636-46. [PMID: 15846472 DOI: 10.1007/s11095-005-2500-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 12/17/2004] [Indexed: 10/25/2022]
Abstract
PURPOSE The primary challenge for tissue engineering is to develop a vascular supply that can support the metabolic needs of the engineered tissues in an extracellular matrix. In this study, the feasibility of using a natural compound, ginsenoside Re, isolated from Panax ginseng in stimulating angiogenesis and for tissue regeneration was evaluated. METHODS Effects of ginsenoside Re on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) were examined in vitro. Additionally, angiogenesis and tissue regeneration in a genipin-fixed porous acellular bovine pericardium (extracellular matrix; ECM) incorporated with ginsenoside Re implanted subcutaneously in a rat model were investigated. Basic fibroblast growth factor (bFGF) was used as a control. RESULTS It was found that HUVEC proliferation, migration in a Transwell plate, and tube formation on Matrigel were all significantly enhanced in the presence of bFGF or ginsenoside Re. Additionally, effects of ginsenoside Re on HUVEC proliferation, migration, and tube formation were dose-dependent and reached a maximal level at a concentration of about 30 microg/ml. The in vivo results obtained at 1 week postoperatively showed that the density of neocapillaries and the tissue hemoglobin content in the ECMs were significantly enhanced by bFGF or ginsenoside Re. These results indicated that angiogenesis in the ECMs was significantly enhanced by loading with bFGF or ginsenoside Re. At 1 month postoperatively, vascularzied neo-connective-tissue fibrils were found to fill the pores in the ECMs loaded with bFGF or ginsenoside Re. CONCLUSIONS The aforementioned results indicated that like bFGF, ginsenoside Re-associated induction of angiogenesis enhanced tissue regeneration, supporting the concept of therapeutic angiogenesis in tissue-engineering strategies.
Collapse
Affiliation(s)
- Ya-Chun Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The chemokine system controls leukocyte trafficking during homeostasis as well as during inflammation and is necessary for the linkage between innate and adaptive immunity. Tissue regulation outside the hematopoietic compartment, for instance, angiogenesis, organogenesis and tumor development, growth and metastasis, is another important function of the chemokine system. The chemokine-mediated regulation of angiogenesis is highly sophisticated and fine tuned, and involves pro-angiogenic chemokines, for instance, CXCL8/IL8 interacting with the CXCR2 receptor, and anti-angiogenic (i.e. angiostatic) chemokines, for instance, CXCL10/IP10 interacting with the CXCR3 receptor. Chemokines also regulate angiogenesis in a receptor-independent manner by means of a perturbation of bFGF and VEGF function. The current review focuses on the influence of the chemokine system in angiogenesis. Examples of the delicate angiogenesis regulation by the chemokine system in, for instance, wound healing and of the dysregulation in, for instance, tumor development are provided along with the interesting phenomenon of molecular piracy of host-encoded genes within the chemokine system. This phenomenon is a general strategy to circumvent and exploit the immune system -- and thereby improve survival -- for many viruses. Yet, a certain group of herpesviruses -- the gamma2-herpesviruses -- encode a functional CXCR2 receptor homolog that is activated by angiogenic chemokines and antagonized by angiostatic chemokines, and this particular gene seems to cause the development of a vascular tumor -- Kaposi's sarcoma -- in the host.
Collapse
Affiliation(s)
- Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Pharmacology, The Panum Institute, Copenhagen, Denmark.
| | | |
Collapse
|
9
|
Mañes S, Mira E, Colomer R, Montero S, Real LM, Gómez-Moutón C, Jiménez-Baranda S, Garzón A, Lacalle RA, Harshman K, Ruíz A, Martínez-A C. CCR5 expression influences the progression of human breast cancer in a p53-dependent manner. ACTA ACUST UNITED AC 2003; 198:1381-9. [PMID: 14597737 PMCID: PMC2194244 DOI: 10.1084/jem.20030580] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Chemokines are implicated in tumor pathogenesis, although it is unclear whether they affect human cancer progression positively or negatively. We found that activation of the chemokine receptor CCR5 regulates p53 transcriptional activity in breast cancer cells through pertussis toxin–, JAK2-, and p38 mitogen–activated protein kinase–dependent mechanisms. CCR5 blockade significantly enhanced proliferation of xenografts from tumor cells bearing wild-type p53, but did not affect proliferation of tumor xenografts bearing a p53 mutation. In parallel, data obtained in a primary breast cancer clinical series showed that disease-free survival was shorter in individuals bearing the CCR5Δ32 allele than in CCR5 wild-type patients, but only for those whose tumors expressed wild-type p53. These findings suggest that CCR5 activity influences human breast cancer progression in a p53-dependent manner.
