1
|
Garcia-Vilanova A, Allué-Guardia A, Chacon NM, Akhter A, Singh DK, Kaushal D, Restrepo BI, Schlesinger LS, Turner J, Weintraub ST, Torrelles JB. Proteomic analysis of lung responses to SARS-CoV-2 infection in aged non-human primates: clinical and research relevance. GeroScience 2024; 46:6395-6417. [PMID: 38969861 PMCID: PMC11493886 DOI: 10.1007/s11357-024-01264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
With devastating health and socioeconomic impact worldwide, much work is left to understand the Coronavirus Disease 2019 (COVID-19), with emphasis in the severely affected elderly population. Here, we present a proteomics study of lung tissue obtained from aged vs. young rhesus macaques (Macaca mulatta) and olive baboons (Papio Anubis) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using age as a variable, we identified common proteomic profiles in the lungs of aged infected non-human primates (NHPs), including key regulators of immune function, as well as cell and tissue remodeling, and discuss the potential clinical relevance of such parameters. Further, we identified key differences in proteomic profiles between both NHP species, and compared those to what is known about SARS-CoV-2 in humans. Finally, we explored the translatability of these animal models in the context of aging and the human presentation of the COVID-19.
Collapse
Affiliation(s)
- Andreu Garcia-Vilanova
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Anna Allué-Guardia
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Nadine M Chacon
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Anwari Akhter
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Dhiraj Kumar Singh
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Deepak Kaushal
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Blanca I Restrepo
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA
- University of Texas Health Science Center at Houston, School of Public Health, Brownsville Campus, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Larry S Schlesinger
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Joanne Turner
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jordi B Torrelles
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
2
|
Emperador-Melero J, Andersen JW, Metzbower SR, Levy AD, Dharmasri PA, de Nola G, Blanpied TA, Kaeser PS. Distinct active zone protein machineries mediate Ca 2+ channel clustering and vesicle priming at hippocampal synapses. Nat Neurosci 2024; 27:1680-1694. [PMID: 39160372 PMCID: PMC11682530 DOI: 10.1038/s41593-024-01720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Action potentials trigger neurotransmitter release at the presynaptic active zone with spatiotemporal precision. This is supported by protein machinery that mediates synaptic vesicle priming and clustering of CaV2 Ca2+ channels nearby. One model posits that scaffolding proteins directly tether vesicles to CaV2s; however, here we find that at mouse hippocampal synapses, CaV2 clustering and vesicle priming are executed by separate machineries. CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins but distinct interaction motifs independently execute these functions. In transfected cells, Liprin-α and RIM form co-assemblies that are separate from CaV2-organizing complexes. At synapses, Liprin-α1-Liprin-α4 knockout impairs vesicle priming but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering CaV2s. We conclude that active zones consist of distinct machineries to organize CaV2s and prime vesicles, and Liprin-α and PTPσ specifically support priming site assembly.
Collapse
Affiliation(s)
| | | | - Sarah R Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Poorna A Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Che H, Ding H, Jia X. circ_0080145 Enhances Imatinib Resistance of Chronic Myeloid Leukemia by Regulating miR-326/ PPFIA1 Axis. Cancer Biother Radiopharm 2024; 39:478-491. [PMID: 32598170 DOI: 10.1089/cbr.2020.3600] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Acquired multidrug resistance is often blamed for the failure of chemotherapy in patients with malignant tumors, including chronic myeloid leukemia (CML). In this study, the authors investigated the role of circular RNA 0080145 (circ_0080145) in imatinib (IM) resistance of CML. Materials and Methods: Quantitative real-time polymerase chain reaction was applied to measure the expression of circ_0080145, microRNA-326 (miR-326), and PTPRF interacting protein alpha 1 (PPFIA1) mRNA. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to determine the half maximal inhibitory concentration (IC50) of IM and cell proliferation. Flow cytometry analysis was utilized to assess cell apoptosis. The levels of glucose uptake and lactate production were examined using specific kits. Protein levels were detected through Western blot assay. The targeting relationship between miR-326 and circ_0080145 or PPFIA1 was verified by dual-luciferase reporter assay. The murine xenograft model was constructed to investigate the effect of circ_0080145 in vivo. Results: circ_0080145 was upregulated in IM-resistant CML patients and cells. circ_0080145 silencing suppressed IM resistance, cell growth, and glycolysis and induced apoptosis in IM-resistant CML cells in vitro. Moreover, circ_0080145 knockdown blocked tumor growth and IM resistance in vivo. miR-326 was a target of circ_0080145, and miR-326 inhibition restored the effects of circ_0080145 silencing on cell progression and IM resistance. In addition, PPFIA1 was a target gene of miR-326. The suppressive roles in IM resistance, cell growth and glycolysis, and the promotional role in apoptosis mediated by miR-326 were abolished by PPFIA1 overexpression in IM-resistant CML cells. Conclusion: circ_0080145 contributes to IM resistance via modulating miR-326/PPFIA1 axis, which might provide a novel avenue for CML therapy.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Drug Resistance, Neoplasm/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Mice
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Male
- Female
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Xenograft Model Antitumor Assays
- Mice, Nude
- K562 Cells
- Cell Line, Tumor
Collapse
Affiliation(s)
- Hong Che
- Department of Hematology, Affiliated to Qingdao University Yuhuangding Hospital of Yantai, Shandong, China
| | - Hong Ding
- Department of Hematology, Affiliated to Qingdao University Yuhuangding Hospital of Yantai, Shandong, China
| | - Xizhen Jia
- Department of Operation Room, Affiliated to Qingdao University Yuhuangding Hospital of Yantai, Shandong, China
| |
Collapse
|
4
|
Nowacka A, Getz AM, Bessa-Neto D, Choquet D. Activity-dependent diffusion trapping of AMPA receptors as a key step for expression of early LTP. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230220. [PMID: 38853553 PMCID: PMC11343219 DOI: 10.1098/rstb.2023.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024] Open
Abstract
