1
|
Tan X, Qi C, Zhao X, Sun L, Wu M, Sun W, Gu L, Wang F, Feng H, Huang X, Xie B, Shi Z, Xie P, Wu M, Zhang Y, Chen G. ERK Inhibition Promotes Engraftment of Allografts by Reprogramming T-Cell Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206768. [PMID: 37013935 DOI: 10.1002/advs.202206768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Indexed: 06/04/2023]
Abstract
Extracellular regulated protein kinases (ERK) signaling is a master regulator of cell behavior, life, and fate. Although ERK pathway is shown to be involved in T-cell activation, little is known about its role in the development of allograft rejection. Here, it is reported that ERK signaling pathway is activated in allograft-infiltrating T cells. On the basis of surface plasmon resonance technology, lycorine is identified as an ERK-specific inhibitor. ERK inhibition by lycorine significantly prolongs allograft survival in a stringent mouse cardiac allotransplant model. As compared to untreated mice, lycorine-treated mice show a decrease in the number and activation of allograft-infiltrated T cells. It is further confirmed that lycorine-treated mouse and human T cells are less responsive to stimulation in vitro, as indicated by their low proliferative rates and decreased cytokine production. Mechanistic studies reveal that T cells treated with lycorine exhibit mitochondrial dysfunction, resulting in metabolic reprogramming upon stimulation. Transcriptome analysis of lycorine-treated T cells reveals an enrichment in a series of downregulated terms related to immune response, the mitogen-activated protein kinase cascade, and metabolic processes. These findings offer new insights into the development of immunosuppressive agents by targeting the ERK pathway involved in T-cell activation and allograft rejection.
Collapse
Affiliation(s)
- Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Xiangli Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Fengqing Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Xia Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Bin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Peiling Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Meng Wu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| |
Collapse
|
2
|
A Cysteine Residue within the Kinase Domain of Zap70 Regulates Lck Activity and Proximal TCR Signaling. Cells 2022; 11:cells11172723. [PMID: 36078131 PMCID: PMC9455082 DOI: 10.3390/cells11172723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in both the expression and function of the non-receptor tyrosine kinase Zap70 are associated with numerous human diseases including immunodeficiency, autoimmunity, and leukemia. Zap70 propagates the TCR signal by phosphorylating two important adaptor molecules, LAT and SLP76, which orchestrate the assembly of the signaling complex, leading to the activation of PLCγ1 and further downstream pathways. These events are crucial to drive T-cell development and T-cell activation. Recently, it has been proposed that C564, located in the kinase domain of Zap70, is palmitoylated. A non-palmitoylable C564R Zap70 mutant, which has been reported in a patient suffering from immunodeficiency, is incapable of propagating TCR signaling and activating T cells. The lack of palmitoylation was suggested as the cause of this human disease. Here, we confirm that Zap70C564R is signaling defective, but surprisingly, the defective Zap70 function does not appear to be due to a loss in palmitoylation. We engineered a C564A mutant of Zap70 which, similarly to Zap70C564R, is non-palmitoylatable. However, this mutant was capable of propagating TCR signaling. Moreover, Zap70C564A enhanced the activity of Lck and increased its proximity to the TCR. Accordingly, Zap70-deficient P116 T cells expressing Zap70C564A displayed the hyperphosphorylation of TCR-ζ and Zap70 (Y319), two well-known Lck substrates. Collectively, these data indicate that C564 is important for the regulation of Lck activity and proximal TCR signaling, but not for the palmitoylation of Zap70.
Collapse
|
3
|
Kouakanou L, Peters C, Brown CE, Kabelitz D, Wang LD. Vitamin C, From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy? Front Immunol 2021; 12:765906. [PMID: 34899716 PMCID: PMC8663797 DOI: 10.3389/fimmu.2021.765906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Vitamin C (VitC), in addition to its role as a general antioxidant, has long been considered to possess direct anti-cancer activity at high doses. VitC acts through oxidant and epigenetic mechanisms, which at high doses can exert direct killing of tumor cells in vitro and delay tumor growth in vivo. Recently, it has also been shown that pharmacologic-dose VitC can contribute to control of tumors by modulating the immune system, and studies have been done interrogating the role of physiologic-dose VitC on novel adoptive cellular therapies (ACTs). In this review, we discuss the effects of VitC on anti-tumor immune cells, as well as the mechanisms underlying those effects. We address important unanswered questions concerning both VitC and ACTs, and outline challenges and opportunities facing the use of VitC in the clinical setting as an adjunct to immune-based anti-cancer therapies.
Collapse
Affiliation(s)
- Léonce Kouakanou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Leo D Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Department of Pediatrics, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
4
|
Liu D, Du J, Sun J, Li M. Parathyroid hormone-related protein inhibits nitrogen-containing bisphosphonate-induced apoptosis of human periodontal ligament fibroblasts by activating MKP1 phosphatase. Bioengineered 2021; 12:1997-2006. [PMID: 34024253 PMCID: PMC8806876 DOI: 10.1080/21655979.2021.1928930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Massive production of reactive oxygen species (ROS) in human periodontal ligament fibroblasts (HPdLFs) by nitrogen-containing bisphosphonates (BPs) is the main factor causing BP-related osteonecrosis of the jaw. Further, oxidative stress and apoptosis of fibroblasts induced by ROS are closely associated with the activation of MAPK. Parathyroid hormone-related protein (PTHrP) can block the activity of MAPK by regulating the levels of MAPK phosphatase 1 (MKP1). Therefore, it is speculated that PTHrP can inhibit the apoptosis of HPdLFs caused by nitrogen-containing BP via regulating the expression levels of MKP1. Herein, alendronate sodium salt trihydrate (nitrogen-containing BP, FOS) and HPdLFs were co-cultured for 24 h, 48 h, and 72 h, and the levels of ROS and apoptosis were determined, respectively. After 48 h co-culture, FOS significantly increased the levels of ROS and apoptosis, and high phosphorylation levels of p38, ERK1/2 and p66Shc were found in this study. However, the inhibitors of p38 and ERK1/2 significantly reduced the apoptosis of HPdLFs. Interestingly, PTHrP pre-treatment significantly reduced the phosphorylation levels of p38, ERK1/2, and p66Shc. More importantly, MKP1 inhibitor sanguinarine inhibited the dephosphorylation levels of p38, ERK1/2, and p66Shc caused by PTHrP. Altogether, PTHrP can inhibit nitrogen-containing BP-induced apoptosis of HPdLFs by activating MKP1 phosphatase.
Collapse
Affiliation(s)
- Di Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan China.,Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan China
| | - Juan Du
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan China
| | - Jing Sun
- Department of Periodontology, Jinan Stomatological Hospital, Jinan China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan China
| |
Collapse
|
5
|
Yoshida T, Ichikawa J, Giuroiu I, Laino AS, Hao Y, Krogsgaard M, Vassallo M, Woods DM, Stephen Hodi F, Weber J. C reactive protein impairs adaptive immunity in immune cells of patients with melanoma. J Immunother Cancer 2020; 8:e000234. [PMID: 32303612 PMCID: PMC7204799 DOI: 10.1136/jitc-2019-000234] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND High C reactive protein (CRP) levels have been reported to be associated with a poor clinical outcome in a number of malignancies and with programmed cell death protein 1 immune checkpoint blockade in patients with advanced cancer. Little is known about the direct effects of CRP on adaptive immunity in cancer. Therefore, we investigated how CRP impacted the function of T cells and dendritic cells (DCs) from patients with melanoma. METHODS The effects of CRP on proliferation, function, gene expression and phenotype of patient T cells and DCs, and expansion of MART-1 antigen-specific T cells were analyzed by multicolor flow cytometry and RNA-seq. Additionally, serum CRP levels at baseline from patients with metastatic melanoma treated on the Checkmate-064 clinical trial were assessed by a Luminex assay. RESULTS In vitro, CRP inhibited proliferation, activation-associated phenotypes and the effector function of activated CD4+ and CD8+ T cells from patients with melanoma. CRP-treated T cells expressed high levels of interleukin-1β, which is known to enhance CRP production from the liver. CRP also suppressed formation of the immune synapse and inhibited early events in T-cell receptor engagement. In addition, CRP downregulated the expression of costimulatory molecules on mature DCs and suppressed expansion of MART-1-specific CD8+ T cells in a dose-dependent manner by impacting on both T cells and antigen-presenting cells. High-serum CRP levels at baseline were significantly associated with a shorter survival in both nivolumab-treated and ipilimumab-treated patients. CONCLUSIONS These findings suggest that high levels of CRP induce an immunosuppressive milieu in melanoma and support the blockade of CRP as a therapeutic strategy to enhance immune checkpoint therapies in cancer. TRIAL REGISTRATION NUMBER NCT01783938 and NCT02983006.
Collapse
Affiliation(s)
- Tatsuya Yoshida
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Junya Ichikawa
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Iulia Giuroiu
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Andressa S Laino
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Yuhan Hao
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Melinda Vassallo
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - David M Woods
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | | | - Jeffrey Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
6
|
Peters C, Kouakanou L, Kabelitz D. A comparative view on vitamin C effects on αβ- versus γδ T-cell activation and differentiation. J Leukoc Biol 2020; 107:1009-1022. [PMID: 32034803 DOI: 10.1002/jlb.1mr1219-245r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Vitamin C (VitC) is an essential vitamin that needs to be provided through exogenous sources. It is a potent anti-oxidant, and an essential cofactor for many enzymes including a group of enzymes that modulate epigenetic regulation of gene expression. Moreover, VitC has a significant influence on T-cell differentiation, and can directly interfere with T-cell signaling. Conventional CD4 and CD8 T cells express the αβ TCR and recognize peptide antigens in the context of MHC presentation. The numerically small population of γδ T cells recognizes antigens in an MHC-independent manner. γδ T cells kill a broad variety of malignant cells, and because of their unique features, are interesting candidates for cancer immunotherapy. In this review, we summarize what is known about the influence of VitC on T-cell activation and differentiation with a special focus on γδ T cells. The known mechanisms of action of VitC on αβ T cells are discussed and extrapolated to the effects observed on γδ T-cell activation and differentiation. Overall, VitC enhances proliferation and effector functions of γδ T cells and thus may help to increase the efficacy of γδ T cells applied as cancer immunotherapy in adoptive cell transfer.
