1
|
Lu CW, Huang YC, Chiu KM, Lee MY, Lin TY, Wang SJ. Enmein Decreases Synaptic Glutamate Release and Protects against Kainic Acid-Induced Brain Injury in Rats. Int J Mol Sci 2021; 22:ijms222312966. [PMID: 34884781 PMCID: PMC8657722 DOI: 10.3390/ijms222312966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
This study investigated the effects of enmein, an active constituent of Isodon japonicus Hara, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes) and evaluated its neuroprotective potential in a rat model of kainic acid (KA)-induced glutamate excitotoxicity. Enmein inhibited depolarization-induced glutamate release, FM1-43 release, and Ca2+ elevation in cortical nerve terminals but had no effect on the membrane potential. Removing extracellular Ca2+ and blocking vesicular glutamate transporters, N- and P/Q-type Ca2+ channels, or protein kinase C (PKC) prevented the inhibition of glutamate release by enmein. Enmein also decreased the phosphorylation of PKC, PKC-α, and myristoylated alanine-rich C kinase substrates in synaptosomes. In the KA rat model, intraperitoneal administration of enmein 30 min before intraperitoneal injection of KA reduced neuronal cell death, glial cell activation, and glutamate elevation in the hippocampus. Furthermore, in the hippocampi of KA rats, enmein increased the expression of synaptic markers (synaptophysin and postsynaptic density protein 95) and excitatory amino acid transporters 2 and 3, which are responsible for glutamate clearance, whereas enmein decreased the expression of glial fibrillary acidic protein (GFAP) and CD11b. These results indicate that enmein not only inhibited glutamate release from cortical synaptosomes by suppressing Ca2+ influx and PKC but also increased KA-induced hippocampal neuronal death by suppressing gliosis and decreasing glutamate levels by increasing glutamate uptake.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan; (C.-W.L.); (Y.-C.H.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Yu-Chen Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan; (C.-W.L.); (Y.-C.H.)
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
- Department of Nursing, Asia Eastern University of Science and Technology, New Taipei City 22060, Taiwan
- Department of Photonics Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan; (C.-W.L.); (Y.-C.H.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
- Correspondence: (T.-Y.L.); (S.-J.W.)
| | - Su-Jane Wang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence: (T.-Y.L.); (S.-J.W.)
| |
Collapse
|
2
|
Yeung JHY, Palpagama TH, Wood OWG, Turner C, Waldvogel HJ, Faull RLM, Kwakowsky A. EAAT2 Expression in the Hippocampus, Subiculum, Entorhinal Cortex and Superior Temporal Gyrus in Alzheimer's Disease. Front Cell Neurosci 2021; 15:702824. [PMID: 34588956 PMCID: PMC8475191 DOI: 10.3389/fncel.2021.702824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a neuropathological disorder characterized by the presence and accumulation of amyloid-beta plaques and neurofibrillary tangles. Glutamate dysregulation and the concept of glutamatergic excitotoxicity have been frequently described in the pathogenesis of a variety of neurodegenerative disorders and are postulated to play a major role in the progression of AD. In particular, alterations in homeostatic mechanisms, such as glutamate uptake, have been implicated in AD. An association with excitatory amino acid transporter 2 (EAAT2), the main glutamate uptake transporter, dysfunction has also been described. Several animal and few human studies examined EAAT2 expression in multiple brain regions in AD but studies of the hippocampus, the most severely affected brain region, are scarce. Therefore, this study aims to assess alterations in the expression of EAAT2 qualitatively and quantitatively through DAB immunohistochemistry (IHC) and immunofluorescence within the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus (STG) regions, between human AD and control cases. Although no significant EAAT2 density changes were observed between control and AD cases, there appeared to be increased transporter expression most likely localized to fine astrocytic branches in the neuropil as seen on both DAB IHC and immunofluorescence. Therefore, individual astrocytes are not outlined by EAAT2 staining and are not easily recognizable in the CA1–3 and dentate gyrus regions of AD cases, but the altered expression patterns observed between AD and control hippocampal cases could indicate alterations in glutamate recycling and potentially disturbed glutamatergic homeostasis. In conclusion, no significant EAAT2 density changes were found between control and AD cases, but the observed spatial differences in transporter expression and their functional significance will have to be further explored.
Collapse
Affiliation(s)
- Jason H Y Yeung
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Oliver W G Wood
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Rammes G, Seeser F, Mattusch K, Zhu K, Haas L, Kummer M, Heneka M, Herms J, Parsons CG. The NMDA receptor antagonist Radiprodil reverses the synaptotoxic effects of different amyloid-beta (Aβ) species on long-term potentiation (LTP). Neuropharmacology 2018; 140:184-192. [PMID: 30016667 DOI: 10.1016/j.neuropharm.2018.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/22/2018] [Accepted: 07/14/2018] [Indexed: 12/29/2022]
Abstract
Aβ1-42 is well accepted to be a primary early pathogenic agent in Alzheimer's disease (AD). However, other amyloid peptides are now gaining considerable attention as potential key participants in AD due to their proposed higher neuronal toxicity. Impairment of the glutamatergic system is also widely accepted to be associated with pathomechanisms underlying AD. There is ample evidence that Aβ1-42 affects GLUN2B subunit containing N-methyl-D-aspartate receptor function and abolishes the induction of long term potentiation (LTP). In this study we show that different β-amyloid species, 1-42 Aβ1-42 and 1-40 (Aβ1-40) as well as post-translationally modified forms such as pyroglutamate-modified amyloid-(AβpE3) and nitrated Aβ (3NTyr10-Aβ), when applied for 90 min to murine hippocampal slices, concentration-dependently prevented the development of CA1-LTP after tetanic stimulation of the Schaffer collaterals with IC50s of 2, 9, 2 and 35 nM, respectively whilst having no effect on baseline AMPA receptor mediated fEPSPs. Aβ1-43 had no effect. Interestingly, the combination of all Aβ species did not result in any synergistic or additive inhibitory effect on LTP - the calculated pooled Aβ species IC50 was 20 nM. A low concentration (10 nM) of the GLUN2B receptor antagonist Radiprodil restored LTP in the presence of Aβ1-42, 3NTyr10-Aβ, Aβ1-40, but not AβpE3. In contrast to AMPA receptor mediated fEPSPs, all different β-amyloid species tested at 50 nM supressed baseline NMDA-EPSC amplitudes. Similarly, all different Aβ species tested decreased spine density. As with LTP, Radiprodil (10 nM) reversed the synaptic toxicity of Aβ species but not that of AβpE3. These data do not support the enhanced toxic actions reported for some Aβ species such as AβpE3, nor synergistic toxicity of the combination of different Aβ species. However, whilst in our hands AβpE3-42 was actually less toxic than Aβ1-42, its effects were not reversed by Radiprodil indicating that the target receptors/subunits mediating such synaptotoxicity may differ between the different Aβ species tested.