This review focuses on the activity-dependent diffusion trapping of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as a crucial mechanism for the expression of early long-term potentiation (LTP), a process central to learning and memory. Despite decades of research, the precise mechanisms by which LTP induction leads to an increase in AMPAR responses at synapses have been elusive. We review the different hypotheses that have been put forward to explain the increased AMPAR responsiveness during LTP. We discuss the dynamic nature of AMPAR complexes, including their constant turnover and activity-dependent modifications that affect their synaptic accumulation. We highlight a hypothesis suggesting that AMPARs are diffusively trapped at synapses through activity-dependent interactions with protein-based binding slots in the post-synaptic density (PSD), offering a potential explanation for the increased synaptic strength during LTP. Furthermore, we outline the challenges still to be addressed before we fully understand the functional roles and molecular mechanisms of AMPAR dynamic nanoscale organization in LTP. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Agata Nowacka
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Angela M. Getz
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| | - Diogo Bessa-Neto
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| |
Collapse
|
5
|
Ramella M, Ribolla LM, Surini S, Sala K, Tonoli D, Cioni JM, Rai AK, Pelkmans L, de Curtis I. Dual specificity kinase DYRK3 regulates cell migration by influencing the stability of protrusions. iScience 2024; 27:109440. [PMID: 38510137 PMCID: PMC10952033 DOI: 10.1016/j.isci.2024.109440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Plasma membrane-associated platforms (PMAPs) form at specific sites of plasma membrane by scaffolds including ERC1 and Liprin-α1. We identify a mechanism regulating PMAPs assembly, with consequences on motility/invasion. Silencing Ser/Thr kinase DYRK3 in invasive breast cancer cells inhibits their motility and invasive capacity. Similar effects on motility were observed by increasing DYRK3 levels, while kinase-dead DYRK3 had limited effects. DYRK3 overexpression inhibits PMAPs formation and has negative effects on stability of lamellipodia and adhesions in migrating cells. Liprin-α1 depletion results in unstable lamellipodia and impaired cell motility. DYRK3 causes increased Liprin-α1 phosphorylation. Increasing levels of Liprin-α1 rescue the inhibitory effects of DYRK3 on cell spreading, suggesting that an equilibrium between Liprin-α1 and DYRK3 levels is required for lamellipodia stability and tumor cell motility. Our results show that DYRK3 is relevant to tumor cell motility, and identify a PMAP target of the kinase, highlighting a new mechanism regulating cell edge dynamics.
Collapse
Affiliation(s)
- Martina Ramella
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lucrezia Maria Ribolla
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Surini
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Kristyna Sala
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diletta Tonoli
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jean-Michel Cioni
- RNA Biology of the Neuron Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Arpan Kumar Rai
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ivan de Curtis
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
6
|
Marcó de la Cruz B, Campos J, Molinaro A, Xie X, Jin G, Wei Z, Acuna C, Sterky FH. Liprin-α proteins are master regulators of human presynapse assembly. Nat Neurosci 2024; 27:629-642. [PMID: 38472649 PMCID: PMC11001580 DOI: 10.1038/s41593-024-01592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
The formation of mammalian synapses entails the precise alignment of presynaptic release sites with postsynaptic receptors but how nascent cell-cell contacts translate into assembly of presynaptic specializations remains unclear. Guided by pioneering work in invertebrates, we hypothesized that in mammalian synapses, liprin-α proteins directly link trans-synaptic initial contacts to downstream steps. Here we show that, in human neurons lacking all four liprin-α isoforms, nascent synaptic contacts are formed but recruitment of active zone components and accumulation of synaptic vesicles is blocked, resulting in 'empty' boutons and loss of synaptic transmission. Interactions with presynaptic cell adhesion molecules of either the LAR-RPTP family or neurexins via CASK are required to localize liprin-α to nascent synaptic sites. Liprin-α subsequently recruits presynaptic components via a direct interaction with ELKS proteins. Thus, assembly of human presynaptic terminals is governed by a hierarchical sequence of events in which the recruitment of liprin-α proteins by presynaptic cell adhesion molecules is a critical initial step.
Collapse
Affiliation(s)
- Berta Marcó de la Cruz
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Joaquín Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Angela Molinaro
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Xingqiao Xie
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, China
| | - Gaowei Jin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyi Wei
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, China
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
| | - Fredrik H Sterky
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
7
|
Pehkonen H, Filippou A, Väänänen J, Lindfors I, Vänttinen M, Ianevski P, Mäkelä A, Munne P, Klefström J, Toppila‐Salmi S, Grénman R, Hagström J, Mäkitie AA, Karhemo P, Monni O. Liprin-α1 contributes to oncogenic MAPK signaling by counteracting ERK activity. Mol Oncol 2024; 18:662-676. [PMID: 38264964 PMCID: PMC10920090 DOI: 10.1002/1878-0261.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
PTPRF interacting protein alpha 1 (PPFIA1) encodes for liprin-α1, a member of the leukocyte common antigen-related protein tyrosine phosphatase (LAR-RPTPs)-interacting protein family. Liprin-α1 localizes to adhesive and invasive structures in the periphery of cancer cells, where it modulates migration and invasion in head and neck squamous cell carcinoma (HNSCC) and breast cancer. To study the possible role of liprin-α1 in anticancer drug responses, we screened a library of oncology compounds in cell lines with high endogenous PPFIA1 expression. The compounds with the highest differential responses between high PPFIA1-expressing and silenced cells across cell lines were inhibitors targeting mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinases (ERK) signaling. KRAS proto-oncogene, GTPase (KRAS)-mutated MDA-MB-231 cells were more resistant to trametinib upon PPFIA1 knockdown compared with control cells. In contrast, liprin-α1-depleted HNSCC cells with low RAS activity showed a context-dependent response to MEK/ERK inhibitors. Importantly, we showed that liprin-α1 depletion leads to increased p-ERK1/2 levels in all our studied cell lines independent of KRAS mutational status, suggesting a role of liprin-α1 in the regulation of MAPK oncogenic signaling. Furthermore, liprin-α1 depletion led to more pronounced redistribution of RAS proteins to the cell membrane. Our data suggest that liprin-α1 is an important contributor to oncogenic RAS/MAPK signaling, and the status of liprin-α1 may assist in predicting drug responses in cancer cells in a context-dependent manner.