Collapse
Affiliation(s)
- Christian Peters
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
7
|
Ultrasmall silica nanoparticles directly ligate the T cell receptor complex. Proc Natl Acad Sci U S A 2019; 117:285-291. [PMID: 31871161 DOI: 10.1073/pnas.1911360117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The impact of ultrasmall nanoparticles (<10-nm diameter) on the immune system is poorly understood. Recently, ultrasmall silica nanoparticles (USSN), which have gained increasing attention for therapeutic applications, were shown to stimulate T lymphocytes directly and at relatively low-exposure doses. Delineating underlying mechanisms and associated cell signaling will hasten therapeutic translation and is reported herein. Using competitive binding assays and molecular modeling, we established that the T cell receptor (TCR):CD3 complex is required for USSN-induced T cell activation, and that direct receptor complex-particle interactions are permitted both sterically and electrostatically. Activation is not limited to αβ TCR-bearing T cells since those with γδ TCR showed similar responses, implying that USSN mediate their effect by binding to extracellular domains of the flanking CD3 regions of the TCR complex. We confirmed that USSN initiated the signaling pathway immediately downstream of the TCR with rapid phosphorylation of both ζ-chain-associated protein 70 and linker for activation of T cells protein. However, T cell proliferation or IL-2 secretion were only triggered by USSN when costimulatory anti-CD28 or phorbate esters were present, demonstrating that the specific impact of USSN is in initiation of the primary, nuclear factor of activated T cells-pathway signaling from the TCR complex. Hence, we have established that USSN are partial agonists for the TCR complex because of induction of the primary T cell activation signal. Their ability to bind the TCR complex rapidly, and then to dissolve into benign orthosilicic acid, makes them an appealing option for therapies targeted at transient TCR:CD3 receptor binding.
Collapse
|
8
|
Tsygankov AY. TULA proteins as signaling regulators. Cell Signal 2019; 65:109424. [PMID: 31639493 DOI: 10.1016/j.cellsig.2019.109424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
Two members of the UBASH3/STS/TULA family exhibit a unique protein domain structure, which includes a histidine phosphatase domain, and play a key role in regulating cellular signaling. UBASH3A/STS-2/TULA is mostly a lymphoid protein, while UBASH3B/STS-1/TULA-2 is expressed ubiquitously. Dephosphorylation of tyrosine-phosphorylated proteins by TULA-2 and, probably to a lesser extent, by TULA critically contribute to the molecular basis of their regulatory effect. The notable differences between the effects of the two family members on cellular signaling and activation are likely to be linked to the difference between their specific enzymatic activities. However, these differences might also be related to the functions of their domains other than the phosphatase domain and independent of their phosphatase activity. The down-regulation of the Syk/Zap-70-mediated signaling, which to-date appears to be the best-studied regulatory effect of TULA family, is discussed in detail in this publication.
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Fels Institute for Cancer Research and Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, 3400 N. Broad Street, Philadelphia, PA, 19140, United States.
| |
Collapse
|
9
|
Kim VY, Batty A, Li J, Kirk SG, Crowell SA, Jin Y, Tang J, Zhang J, Rogers LK, Deng HX, Nelin LD, Liu Y. Glutathione Reductase Promotes Fungal Clearance and Suppresses Inflammation during Systemic Candida albicans Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:2239-2251. [PMID: 31501257 DOI: 10.4049/jimmunol.1701686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/07/2019] [Indexed: 01/16/2023]
Abstract
Glutathione reductase (Gsr) catalyzes the reduction of glutathione disulfide to glutathione, which plays an important role in redox regulation. We have previously shown that Gsr facilitates neutrophil bactericidal activities and is pivotal for host defense against bacterial pathogens. However, it is unclear whether Gsr is required for immune defense against fungal pathogens. It is also unclear whether Gsr plays a role in immunological functions outside of neutrophils during immune defense. In this study, we report that Gsr-/- mice exhibited markedly increased susceptibility to Candida albicans challenge. Upon C. albicans infection, Gsr-/- mice exhibited dramatically increased fungal burden in the kidneys, cytokine and chemokine storm, striking neutrophil infiltration, histological abnormalities in both the kidneys and heart, and substantially elevated mortality. Large fungal foci surrounded by massive numbers of neutrophils were detected outside of the glomeruli in the kidneys of Gsr -/- mice but were not found in wild-type mice. Examination of the neutrophils and macrophages of Gsr-/- mice revealed several defects. Gsr -/- neutrophils exhibited compromised phagocytosis, attenuated respiratory burst, and impaired fungicidal activity in vitro. Moreover, upon C. albicans stimulation, Gsr -/- macrophages produced increased levels of inflammatory cytokines and exhibited elevated p38 and JNK activities, at least in part, because of lower MAPK phosphatase (Mkp)-1 activity and greater Syk activity. Thus, Gsr-mediated redox regulation is crucial for fungal clearance by neutrophils and the proper control of the inflammatory response by macrophages during host defense against fungal challenge.
Collapse
Affiliation(s)
- Victoria Y Kim
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Abel Batty
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Jinhui Li
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Sean G Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Sara A Crowell
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Yi Jin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Juan Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Jian Zhang
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Lynette K Rogers
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Han-Xiang Deng
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Leif D Nelin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215; .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| |
Collapse
|
10
|
Wan R, Wu J, Ouyang M, Lei L, Wei J, Peng Q, Harrison R, Wu Y, Cheng B, Li K, Zhu C, Tang L, Wang Y, Lu S. Biophysical basis underlying dynamic Lck activation visualized by ZapLck FRET biosensor. SCIENCE ADVANCES 2019; 5:eaau2001. [PMID: 31223643 PMCID: PMC6584686 DOI: 10.1126/sciadv.aau2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/15/2019] [Indexed: 05/25/2023]
Abstract
Lck plays crucial roles in TCR signaling. We developed a new and sensitive FRET biosensor (ZapLck) to visualize Lck kinase activity with high spatiotemporal resolutions in live cells. ZapLck revealed that 62% of Lck signal was preactivated in T-cells. In Lck-deficient JCam T-cells, Lck preactivation was abolished, which can be restored to 51% by reconstitution with wild-type Lck (LckWT) but not a putatively inactive mutant LckY394F. LckWT also showed a stronger basal Lck-Lck interaction and a slower diffusion rate than LckY394F. Interestingly, aggregation of TCR receptors by antibodies in JCam cells led to a strong activation of reconstituted LckY394F similar to LckWT. Both activated LckY394F and LckWT diffused more slowly and displayed increased Lck-Lck interaction at a similar level. Therefore, these results suggest that a phosphorylatable Y394 is necessary for the basal-level interaction and preactivation of LckWT, while antibody-induced TCR aggregation can trigger the full activation of LckY394F.
Collapse
Affiliation(s)
- Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jenny Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mingxing Ouyang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lei Lei
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiaming Wei
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qin Peng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reed Harrison
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yiqian Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Binbin Cheng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaitao Li
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cheng Zhu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaoying Lu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
HTLV-1 bZIP Factor Enhances T-Cell Proliferation by Impeding the Suppressive Signaling of Co-inhibitory Receptors. PLoS Pathog 2017; 13:e1006120. [PMID: 28046066 PMCID: PMC5234849 DOI: 10.1371/journal.ppat.1006120] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/13/2017] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. To enhance cell-to-cell transmission of HTLV-1, the virus increases the number of infected cells in vivo. HTLV-1 bZIP factor (HBZ) is constitutively expressed in HTLV-1 infected cells and ATL cells and promotes T-cell proliferation. However, the detailed mechanism by which it does so remains unknown. Here, we show that HBZ enhances the proliferation of expressing T cells after stimulation via the T-cell receptor. HBZ promotes this proliferation by influencing the expression and function of multiple co-inhibitory receptors. HBZ suppresses the expression of BTLA and LAIR-1 in HBZ expressing T cells and ATL cells. Expression of T cell immunoglobulin and ITIM domain (TIGIT) and Programmed cell death 1 (PD-1) was enhanced, but their suppressive effect on T-cell proliferation was functionally impaired. HBZ inhibits the co-localization of SHP-2 and PD-1 in T cells, thereby leading to impaired inhibition of T-cell proliferation and suppressed dephosphorylation of ZAP-70 and CD3ζ. HBZ does this by interacting with THEMIS, which associates with Grb2 and SHP-2. Thus, HBZ interacts with the SHP containing complex, impedes the suppressive signal from PD-1 and TIGIT, and enhances the proliferation of T cells. Although HBZ was present in both the nucleus and the cytoplasm of T cells, HBZ was localized largely in the nucleus by suppressed expression of THEMIS by shRNA. This indicates that THEMIS is responsible for cytoplasmic localization of HBZ in T cells. Since THEMIS is expressed only in T-lineage cells, HBZ mediated inhibition of the suppressive effects of co-inhibitory receptors accounts for how HTLV-1 induces proliferation only of T cells in vivo. This study reveals that HBZ targets co-inhibitory receptors to cause the proliferation of infected cells. Since HTLV-1 infects only through cell-to-cell transmission, increasing the number of infected cells is critical for transmission of HTLV-1. Proliferation of HTLV-1 infected cells is critical for development of leukemia and inflammatory diseases. In this study, we showed that HBZ promotes the proliferation of infected cells by targeting co-inhibitory receptors. Paradoxically, HBZ enhances the expression of the co-inhibitory receptors TIGIT and PD-1. We found that HBZ concurrently hampers the growth-inhibitory signal of TIGIT and PD-1, thereby leading to the enhanced proliferation of HTLV-1 infected cells in vivo. HBZ does this by interacting with THEMIS, which is expressed only in T cells. It is known that HTLV-1 infects different types of cells but increases only T cells. Functional impairment of co-inhibitory receptors by interaction of HBZ with THEMIS is a mechanism how HTLV-1 specifically induces proliferation of T cells.