Collapse
Affiliation(s)
- Gerhard Rammes
- Department of Anaesthesiology, Technische Universität München, Munich, Germany.
| | - Franziska Seeser
- Department of Anaesthesiology, Technische Universität München, Munich, Germany
| | - Korinna Mattusch
- Department of Anaesthesiology, Technische Universität München, Munich, Germany
| | - Kaichuan Zhu
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Laura Haas
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Markus Kummer
- Clinical Neuroscience Unit, Dept. of Neurology, University of Bonn, Germany
| | - Michael Heneka
- Clinical Neuroscience Unit, Dept. of Neurology, University of Bonn, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Chris G Parsons
- Non-Clinical Science, Merz Pharmaceuticals GmbH, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Rammes G, Mattusch C, Wulff M, Seeser F, Kreuzer M, Zhu K, Deussing JM, Herms J, Parsons CG. Involvement of GluN2B subunit containing N-methyl-d-aspartate (NMDA) receptors in mediating the acute and chronic synaptotoxic effects of oligomeric amyloid-beta (Aβ) in murine models of Alzheimer's disease (AD). Neuropharmacology 2017; 123:100-115. [PMID: 28174113 DOI: 10.1016/j.neuropharm.2017.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/17/2017] [Accepted: 02/03/2017] [Indexed: 01/05/2023]
Abstract
To elucidate whether a permanent reduction of the GluN2B subunit affects the pathology of Alzheimer's disease (AD), we cross-bred mice heterozygous for GluN2B receptors in the forebrain (hetGluN2B) with a mouse model for AD carrying a mutated amyloid precursor protein with the Swedish and Arctic mutation (mAPP) resulting in a hetGluN2B/mAPP transgenic. By means of voltage-sensitive dye imaging (VSDI) in the di-synaptic hippocampal pathway and the recording of field excitatory postsynaptic potentials (fEPSPs), hippocampal slices of all genotypes (WT, hetGluN2B, mAPP and hetGluN2B/mAPP, age 9-18 months) were tested for spatiotemporal activity propagation and long-term potentiation (LTP) induction. CA1-LTP induced by high frequency stimulation (HFS; 100 Hz/1s) was not different in all genotypes. Aβ1-42 (50 nM)-application reduced potentiation of fEPSP in WT and hetGluN2B/mAPP mice, LTP in mAPP and hetGluN2B mice was not affected. For VSDI a fast depolarization signal was evoked in the granule cell layer and propagation was analysed in hippocampal CA3 and CA1 region before and after theta stimulation (100pulses/5 Hz). LTP was not significantly different between all genotypes. In mAPP mice θ-stim produced an epileptiform activity reflected in a pronounced prolongation of the FDS compared to the other genotypes. In slices of hetGluN2B/mAPP and GluN2B mice, however, these parameters were similar to WT mice indicating a reversal effect of the attenuated GluN2B expression. The induction of a hetGluN2B mutation in the mAPP reversed some pathophysiological changes on hippocampal LTP and provide further evidence for the involvement of the glutamatergic system in AD and emphasize the GluN2B subunit as a potential target for AD treatment.
Collapse
Affiliation(s)
- Gerhard Rammes
- Department of Anaesthesiology, Technische Universität München, Munich, Germany; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Corinna Mattusch
- Department of Anaesthesiology, Technische Universität München, Munich, Germany
| | - Matthias Wulff
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Franziska Seeser
- Department of Anaesthesiology, Technische Universität München, Munich, Germany
| | - Matthias Kreuzer
- Department of Anaesthesiology, Technische Universität München, Munich, Germany
| | - Kaichuan Zhu
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Chris G Parsons
- Non-Clinical Science, Merz Pharmaceuticals GmbH, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Miladinovic T, Nashed MG, Singh G. Overview of Glutamatergic Dysregulation in Central Pathologies. Biomolecules 2015; 5:3112-41. [PMID: 26569330 PMCID: PMC4693272 DOI: 10.3390/biom5043112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/27/2022] Open
Abstract
As the major excitatory neurotransmitter in the mammalian central nervous system, glutamate plays a key role in many central pathologies, including gliomas, psychiatric, neurodevelopmental, and neurodegenerative disorders. Post-mortem and serological studies have implicated glutamatergic dysregulation in these pathologies, and pharmacological modulation of glutamate receptors and transporters has provided further validation for the involvement of glutamate. Furthermore, efforts from genetic, in vitro, and animal studies are actively elucidating the specific glutamatergic mechanisms that contribute to the aetiology of central pathologies. However, details regarding specific mechanisms remain sparse and progress in effectively modulating glutamate to alleviate symptoms or inhibit disease states has been relatively slow. In this report, we review what is currently known about glutamate signalling in central pathologies. We also discuss glutamate's mediating role in comorbidities, specifically cancer-induced bone pain and depression.
Collapse
Affiliation(s)
- Tanya Miladinovic
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Mina G Nashed
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
6
|
Danysz W, Parsons CG. Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. Br J Pharmacol 2013; 167:324-52. [PMID: 22646481 DOI: 10.1111/j.1476-5381.2012.02057.x] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
β-amyloid (Aβ) is widely accepted to be one of the major pathomechanisms underlying Alzheimer's disease (AD), although there is presently lively debate regarding the relative roles of particular species/forms of this peptide. Most recent evidence indicates that soluble oligomers rather than plaques are the major cause of synaptic dysfunction and ultimately neurodegeneration. Soluble oligomeric Aβ has been shown to interact with several proteins, for example glutamatergic receptors of the NMDA type and proteins responsible for maintaining glutamate homeostasis such as uptake and release. As NMDA receptors are critically involved in neuronal plasticity including learning and memory, we felt that it would be valuable to provide an up to date review of the evidence connecting Aβ to these receptors and related neuronal plasticity. Strong support for the clinical relevance of such interactions is provided by the NMDA receptor antagonist memantine. This substance is the only NMDA receptor antagonist used clinically in the treatment of AD and therefore offers an excellent tool to facilitate translational extrapolations from in vitro studies through in vivo animal experiments to its ultimate clinical utility.