Collapse
Affiliation(s)
- Henna Pehkonen
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Artemis Filippou
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Juho Väänänen
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Iida Lindfors
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Mira Vänttinen
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Philipp Ianevski
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiFinland
| | - Anne Mäkelä
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Pauliina Munne
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical FacultyUniversity of HelsinkiFinland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical FacultyUniversity of HelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Sanna Toppila‐Salmi
- Skin and Allergy HospitalHelsinki University Hospital and University of HelsinkiFinland
- Department of Otorhinolaryngology, Kuopio University Hospital and School of Medicine, Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
| | - Reidar Grénman
- Department of Otorhinolaryngology‐Head and Neck SurgeryUniversity of Turku and Turku University HospitalFinland
| | - Jaana Hagström
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalFinland
- Institute of DentistryUniversity of TurkuFinland
| | - Antti A. Mäkitie
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
- Department of Otorhinolaryngology‐Head and Neck Surgery, Research Program in Systems OncologyUniversity of Helsinki and Helsinki University HospitalFinland
| | - Piia‐Riitta Karhemo
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Outi Monni
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
- Department of Oncology, Faculty of MedicineUniversity of HelsinkiFinland
| |
Collapse
|
8
|
Paul MS, Michener SL, Pan H, Chan H, Pfliger JM, Rosenfeld JA, Lerma VC, Tran A, Longley MA, Lewis RA, Weisz-Hubshman M, Bekheirnia MR, Bekheirnia N, Massingham L, Zech M, Wagner M, Engels H, Cremer K, Mangold E, Peters S, Trautmann J, Mester JL, Guillen Sacoto MJ, Person R, McDonnell PP, Cohen SR, Lusk L, Cohen ASA, Le Pichon JB, Pastinen T, Zhou D, Engleman K, Racine C, Faivre L, Moutton S, Denommé-Pichon AS, Koh HY, Poduri A, Bolton J, Knopp C, Julia Suh DS, Maier A, Toosi MB, Karimiani EG, Maroofian R, Schaefer GB, Ramakumaran V, Vasudevan P, Prasad C, Osmond M, Schuhmann S, Vasileiou G, Russ-Hall S, Scheffer IE, Carvill GL, Mefford H, Bacino CA, Lee BH, Chao HT. A syndromic neurodevelopmental disorder caused by rare variants in PPFIA3. Am J Hum Genet 2024; 111:96-118. [PMID: 38181735 PMCID: PMC10806447 DOI: 10.1016/j.ajhg.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
PPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance. Seventeen unique PPFIA3 variants were detected in 18 families. To determine the pathogenicity of PPFIA3 variants in vivo, we generated transgenic fruit flies producing either human wild-type (WT) PPFIA3 or five missense variants using GAL4-UAS targeted gene expression systems. In the fly overexpression assays, we found that the PPFIA3 variants in the region encoding the N-terminal coiled-coil domain exhibited stronger phenotypes compared to those affecting the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin-α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 function is partially conserved in the fly. However, two of the tested variants failed to rescue the lethality at the larval stage and one variant failed to rescue lethality at the adult stage. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant-negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.
Collapse
Affiliation(s)
- Maimuna S Paul
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Sydney L Michener
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Hongling Pan
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hiuling Chan
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Augustana College, Rock Island, IL, USA; Summer Undergraduate Research Training (SMART) Program, Baylor College of Medicine, Houston, TX, USA
| | - Jessica M Pfliger
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Graduate Program in Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vanesa C Lerma
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Psychology, University of Houston, Houston, TX, USA
| | - Alyssa Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Megan A Longley
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Richard A Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mir Reza Bekheirnia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Renal Genetics Clinic, Baylor College of Medicine, Houston, TX, USA
| | - Nasim Bekheirnia
- Renal Genetics Clinic, Baylor College of Medicine, Houston, TX, USA
| | - Lauren Massingham
- Rhode Island Hospital and Hasbro Children's Hospital, Providence, RI, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University, Munich, Germany; Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Matias Wagner
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University, Munich, Germany; Division of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Hartmut Engels
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Kirsten Cremer
- Division of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Elisabeth Mangold
- Division of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Sophia Peters
- Division of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Jessica Trautmann
- Division of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Dr. von Hauner Children's Hospital, Munich, Germany
| | | | | | | | - Pamela P McDonnell
- Epilepsy NeuroGenetics Initiative (ENGIN), Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stacey R Cohen
- Epilepsy NeuroGenetics Initiative (ENGIN), Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laina Lusk
- Epilepsy NeuroGenetics Initiative (ENGIN), Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ana S A Cohen
- Children's Mercy Kansas City, Genomic Medicine Center, The University of Missouri-Kansas City (UMKC), School of Medicine, Kansas City, MO, USA
| | | | - Tomi Pastinen
- Children's Mercy Kansas City, Genomic Medicine Center, The University of Missouri-Kansas City (UMKC), School of Medicine, Kansas City, MO, USA; Children's Mercy Research Institute, Kansas City, MO, USA
| | - Dihong Zhou
- Children's Mercy Hospital, Kansas City, MO, USA
| | | | - Caroline Racine
- University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies Du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France; Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne, France
| | - Laurence Faivre
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France
| | - Sébastien Moutton
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies Du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France; Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne, France
| | - Hyun Yong Koh
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Jeffrey Bolton
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH, Aachen University, Aachen, Germany
| | - Dong Sun Julia Suh
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH, Aachen University, Aachen, Germany
| | - Andrea Maier
- Medical Treatment Center for Adults with Intellectual Disabilities and/or Severe Multiple Disabilities (MZEB), RWTH Aachen University Hospital, Aachen, Germany
| | - Mehran Beiraghi Toosi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran; Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | | | - Pradeep Vasudevan
- LNR Genomics Medicine, University Hospitals of Leicester, Leicester, UK
| | - Chitra Prasad
- London Health Sciences Centre, and Division of Medical Genetics, Department of Pediatrics, Western University, London, ON, Canada
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, ON, Canada
| | - Sarah Schuhmann
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sophie Russ-Hall
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, VIC, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, VIC, Australia; Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, VIC, Melbourne, Australia
| | - Gemma L Carvill
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Heather Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Hsiao-Tuan Chao
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, USA.