Collapse
Affiliation(s)
- Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Universidad Autonoma de Madrid, E-28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang D, Sai J, Richmond A. Cell surface heparan sulfate participates in CXCL1-induced signaling. Biochemistry 2003; 42:1071-7. [PMID: 12549928 PMCID: PMC2667446 DOI: 10.1021/bi026425a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The CXC subfamily of chemokines plays an important role in diverse processes, including inflammation, wound healing, growth regulation, angiogenesis, and tumorigenesis. The ELR-CXC chemokine, CXCL1 or MGSA/GROalpha, is traditionally considered to attract neutrophils to sites of inflammation. The non-ELR-CXC chemokine, CXCL10 or IP-10, is chemotactic for monocytes, B cells, and activated T lymphocytes. In addition to its role in leukocyte migration, CXCL10 inhibits the angiogenic functions of the ELR-CXC chemokines as well as bFGF and VEGF. Heparan sulfate proteoglycans (HSPGs) are required for the interaction of bFGF and vEGF ligands and their receptors. However, the role of HSPGs in regulating the ELR-chemokines signaling and biological functions is poorly understood. We show here that the CXCL1 maximal binding to CXCR2 expressed on HEK293 and CHO-K1 cells is dependent on the presence of cell surface HSPGs. The cell surface HSPGs on cells are required for CXCL1-induced PAK1 activation. Moreover, CXCL10 can inhibit CXCL1-induced PAK1 and ERK activation as well as the CXCL1-induced chemotaxis through decreasing CXCL1 binding to cell surface heparan sulfate. These data indicate that HSPGs are involved in modulating CXCL1-induced PAK1 activation and chemotaxis through regulating CXCL1 binding activity to CXCR2 receptor. CXCL10 inhibits CXCL1-induced PAK1 activation and chemotaxis by interfering with appropriate binding of CXCL1 to CXCR2 receptor.
Collapse
Affiliation(s)
| | | | - Ann Richmond
- Corresponding author. Address: Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232. Tel: 615-343-7777. FAX: 615-343-4539. E-mail:
| |
Collapse
|
11
|
Maher P. Phorbol esters inhibit fibroblast growth factor-2-stimulated fibroblast proliferation by a p38 MAP kinase dependent pathway. Oncogene 2002; 21:1978-88. [PMID: 11960370 DOI: 10.1038/sj.onc.1205268] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2001] [Revised: 12/11/2001] [Accepted: 12/18/2001] [Indexed: 11/08/2022]
Abstract
Treatment of fibroblasts with the phorbol ester, 12-O-tetradecanoyl phorbol 13-acetate (TPA), specifically inhibits fibroblast growth factor-2 (FGF-2) induced proliferation. TPA treatment has little or no effect on FGF receptor activation but specifically inhibits the activation of p38 MAPK but not other downstream signaling pathways implicated in cell proliferation. p38 MAPK was recently shown to be required for the FGF-2-stimulated proliferation of fibroblasts. The effect of TPA on both p38 MAPK activation and cell proliferation can be reversed by treatment with the PKC inhibitor Go6983. The TPA-mediated inhibition of p38 MAPK activation requires phosphatase activity and is at least partially mediated by ERKs since it is reduced by treatment with the MEK inhibitor PD98059. In contrast, the FGF-2-stimulated differentiation of PC12 cells, which express the same FGF receptor as Swiss 3T3 fibroblasts, is not affected by TPA treatment, consistent with a lack of involvement of p38 MAPK activity in this process. These data indicate that the effects of TPA treatment on cellular function are not only cell type but also stimulus specific and are dependent upon the distinct pathways activated downstream of each stimulus.
Collapse
Affiliation(s)
- Pamela Maher
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, CA 92037, USA
| |
Collapse
|
12
|
Liu XH, Hadley TJ, Xu L, Peiper SC, Ray PE. Up-regulation of Duffy antigen receptor expression in children with renal disease. Kidney Int 1999; 55:1491-500. [PMID: 10201015 DOI: 10.1046/j.1523-1755.1999.00385.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Duffy antigen chemokine receptor (DARC) is a promiscuous chemokine receptor that binds chemokines from the C-X-C and C-C families. DARC was initially described on red blood cells, but subsequent studies have demonstrated DARC protein expression on renal endothelial and epithelial cells, even in Duffy-negative individuals whose red cells lack DARC. Because approximately 68% of African Americans lack the Duffy/DARC on their red cells, we carried out experiments to identify the specific renal cells expressing DARC protein and mRNA in African American children and to define whether DARC expression was altered in renal inflammatory processes. METHODS Immunohistochemistry and in situ hybridization studies were done in 28 renal sections from children with each of the following diagnoses: HIV nephropathy (HIVAN), HIV-associated hemolytic uremic syndrome (HIV-HUS), HIV infection without renal disease, HIV-negative children without renal disease, and Argentinean children with classic HUS. RESULTS The predominant localization of DARC mRNA and protein was found in endothelial cells underlying postcapillary renal venules in all patients studied. However, DARC mRNA and protein were significantly up-regulated in peritubular and glomerular capillaries, collecting duct epithelial cells, and interstitial inflammatory cells in children with HIVAN, HIV-HUS, and classic HUS. CONCLUSION These findings support the notion that the renal DARC is linked to the inflammatory cascade and that African American children may be at risk of accumulating chemokines in renal tissues.
Collapse
Affiliation(s)
- X H Liu
- Research Center IV, Children's Research Institute, Children's National Medical Center, George Washington University, Washington D.C., USA
| | | | | | | | | |
Collapse
|