Collapse
Affiliation(s)
- Wojciech Danysz
- Merz Pharmaceuticals GmbH, Eckenheimer Landstraße, Frankfurt am Main, Germany
| | | |
Collapse
|
7
|
Oxidative Stress and β-Amyloid Protein in Alzheimer’s Disease. Neuromolecular Med 2011; 13:223-50. [DOI: 10.1007/s12017-011-8155-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/26/2011] [Indexed: 12/21/2022]
|
8
|
Tang KS, Suh SW, Alano CC, Shao Z, Hunt WT, Swanson RA, Anderson CM. Astrocytic poly(ADP-ribose) polymerase-1 activation leads to bioenergetic depletion and inhibition of glutamate uptake capacity. Glia 2010; 58:446-57. [PMID: 19795500 DOI: 10.1002/glia.20936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a ubiquitous nuclear enzyme involved in genomic stability. Excessive oxidative DNA strand breaks lead to PARP-1-induced depletion of cellular NAD(+), glycolytic rate, ATP levels, and eventual cell death. Glutamate neurotransmission is tightly controlled by ATP-dependent astrocytic glutamate transporters, and thus we hypothesized that astrocytic PARP-1 activation by DNA damage leads to bioenergetic depletion and compromised glutamate uptake. PARP-1 activation by the DNA alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), caused a significant reduction of cultured cortical astrocyte survival (EC(50) = 78.2 +/- 2.7 microM). HPLC revealed MNNG-induced time-dependent reductions in NAD(+) (98%, 4 h), ATP (71%, 4 h), ADP (63%, 4 h), and AMP (66%, 4 h). The maximal [(3)H]glutamate uptake rate (V(max)) also declined in a manner that corresponded temporally with ATP depletion, falling from 19.3 +/- 2.8 in control cells to 2.1 +/- 0.8 nmol/min/mg protein 4 h post-MNNG. Both bioenergetic depletion and loss of glutamate uptake capacity were attenuated by genetic deletion of PARP-1, directly indicating PARP-1 involvement, and by adding exogenous NAD(+) (10 mM). In mixed neurons/astrocyte cultures, MNNG neurotoxicity was partially mediated by extracellular glutamate and was reduced by co-culture with PARP-1(-/-) astrocytes, suggesting that impairment of astrocytic glutamate uptake by PARP-1 can raise glutamate levels sufficiently to have receptor-mediated effects at neighboring neurons. Taken together, these experiments showed that PARP-1 activation leads to depletion of the total adenine nucleotide pool in astrocytes and severe reduction in neuroprotective glutamate uptake capacity.
Collapse
Affiliation(s)
- Kim San Tang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Perez JL, Carrero I, Gonzalo P, Arevalo-Serrano J, Sanz-Anquela JM, Ortega J, Rodriguez M, Gonzalo-Ruiz A. Soluble oligomeric forms of beta-amyloid (Abeta) peptide stimulate Abeta production via astrogliosis in the rat brain. Exp Neurol 2009; 223:410-21. [PMID: 19879263 DOI: 10.1016/j.expneurol.2009.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 09/29/2009] [Accepted: 10/17/2009] [Indexed: 10/20/2022]
Abstract
The aim of this study was to investigate the interaction between beta-amyloid (Abeta) peptide and astrogliosis in early stages of Abeta toxicity. In Wistar rats, anaesthetised with equitesine, a single microinjection of Abeta1-42 oligomers was placed into the retrosplenial cortex. Control animals were injected with Abeta42-1 peptide into the corresponding regions of cerebral cortex. Immunocytochemical analysis revealed an intense Abeta immunoreactivity (IR) at the level of Abeta1-42 injection site, increasing from the first 24 h to later (72 h) time point. Control injection showed a light staining surrounding the injection site. In Abeta oligomers-treated animals, Abeta-immunopositive product also accumulates in cortical cells, particularly in frontal and temporal cortices at an early (24 h) time point. Abeta-IR structures-like diffuse aggregates forms were also observed in hippocampus and in several cortical areas, increasing from the first 24 h to later (72 h) time point. In control animals no specific staining was seen neither in cortical cells nor in structures-like diffuse aggregates forms. Injections of Abeta oligomers also induce activation of astrocytes surrounding and infiltrating the injection site. Astrocyte activation is evidenced by morphological changes and upregulation of glial fibrillary acidic protein (GFAP). By GFAP immunoblotting we detected two immunopositive protein bands, at 50 and 48 kDa molecular mass. Confocal analysis also showed that GFAP co-localized with Abeta-IR material in a time-dependent manner. In conclusion, our results indicate that astrocyte activation might have a critical role in the mechanisms of Abeta-induced neurodegeneration, and that should be further studied as possible targets for therapeutic intervention in AD.
Collapse
Affiliation(s)
- J L Perez
- Laboratory of Neuroanatomy, Institute of Neuroscience of Castilla and León, Valladolid University (Campus of Soria), Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Alpár A, Naumann N, Ueberham U, Arendt T, Gärtner U. Deprivation-induced dendritic shrinkage might be oppositely affected by the expression of wild-type and mutated human amyloid precursor protein. J Neurosci Res 2009; 87:1813-22. [PMID: 19170186 DOI: 10.1002/jnr.22008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The physiological role of the amyloid precursor protein (APP) and its proteolytic fragments in the brain is associated with neuronal survival, neurite outgrowth, synaptic formation, and neuronal plasticity. However, malregulation of APP processing leads to disordered balance of fragments, which may results in opposite, degenerative neuronal effects. In the present study, we analyzed in vivo effects of the expression of wild-type or mutated human APP on afferent deprivation-induced changes of dendritic morphology. After vibrissectomy, expression of wild-type human APP prevented diameter shrinkage of dendritic segments as well as dendritic rarefaction of apical arbors. In contrast, mutant human APP expression exacerbated degenerative changes of deprived barrel neurons. Degradation of apical arbors was especially pronounced. Results demonstrate for the first time opposite effects of the expression of wild-type and mutated human APP on deprivation-induced dendritic restructuring in vivo.
Collapse
Affiliation(s)
- Alán Alpár
- Department of Anatomy, Histology and Embryology, Semmelweis University Medical School, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
11
|
Limón ID, Díaz A, Mendieta L, Chamorro G, Espinosa B, Zenteno E, Guevara J. Amyloid-beta(25-35) impairs memory and increases NO in the temporal cortex of rats. Neurosci Res 2008; 63:129-37. [PMID: 19084561 DOI: 10.1016/j.neures.2008.11.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/05/2008] [Accepted: 11/10/2008] [Indexed: 01/27/2023]
Abstract
beta-Amyloid plays an important role in the neurodegeneration process of Alzheimer's disease (AD), but its neurotoxic mechanisms are not clear. It has been associated with the increase of oxidative stress and cognitive impairment because the beta-amyloid peptide 25-35 (Abeta((25-35))) has the critical neurotoxic properties of the full-length Abeta(1-42). Our present study shows the role of Abeta((25-35)) when injected into the temporal cortex on the nitric oxide pathways, 3-nitrotyrosine, neuronal death, and the spatial memory of rats 1 month after the injection. Our data showed that Abeta((25-35)) increases oxidative stress, causes neuronal damage, and decreases spatial memory in rats. Notably, the injection of the fraction Abeta((25-35)) caused an increase of nNOS and iNOS immunoreactivity in the temporal cortex and hippocampus. We demonstrated a significant increase of reactive astrocytosis, which was accompanied by neuronal damage in the temporal cortex and hippocampus of rats injected with Abeta((25-35)). These data suggest that the fraction Abeta((25-35)) injected into the temporal cortex might contribute to understanding the role of nitric oxide on the biological changes related to the neuropathological progression and the memory impairment in AD.