| |
Collapse
|
9
|
Deng Y, Chen L, Zhang Q, Xu Y. PPFIBP1 activates NF-κB signaling to enhance chemoresistance of multiple myeloma. Transl Oncol 2023; 37:101765. [PMID: 37619524 PMCID: PMC10458954 DOI: 10.1016/j.tranon.2023.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Easily developed chemoresistance is a major characteristic of multiple myeloma (MM) and the main obstacle in curing MM in the clinic, but the key regulators have not been fully identified. In the current study, we find that PPFIA Binding Protein 1 (PPFIBP1) is highly expressed in the plasma cells from MM patients, and higher PPFIBP1 expression predicts poorer outcomes. PPFPIBP1 enhances chemoresistance of MM cells to the treatment of bortezomib (BTZ), a proteasome inhibitor, and manipulation of PPFPIBP1 can alter chemosensitivity of MM cells to BTZ. Mechanistic studies reveal that PPFPIBP1 directly binds and stabilizes RelA, promotes the cyto-nuclear translocation of RelA, and activates NF-κB signaling pathway. Targeting PPFPIBP1 in a xenograft mouse model of MM prohibits tumor growth and prolongs overall survival of mice. Taken together, our findings suggest that PPFIBP1 is a crucial regulator of chemoresistance to PIs in MM cells, and shed light on developing therapeutic strategies to overcome chemoresistance by targeting PPFIBP1.
Collapse
Affiliation(s)
- Yi Deng
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lanting Chen
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Qiguo Zhang
- Department of Hematology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China; Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui, China
| | - Yinyin Xu
- Clinical Laboratory of Yongchuan Hospital, Chongqing Medical University, No.439 Xuanhua Rd, Chongqing 402160, China.
| |
Collapse
|
10
|
Emperador-Melero J, Andersen JW, Metzbower SR, Levy AD, Dharmasri PA, de Nola G, Blanpied TA, Kaeser PS. Molecular definition of distinct active zone protein machineries for Ca 2+ channel clustering and synaptic vesicle priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564439. [PMID: 37961089 PMCID: PMC10634917 DOI: 10.1101/2023.10.27.564439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Action potentials trigger neurotransmitter release with minimal delay. Active zones mediate this temporal precision by co-organizing primed vesicles with CaV2 Ca2+ channels. The presumed model is that scaffolding proteins directly tether primed vesicles to CaV2s. We find that CaV2 clustering and vesicle priming are executed by separate machineries. At hippocampal synapses, CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins, but distinct interaction motifs independently execute these functions. In heterologous cells, Liprin-α and RIM from co-assemblies that are separate from CaV2-organizing complexes upon co-transfection. At synapses, Liprin-α1-4 knockout impairs vesicle priming, but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering of CaV2s. We conclude that active zones consist of distinct complexes to organize CaV2s and vesicle priming, and Liprin-α and PTPσ specifically support priming site assembly.
Collapse
Affiliation(s)
| | | | - Sarah R. Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Poorna A. Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | |
Collapse
|
11
|
Okuno Y, Sakoori K, Matsuyama K, Yamasaki M, Watanabe M, Hashimoto K, Watanabe T, Kano M. PTPδ is a presynaptic organizer for the formation and maintenance of climbing fiber to Purkinje cell synapses in the developing cerebellum. Front Mol Neurosci 2023; 16:1206245. [PMID: 37426069 PMCID: PMC10323364 DOI: 10.3389/fnmol.2023.1206245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Functionally mature neural circuits are shaped during postnatal development by eliminating redundant synapses formed during the perinatal period. In the cerebellum of neonatal rodents, each Purkinje cell (PC) receives synaptic inputs from multiple (more than 4) climbing fibers (CFs). During the first 3 postnatal weeks, synaptic inputs from a single CF become markedly larger and those from the other CFs are eliminated in each PC, leading to mono-innervation of each PC by a strong CF in adulthood. While molecules involved in the strengthening and elimination of CF synapses during postnatal development are being elucidated, much less is known about the molecular mechanisms underlying CF synapse formation during the early postnatal period. Here, we show experimental evidence that suggests that a synapse organizer, PTPδ, is required for early postnatal CF synapse formation and the subsequent establishment of CF to PC synaptic wiring. We showed that PTPδ was localized at CF-PC synapses from postnatal day 0 (P0) irrespective of the expression of Aldolase C (Aldoc), a major marker of PC that distinguishes the cerebellar compartments. We found that the extension of a single strong CF along PC dendrites (CF translocation) was impaired in global PTPδ knockout (KO) mice from P12 to P29-31 predominantly in PCs that did not express Aldoc [Aldoc (-) PCs]. We also demonstrated via morphological and electrophysiological analyses that the number of CFs innervating individual PCs in PTPδ KO mice were fewer than in wild-type (WT) mice from P3 to P13 with a significant decrease in the strength of CF synaptic inputs in cerebellar anterior lobules where most PCs are Aldoc (-). Furthermore, CF-specific PTPδ-knockdown (KD) caused a reduction in the number of CFs innervating PCs with decreased CF synaptic inputs at P10-13 in anterior lobules. We found a mild impairment of motor performance in adult PTPδ KO mice. These results indicate that PTPδ acts as a presynaptic organizer for CF-PC formation and is required for normal CF-PC synaptic transmission, CF translocation, and presumably CF synapse maintenance predominantly in Aldoc (-) PCs. Furthermore, this study suggests that the impaired CF-PC synapse formation and development by the lack of PTPδ causes mild impairment of motor performance.