Collapse
|
12
|
Premkumar K, Shankar BS. Involvement of MAPK signalling in radioadaptive response in BALB/c mice exposed to low dose ionizing radiation. Int J Radiat Biol 2016; 92:249-62. [DOI: 10.3109/09553002.2016.1146829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Santulli P, Marcellin L, Tosti C, Chouzenoux S, Cerles O, Borghese B, Batteux F, Chapron C. MAP kinases and the inflammatory signaling cascade as targets for the treatment of endometriosis? Expert Opin Ther Targets 2015; 19:1465-83. [PMID: 26389657 DOI: 10.1517/14728222.2015.1090974] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The pathogenesis of endometriosis, a common benign disease, remains ill-defined, although it is clear that chronic inflammation plays a crucial role through mitogen-activated protein kinase (MAPK) signaling pathways. All current medical therapies for endometriosis are antigonadotropic, and therefore have a contraceptive effect. A concerted research effort is hence warranted with the aim of delivering novel therapeutics that reduces disease symptoms without blocking ovulation. AREAS COVERED The authors review the complex pathogenic mechanisms of chronic inflammation in endometriosis and their relationships with MAPK pathways. The authors conducted a literature search of descriptive and functional targeted validation of MAPK in the pathogenesis of endometriosis. The effects of MAPK inhibitors, which constitute potential agents for future treatments, are also described. EXPERT OPINION Preliminary studies have highlighted a crucial role for MAPK in driving endometriosis-related inflammation. MAPK inhibitors exhibit potent activity in terms of controlling growth of endometriosis lesions both in vitro and in animal models. As MAPK inhibitors are known to have a multitude of undesirable side effects, their use in humans has to be approached with great care. Indeed, use of these drugs would probably be limited to short exposures prior to surgery in cases involving the most severe disease phenotypes.
Collapse
Affiliation(s)
- Pietro Santulli
- a 1 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique - Hôpitaux de Paris (AP- HP), Groupe Hospitalier Universitaire (GHU) Ouest, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine , 75679 Paris, France +33 1 58 41 36 72 ; .,b 2 Université Paris Descartes, Sorbonne Paris Cité, Department "Development, Reproduction and Cancer," Institut Cochin , INSERM U1016, Equipe Pr Batteux, Paris, France
| | - Louis Marcellin
- a 1 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique - Hôpitaux de Paris (AP- HP), Groupe Hospitalier Universitaire (GHU) Ouest, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine , 75679 Paris, France +33 1 58 41 36 72 ; .,b 2 Université Paris Descartes, Sorbonne Paris Cité, Department "Development, Reproduction and Cancer," Institut Cochin , INSERM U1016, Equipe Pr Batteux, Paris, France
| | - Claudia Tosti
- c 3 University of Siena, Obstetrics and Gynecology, Department of Molecular and Developmental Medicine , Siena, Italy
| | - Sandrine Chouzenoux
- b 2 Université Paris Descartes, Sorbonne Paris Cité, Department "Development, Reproduction and Cancer," Institut Cochin , INSERM U1016, Equipe Pr Batteux, Paris, France
| | - Olivier Cerles
- b 2 Université Paris Descartes, Sorbonne Paris Cité, Department "Development, Reproduction and Cancer," Institut Cochin , INSERM U1016, Equipe Pr Batteux, Paris, France
| | - Bruno Borghese
- a 1 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique - Hôpitaux de Paris (AP- HP), Groupe Hospitalier Universitaire (GHU) Ouest, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine , 75679 Paris, France +33 1 58 41 36 72 ; .,b 2 Université Paris Descartes, Sorbonne Paris Cité, Department "Development, Reproduction and Cancer," Institut Cochin , INSERM U1016, Equipe Pr Batteux, Paris, France
| | - Frédéric Batteux
- b 2 Université Paris Descartes, Sorbonne Paris Cité, Department "Development, Reproduction and Cancer," Institut Cochin , INSERM U1016, Equipe Pr Batteux, Paris, France.,d 4 Hôpital Cochin, Department of Immunology , AP-HP, 75679 Paris cedex 14, France
| | - Charles Chapron
- a 1 Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique - Hôpitaux de Paris (AP- HP), Groupe Hospitalier Universitaire (GHU) Ouest, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine , 75679 Paris, France +33 1 58 41 36 72 ; .,b 2 Université Paris Descartes, Sorbonne Paris Cité, Department "Development, Reproduction and Cancer," Institut Cochin , INSERM U1016, Equipe Pr Batteux, Paris, France
| |
Collapse
|
14
|
DJ-1 protein regulates CD3+ T cell migration via overexpression of CXCR4 receptor. Atherosclerosis 2014; 235:503-9. [PMID: 24953490 DOI: 10.1016/j.atherosclerosis.2014.05.955] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 04/30/2014] [Accepted: 05/27/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVE DJ-1-a multifunctional protein responding to oxidative stress-is a possible regulator of the inflammatory response that plays an important role in atherosclerosis. Stromal cell-derived factor (SDF)-1 and its receptor, chemokine receptor type 4 (CXCR4), have been implicated in the recruitment of inflammatory cells during atherosclerosis. Here we investigated the hypothesis that DJ-1 protein might participate in CD3+ T cell functions in response to SDF-1 and contribute to the pathogenesis of atherosclerosis. METHODS AND RESULTS SDF-1 stimulated migration in mouse CD3+ T cells in a dose-dependent manner. SDF-1 also elevated the phosphorylation level of extracellular-regulated kinase (ERK) 1/2 in CD3+ T cells. These SDF-1-induced responses were greater in CD3+ T cells from DJ-1 gene knockout (DJ-1(-/-)) mice than in those from wild type (DJ-1(+/+)) mice and were abolished by treatment with WZ811 and PD98059, inhibitors of CXCR4 and ERK1/2, respectively. Flow cytometry revealed that expression of the CXCR4 receptor was greater in CD3+ T cells from DJ-1(-/-) mice than in those from the controls. Moreover, expression of the CD3 protein was observed in the neointimal plaque from carotid artery-ligated mice and was stronger in DJ-1(-/-) mice compared with controls. The CD3+ T cell subsets, Th1 and Th17, showed increased production of interferon-γ and interleukin-17 in DJ-1(-/-) compared with DJ-1(+/+) mice. CONCLUSION DJ-1 protein is involved in the SDF-1-induced CD3+ T cell migration via overexpression of the CXCR4 receptor, and that DJ-1 acts as an inhibitory regulator in vascular remodeling such as neointima formation.
Collapse
|
15
|
Kamiński MM, Röth D, Krammer PH, Gülow K. Mitochondria as oxidative signaling organelles in T-cell activation: physiological role and pathological implications. Arch Immunol Ther Exp (Warsz) 2013; 61:367-84. [PMID: 23749029 DOI: 10.1007/s00005-013-0235-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/13/2013] [Indexed: 12/22/2022]
Abstract
Early scientific reports limited the cell biological role of reactive oxygen species (ROS) to the cause of pathological damage. However, extensive research performed over the last decade led to a wide recognition of intracellular oxidative/redox signaling as a crucial mechanism of homeostatic regulation. Amongst different cellular processes known to be influenced by redox signaling, T-cell activation is one of the most established. Numerous studies reported an indispensible role for ROS as modulators of T-cell receptor-induced transcription. Nevertheless, mechanistic details regarding signaling pathways triggered by ROS are far from being delineated. The nature and interplay between enzymatic sources involved in the generation of "oxidative signals" are also a matter of ongoing research. In particular, active participation of the mitochondrial respiratory chain as ROS producer constitutes an intriguing issue with various implications for bioenergetics of activated T cells as well as for T-cell-mediated pathologies. The aim of the current review is to address these interesting concepts.
Collapse
Affiliation(s)
- Marcin M Kamiński
- Tumour Immunology Program, Division of Immunogenetics (D030), German Cancer Research Center (DKFZ), Heidelberg, Germany,
| | | | | | | |
Collapse
|
16
|
Kesarwani P, Murali AK, Al-Khami AA, Mehrotra S. Redox regulation of T-cell function: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2013; 18:1497-534. [PMID: 22938635 PMCID: PMC3603502 DOI: 10.1089/ars.2011.4073] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are thought to have effects on T-cell function and proliferation. Low concentrations of ROS in T cells are a prerequisite for cell survival, and increased ROS accumulation can lead to apoptosis/necrosis. The cellular redox state of a T cell can also affect T-cell receptor signaling, skewing the immune response. Various T-cell subsets have different redox statuses, and this differential ROS susceptibility could modulate the outcome of an immune response in various disease states. Recent advances in T-cell redox signaling reveal that ROS modulate signaling cascades such as the mitogen-activated protein kinase, phosphoinositide 3-kinase (PI3K)/AKT, and JAK/STAT pathways. Also, tumor microenvironments, chronic T-cell stimulation leading to replicative senescence, gender, and age affect T-cell susceptibility to ROS, thereby contributing to diverse immune outcomes. Antioxidants such as glutathione, thioredoxin, superoxide dismutase, and catalase balance cellular oxidative stress. T-cell redox states are also regulated by expression of various vitamins and dietary compounds. Changes in T-cell redox regulation may affect the pathogenesis of various human diseases. Many strategies to control oxidative stress have been employed for various diseases, including the use of active antioxidants from dietary products and pharmacologic or genetic engineering of antioxidant genes in T cells. Here, we discuss the existence of a complex web of molecules/factors that exogenously or endogenously affect oxidants, and we relate these molecules to potential therapeutics.