Collapse
Affiliation(s)
- I Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | | | | | | | | |
Collapse
|
12
|
Parsons CG, Stöffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system--too little activation is bad, too much is even worse. Neuropharmacology 2007; 53:699-723. [PMID: 17904591 DOI: 10.1016/j.neuropharm.2007.07.013] [Citation(s) in RCA: 486] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 06/19/2007] [Accepted: 07/17/2007] [Indexed: 12/13/2022]
Abstract
The neurotransmitter glutamate activates several classes of metabotropic receptor and three major types of ionotropic receptor--alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA). The involvement of glutamate mediated neurotoxicity in the pathogenesis of Alzheimer's disease (AD) is finding increasing scientific acceptance. Central to this hypothesis is the assumption that glutamate receptors, in particular of the NMDA type, are overactivated in a tonic rather than a phasic manner. Such continuous, mild, chronic activation ultimately leads to neuronal damage/death. Additionally, impairment of synaptic plasticity (learning) may result not only from neuronal damage per se but may also be a direct consequence of this continuous, non-contingent NMDA receptor activation. Complete NMDA receptor blockade has also been shown to impair neuronal plasticity, thus, both hypo- and hyperactivity of the glutamatergic system leads to dysfunction. Memantine received marketing authorization from the EMEA (European Medicines Agency) for the treatment of moderate to severe AD in Europe and was subsequently also approved by the FDA (Food and Drug Administration) for use in the same indication in the USA. Memantine is a moderate affinity, uncompetitive NMDA receptor antagonist with strong voltage-dependency and fast kinetics. This review summarizes existing hypotheses on the mechanism of action (MOA) of memantine in an attempt to understand how the accepted interaction with NMDA receptors could allow memantine to provide both neuroprotection and reverse deficits in learning/memory by the same MOA.
Collapse
Affiliation(s)
- Chris G Parsons
- Merz Pharmaceuticals, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | | | | |
Collapse
|
13
|
Albensi BC, Igoechi C, Janigro D, Ilkanich E. Why do many NMDA antagonists fail, while others are safe and effective at blocking excitotoxicity associated with dementia and acute injury? Am J Alzheimers Dis Other Demen 2004; 19:269-74. [PMID: 15553982 PMCID: PMC10833778 DOI: 10.1177/153331750401900502] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Similar to drug development programs for stroke and traumatic brain injury, programs developed for Alzheimer's disease (AD) have not been very effective in treating dementia. Recently, researchers have explored modulating excitatory synaptic neurotransmission via the N-methyl-D-aspartate receptor (NMDAR) to treat AD. However, many investigators doubt that NMDA antagonists are safe and effective for treating persons with AD because they have failed in stroke and trauma programs. This article explores the role of NMDA-mediated excitotoxicity in AD, reviews how the NMDAR functions, highlights the side effects and alternate signaling pathways that are initiated from NMDAR activation, provides examples of NMDA antagonists that do not exhibit the typical side effects, and discusses why some NMDA antagonist compounds are effective and safe in limiting cascades of excitotoxicity in dementia or acute brain injury.
Collapse
Affiliation(s)
- Benedict C Albensi
- Center for Cerebrovascular Research, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
14
|
Maragakis NJ, Rothstein JD. Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 2004; 15:461-73. [PMID: 15056453 DOI: 10.1016/j.nbd.2003.12.007] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 12/02/2003] [Accepted: 12/09/2003] [Indexed: 12/23/2022] Open
Abstract
Glutamate is the primary excitatory amino acid neurotransmitter in the central nervous system and its activity is carefully modulated in the synaptic cleft by glutamate transporters. A number of glutamate transporters have been identified in the central nervous system and each has a unique physiologic property and distribution. Glutamate transporter dysfunction may either be an initiating event or part of a cascade leading to cellular dysfunction and ultimately cell death. Animal models of glutamate transporter dysfunction have revealed a significant role for these proteins in pathologic conditions such as neurodegenerative diseases, epilepsy, stroke, and central nervous system tumors. Recent work has focused on glutamate transporter biology in human diseases with an emphasis on how manipulation of these transporter proteins may lead to therapeutic interventions in neurologic disease.
Collapse
|
15
|
Fernández-Tomé P, Brera B, Arévalo MA, de Ceballos ML. β-Amyloid25-35 inhibits glutamate uptake in cultured neurons and astrocytes: modulation of uptake as a survival mechanism. Neurobiol Dis 2004; 15:580-9. [PMID: 15056466 DOI: 10.1016/j.nbd.2003.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Revised: 12/05/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022] Open
Abstract
Glutamate transporters are vulnerable to oxidants resulting in reduced uptake function. We have studied the effects of beta-amyloid(25-35) (beta A(25-35)) on [(3)H]-glutamate uptake on cortical neuron or astrocyte cultures in comparison with a scrambled peptide (SCR) and dihydrokainic acid (DHK), a prototypic uptake inhibitor. beta A(25-35) was more potent than DHK in inhibiting glutamate uptake and the effects of both were more marked on astrocytes than on neurons. At 24 h, beta A(25-35) dose-dependently (0.5-15 microM) increased glutamate levels in media from neuron cultures. DHK only enhanced extracellular glutamate at the highest concentration tested (2500 microM). beta A(25-35) induced gradual neurotoxicity (0.1-50 microM) over time. Exposure to beta A(25-35) resulted in increased uptake in astrocytes (0.25-5 microM) and neurons (0.5-15 microM) surviving its toxic effects. However, exposure to DHK (2.5-2500 microM) did not induce neurotoxicity nor modulated uptake. These results indicate that, while inhibition of glutamate uptake may be involved in the neurotoxic effects of beta A(25-35), enhancement of uptake may be a survival mechanism following exposure to beta A(25-35).
Collapse
Affiliation(s)
- Paz Fernández-Tomé
- Institute of Pharmacology and Toxicology, CSIC, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Yang Y, Kinney GA, Spain WJ, Breitner JCS, Cook DG. Presenilin-1 and intracellular calcium stores regulate neuronal glutamate uptake. J Neurochem 2004; 88:1361-72. [PMID: 15009636 DOI: 10.1046/j.1471-4159.2003.02279.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutamate uptake by high affinity glutamate transporters is essential for preventing excitotoxicity and maintaining normal synaptic function. We have discovered a novel role for presenilin-1 (PS1) as a regulator of glutamate transport. PS1-deficient neurons showed a decrease in glutamate uptake of approximately 50% compared to wild-type neurons. Gamma-secretase inhibitor treatment mimicked the effects of PS1 deficiency on glutamate uptake. PS1 loss-of-function, accomplished by PS1 deficiency or gamma-secretase inhibitor treatment, caused a corresponding decrease in cell surface expression of the neuronal glutamate transporter, EAAC1. PS1 deficiency is known to reduce intracellular calcium stores. To explore the possibility that PS1 influences glutamate uptake via regulation of intracellular calcium stores, we examined the effects of treating neurons with caffeine, thapsigargin, and SKF-96365. These compounds depleted intracellular calcium stores by distinct means. Nonetheless, each treatment mimicked PS1 loss-of-function by impairing glutamate uptake and reducing EAAC1 expression at the cell surface. Blockade of voltage-gated calcium channels, activation and inhibition of protein kinase C (PKC), and protein kinase A (PKA) all had no effect on glutamate uptake in neurons. Taken together, these findings indicate that PS1 and intracellular calcium stores may play a significant role in regulating glutamate uptake and therefore may be important in limiting glutamate toxicity in the brain.