Collapse
Affiliation(s)
- Yuto Okuno
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoko Matsuyama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Clements CM, Henen MA, Vögeli B, Shellman YG. The Structural Dynamics, Complexity of Interactions, and Functions in Cancer of Multi-SAM Containing Proteins. Cancers (Basel) 2023; 15:3019. [PMID: 37296980 PMCID: PMC10252437 DOI: 10.3390/cancers15113019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
SAM domains are crucial mediators of diverse interactions, including those important for tumorigenesis or metastasis of cancers, and thus SAM domains can be attractive targets for developing cancer therapies. This review aims to explore the literature, especially on the recent findings of the structural dynamics, regulation, and functions of SAM domains in proteins containing more than one SAM (multi-SAM containing proteins, MSCPs). The topics here include how intrinsic disorder of some SAMs and an additional SAM domain in MSCPs increase the complexity of their interactions and oligomerization arrangements. Many similarities exist among these MSCPs, including their effects on cancer cell adhesion, migration, and metastasis. In addition, they are all involved in some types of receptor-mediated signaling and neurology-related functions or diseases, although the specific receptors and functions vary. This review also provides a simple outline of methods for studying protein domains, which may help non-structural biologists to reach out and build new collaborations to study their favorite protein domains/regions. Overall, this review aims to provide representative examples of various scenarios that may provide clues to better understand the roles of SAM domains and MSCPs in cancer in general.
Collapse
Affiliation(s)
- Christopher M. Clements
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.A.H.); (B.V.)
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.A.H.); (B.V.)
| | - Yiqun G. Shellman
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Charles C. Gates Regenerative Medicine and Stem Cell Biology Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Wu S, Fan J, Tang F, Chen L, Zhang X, Xiao D, Li X. The role of RIM in neurotransmitter release: promotion of synaptic vesicle docking, priming, and fusion. Front Neurosci 2023; 17:1123561. [PMID: 37179554 PMCID: PMC10169678 DOI: 10.3389/fnins.2023.1123561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
There are many special sites at the end of a synapse called active zones (AZs). Synaptic vesicles (SVs) fuse with presynaptic membranes at these sites, and this fusion is an important step in neurotransmitter release. The cytomatrix in the active zone (CAZ) is made up of proteins such as the regulating synaptic membrane exocytosis protein (RIM), RIM-binding proteins (RIM-BPs), ELKS/CAST, Bassoon/Piccolo, Liprin-α, and Munc13-1. RIM is a scaffold protein that interacts with CAZ proteins and presynaptic functional components to affect the docking, priming, and fusion of SVs. RIM is believed to play an important role in regulating the release of neurotransmitters (NTs). In addition, abnormal expression of RIM has been detected in many diseases, such as retinal diseases, Asperger's syndrome (AS), and degenerative scoliosis. Therefore, we believe that studying the molecular structure of RIM and its role in neurotransmitter release will help to clarify the molecular mechanism of neurotransmitter release and identify targets for the diagnosis and treatment of the aforementioned diseases.
Collapse
Affiliation(s)
- Shanshan Wu
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jiali Fan
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fajuan Tang
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Lin Chen
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoyan Zhang
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
14
|
Chu J, Min KW, Kim DH, Son BK, Kim HS, Jung US, Kwon MJ, Do SI. High PPFIA1 expression promotes cancer survival by suppressing CD8+ T cells in breast cancer: drug discovery and machine learning approach. Breast Cancer 2023; 30:259-270. [PMID: 36478321 DOI: 10.1007/s12282-022-01419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND PTPRF-interacting protein alpha 1 (PPFIA1) plays an important role as a regulator of cell motility and tumor cell invasion and is frequently amplified in breast cancer. The aim of this study was to investigate the clinicopathologic features, survival, anticancer immunities and specific gene sets related to high PPFIA1 expression in patients with breast cancer. We verified the importance of PPFIA1 and survival rates using machine learning and identified drugs that can effectively reduce breast cancer cells with high PPFIA1 expression. METHODS This study analyzed clinicopathologic factors, survival rates, immune profiles and gene sets according to PPFIA1 expression in 3457 patients with breast cancer from the Kangbuk Samsung Medical Center cohort (456 cases), Molecular Taxonomy of Breast Cancer International Consortium (1904 cases) and The Cancer Genome Atlas (1097 cases). We applied gene set enrichment analysis (GSEA), in silico cytometry, pathway network analyses, in vitro drug screening, and gradient boosting machine (GBM) analysis. RESULTS High PPFIA1 expression in breast cancer was associated with worse prognosis, with reduced tumor-infiltrating lymphocytes, especially CD8+ T cells, and increased PD-L1 expression. In pathway network analysis, PPFIA1 was linked directly to the tyrosine-protein phosphatase pathway and indirectly to immune pathways. The importance of PPFIA1's association with survival in GBM analysis was higher than that of perineural and lymphovascular invasion. In in vitro drug screening, expression of PPFIA1 on mRNA level positively correlated with sensitivity of cell lines to erlotinib. CONCLUSION High PPFIA1 in patients with breast cancer is related to poor prognosis and decreased anticancer immune response, and erlotinib may be promising for development of therapeutic approaches in patients with tumors overexpressing PPFIA1.
Collapse
Affiliation(s)
- Jinah Chu
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunanro, Jongno-gu, Seoul, Republic of Korea
| | - Kyueng-Whan Min
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea.
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunanro, Jongno-gu, Seoul, Republic of Korea.
| | - Byoung Kwan Son
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Gyeonggi-do, Republic of Korea
| | - Hyung Suk Kim
- Division of Breast Surgery, Department of Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Un Suk Jung
- Department of Obstetrics and Gynecology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | - Sung-Im Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunanro, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
15
|
Jin Y, Zhai RG. Presynaptic Cytomatrix Proteins. ADVANCES IN NEUROBIOLOGY 2023; 33:23-42. [PMID: 37615862 DOI: 10.1007/978-3-031-34229-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The Cytomatrix Assembled at the active Zone (CAZ) of a presynaptic terminal displays electron-dense appearance and defines the center of the synaptic vesicle release. The protein constituents of CAZ are multiple-domain scaffolds that interact extensively with each other and also with an ensemble of synaptic vesicle proteins to ensure docking, fusion, and recycling. Reflecting the central roles of the active zone in synaptic transmission, CAZ proteins are highly conserved throughout evolution. As the nervous system increases complexity and diversity in types of neurons and synapses, CAZ proteins expand in the number of gene and protein isoforms and interacting partners. This chapter summarizes the discovery of the core CAZ proteins and current knowledge of their functions.