Collapse
Affiliation(s)
- Pravin Kesarwani
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
17
|
The membrane adaptor LAT is proteolytically cleaved following Fas engagement in a tyrosine phosphorylation-dependent fashion. Biochem J 2013; 450:511-21. [PMID: 23240581 DOI: 10.1042/bj20121135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Engagement of the TCR (T-cell receptor) induces tyrosine phosphorylation of the LAT (linker for the activation of T-cells) adaptor, and thereby it recruits several cytosolic mediators for downstream signalling pathways. The Fas protein is essential for T-lymphocyte apoptosis, and following Fas engagement, many proteins are proteolytically cleaved, including several molecules that are important for the transduction of TCR intracellular signals. In the present study, we demonstrate that the adaptor LAT is also subject to a proteolytic cleavage in mature T-lymphocytes and thymocytes in response to Fas engagement, and also on TCR stimulation, and we identify three aspartic acid residues at which LAT is cleaved. Interestingly, these aspartic acid residues are located in proximity to several functionally important tyrosine residues of LAT, raising the possibility that their phosphorylation could modulate LAT cleavage. Consistent with that hypothesis, we show that induction of phosphorylation by pervanadate or H2O2 in Jurkat cells and thymocytes inhibits Fas-mediated cleavage of LAT. Moreover, we show that LAT proteolysis is also enhanced during anergy induction of primary human T-cells, suggesting that LAT cleavage may act as a regulator of TCR-mediated activation of T-cells and not only as a transducer of cell death promoting stimuli.
Collapse
|
18
|
Antioxidant treatment regulates the humoral immune response during acute viral infection. J Virol 2012; 87:2577-86. [PMID: 23255789 DOI: 10.1128/jvi.02714-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Generation of reactive oxygen intermediates (ROI) following antigen receptor ligation is critical to promote cellular responses. However, the effect of antioxidant treatment on humoral immunity during a viral infection was unknown. Mice were infected with lymphocytic choriomeningitis virus (LCMV) and treated with Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), a superoxide dismutase mimetic, from days 0 to 8 postinfection. On day 8, at the peak of the splenic response in vehicle-treated mice, virus-specific IgM and IgG antibody-secreting cells (ASC) were decreased 22- and 457-fold in MnTBAP-treated animals. By day 38, LCMV-specific IgG ASC were decreased 5-fold in the bone marrow of drug-treated mice, and virus-specific antibodies were of lower affinity. Interestingly, antioxidant treatment had no effect on the number of LCMV-specific IgG memory B cells. In addition to decreases in ASC, MnTBAP treatment decreased the number of functional virus-specific CD4(+) T cells. The decreased numbers of ASC observed on day 8 in drug-treated mice were due to a combination of Bim-mediated cell death and decreased proliferation. Together, these data demonstrate that ROI regulate antiviral ASC expansion and have important implications for understanding the effects of antioxidants on humoral immunity during infection and immunization.
Collapse
|
19
|
Bosnjak L, Sahlström P, Paquin-Proulx D, Leeansyah E, Moll M, Sandberg JK. Contact-dependent interference with invariant NKT cell activation by herpes simplex virus-infected cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:6216-24. [PMID: 22581860 DOI: 10.4049/jimmunol.1100218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Invariant CD1d-restricted NKT (iNKT) cells play important roles in generating protective immune responses against infections. In this study, we have investigated the role of human iNKT cells in HSV-1 infection and their interaction with epidermal keratinocytes. These cells express CD1d and are the primary target of the virus. Keratinocytes loaded with α-galactosyl ceramide (α-GalCer) could stimulate IFN-γ production and CD25 upregulation by iNKT cells. However, both α-GalCer-dependent and cytokine-dependent activation of iNKT cells was impaired after coculture with HSV-1-infected cells. Notably, CD1d downregulation was not observed on infected keratinocytes, which were also found to inhibit TCR-independent iNKT cell activation. Further examination of the cytokine profile of iNKT-keratinocyte cocultures showed inhibition of IFN-γ, IL-5, IL-10, IL-13, and IL-17 secretion but upregulation of IL-4 and TNF-α after the infection. Moreover, cell-to-cell contact between infected keratinocytes and iNKT cells was required for the inhibition of activation, as the cell-free supernatants containing virus did not affect activation. Productive infection of iNKT cells was however not required for the inhibitory effect. After coculture with infected cells, iNKT cells were no longer responsive to further stimulation with α-GalCer-loaded CD1d-expressing cells. We found that exposure to HSV-1-infected cells resulted in impaired TCR signaling downstream of ZAP70. Additionally, infected cells upregulated the expression of the negative T cell regulator, galectin-9; however, blocking experiments indicated that the impairment of iNKT cell responses was independent of galectin-9. Thus, interference with activation of human iNKT cells by HSV-1 may represent a novel immunoevasive strategy used by the virus to avoid immune clearance.
Collapse
Affiliation(s)
- Lidija Bosnjak
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
20
|
Scott AJ, O'Dea KP, O'Callaghan D, Williams L, Dokpesi JO, Tatton L, Handy JM, Hogg PJ, Takata M. Reactive oxygen species and p38 mitogen-activated protein kinase mediate tumor necrosis factor α-converting enzyme (TACE/ADAM-17) activation in primary human monocytes. J Biol Chem 2011; 286:35466-35476. [PMID: 21865167 DOI: 10.1074/jbc.m111.277434] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor α-converting enzyme (TACE) is responsible for the shedding of cell surface TNF. Studies suggest that reactive oxygen species (ROS) mediate up-regulation of TACE activity by direct oxidization or modification of the protein. However, these investigations have been largely based upon nonphysiological stimulation of promonocytic cell lines which may respond and process TACE differently from primary cells. Furthermore, investigators have relied upon TACE substrate shedding as a surrogate for activity quantification. We addressed these concerns, employing a direct, cell-based fluorometric assay to investigate the regulation of TACE catalytic activity on freshly isolated primary human monocytes during LPS stimulation. We hypothesized that ROS mediate up-regulation of TACE activity indirectly, by activation of intracellular signaling pathways. LPS up-regulated TACE activity rapidly (within 30 min) without changing cell surface TACE expression. Scavenging of ROS or inhibiting their production by flavoprotein oxidoreductases significantly attenuated LPS-induced TACE activity up-regulation. Exogenous ROS (H(2)O(2)) also up-regulated TACE activity with similar kinetics and magnitude as LPS. H(2)O(2)- and LPS-induced TACE activity up-regulation were effectively abolished by a variety of selective p38 MAPK inhibitors. Activation of p38 was redox-sensitive as H(2)O(2) caused p38 phosphorylation, and ROS scavenging significantly reduced LPS-induced phospho-p38 expression. Inhibition of the p38 substrate, MAPK-activated protein kinase 2, completely attenuated TACE activity up-regulation, whereas inhibition of ERK had little effect. Lastly, inhibition of cell surface oxidoreductases prevented TACE activity up-regulation distal to p38 activation. In conclusion, our data indicate that in primary human monocytes, ROS mediate LPS-induced up-regulation of TACE activity indirectly through activation of the p38 signaling pathway.
Collapse
Affiliation(s)
- Alasdair J Scott
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - David O'Callaghan
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Lynn Williams
- Kennedy Institute of Rheumatology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Justina O Dokpesi
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Louise Tatton
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Jonathan M Handy
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Philip J Hogg
- Lowy Cancer Research Centre, University of New South Wales, Sydney 2052, Australia
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.
| |
Collapse
|
21
|
Angiogenesis and oxidative stress: Common mechanisms linking psoriasis with atherosclerosis. J Dermatol Sci 2011; 63:1-9. [DOI: 10.1016/j.jdermsci.2011.04.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/30/2011] [Accepted: 04/11/2011] [Indexed: 11/22/2022]
|
22
|
Heo J. Redox control of GTPases: from molecular mechanisms to functional significance in health and disease. Antioxid Redox Signal 2011; 14:689-724. [PMID: 20649471 DOI: 10.1089/ars.2009.2984] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Small GTPases, including the proto-oncoprotein Ras and Rho GTPases, are involved in various cellular signaling events. Some of these small GTPases are redox sensitive, including Ras, Rho, Ran, Dexras1, and Rhes GTPases. Thus, the redox-mediated regulation of these GTPases often determines the course of their cellular signaling cascades. This article takes into consideration the application of Marcus theory to potential redox-based molecular mechanisms in the regulation of these redox-sensitive GTPases and the relevance of such mechanisms to a specific redox-sensitive motif. The discussion also takes into account various diseases, including cancers, heart, and neuronal disorders, that are often linked with the dysregulation of the redox signaling cascades associated with these redox-sensitive GTPases.
Collapse
Affiliation(s)
- Jongyun Heo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
23
|
Kwon J, Shatynski KE, Chen H, Morand S, de Deken X, Miot F, Leto TL, Williams MS. The nonphagocytic NADPH oxidase Duox1 mediates a positive feedback loop during T cell receptor signaling. Sci Signal 2010; 3:ra59. [PMID: 20682913 DOI: 10.1126/scisignal.2000976] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Production of reactive oxygen species, often by NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidases, plays a role in the signaling responses of cells to many receptor stimuli. Here, we describe the function of the calcium-dependent, nonphagocytic NADPH oxidase Duox1 in primary human CD4(+) T cells and cultured T cell lines. Duox1 bound to inositol 1,4,5-trisphosphate receptor 1 and was required for early T cell receptor (TCR)-stimulated production of hydrogen peroxide (H(2)O(2)) through a pathway that was dependent on TCR-proximal kinases. Transient or stable knockdown of Duox1 inhibited TCR signaling, especially phosphorylation of tyrosine-319 of zeta chain-associated protein kinase of 70 kilodaltons (ZAP-70), store-operated entry of calcium ions (Ca(2+)), and activation of extracellular signal-regulated kinase. The production of cytokines was also inhibited by knockdown of Duox1. Duox1-mediated inactivation of Src homology 2 domain-containing protein tyrosine phosphatase 2 promoted the phosphorylation of ZAP-70 and its association with the Src family tyrosine kinase Lck and the CD3zeta chain of the TCR complex. Thus, we suggest that activation of Duox1, downstream of proximal TCR signals, generates H(2)O(2) that acts in a positive feedback loop to enhance and sustain further TCR signaling.