Collapse
Affiliation(s)
- Yaxiong Yang
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA
| | | | | | | | | |
Collapse
|
17
|
Hashimoto M, Masliah E. Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer's and dementia with Lewy bodies. Neurochem Res 2004; 28:1743-56. [PMID: 14584828 DOI: 10.1023/a:1026073324672] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) are the most common neurodegenerative disorders affecting the elderly. The cognitive and motor deficits in these diseases are associated with the disruption of neuritic substructure, loss of synaptic contacts in selectively vulnerable circuitries, and aberrant sprouting. Where as in AD, accumulation of misfolded forms of Abeta triggers neurodegeneration, in DLB accumulation of alpha-synuclein might play a central role. The mechanisms by which oligomeric forms of these proteins might lead to cycles of synapse loss and aberrant sprouting are currently under investigation. Several possibilities are being considered, including mitochondrial damage, caspase activation, lysosomal leakage, fragmentation of the Golgi apparatus, interference with synaptic vesicle transport and function, and interference with gene transcription and signaling. Among them, recent lines of research support the possibility that alterations in signaling pathways such extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 relevant to synaptic plasticity and cell survival might play a pivotal role. A wide range of cellular functions are affected by the accumulation of misfolded Abeta and alpha-synuclein; thus it is possible that a more fundamental cellular alteration may underlie the mechanisms of synaptic pathology in these disorders. Among them, one possibility is that scaffold proteins, such as caveolin and JNK-interacting protein (JIP), which are necessary to integrate signaling pathways, are affected, leading to cycles of synapse loss and aberrant sprouting. This is significant because both caveolar dysfunction and altered axonal plasticity might be universally important in the pathogenesis of various neurodegenerative disorders, and therefore these signaling pathways might be common therapeutic targets for these devastating diseases.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Department of Neurosciences. University of California, San Diego, La Jolla, California 92093-0624, USA
| | | |
Collapse
|
18
|
Abstract
Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and death of neurons in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta has been shown to cause synaptic dysfunction and can render neurons vulnerable to excitotoxicity and apoptosis by a mechanism involving disruption of cellular calcium homeostasis. By inducing membrane lipid peroxidation and generation of the aldehyde 4-hydroxynonenal, Abeta impairs the function of membrane ion-motive ATPases and glucose and glutamate transporters, and can enhance calcium influx through voltage-dependent and ligand-gated calcium channels. Reduced levels of a secreted form of APP which normally regulates synaptic plasticity and cell survival may also promote disruption of synaptic calcium homeostasis in AD. Some cases of inherited AD are caused by mutations in presenilins 1 and 2 which perturb endoplasmic reticulum (ER) calcium homeostasis such that greater amounts of calcium are released upon stimulation, possibly as the result of alterations in IP(3) and ryanodine receptor channels, Ca(2+)-ATPases and the ER stress protein Herp. Abnormalities in calcium regulation in astrocytes, oligodendrocytes, and microglia have also been documented in studies of experimental models of AD, suggesting contributions of these alterations to neuronal dysfunction and cell death in AD. Collectively, the available data show that perturbed cellular calcium homeostasis plays a prominent role in the pathogenesis of AD, suggesting potential benefits of preventative and therapeutic strategies that stabilize cellular calcium homeostasis.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center 4F01, Baltimore, MD 21224, USA.
| | | |
Collapse
|
19
|
Trotti D. A role for glutamate transporters in neurodegenerative diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:225-48. [PMID: 12575823 DOI: 10.1007/978-1-4615-0123-7_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Davide Trotti
- Department of Neurology, Cecil B. Day Laboratory for Neuromuscular Research, Msasachusetts General Hospital, Harvard Medical School, Charleston, MA 02129, USA
| |
Collapse
|
20
|
Borroni B, Volpi R, Martini G, Del Bono R, Archetti S, Colciaghi F, Akkawi NM, Di Luca M, Romanelli G, Caimi L, Padovani A. Peripheral blood abnormalities in Alzheimer disease: evidence for early endothelial dysfunction. Alzheimer Dis Assoc Disord 2002; 16:150-5. [PMID: 12218645 DOI: 10.1097/00002093-200207000-00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Clinical and epidemiologic studies demonstrate that vascular risk factors may be involved in Alzheimer disease (AD). To evaluate whether vascular abnormalities are an early feature of AD, several parameters of coagulation and fibrinolysis were assessed. Thirty patients with mild AD and 30 age-matched control subjects entered the study. All subjects performed a standardized clinical and laboratory protocol. Persons with vascular risk factors and systemic diseases were excluded. AD patients present significant increased levels of thrombomodulin (p < 0.0001) and sE-selectin (p < 0.03). In contrast, no difference was found between the two diagnostic groups in the levels of beta-thromboglobulin, prothrombin fragment 1+2, fibrinogen, and von Willebrand factor. No other association but diagnosis was found with thrombomodulin and sE-selectin. These findings suggest that endothelial dysfunction is an early event in AD patients.
Collapse
Affiliation(s)
- B Borroni
- Department of Neurology, University of Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Frizzo MEDS, Lara DR, Prokopiuk ADS, Vargas CR, Salbego CG, Wajner M, Souza DO. Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell Mol Neurobiol 2002; 22:353-63. [PMID: 12469876 PMCID: PMC11533736 DOI: 10.1023/a:1020728203682] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The effect of guanosine on L-[2,3-3H]glutamate uptake was investigated in brain cortical slices under normal or oxygen-glucose deprivation (OGD) conditions. 2. In slices exposed to physiological conditions, guanosine (1-100 microM) stimulated glutamate uptake (up to 100%) in a concentration-dependent manner when a high (100 microM) but not a low (1 microM) concentration of glutamate was used. 3. In slices submitted to OGD, guanosine 1 and 100 microM also increased 100 microM glutamate uptake (38 and 70%, respectively). 4. The increasing of glutamate and taurine released to the incubation medium in cortical slices submitted to OGD were significantly attenuated by the presence of guanosine in the incubation medium. 5. Guanosine prevented the increase in propidium iodide incorporation into cortical slices induced by OGD, indicating a protective role against ischemic injury. 6. These results support the hypothesis of a protective role for guanosine during brain ischemia, possibly by activating glutamate uptake into neural cells.