Collapse
Affiliation(s)
- Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
16
|
Zhai RG. The Architecture of the Presynaptic Release Site. ADVANCES IN NEUROBIOLOGY 2023; 33:1-21. [PMID: 37615861 DOI: 10.1007/978-3-031-34229-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The architecture of the presynaptic release site is exquisitely designed to facilitate and regulate synaptic vesicle exocytosis. With the identification of some of the building blocks of the active zone and the advent of super resolution imaging techniques, we are beginning to understand the morphological and functional properties of synapses in great detail. Presynaptic release sites consist of the plasma membrane, the cytomatrix, and dense projections. These three components are morphologically distinct but intimately connected with each other and with postsynaptic specializations, ensuring the fidelity of synaptic vesicle tethering, docking, and fusion, as well as signal detection. Although the morphology and molecular compositions of active zones may vary among species, tissues, and cells, global architectural design of the release sites is highly conserved.
Collapse
Affiliation(s)
- R Grace Zhai
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
17
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
18
|
Bi-allelic loss-of-function variants in PPFIBP1 cause a neurodevelopmental disorder with microcephaly, epilepsy, and periventricular calcifications. Am J Hum Genet 2022; 109:1421-1435. [PMID: 35830857 PMCID: PMC9388382 DOI: 10.1016/j.ajhg.2022.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
PPFIBP1 encodes for the liprin-β1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications.
Collapse
|
19
|
Zhao R, Feng T, Gao L, Sun F, Zhou Q, Wang X, Liu J, Zhang W, Wang M, Xiong X, Jia W, Chen W, Wang L, Han B. PPFIA4 promotes castration-resistant prostate cancer by enhancing mitochondrial metabolism through MTHFD2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:125. [PMID: 35382861 PMCID: PMC8985307 DOI: 10.1186/s13046-022-02331-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
Background The development of castration-resistant prostate cancer (CRPC) remains a major obstacle in the treatment of prostate cancer (PCa). Dysregulated mitochondrial function has been linked to the initiation and progression of diverse human cancers. Deciphering the novel molecular mechanisms underlying mitochondrial function may provide important insights for developing novel therapeutics for CRPC. Methods We investigate the expression of the protein tyrosine phosphatase receptor type F polypeptide interacting protein alpha 4 (PPFIA4) using public datasets and tumor specimens from PCa cases by immunohistochemistry. Gain- and loss-of-function studies are performed in PCa cell lines and mouse models of subcutaneous xenograft to characterize the role of PPFIA4 in CRPC. Gene expression regulation is evaluated by a series of molecular and biochemical experiments in PCa cell lines. The therapeutic effects of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) inhibitor combined enzalutamide are assessed using in vitro functional assays and in vivo mouse models. Results We show that the increase of PPFIA4 exacerbates aggressive phenotype resembling CRPC. A fraction of PPFIA4 localizes to mitochondria and interacts with MTHFD2, a key enzyme for one-carbon metabolism. Androgen deprivation increases the translocation of PPFIA4 into mitochondria and increases the interaction between PPFIA4 and MTHFD2, which result in the elevation of tyrosine phosphorylated MTHFD2. Consequently, the levels of NADPH synthesis increase, resulting in protection against androgen deprivation-induced mitochondrial dysfunction, as well as promotion of tumor growth. Clinically, PPFIA4 expression is significantly increased in CRPC tissues compared with localized PCa ones. Importantly, an MTHFD2 inhibitor, DS18561882, combined with enzalutamide can significantly inhibit CRPC cell proliferation in vitro and tumor growth in vivo. Conclusion Overall, our findings reveal a PPFIA4-MTHFD2 complex in mitochondria that links androgen deprivation to mitochondrial metabolism and mitochondrial dysfunction, which suggest a potential strategy to inhibit CRPC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02331-3.
Collapse
Affiliation(s)
- Ru Zhao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qianqian Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junmei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenbo Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Meng Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xueting Xiong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Wenqiao Jia
- Department of Health Management CenterQilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lin Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
20
|
Laajala E, Halla-Aho V, Grönroos T, Kalim UU, Vähä-Mäkilä M, Nurmio M, Kallionpää H, Lietzén N, Mykkänen J, Rasool O, Toppari J, Orešič M, Knip M, Lund R, Lahesmaa R, Lähdesmäki H. Permutation-based significance analysis reduces the type 1 error rate in bisulfite sequencing data analysis of human umbilical cord blood samples. Epigenetics 2022; 17:1608-1627. [PMID: 35246015 DOI: 10.1080/15592294.2022.2044127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
DNA methylation patterns are largely established in-utero and might mediate the impacts of in-utero conditions on later health outcomes. Associations between perinatal DNA methylation marks and pregnancy-related variables, such as maternal age and gestational weight gain, have been earlier studied with methylation microarrays, which typically cover less than 2% of human CpG sites. To detect such associations outside these regions, we chose the bisulphite sequencing approach. We collected and curated clinical data on 200 newborn infants; whose umbilical cord blood samples were analysed with the reduced representation bisulphite sequencing (RRBS) method. A generalized linear mixed-effects model was fit for each high coverage CpG site, followed by spatial and multiple testing adjustment of P values to identify differentially methylated cytosines (DMCs) and regions (DMRs) associated with clinical variables, such as maternal age, mode of delivery, and birth weight. Type 1 error rate was then evaluated with a permutation analysis. We discovered a strong inflation of spatially adjusted P values through the permutation analysis, which we then applied for empirical type 1 error control. The inflation of P values was caused by a common method for spatial adjustment and DMR detection, implemented in tools comb-p and RADMeth. Based on empirically estimated significance thresholds, very little differential methylation was associated with any of the studied clinical variables, other than sex. With this analysis workflow, the sex-associated differentially methylated regions were highly reproducible across studies, technologies, and statistical models.