Collapse
Affiliation(s)
- Jaeyul Kwon
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Christie TL, Carter A, Rollins EL, Childs SJ. Syk and Zap-70 function redundantly to promote angioblast migration. Dev Biol 2010; 340:22-9. [DOI: 10.1016/j.ydbio.2010.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 12/07/2009] [Accepted: 01/08/2010] [Indexed: 01/01/2023]
|
25
|
Wozniak MB, Villuendas R, Bischoff JR, Aparicio CB, Martínez Leal JF, de La Cueva P, Rodriguez ME, Herreros B, Martin-Perez D, Longo MI, Herrera M, Piris MA, Ortiz-Romero PL. Vorinostat interferes with the signaling transduction pathway of T-cell receptor and synergizes with phosphoinositide-3 kinase inhibitors in cutaneous T-cell lymphoma. Haematologica 2010; 95:613-21. [PMID: 20133897 DOI: 10.3324/haematol.2009.013870] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Vorinostat (suberoylanilide hydroxamic acid, SAHA), an inhibitor of class I and II histone deacetylases, has been approved for the treatment of cutaneous T-cell lymphoma. In spite of emerging information on the effect of vorinostat in many types of cancer, little is yet known about this drug's mechanism of action, which is essential for its proper use in combination therapy. We investigated alterations in gene expression profile over time in cutaneous T-cell lymphoma cells treated with vorinostat. Subsequently, we evaluated inhibitors of PI3K, PIM and HSP90 as potential combination agents in the treatment of cutaneous T-cell lymphoma. DESIGN AND METHODS The genes significantly up- or down-regulated by vorinostat over different time periods (2-fold change, false discovery rate corrected P value<0.05) were selected using the short-time series expression miner. Cell viability was assessed in vitro in cutaneous T-cell lymphoma cells through measuring intracellular ATP content. Drug interactions were analyzed by the combination index method with CalcuSyn software. RESULTS The functional analysis suggests that vorinostat modifies signaling of T-cell receptor, MAPK, and JAK-STAT pathways. The phosphorylation studies of ZAP70 (Tyr319, Tyr493) and its downstream target AKT (Ser473) revealed that vorinostat inhibits phosphorylation of these kinases. With regards to effects on cutaneous T-cell lymphoma cells, combining vorinostat with PI3K inhibitors resulted in synergy while cytotoxic antagonism was observed when vorinostat was combined with HSP90 inhibitor. CONCLUSIONS These results demonstrate the potential targets of vorinostat, underlining the importance of T-cell receptor signaling inhibition following vorinostat treatment. Additionally, we showed that combination therapies involving histone deacetylase inhibitors and inhibitors of PI3K are potentially efficacious for the treatment of cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Magdalena B Wozniak
- Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nguyen V, Cao L, Lin JT, Hung N, Ritz A, Yu K, Jianu R, Ulin SP, Raphael BJ, Laidlaw DH, Brossay L, Salomon AR. A new approach for quantitative phosphoproteomic dissection of signaling pathways applied to T cell receptor activation. Mol Cell Proteomics 2009; 8:2418-31. [PMID: 19605366 DOI: 10.1074/mcp.m800307-mcp200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible protein phosphorylation plays a pivotal role in the regulation of cellular signaling pathways. Current approaches in phosphoproteomics focus on analysis of the global phosphoproteome in a single cellular state or of receptor stimulation time course experiments, often with a restricted number of time points. Although these studies have provided some insights into newly discovered phosphorylation sites that may be involved in pathways, they alone do not provide enough information to make precise predictions of the placement of individual phosphorylation events within a signaling pathway. Protein disruption and site-directed mutagenesis are essential to clearly define the precise biological roles of the hundreds of newly discovered phosphorylation sites uncovered in modern proteomics experiments. We have combined genetic analysis with quantitative proteomic methods and recently developed visual analysis tools to dissect the tyrosine phosphoproteome of isogenic Zap-70 tyrosine kinase null and reconstituted Jurkat T cells. In our approach, label-free quantitation using normalization to copurified phosphopeptide standards is applied to assemble high density temporal data within a single cell type, either Zap-70 null or reconstituted cells, providing a list of candidate phosphorylation sites that change in abundance after T cell stimulation. Stable isotopic labeling of amino acids in cell culture (SILAC) ratios are then used to compare Zap-70 null and reconstituted cells across a time course of receptor stimulation, providing direct information about the placement of newly observed phosphorylation sites relative to Zap-70. These methods are adaptable to any cell culture signaling system in which isogenic wild type and mutant cells have been or can be derived using any available phosphopeptide enrichment strategy.
Collapse
Affiliation(s)
- Vinh Nguyen
- Department of Molecular Biology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Reactive oxygen and reactive nitrogen species (ROS/RNS) have been implicated in the pathogenesis of acute and chronic pancreatitis. Clinical and basic science studies have indicated that ROS/RNS formation processes are intimately linked to the development of the inflammatory disorders. The detrimental effects of highly reactive ROS/RNS are mediated by their direct actions on biomolecules (lipids, proteins, and nucleic acids) and activation of proinflammatory signal cascades, which subsequently lead to activation of immune responses. The present article summarizes the possible sources of ROS/RNS formation and the detailed signaling cascades implicated in the pathogenesis of pancreatic inflammation, as observed in acute and chronic pancreatitis. A therapeutic ROS/RNS-scavenging strategy has been advocated for decades; however, clinical studies examining such approaches have been inconsistent in their results. Emerging evidence indicates that pancreatitis-inducing ROS/RNS generation may be attenuated by targeting ROS/RNS-generating enzymes and upstream mediators.
Collapse
Affiliation(s)
- Po Sing Leung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | |
Collapse
|
28
|
Haas A, Weckbecker G, Welzenbach K. Intracellular Phospho-Flow cytometry reveals novel insights into TCR proximal signaling events. A comparison with Western blot. Cytometry A 2008; 73:799-807. [PMID: 18548611 DOI: 10.1002/cyto.a.20598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phospho-site specific antibodies become increasingly available, enabling the study of signaling events by Western blotting (WB) or intracellular flow cytometry (Phospho-Flow). Here we compared data generated by WB or Phospho-Flow regarding the kinetics and degree of phosphorylation of membrane proximal TCR signaling molecules. Phosphorylation events in Jurkat T cells were triggered by anti-CD3 stimulation (OKT3) or by oxidative stress (H(2)O(2)) and were analyzed by Phospho-Flow or WB. Both techniques showed that OKT3- or H(2)O(2)-induced, transient phosphorylation of ZAP70 or LAT was dependent on functional Lck. Phospho-Flow data revealed differences in the kinetics and the degree of H(2)O(2)- or OKT3-mediated protein phosphorylation compared with WB data. In addition, using Phospho-Flow we discovered that H(2)O(2)-induced phosphorylation of TCR signaling proteins was inhibited by small molecular weight kinase inhibitors far more potently than OKT3-triggered protein phosphorylation, despite a superior induction of phosphorylation by H(2)O(2). This finding was confirmed by WB. Interestingly, we identified by Phospho-Flow that, in P116 Jurkat cells lacking ZAP70 protein expression, H(2)O(2) potently triggered the phosphorylation of ZAP70 residues Y493 and Y292 but not Y319. The phosphorylation of these ZAP70 tyrosine residues cells was blocked by an Lck inhibitor, suggesting the existence of an Lck-coupled truncated ZAP70 protein or a novel isoform of ZAP70 in P116 cells. Phospho-Flow is a largely quantitative technology with excellent throughput, highly suited in studying the function or inhibition of TCR signaling pathways and allowing the detection of novel pathway insights. It can serve as a good complement to Western blot analysis.
Collapse
Affiliation(s)
- Anna Haas
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | | | | |
Collapse
|
29
|
Levin SE, Zhang C, Kadlecek TA, Shokat KM, Weiss A. Inhibition of ZAP-70 kinase activity via an analog-sensitive allele blocks T cell receptor and CD28 superagonist signaling. J Biol Chem 2008; 283:15419-30. [PMID: 18378687 PMCID: PMC2397475 DOI: 10.1074/jbc.m709000200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ZAP-70 is a cytoplasmic protein tyrosine kinase that is required for T cell antigen receptor (TCR) signaling. Both mice and humans deficient in ZAP-70 fail to develop functional T cells, thus demonstrating its necessity for T cell development and function. There is currently no highly specific, cell-permeable, small molecule inhibitor for ZAP-70; therefore, we generated a mutant ZAP-70 allele that retains kinase activity but is sensitive to inhibition by a mutant-specific inhibitor. We validated the chemical genetic inhibitor system in Jurkat T cell lines, where the inhibitor blocked ZAP-70-dependent TCR signaling in cells expressing the analog-sensitive allele. Interestingly, the inhibitor also ablated CD28 superagonist signaling, thereby demonstrating the utility of this system in dissecting the requirement for ZAP-70 in alternative mechanisms of T cell activation. Thus, we have developed the first specific chemical means of inhibiting ZAP-70 in cells, which serves as a valuable tool for studying the function of ZAP-70 in T cells.