Collapse
|
22
|
Gegelashvili G, Robinson MB, Trotti D, Rauen T. Regulation of glutamate transporters in health and disease. PROGRESS IN BRAIN RESEARCH 2001; 132:267-86. [PMID: 11544995 DOI: 10.1016/s0079-6123(01)32082-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- G Gegelashvili
- Department of Pharmacology, Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | |
Collapse
|
23
|
Thorns V, Licastro F, Masliah E. Locally reduced levels of acidic FGF lead to decreased expression of 28-kda calbindin and contribute to the selective vulnerability of the neurons in the entorhinal cortex in Alzheimer's disease. Neuropathology 2001; 21:203-11. [PMID: 11666017 DOI: 10.1046/j.1440-1789.2001.00399.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies demonstrate that a disturbed calcium-homeostasis leading to increased susceptibility to excitotoxic triggers plays a major role in the neurodegenerative process initiating in layer 2 of the entorhinal cortex (EC2) during Alzheimer's disease (AD). Thus, proteins binding free Ca++ (i.e. calbindin) and factors regulating these proteins are of great importance for the neuroprotective-neurotoxic balance in the affected brain regions. In the present combined human and in vitro study evidence is provided that altered levels of the acidic fibroblast growth factor (aFGF) and calbindin expression are concomitantly present in EC2 neurons and have interactive effects. A dramatic loss of aFGF- and calbindin-labeled EC2 neurons was found. Further analysis of the surviving EC2 neurons revealed a strong immunoreactivity to calbindin and aFGF. In vitro experiments show that aFGF regulates calbindin expression, because treatment of differentiating neurons with recombinant aFGF increases calbindin expression in a time-dependent fashion. The data imply that a reduced expression of aFGF in EC2 neurons of AD brains leads to lower levels of calbindin resulting in decreased neuroprotective capacity.
Collapse
Affiliation(s)
- V Thorns
- Institute of Neuropathology, Medical School of Hannover, Germany.
| | | | | |
Collapse
|
24
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
25
|
Hsu L, Rockenstein E, Mallory M, Hashimoto M, Masliah E. Altered expression of glutamate transporters under hypoxic conditions in vitro. J Neurosci Res 2001; 64:193-202. [PMID: 11288147 DOI: 10.1002/jnr.1065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regulation of extracellular excitotoxins by glial and neuronal glutamate transporters is critical to maintain synaptic terminal integrity. Factors interfering with the normal functioning of these transporters might be involved in neurodegeneration. Among them, recent studies have shown that hypoxia alters glutamate transporter function; however, it is unclear if hypoxia has an effect on the expression of glutamate transporters and which intracellular signaling pathways are involved. The C6 rat glial and GT1--7 mouse neuronal cell lines were exposed to hypoxic conditions (5% CO(2), 95% N(2)) and levels of glutamate transporter mRNA were determined by ribonuclease protection assay. After 21 hr, there was a 100% increase in levels of rat excitatory amino acid transporter 3 (EAAT3) mRNA in C6 cells and a 600% increase in levels of murine EAAT2 mRNA in GT1--7 cells. There was a similar increase in mRNA levels after hypoxia in C6 cells transfected with human EAAT2, whereas reoxygenation normalized the expression levels of glutamate transporters. Although the expression of EAATs was associated with increased immunoreactivity by Western blot, functioning of the transporters was decreased as evidenced by D-aspartate uptake. Finally, although the protein kinase C stimulator phorbol-12-myristate-13-acetate enhanced EAAT2 mRNA levels after hypoxia, protein kinase C inhibitor bisindolylmaleimide I had the opposite effect. Taken together, this study suggests that the hypoxia is capable of upregulating levels of EAATs via a protein kinase C-dependent compensatory mechanism. This increased expression is not sufficient to overcome the decreased functioning of the EAATs associated with decreased ATP production and mitochondrial dysfunction.
Collapse
Affiliation(s)
- L Hsu
- Department of Neurosciences, University of California, San Diego, La Jolla, 92093-0624, USA
| | | | | | | | | |
Collapse
|
26
|
Gadea A, López-Colomé AM. Glial transporters for glutamate, glycine and GABA I. Glutamate transporters. J Neurosci Res 2001; 63:453-60. [PMID: 11241580 DOI: 10.1002/jnr.1039] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The termination of chemical neurotransmission in the CNS involves the rapid removal of neurotransmitter from synapses by specific transport systems. Such mechanism operates for the three major amino acid neurotransmitters glutamate, gamma-aminobutyric acid (GABA) and glycine. To date, five different high-affinity Na(+)-dependent glutamate (Glu) transporters have been cloned: GLT1, GLAST, EAAC1, EAAT4 and EAAT5. The first two are expressed mainly by glial cells, and seem to be the predominant Glu transporters in the brain. A major function of Glu uptake in the nervous system is to prevent extracellular Glu concentrations from raising to neurotoxic levels in which glial transporters seem to play a critical role in protecting neurons from glutamate-induced excitotoxicity. Under particular conditions, glial GluTs have been shown to release Glu by reversal of activity, in a Ca(2+)--and energy-independent fashion. Furthermore, an activity of these transporters as ion channels or transducing units coupled to G-proteins has recently been reported. The localization, stoichiometry, and regulation of glial GluTs are outlined, as well as their possible contributions to nervous system diseases as ALS, AD and ischemic damage.
Collapse
Affiliation(s)
- A Gadea
- Instituto e Fisiología Celular, Departamento de Neurociencias, UNAM, Mexico
| | | |
Collapse
|
27
|
Offen D, Elkon H, Melamed E. Apoptosis as a general cell death pathway in neurodegenerative diseases. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001:153-66. [PMID: 11128605 DOI: 10.1007/978-3-7091-6284-2_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Neurodegenerative processes are generally characterized by the long-lasting course of neuronal death and the selectivity of the neuronal population or brain structure involved in the lesion. Two main common forms of cell death that have been described in neurons as in other vertebrate tissues i.e., necrosis and apoptosis. Necrosis is the result of cellular "accidents", such as those occurring in tissues subjected to chemical trauma. The necrotizing cells swell, rupture and provoke an inflammatory response. Apoptosis, on the other hand, is dependent on the cell's "decision" to commit suicide and die, and therefore is referred to as "programmed cell death" (PCD). The course of apoptotic death is characterized by a massive morphological change, including cell shrinkage, nuclear (chromosome) condensation and DNA degradation. Activation of PCD in an individual cell is based on its own internal metabolism, environment, developmental background and its genetic information. Such a situation occurs in most of the neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases and amyotrophic lateral sclerosis (ALS). In these pathological situations, specific neurons undergo apoptotic cell death characterized by DNA fragmentation, increased levels of pro-apoptotic genes and "apoptotic proteins" both, in human brain and in experimental models. It is of utmost importance to conclusively determine the mode of cell death in neurodegenerative diseases, because new "anti-apoptotic" compounds may offer a means of protecting neurons from cell death and of slowing the rate of cell degeneration and illness progression.