Collapse
Affiliation(s)
- Essi Laajala
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland.,Department of Computer Science, Aalto University, Espoo, Finland
| | - Viivi Halla-Aho
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Toni Grönroos
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku Finland
| | - Mari Vähä-Mäkilä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mirja Nurmio
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Henna Kallionpää
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Juha Mykkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku Finland.,School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riikka Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, Espoo, Finland
| |
Collapse
|
21
|
Deng K, Thorn P. Presynaptic-like mechanisms and the control of insulin secretion in pancreatic β-cells. Cell Calcium 2022; 104:102585. [DOI: 10.1016/j.ceca.2022.102585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
|
22
|
Banerjee A, Imig C, Balakrishnan K, Kershberg L, Lipstein N, Uronen RL, Wang J, Cai X, Benseler F, Rhee JS, Cooper BH, Liu C, Wojcik SM, Brose N, Kaeser PS. Molecular and functional architecture of striatal dopamine release sites. Neuron 2022; 110:248-265.e9. [PMID: 34767769 PMCID: PMC8859508 DOI: 10.1016/j.neuron.2021.10.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023]
Abstract
Despite the importance of dopamine for striatal circuit function, mechanistic understanding of dopamine transmission remains incomplete. We recently showed that dopamine secretion relies on the presynaptic scaffolding protein RIM, indicating that it occurs at active zone-like sites similar to classical synaptic vesicle exocytosis. Here, we establish using a systematic gene knockout approach that Munc13 and Liprin-α, active zone proteins for vesicle priming and release site organization, are important for dopamine secretion. Furthermore, RIM zinc finger and C2B domains, which bind to Munc13 and Liprin-α, respectively, are needed to restore dopamine release after RIM ablation. In contrast, and different from typical synapses, the active zone scaffolds RIM-BP and ELKS, and RIM domains that bind to them, are expendable. Hence, dopamine release necessitates priming and release site scaffolding by RIM, Munc13, and Liprin-α, but other active zone proteins are dispensable. Our work establishes that efficient release site architecture mediates fast dopamine exocytosis.
Collapse
Affiliation(s)
- Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | | | - Lauren Kershberg
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Riikka-Liisa Uronen
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Jiexin Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xintong Cai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Jeong Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Cornejo F, Cortés BI, Findlay GM, Cancino GI. LAR Receptor Tyrosine Phosphatase Family in Healthy and Diseased Brain. Front Cell Dev Biol 2021; 9:659951. [PMID: 34966732 PMCID: PMC8711739 DOI: 10.3389/fcell.2021.659951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.
Collapse
Affiliation(s)
- Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bastián I Cortés
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Greg M Findlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gonzalo I Cancino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
24
|
Liprins in oncogenic signaling and cancer cell adhesion. Oncogene 2021; 40:6406-6416. [PMID: 34654889 PMCID: PMC8602034 DOI: 10.1038/s41388-021-02048-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
Liprins are a multifunctional family of scaffold proteins, identified by their involvement in several important neuronal functions related to signaling and organization of synaptic structures. More recently, the knowledge on the liprin family has expanded from neuronal functions to processes relevant to cancer progression, including cell adhesion, cell motility, cancer cell invasion, and signaling. These proteins consist of regions, which by prediction are intrinsically disordered, and may be involved in the assembly of supramolecular structures relevant for their functions. This review summarizes the current understanding of the functions of liprins in different cellular processes, with special emphasis on liprins in tumor progression. The available data indicate that liprins may be potential biomarkers for cancer progression and may have therapeutic importance.
Collapse
|
25
|
Ramella M, Ribolla LM, de Curtis I. Liquid-Liquid Phase Separation at the Plasma Membrane-Cytosol Interface: Common Players in Adhesion, Motility, and Synaptic Function. J Mol Biol 2021; 434:167228. [PMID: 34487789 DOI: 10.1016/j.jmb.2021.167228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/09/2023]
Abstract
Networks of scaffold proteins and enzymes assemble at the interface between the cytosol and specific sites of the plasma membrane, where these networks guide distinct cellular functions. Some of these plasma membrane-associated platforms (PMAPs) include shared core components that are able to establish specific protein-protein interactions, to produce distinct supramolecular assemblies regulating dynamic processes as diverse as cell adhesion and motility, or the formation and function of neuronal synapses. How cells organize such dynamic networks is still an open question. In this review we introduce molecular networks assembling at the edge of migrating cells, and at pre- and postsynaptic sites, which share molecular players that can drive the assembly of biomolecular condensates. Very recent experimental evidence has highlighted the emerging role of some of these multidomain/scaffold proteins belonging to the GIT, liprin-α and ELKS/ERC families as drivers of liquid-liquid phase separation (LLPS). The data point to an important role of LLPS: (i) in the formation of PMAPs at the edge of migrating cells, where LLPS appears to be involved in promoting protrusion and the turnover of integrin-mediated adhesions, to allow forward cell translocation; (ii) in the assembly of the presynaptic active zone and of the postsynaptic density deputed to the release and reception of neurotransmitter signals, respectively. The recent results indicate that LLPS at cytosol-membrane interfaces is suitable not only for the regulation of active cellular processes, but also for the continuous spatial rearrangements of the molecular interactions involved in these dynamic processes.
Collapse
Affiliation(s)
- Martina Ramella
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milano, Italy.
| | - Lucrezia Maria Ribolla
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milano, Italy.
| | - Ivan de Curtis
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milano, Italy.
| |
Collapse
|
26
|
Dong C, Li X, Yang J, Yuan D, Zhou Y, Zhang Y, Shi G, Zhang R, Liu J, Fu P, Sun M. PPFIBP1 induces glioma cell migration and invasion through FAK/Src/JNK signaling pathway. Cell Death Dis 2021; 12:827. [PMID: 34480020 PMCID: PMC8417031 DOI: 10.1038/s41419-021-04107-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with a 5-year survival ratio <5%. Invasive growth is a major determinant of the poor prognosis in GBM. In this study, we demonstrate that high expression of PPFIA binding protein 1 (PPFIBP1) correlates with remarkable invasion and poor prognosis of GBM patients. Using scratch and transwell assay, we find that the invasion and migration of GBM cells are promoted by overexpression of PPFIBP1, while inhibited by knockdown of PPFIBP1. Then, we illustrate that overexpression of PPFIBP1 facilitates glioma cell infiltration and reduces survival in xenograft models. Next, RNA-Seq and GO enrichment analysis reveal that PPFIBP1 regulates differentially expressed gene clusters involved in the Wnt and adhesion-related signaling pathways. Furthermore, we demonstrate that PPFIBP1 activates focal adhesion kinase (FAK), Src, c-Jun N-terminal kinase (JNK), and c-Jun, thereby enhancing Matrix metalloproteinase (MMP)-2 expression probably through interacting with SRCIN1 (p140Cap). Finally, inhibition of phosphorylation of Src and FAK significantly reversed the augmentation of invasion and migration caused by PPFIBP1 overexpression in GBM cells. In conclusion, these findings uncover a novel mechanism of glioma invasion and identify PPFIBP1 as a potential therapeutic target of glioma.