Collapse
Affiliation(s)
- Susan E Levin
- Departments of Medicine and Microbiology & Immunology, Biomedical Sciences Graduate Program, and Howard Hughes Medical Institute, University of California-San Francisco, 5134 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
30
|
High intracellular Zn2+ ions modulate the VHR, ZAP-70 and ERK activities of LNCaP prostate cancer cells. Cell Mol Biol Lett 2008; 13:375-90. [PMID: 18311544 PMCID: PMC6276015 DOI: 10.2478/s11658-008-0009-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/11/2008] [Indexed: 11/20/2022] Open
Abstract
Malignant prostate tissues have markedly reduced zinc (Zn2+) contents in comparison to non-malignant tissues. In this study, we restored a high intracellular Zn2+ level to LNCaP prostate cancer cells by culturing the cells in a growth medium supplemented with a supraphysiological concentration of Zn2+ (10 μg/ml) over 5 weeks. The intracellular Zn2+ level increased in the Zn2+-treated cells, and there was a marked increase in the presence of zincosomes, a Zn2+-specific intracellular organelle. The proliferation rate of the Zn2+-treated cells was markedly reduced. There was also a significant increase (36.6% ± 6.4%) in the total tyrosine phosphorylated proteins. Vaccinia H1-related (VHR) phosphatase, zeta chain-associated protein-70 (ZAP-70) kinase and phosphorylated extracellular signal-regulated protein kinase 1 and 2 (p-ERK 1 and 2) were also present in higher abundance. Treatment with TPEN, which chelates Zn2+, reduced the abundance of VHR phosphatase and ZAP-70 kinase, but increased the abundance of p-ERK 1. However, the TPEN treatment restored the Zn2+-treated LNCaP cell proliferation to a rate comparable to that of the non Zn2+-treated cells. These results highlight the importance of a high intracellular Zn2+ content and the VHR/ZAP-70-associated pathways in the modulation of LNCaP prostate cancer cell growth.
Collapse
|
31
|
Extracellular acidic environments induce phosphorylation of ZAP-70 in Jurkat T cells. Immunol Lett 2007; 115:105-9. [PMID: 18022252 DOI: 10.1016/j.imlet.2007.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/07/2007] [Indexed: 11/20/2022]
Abstract
In solid tumor and inflammation loci, low pH conditions have been observed as a consequence of either a lack of sufficient vascularization or excess activity of tumor cells, and T cells have been reported to infiltrate tumors and inflammation sites. However, it remains unclear how extracellular acidic environments affect immune cell function. A previous report proposed that a different signal transduction cascade might occur under low pH conditions in Jurkat T cells (Fukamachi T, Saito H, Kakegawa T, Kobayashi H. Different proteins are phosphorylated under acidic environments in Jurkat cells. Immunol Lett 2002;82:155-8). In this study, we investigated the protein phosphotyrosine level in Jurkat and Jurkat mutant cells under different pH conditions. The ZAP-70 phosphorylation level increased under acidic environments. P38 MAPK was more activated at acidic pH. The level of active p38 was low in mutant P116 deficient in ZAP-70, and interestingly the level remained consistently low at all pH values tested. The activation of ERK was not stimulated at low pH. These results suggest that extracellular low pH stimulates or enhances TCR signaling via ZAP-70 and p38.
Collapse
|
32
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EWT, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1263-84. [PMID: 17126425 PMCID: PMC2696318 DOI: 10.1016/j.bbamcr.2006.10.001] [Citation(s) in RCA: 1752] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/02/2006] [Accepted: 10/03/2006] [Indexed: 02/07/2023]
Abstract
Growth factors and mitogens use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their receptors to regulate gene expression and prevent apoptosis. Some components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf). Mutations also occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. Even in the absence of obvious genetic mutations, this pathway has been reported to be activated in over 50% of acute myelogenous leukemia and acute lymphocytic leukemia and is also frequently activated in other cancer types (e.g., breast and prostate cancers). Importantly, this increased expression is associated with a poor prognosis. The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of activated Akt to phosphorylate and inactivate different Rafs. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell lineage specific effects. For example, Raf/MEK/ERK is usually associated with proliferation and drug resistance of hematopoietic cells, while activation of the Raf/MEK/ERK cascade is suppressed in some prostate cancer cell lines which have mutations at PTEN and express high levels of activated Akt. Furthermore the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways also interact with the p53 pathway. Some of these interactions can result in controlling the activity and subcellular localization of Bim, Bak, Bax, Puma and Noxa. Raf/MEK/ERK may promote cell cycle arrest in prostate cells and this may be regulated by p53 as restoration of wild-type p53 in p53 deficient prostate cancer cells results in their enhanced sensitivity to chemotherapeutic drugs and increased expression of Raf/MEK/ERK pathway. Thus in advanced prostate cancer, it may be advantageous to induce Raf/MEK/ERK expression to promote cell cycle arrest, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK induced proliferation and drug resistance. Thus the Raf/MEK/ERK pathway has different effects on growth, prevention of apoptosis, cell cycle arrest and induction of drug resistance in cells of various lineages which may be due to the presence of functional p53 and PTEN and the expression of lineage specific factors.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Leo Jenkins Cancer Center, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McCubrey JA, Steelman LS, Franklin RA, Abrams SL, Chappell WH, Wong EWT, Lehmann BD, Terrian DM, Basecke J, Stivala F, Libra M, Evangelisti C, Martelli AM. Targeting the RAF/MEK/ERK, PI3K/AKT and p53 pathways in hematopoietic drug resistance. ACTA ACUST UNITED AC 2007; 47:64-103. [PMID: 17382374 PMCID: PMC2696319 DOI: 10.1016/j.advenzreg.2006.12.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sol-Foulon N, Sourisseau M, Porrot F, Thoulouze MI, Trouillet C, Nobile C, Blanchet F, di Bartolo V, Noraz N, Taylor N, Alcover A, Hivroz C, Schwartz O. ZAP-70 kinase regulates HIV cell-to-cell spread and virological synapse formation. EMBO J 2007; 26:516-26. [PMID: 17215865 PMCID: PMC1783460 DOI: 10.1038/sj.emboj.7601509] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 11/24/2006] [Indexed: 01/29/2023] Open
Abstract
HIV efficiently spreads in lymphocytes, likely through virological synapses (VSs). These cell-cell junctions share some characteristics with immunological synapses, but cellular proteins required for their constitution remain poorly characterized. We have examined here the role of ZAP-70, a key kinase regulating T-cell activation and immunological synapse formation, in HIV replication. In lymphocytes deficient for ZAP-70, or expressing a kinase-dead mutant of the protein, HIV replication was strikingly delayed. We have characterized further this replication defect. ZAP-70 was dispensable for the early steps of viral cycle, from entry to expression of viral proteins. However, in the absence of ZAP-70, intracellular Gag localization was impaired. ZAP-70 was required in infected donor cells for efficient cell-to-cell HIV transmission to recipients and for formation of VSs. These results bring novel insights into the links that exist between T-cell activation and HIV spread, and suggest that HIV usurps components of the immunological synapse machinery to ensure its own spread through cell-to-cell contacts.
Collapse
Affiliation(s)
| | | | - Françoise Porrot
- Groupe Virus et Immunité, Institut Pasteur, CNRS URA1930, France
| | | | - Céline Trouillet
- Groupe Virus et Immunité, Institut Pasteur, CNRS URA1930, France
| | | | - Fabien Blanchet
- Groupe Virus et Immunité, Institut Pasteur, CNRS URA1930, France
| | - Vincenzo di Bartolo
- Unité de Biologie Cellulaire des Lymphocytes, Institut Pasteur, Paris, France
| | - Nelly Noraz
- CNRS UMR5535, Institut de Génétique Moléculaire, Montpellier, France
| | - Naomi Taylor
- CNRS UMR5535, Institut de Génétique Moléculaire, Montpellier, France
| | - Andres Alcover
- Unité de Biologie Cellulaire des Lymphocytes, Institut Pasteur, Paris, France
| | | | - Olivier Schwartz
- Groupe Virus et Immunité, Institut Pasteur, CNRS URA1930, France
- Virus and Immunity Group, Institut Pasteur, CNRS URA 1930, 28 rue du Dr Roux, 75724 Paris Cedex 15, France. Tel.: +33 1 45 68 83 53; fax: +33 1 45 68 89 40; E-mail:
| |
Collapse
|
35
|
Abstract
Apoptosis-programed cell death-is the most common form of death in the body. Once apoptosis is induced, proper execution of the cell death program requires the coordinated activation and execution of multiple molecular processes. Here, we describe the pathways and the basic components of the death-inducing machinery. Since apoptosis is a key regulator of tissue homeostasis, an imbalance of apoptosis results in severe diseases like cancer, autoimmunity, and AIDS.
Collapse
Affiliation(s)
- Peter H Krammer
- Tumor Immunology Program D030, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
36
|
Bubici C, Papa S, Dean K, Franzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 2006; 25:6731-48. [PMID: 17072325 DOI: 10.1038/sj.onc.1209936] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reactive oxygen species (ROS) are emerging as key effectors in signal transduction. This role of ROS is especially evident in the pathways leading to programmed cell death (PCD) elicited in response to certain stress stimuli and cytokines. In these pathways, cytotoxic ROS signaling appears to be mediated in part by activation of the c-Jun-N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) cascade. Another pathway that is under ROS-mediated control in some systems is that leading to activation of transcription factor nuclear factor-kappa B (NF-kappaB), which is a central regulator of immunity, inflammation and cell survival. Remarkably, new evidence has unveiled the existence of a reciprocal, negative control that NF-kappaB exerts on ROS and JNK activities. This NF-kappaB-imposed restraint on ROS and JNK signaling is crucial for antagonism of PCD elicited by the proinflammatory cytokine tumor necrosis factor (TNF)alpha and likely other triggers. Effectors of this antagonistic cross-talk between NF-kappaB and ROS/JNK pathways have recently been identified. Because of the key roles that the prosurvival function of NF-kappaB plays in organismal physiology and disease, gaining a further mechanistic understanding of this cross-talk and NF-kappaB-dependent survival may be key to developing new therapies for the treatment of widespread human illnesses, such as cancer and chronic inflammatory conditions.