Collapse
Affiliation(s)
- D Offen
- Neurology Department and Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Rabin Medical Center, Petah-Tikva, Israel.
| | | | | |
Collapse
|
28
|
Ferrarese C, Begni B, Canevari C, Zoia C, Piolti R, Frigo M, Appollonio I, Frattola L. Glutamate uptake is decreased in platelets from Alzheimer's disease patients. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200005)47:5<641::aid-ana12>3.0.co;2-i] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Guo ZH, Mattson MP. In vivo 2-deoxyglucose administration preserves glucose and glutamate transport and mitochondrial function in cortical synaptic terminals after exposure to amyloid beta-peptide and iron: evidence for a stress response. Exp Neurol 2000; 166:173-9. [PMID: 11031093 DOI: 10.1006/exnr.2000.7497] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mild metabolic stress can increase resistance of neurons in the brain to subsequent more severe insults, as exemplified by the beneficial effects of heat shock and ischemic preconditioning. Studies of Alzheimer's disease and other age-related neurodegenerative disorders indicate that dysfunction and degeneration of synapses occur early in the cell death process, and that oxidative stress and mitochondrial dysfunction are central events in this pathological process. It was recently shown that administration of 2-deoxy-d-glucose (2DG), a nonmetabolizable glucose analog that induces metabolic stress, to rats and mice can increase resistance of neurons in the brain to excitotoxic, ischemic, and oxidative injury. We now report that administration of 2DG to adult rats (daily i.p. injections of 100 mg/kg body weight) increases resistance of synaptic terminals to dysfunction and degeneration induced by amyloid beta-peptide and ferrous iron, an oxidative insult. The magnitude of impairment of glucose and glutamate transport induced by amyloid beta-peptide and iron was significantly reduced in cortical synaptosomes from 2DG-treated rats compared to saline-treated control rats. Mitochondrial dysfunction, as indicated by increased levels of reactive oxygen species and decreased transmembrane potential, was significantly attenuated after exposure to amyloid beta-peptide and iron in synaptosomes from 2DG-treated rats. Levels of the stress proteins HSP-70 and GRP-78 were increased in synaptosomes from 2DG-treated rats, suggesting a mechanism whereby 2DG protects synaptic terminals. We conclude that 2DG bolsters cytoprotective mechanisms within synaptic terminals, suggesting novel preventative and therapeutic approaches for neurodegenerative disorders.
Collapse
Affiliation(s)
- Z H Guo
- Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
30
|
High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 2000. [PMID: 10818140 DOI: 10.1523/jneurosci.20-11-04050.2000] [Citation(s) in RCA: 1336] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid plaques are a neuropathological hallmark of Alzheimer's disease (AD), but their relationship to neurodegeneration and dementia remains controversial. In contrast, there is a good correlation in AD between cognitive decline and loss of synaptophysin-immunoreactive (SYN-IR) presynaptic terminals in specific brain regions. We used expression-matched transgenic mouse lines to compare the effects of different human amyloid protein precursors (hAPP) and their products on plaque formation and SYN-IR presynaptic terminals. Four distinct minigenes were generated encoding wild-type hAPP or hAPP carrying mutations that alter the production of amyloidogenic Abeta peptides. The platelet-derived growth factor beta chain promoter was used to express these constructs in neurons. hAPP mutations associated with familial AD (FAD) increased cerebral Abeta(1-42) levels, whereas an experimental mutation of the beta-secretase cleavage site (671(M-->I)) eliminated production of human Abeta. High levels of Abeta(1-42) resulted in age-dependent formation of amyloid plaques in FAD-mutant hAPP mice but not in expression-matched wild-type hAPP mice. Yet, significant decreases in the density of SYN-IR presynaptic terminals were found in both groups of mice. Across mice from different transgenic lines, the density of SYN-IR presynaptic terminals correlated inversely with Abeta levels but not with hAPP levels or plaque load. We conclude that Abeta is synaptotoxic even in the absence of plaques and that high levels of Abeta(1-42) are insufficient to induce plaque formation in mice expressing wild-type hAPP. Our results support the emerging view that plaque-independent Abeta toxicity plays an important role in the development of synaptic deficits in AD and related conditions.
Collapse
|
31
|
Planells-Cases R, Caprini M, Zhang J, Rockenstein EM, Rivera RR, Murre C, Masliah E, Montal M. Neuronal death and perinatal lethality in voltage-gated sodium channel alpha(II)-deficient mice. Biophys J 2000; 78:2878-91. [PMID: 10827969 PMCID: PMC1300874 DOI: 10.1016/s0006-3495(00)76829-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Neural activity is crucial for cell survival and fine patterning of neuronal connectivity during neurodevelopment. To investigate the role in vivo of sodium channels (NaCh) in these processes, we generated knockout mice deficient in brain NaChalpha(II). NaChalpha(II)(-/-) mice were morphologically and organogenically indistinguishable from their NaChalpha(+/-) littermates. Notwithstanding, NaChalpha(II)(-/-) mice died perinatally with severe hypoxia and massive neuronal apoptosis, notably in the brainstem. Sodium channel currents recorded from cultured neurons of NaChalpha(II)(-/-) mice were sharply attenuated. Death appears to arise from severe hypoxia consequent to the brainstem deficiency of NaChalpha(II). NaChalpha(II) expression is, therefore, redundant for embryonic development but essential for postnatal survival.
Collapse
Affiliation(s)
- R Planells-Cases
- Department of Biology, University of California San Diego, La Jolla, CA 92093-0366, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Masliah E, Alford M, Mallory M, Rockenstein E, Moechars D, Van Leuven F. Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice. Exp Neurol 2000; 163:381-7. [PMID: 10833311 DOI: 10.1006/exnr.2000.7386] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have shown that amyloid precursor protein (APP), which plays a central role in Alzheimer's disease (AD), protects against excitotoxic neuronal injuries by regulating the function of the glial glutamate transporters. The mechanisms underlying these effects and their relationship to the neurodegenerative process in AD are under intense scrutiny. In this context, the main objective of the present study was to determine if overexpression of mutant human APP in transgenic mouse brains results in altered functioning of the excitatory amino acid transporters (EAATs). Transgenic mice expressing the 695 amino acid form of the human APP from the Thy-1 promoter showed a significant decrease in B(max) and K(D) for aspartate uptake when compared to nontransgenic controls. This decrease in glutamate transporter activity was associated with decreased protein expression of glial specific glutamate transporters, EAAT1 and 2, but did not affect mRNA levels. These results suggest that expression of mutant forms of APP disturbs astroglial transport of excitatory amino acids at the posttranscriptional level leading, in turn, to increased susceptibility to glutamate toxicity.