Collapse
Affiliation(s)
- C Bubici
- The Ben May Institute for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
37
|
|
38
|
McCubrey JA, Lahair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 2006; 8:1775-89. [PMID: 16987031 DOI: 10.1089/ars.2006.8.1775] [Citation(s) in RCA: 630] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An abundance of scientific literature exists demonstrating that oxidative stress influences the MAPK signaling pathways. This review summarizes these findings for the ERK, JNK, p38, and BMK1 pathways. For each of these different MAPK signaling pathways, the following is reviewed: the proteins involved in the signaling pathways, how oxidative stress can activate cellular signaling via these pathways, the types of oxidative stress that are known to induce activation of the different pathways, and the specific cell types in which oxidants induce MAPK responses. In addition, the functional outcome of oxidative stress-induced activation of these pathways is discussed. The purpose of this review is to provide the reader with an overall understanding and appreciation of oxidative stress-induced MAPK signaling.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, and the Leo W. Jenkins Cancer Center, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, USA
| | | | | |
Collapse
|
39
|
Chemnitz JM, Lanfranco AR, Braunstein I, Riley JL. B and T Lymphocyte Attenuator-Mediated Signal Transduction Provides a Potent Inhibitory Signal to Primary Human CD4 T Cells That Can Be Initiated by Multiple Phosphotyrosine Motifs. THE JOURNAL OF IMMUNOLOGY 2006; 176:6603-14. [PMID: 16709818 DOI: 10.4049/jimmunol.176.11.6603] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The B and T lymphocyte attenuator (BTLA) is a recently identified member of the CD28 family of cell receptors. Initial reports demonstrated that mice deficient in BTLA expression were more susceptible to experimental autoimmune encephalomyelitis, indicating that BTLA was likely to function as a negative regulator of T cell activation. However, cross-linking of BTLA only resulted in a 2-fold reduction of IL-2 production, questioning the potency with which BTLA engagement blocks T cell activation. We established a model in which BTLA signaling could be studied in primary human CD4 T cells. We observed that cross-linking of a chimeric receptor consisting of the murine CD28 extracellular domain and human BTLA cytoplasmic tail potently inhibits IL-2 production and completely suppresses T cell expansion. Mutation of any BTLA tyrosine motifs had no effect on the ability of BTLA to block T cell activation. Only mutation of all four tyrosines rendered the BTLA cytoplasmic tail nonfunctional. We performed structure-function studies to determine which factors recruited to the BTLA cytoplasmic tail correlated with BTLA function. Using pervanadate as a means to phosphorylate the BTLA cytoplasmic tail, we observed both Src homology protein (SHP)-1 and SHP-2 recruitment. However, upon receptor engagement, we observed only SHP-1 recruitment, and mutations that abrogated SHP-1 recruitment did not impair BTLA function. These studies question whether SHP-1 or SHP-2 have any role in BTLA function and caution against the use of pervanadate as means to initiate signal transduction cascades in primary cells.
Collapse
Affiliation(s)
- Jens M Chemnitz
- Abramson Family Cancer Research Institute and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
40
|
Steinberg M, Adjali O, Swainson L, Merida P, Di Bartolo V, Pelletier L, Taylor N, Noraz N. T-cell receptor–induced phosphorylation of the ζ chain is efficiently promoted by ZAP-70 but not Syk. Blood 2004; 104:760-7. [PMID: 15059847 DOI: 10.1182/blood-2003-12-4314] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEngagement of the T-cell receptor (TCR) results in the activation of Lck/Fyn and ZAP-70/Syk tyrosine kinases. Lck-mediated tyrosine phosphorylation of signaling motifs (ITAMs) in the CD3-ζ subunits of the TCR is an initial step in the transduction of signaling cascades. However, ζ phosphorylation is also promoted by ZAP-70, as TCR-induced ζ phosphorylation is defective in ZAP-70–deficient T cells. We show that this defect is corrected by stable expression of ZAP-70, but not Syk, in primary and transformed T cells. Indeed, these proteins are differentially coupled to the TCR with a 5- to 10-fold higher association of ZAP-70 with ζ as compared to Syk. Low-level Syk-ζ binding is associated with significantly less Lck coupled to the TCR. Moreover, diminished coupling of Lck to ζ correlates with a poor phosphorylation of the positive regulatory tyr352 residue of Syk. Thus, recruitment of Lck into the TCR complex with subsequent ζ chain phosphorylation is promoted by ZAP-70 but not Syk. Importantly, the presence of ZAP-70 positively regulates the TCR-induced tyrosine phosphorylation of Syk. The interplay between Syk and ZAP-70 in thymocytes, certain T cells, and B-chronic lymphocytic leukemia cells, in which they are coexpressed, will therefore modulate the amplitude of antigen-mediated receptor signaling.
Collapse
Affiliation(s)
- Marcos Steinberg
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique Unité de Recherches 5535/Institut Fédératife de Recherche, F-34293 Montpellier 5, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Nakamura K, Yube K, Miyatake A, Cambier JC, Hirashima M. Involvement of CD4 D3-D4 membrane proximal extracellular domain for the inhibitory effect of oxidative stress on activation-induced CD4 down-regulation and its possible role for T cell activation. Mol Immunol 2003; 39:909-21. [PMID: 12695117 DOI: 10.1016/s0161-5890(03)00030-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During antigen presentation, CD4 functions to stabilize T cell receptor (TCR)-class II MHC interactions and coordinate Ag-induced T cell activation signals. These activation signals cause CD4 down-regulation, presumably acting to optimize T cell activation. We previously reported that oxidative stress interferes with activation-induced CD4 down-regulation in T cells. In this study, we have further investigated inhibition of CD4 down-regulation by oxidative stress and its role for T cell activation. A construct comprised of the mouse FcgammaRIIB extracellular domain and the transmembrane/cytoplasmic domains of human CD4 (FcgammaR/CD4) was expressed in a human T cell line. Oxidant actually potentiated down-regulation of the FcgammaR/CD4 chimera and induced Lck dissociation from both CD4 and FcgammaR/CD4, which is a crucial intracellular process for activation-induced CD4 down-regulation, suggesting a critical role of CD4 ectodomain in the inhibition of CD4 down-regulation by oxidative stress. Furthermore, insertion of CD4 D3-D4 membrane proximal extracellular region between FcgammaR extracellular domain and CD4 transmembrane/cytoplasmic domains in FcgammaR/CD4 chimera made this molecule behave like native CD4 molecule under oxidative stress condition. These data imply that the inhibitory effect of oxidative stress on CD4 down-regulation is executed via D3-D4 domain of CD4 ectodomain. As to its role for T cell activation, CD4 coaggregation with CD3 under the oxidative conditions enhanced activation signal induced by CD3 aggregation. Our results demonstrate that Ag-induced T cell activation which is normally concomitant with CD4 down-regulation may be disturbed through the aberrant regulation of CD4 expression by oxidative stress.
Collapse
Affiliation(s)
- K Nakamura
- Department of Immunology and Immunopathology, Kagawa Medical University, 1750-1 Ikenobe, Miki, Kita-gun, 761-0793, Kagawa, Japan.
| | | | | | | | | |
Collapse
|
42
|
Sommers CL, Samelson LE, Love PE. LAT: a T lymphocyte adapter protein that couples the antigen receptor to downstream signaling pathways. Bioessays 2003; 26:61-7. [PMID: 14696041 DOI: 10.1002/bies.10384] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adapter molecules in a variety of signal transduction systems link receptors to a limited number of commonly used downstream signaling pathways. During T-cell development and mature T-cell effector function, a multichain receptor (the pre-T-cell antigen receptor or the T-cell antigen receptor) activates several protein tyrosine kinases. Receptor and kinase activation is linked to distal signaling pathways (PLC-gamma1 activation, Ca2+ influx, PKC activation and Ras/Erk activation) via the adapter protein LAT (Linker for Activation of T cells). Structure/function studies of LAT including expression of selected LAT point mutations in vivo reveals that these multiple pathways are integrated at the level of the LAT adapter. These studies suggest that similar levels of control may be found in other systems where adapter molecules are known to have important functions.
Collapse
Affiliation(s)
- Connie L Sommers
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA.
| | | | | |
Collapse
|
43
|
Abstract
Reactive oxygen species (ROS) are generated from cells stimulated by various cytokines, hormones, and stresses, and regulate cellular functions such as gene expression and cell growth. They affect activities of many types of molecular targets, including signaling molecules and transcription factors. Early-response genes (c-fos, egr-I and JE) that encode transcription factors are induced by ROS, and activities of their products are modulated by ROS through redox-based mechanisms. We isolated a novel gene, hic-5, that was induced by hydrogen peroxide and encodes a focal adhesion protein. hic-5 was found to translocate to the nucleus in cells treated with ROS and regulates several cellular genes. We propose that hic-5 is a key element in the transduction of signals from the cell surface to the nucleus under oxidative stress.
Collapse
Affiliation(s)
- Kiyoshi Nose
- Showa University School of Pharmaceutical Sciences, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
44
|
Qin S, Chock PB. Tyrosine phosphatase CD45 regulates hydrogen peroxide-induced calcium mobilization in B cells. Antioxid Redox Signal 2002; 4:481-90. [PMID: 12215216 DOI: 10.1089/15230860260196281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
By taking advantage of established CD45-deficient DT40 cells, the roles of CD45 in oxidative stress signaling were investigated. Using p-nitrophenyl phosphate as substrate, it was found that CD45 constituted nearly 40% of the total protein-tyrosine phosphatase activity. Almost 90% of the phosphatase activity was rapidly inactivated upon hydrogen peroxide treatment. Hydrogen peroxide-induced tyrosine phosphorylation of cellular proteins and c-Jun N-terminal kinase activation were markedly enhanced in CD45-deficient cells relative to that in its parental cells. In comparison, hydrogen peroxide-induced inositol 1,4,5-trisphosphate production and Ca(2+) mobilization were impaired in CD45-deficient DT40 cells. However, hydrogen peroxide-induced tyrosine phosphorylation of phospholipase Cgamma2 (PLCgamma2), phosphatidylinositol 3-kinase activity precipitated by anti-phosphotyrosine antibody, and activation of Bruton's tyrosine kinase appeared intact in CD45-deficient DT40 cells. This suggests that CD45 mediates the ability of hydrogen peroxide-activated PLCgamma2 to hydrolyze its substrate via a mechanism independent of both tyrosine phosphorylation of PLCgamma2 and phosphatidylinositol 3-kinase, as well as activation of Bruton's tyrosine kinase. Taken together, our observations demonstrated that, in addition to its negative regulatory or phosphatase activity, CD45 has a positive role in oxidative stress signaling.