Collapse
Affiliation(s)
- E Masliah
- Department of Neurosciences, University of California at San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
33
|
Harrington D, Rutty GN, Timperley WR. β -amyloid precursor protein positive axonal bulbs may form in non-head-injured patients. ACTA ACUST UNITED AC 2000; 7:19-25. [PMID: 16083644 DOI: 10.1054/jcfm.2000.0359] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since the early 1980s axonal bulbs staining positively for beta-amyloid precursor protein (betaAPP) have been used as a marker of diffuse axonal injury (DAI), bulb formation been attributed to shearing forces generated during rotational acceleration/deceleration head injury. This study draws attention to the observation that they may form in the absence of a head injury and, thus, axonal injury cannot be assumed to result from mechanical injury alone. Out of 20 cases with no history of head injury studied, which only showed evidence of neuronal hypoxic change, 11 (55%) showed variable positive staining for betaAPP in a similar anatomical distribution to that previously described for DAI. The role of hypoxia in the formation of axonal bulbs, as well as the possible role of betaAPP as an acute phase protein, are discussed. These observations further clarify the pattern and relationship between neuronal and axonal staining observed following a brain insult and emphasize the possible role of betaAPP as a neuroprotective protein.
Collapse
Affiliation(s)
- D Harrington
- Department of Pathology, Clinical Sciences Building, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
34
|
Kumar-Singh S, Dewachter I, Moechars D, Lübke U, De Jonghe C, Ceuterick C, Checler F, Naidu A, Cordell B, Cras P, Van Broeckhoven C, Van Leuven F. Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiol Dis 2000; 7:9-22. [PMID: 10671319 DOI: 10.1006/nbdi.1999.0272] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contribution of mutations in the amyloid precursor protein (APP) gene known as Flemish (APP/A692G) and Dutch (APP/E693Q) to the pathogenesis of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis of the Dutch type, respectively, was studied in transgenic mice that overexpress the mutant APP in brain. These transgenic mice showed the same early behavioral disturbances and defects and increased premature death as the APP/London (APP V717I), APP/Swedish (K670N, M671L), and other APP transgenic mice described previously. Pathological changes included intense glial reaction, extensive microspongiosis in the white matter, and apoptotic neurons in select areas of the brain, while amyloid deposits were absent, even in mice over 18 months of age. This contrasts with extensive amyloid deposition in APP/London transgenic mice and less pronounced amyloid deposition in APP/Swedish transgenic mice generated identically. It demonstrated, however, that the behavioral deficiencies and the pathological changes in brain resulting from an impaired neuronal function are caused directly by APP or its proteolytic derivative(s). These accelerate or impinge on the normal process of aging and amyloid deposits per se are not essential for this phenotype.
Collapse
Affiliation(s)
- S Kumar-Singh
- Flanders Interuniversity Institute for Biotechnology, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Affiliation(s)
- A C Ludolph
- Department of Neurology, University of Ulm, Germany.
| | | |
Collapse
|
37
|
Mattson MP, Guo ZH, Geiger JD. Secreted form of amyloid precursor protein enhances basal glucose and glutamate transport and protects against oxidative impairment of glucose and glutamate transport in synaptosomes by a cyclic GMP-mediated mechanism. J Neurochem 1999; 73:532-7. [PMID: 10428048 DOI: 10.1046/j.1471-4159.1999.0730532.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synaptic dysfunction and degeneration are believed to underlie the cognitive deficits that characterize Alzheimer's disease, and overactivation of glutamate receptors under conditions of increased oxidative stress and metabolic compromise may contribute to the neurodegenerative process in many different disorders. The secreted form of amyloid precursor protein (sAPPalpha), which is released from neurons in an activity-dependent manner, can modulate neurite outgrowth, synaptic plasticity, and neuron survival. We now report that sAPPalpha can enhance glucose and glutamate transport in synaptic compartments. Treatment of cortical synaptosomes with nanomolar concentrations of sAPPalpha resulted in an attenuation of impairment of glutamate and glucose transport induced by exposure to amyloid beta-peptide and Fe2+. The protective effect of sAPPalpha was mimicked by treatment with 8-bromo-cyclic GMP and blocked by a cyclic GMP-dependent protein kinase inhibitor, suggesting that protective action of sAPPalpha is mediated by cyclic GMP. Our data suggest that glucose and glutamate transport can be regulated locally at the level of the synapse and further suggest important roles for sAPPalpha and cyclic GMP in modulating synaptic physiology under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | |
Collapse
|
38
|
Ludolph AC, Meyer T, Riepe MW. Antiglutamate therapy of ALS--which is the next step? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1999; 55:79-95. [PMID: 10335495 DOI: 10.1007/978-3-7091-6369-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which was thought to be untreatable for a long time. However, recent evidence in men indicates that antiglutamatergic strategies are the first to have an influence on its pathogenesis and slow down the disease process. Since the effect of the drugs is still small, this progress cannot only be seen as a success of the present but most also be acknowledged as a starting point for the future. How will these future studies look like? They will have to take into account that ALS presumably has a long preclinical period and they will use a number of novel compounds and treatment strategies which have recently been shown to be effective in a transgenic animal model. This also implies that we are likely to use combination therapies and have to try to treat patients early. The latter will be necessarily connected with the demand for a novel clinical attitude to the diagnosis of the disease.
Collapse
Affiliation(s)
- A C Ludolph
- Department of Neurology, University of Ulm, Federal Republic of Germany
| | | | | |
Collapse
|
39
|
Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A 1999; 96:3228-33. [PMID: 10077666 PMCID: PMC15924 DOI: 10.1073/pnas.96.6.3228] [Citation(s) in RCA: 888] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant forms of familial Alzheimer's disease (FAD) are associated with increased production of the amyloid beta peptide, Abeta42, which is derived from the amyloid protein precursor (APP). In FAD, as well as in sporadic forms of the illness, Abeta peptides accumulate abnormally in the brain in the form of amyloid plaques. Here, we show that overexpression of FAD(717V-->F)-mutant human APP in neurons of transgenic mice decreases the density of presynaptic terminals and neurons well before these mice develop amyloid plaques. Electrophysiological recordings from the hippocampus revealed prominent deficits in synaptic transmission, which also preceded amyloid deposition by several months. Although in young mice, functional and structural neuronal deficits were of similar magnitude, functional deficits became predominant with advancing age. Increased Abeta production in the context of decreased overall APP expression, achieved by addition of the Swedish FAD mutation to the APP transgene in a second line of mice, further increased synaptic transmission deficits in young APP mice without plaques. These results suggest a neurotoxic effect of Abeta that is independent of plaque formation.
Collapse
Affiliation(s)
- A Y Hsia
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94143-0450, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|