Collapse
Affiliation(s)
- Suofu Qin
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012, USA
| | | |
Collapse
|
45
|
Verweij CL, Gringhuis SI. Oxidants and tyrosine phosphorylation: role of acute and chronic oxidative stress in T-and B-lymphocyte signaling. Antioxid Redox Signal 2002; 4:543-51. [PMID: 12215222 DOI: 10.1089/15230860260196344] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cellular response to an extracellular signal starts with the induction of a signaling cascade that transmits the signal through the cytoplasm to the nucleus, resulting in the activation of transcription factors that activate specific target genes. The signaling cascade involves a series of biochemical modifications that include phosphorylation events on tyrosine residues due to the activation of specific protein kinases. Recently, evidence accumulated that reactive oxygen species, including hydrogen peroxide, superoxide, and the hydroxyl radical, are important chemical mediators that regulate the transduction of signals from the membrane to the nucleus by modulating the protein activity by oxidation and reduction. In this report, the redox regulation of signaling involving protein tyrosine kinase activity, in particular in T- and B-lymphocyte signaling, is reviewed.
Collapse
Affiliation(s)
- Cornelis L Verweij
- Department of Molecular and Cellular Biology, VU Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
46
|
Cemerski S, Cantagrel A, Van Meerwijk JPM, Romagnoli P. Reactive oxygen species differentially affect T cell receptor-signaling pathways. J Biol Chem 2002; 277:19585-93. [PMID: 11916964 DOI: 10.1074/jbc.m111451200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress plays an important role in the induction of T lymphocyte hyporesponsiveness observed in several human pathologies including cancer, rheumatoid arthritis, leprosy, and AIDS. To investigate the molecular basis of oxidative stress-induced T cell hyporesponsiveness, we have developed an in vitro system in which T lymphocytes are rendered hyporesponsive by co-culture with oxygen radical-producing activated neutrophils. We have observed a direct correlation between the level of T cell hyporesponsiveness induced and the concentration of reactive oxygen species produced. Moreover, induction of T cell hyporesponsiveness is blocked by addition of N-acetyl cysteine, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, and catalase, confirming the critical role of oxidative stress in this system. The pattern of tyrosine-phosphorylated proteins was profoundly altered in hyporesponsive as compared with normal T cells. In hyporesponsive T cells, T cell receptor (TCR) ligation no longer induced phospholipase C-gamma1 activation and caused reduced Ca(2+) flux. In contrast, despite increased levels of ERK1/2 phosphorylation, TCR-dependent activation of mitogen-activated protein kinase ERK1/2 was unaltered in hyporesponsive T lymphocytes. A late TCR-signaling event such as caspase 3 activation was as well unaffected in hyporesponsive T lymphocytes. Our data indicate that TCR-signaling pathways are differentially affected by physiological levels of oxidative stress and would suggest that although "hyporesponsive" T cells have lost certain effector functions, they may have maintained or gained others.
Collapse
Affiliation(s)
- Saso Cemerski
- Tolerance and Autoimmunity section, INSERM U563, IFR 30 Institute Claude de Preval, CHU Purpan, BP 3028, 31024 Toulouse Cedex 3, France
| | | | | | | |
Collapse
|
47
|
Rao N, Miyake S, Reddi AL, Douillard P, Ghosh AK, Dodge IL, Zhou P, Fernandes ND, Band H. Negative regulation of Lck by Cbl ubiquitin ligase. Proc Natl Acad Sci U S A 2002; 99:3794-9. [PMID: 11904433 PMCID: PMC122603 DOI: 10.1073/pnas.062055999] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Cbl-family ubiquitin ligases function as negative regulators of activated receptor tyrosine kinases by facilitating their ubiquitination and subsequent targeting to lysosomes. Cbl associates with the lymphoid-restricted nonreceptor tyrosine kinase Lck, but the functional relevance of this interaction remains unknown. Here, we demonstrate that T cell receptor and CD4 coligation on human T cells results in enhanced association between Cbl and Lck, together with Lck ubiquitination and degradation. A Cbl(-/-) T cell line showed a marked deficiency in Lck ubiquitination and increased levels of kinase-active Lck. Coexpression in 293T cells demonstrated that Lck kinase activity and Cbl ubiquitin ligase activity were essential for Lck ubiquitination and negative regulation of Lck-dependent serum response element-luciferase reporter activity. The Lck SH3 domain was pivotal for Cbl-Lck association and Cbl-mediated Lck degradation, with a smaller role for interactions mediated by the Cbl tyrosine kinase-binding domain. Finally, analysis of a ZAP-70-deficient T cell line revealed that Cbl inhibited Lck-dependent mitogen-activated protein kinase activation, and an intact Cbl RING finger domain was required for this functional effect. Our results demonstrate a direct, ubiquitination-dependent, negative regulatory role of Cbl for Lck in T cells, independent of Cbl-mediated regulation of ZAP-70.
Collapse
Affiliation(s)
- Navin Rao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Teixeiro E, Fuentes P, Galocha B, Alarcon B, Bragado R. T cell receptor-mediated signal transduction controlled by the beta chain transmembrane domain: apoptosis-deficient cells display unbalanced mitogen-activated protein kinases activities upon T cell receptor engagement. J Biol Chem 2002; 277:3993-4002. [PMID: 11724779 DOI: 10.1074/jbc.m107797200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bases that support the versatility of the T cell receptor (TCR) to generate distinct T cell responses remain unclear. We have previously shown that mutant cells in the transmembrane domain of TCRbeta chain are impaired in TCR-induced apoptosis but are not affected in other functions. Here we describe the biochemical mechanisms by which this mutant receptor supports some T cell responses but fails to induce apoptosis. Extracellular signal-regulated protein kinase (ERK) is activated at higher and more sustained levels in TCRbeta-mutated than in wild type cells. Conversely, activation of both c-Jun N-terminal kinase and p38 mitogen-activated protein kinase is severely reduced in mutant cells. By attempting to link this unbalanced induction to altered upstream events, we found that ZAP-70 is normally activated. However, although SLP-76 phosphorylation is normally induced, TCR engagement of mutant cells results in lower tyrosine phosphorylation of LAT but in higher tyrosine phosphorylation of Vav than in wild type cells. The results suggest that an altered signaling cascade leading to an imbalance in mitogen-activated protein kinase activities is involved in the selective impairment of apoptosis in these mutant cells. Furthermore, they also provide new insights in the contribution of TCR to decipher the signals that mediate apoptosis distinctly from proliferation.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Apoptosis
- Humans
- Jurkat Cells
- Lectins, C-Type
- Mitogen-Activated Protein Kinases/metabolism
- Mutation
- Phosphorylation
- Precipitin Tests
- Protein Kinase C/metabolism
- Protein Transport
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/physiology
- Tyrosine/metabolism
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Emma Teixeiro
- Department of Immunology, Fundación Jiménez Diaz, Avenida. Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Gringhuis SI, Papendrecht-van der Voort EAM, Leow A, Nivine Levarht EW, Breedveld FC, Verweij CL. Effect of redox balance alterations on cellular localization of LAT and downstream T-cell receptor signaling pathways. Mol Cell Biol 2002; 22:400-11. [PMID: 11756537 PMCID: PMC139732 DOI: 10.1128/mcb.22.2.400-411.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integral membrane protein linker for activation of T cells (LAT) is a central adapter protein in the T-cell receptor (TCR)-mediated signaling pathways. The cellular localization of LAT is extremely sensitive to intracellular redox balance alterations. Reduced intracellular levels of the antioxidant glutathione (GSH), a hallmark of chronic oxidative stress, resulted in the membrane displacement of LAT, abrogated TCR-mediated signaling and consequently hyporesponsiveness of T lymphocytes. The membrane displacement of LAT is accompanied by a considerable difference in the mobility of LAT upon native and nonreducing denaturing polyacrylamide gel electrophoresis analysis, a finding indicative of a conformational change. Targeted mutation of redox-sensitive cysteine residues within LAT created LAT mutants which remain membrane anchored under conditions of chronic oxidative stress. The expression of redox-insensitive LAT mutants allows for restoration of TCR-mediated signal transduction, whereas CD28-mediated signaling pathways remained impaired. These results are indicative that the membrane displacement of LAT as a result of redox balance alterations is a consequence of a conformational change interfering with the insertion of LAT into the plasma membrane. Conclusively, the data suggest a role for LAT as a crucial intermediate in the sensitivity of TCR signaling and hence T lymphocytes toward chronic oxidative stress.
Collapse
Affiliation(s)
- Sonja I Gringhuis
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, however, nitric oxide (NO), superoxide anion, and related reactive oxygen species (ROS) play an important role as regulatory mediators in signaling processes. Many of the ROS-mediated responses actually protect the cells against oxidative stress and reestablish "redox homeostasis." Higher organisms, however, have evolved the use of NO and ROS also as signaling molecules for other physiological functions. These include regulation of vascular tone, monitoring of oxygen tension in the control of ventilation and erythropoietin production, and signal transduction from membrane receptors in various physiological processes. NO and ROS are typically generated in these cases by tightly regulated enzymes such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. In a given signaling protein, oxidative attack induces either a loss of function, a gain of function, or a switch to a different function. Excessive amounts of ROS may arise either from excessive stimulation of NAD(P)H oxidases or from less well-regulated sources such as the mitochondrial electron-transport chain. In mitochondria, ROS are generated as undesirable side products of the oxidative energy metabolism. An excessive and/or sustained increase in ROS production has been implicated in the pathogenesis of cancer, diabetes mellitus, atherosclerosis, neurodegenerative diseases, rheumatoid arthritis, ischemia/reperfusion injury, obstructive sleep apnea, and other diseases. In addition, free radicals have been implicated in the mechanism of senescence. That the process of aging may result, at least in part, from radical-mediated oxidative damage was proposed more than 40 years ago by Harman (J Gerontol 11: 298-300, 1956). There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Collapse
Affiliation(s)
- Wulf Dröge
- Division of Immunochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| |
Collapse
|