Collapse
Affiliation(s)
- Caihua Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jiao Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yina Zhang
- Neurological Department, Helios-Amper Clinic Dachau, Dachau, Germany
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ruobing Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jianping Liu
- Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
27
|
Shatnawi A, Abu Rabe DI, Frigo DE. Roles of the tumor suppressor inhibitor of growth family member 4 (ING4) in cancer. Adv Cancer Res 2021; 152:225-262. [PMID: 34353439 DOI: 10.1016/bs.acr.2021.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inhibitor of growth family member 4 (ING4) is best known as a tumor suppressor that is frequently downregulated, deleted, or mutated in many cancers. ING4 regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, autophagy, invasion, angiogenesis, DNA repair and chromatin remodeling. ING4 alters local chromatin structure by functioning as an epigenetic reader of H3K4 trimethylation histone marks (H3K4Me3) and regulating gene transcription through directing histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes. ING4 may serve as a useful prognostic biomarker for many cancer types and help guide treatment decisions. This review provides an overview of ING4's central functions in gene expression and summarizes current literature on the role of ING4 in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, Charleston, WV, United States.
| | - Dina I Abu Rabe
- Integrated Bioscience Program, North Carolina Central University, Durham, NC, United States
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
28
|
Proteomic analysis identifies the E3 ubiquitin ligase Pdzrn3 as a regulatory target of Wnt5a-Ror signaling. Proc Natl Acad Sci U S A 2021; 118:2104944118. [PMID: 34135125 DOI: 10.1073/pnas.2104944118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wnt5a-Ror signaling is a conserved pathway that regulates morphogenetic processes during vertebrate development [R. T. Moon et al, Development 119, 97-111 (1993); I. Oishi et al, Genes Cells 8, 645-654 (2003)], but its downstream signaling events remain poorly understood. Through a large-scale proteomic screen in mouse embryonic fibroblasts, we identified the E3 ubiquitin ligase Pdzrn3 as a regulatory target of the Wnt5a-Ror pathway. Upon pathway activation, Pdzrn3 is degraded in a β-catenin-independent, ubiquitin-proteasome system-dependent manner. We developed a flow cytometry-based reporter to monitor Pdzrn3 abundance and delineated a signaling cascade involving Frizzled, Dishevelled, Casein kinase 1, and Glycogen synthase kinase 3 that regulates Pdzrn3 stability. Epistatically, Pdzrn3 is regulated independently of Kif26b, another Wnt5a-Ror effector. Wnt5a-dependent degradation of Pdzrn3 requires phosphorylation of three conserved amino acids within its C-terminal LNX3H domain [M. Flynn, O. Saha, P. Young, BMC Evol. Biol. 11, 235 (2011)], which acts as a bona fide Wnt5a-responsive element. Importantly, this phospho-dependent degradation is essential for Wnt5a-Ror modulation of cell migration. Collectively, this work establishes a Wnt5a-Ror cell morphogenetic cascade involving Pdzrn3 phosphorylation and degradation.
Collapse
|
29
|
PPFIA4 mutation: A second hit in POLG related disease? Epilepsy Behav Rep 2021; 16:100455. [PMID: 34095804 PMCID: PMC8164014 DOI: 10.1016/j.ebr.2021.100455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
POLG-related epilepsy usually involves biallelic mutations causing neuronal loss. Monoallelic POLG mutations have been reported in a few patients with seizures. In these patients a second mutation has been anticipated, but not identified. We identified a PPFIA4 variant that could decrease neuronal survival. Hence, we hypothesize an oligogenic, rather than a monogenic, etiology.
Epilepsy in POLG related disease usually involves biallelic recessive mutations causing chronic neuronal loss and neuronal death. However, monoallelic POLG mutations have been reported in patients with neurological features such as seizures [1]. In these patients a second allele/gene was anticipated but not identified. The genetic etiology in epilepsy can contribute to better treatment strategies. For example, valproic acid (VPA) should be avoided in patients with POLG related epilepsy due to possible hepatotoxicity. We report a 12-year old boy with initially drug-resistant focal onset epilepsy, a mild developmental delay and behavioral issues. He carries potential pathogenic variants in the DNA polymerase gamma (POLG) gene (from asymptomatic mother) and in the liprin-alpha-4 (PPFIA4) gene (from asymptomatic father). This latter gene has never been related to (neurological) disorders, although its gene product interacts with several genes that play a role in excitatory neurotransmission and epileptogenesis. Hence, we hypothesize that the phenotype of our patient could be due to combination of detrimental effects to the neurons by the two aforementioned pathogenic variants. Nonetheless, we cannot exclude another undetected POLG mutation. In essence, genetic research should be aware that unexplained neurological disease can be caused by an oligogenic, rather than a monogenic, etiology.
Collapse
|
30
|
Feng Z, Wu X, Zhang M. Presynaptic bouton compartmentalization and postsynaptic density-mediated glutamate receptor clustering via phase separation. Neuropharmacology 2021; 193:108622. [PMID: 34051266 DOI: 10.1016/j.neuropharm.2021.108622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 05/17/2021] [Indexed: 01/21/2023]
Abstract
Neuronal synapses encompass three compartments: presynaptic axon terminal, synaptic cleft, and postsynaptic dendrite. Each compartment contains densely packed molecular machineries that are involved in synaptic transmission. In recent years, emerging evidence indicates that the assembly of these membraneless substructures or assemblies that are not enclosed by membranes are driven by liquid-liquid phase separation. We review here recent studies that suggest the phase separation-mediated organization of these synaptic compartments. We discuss how synaptic function may be linked to its organization as biomolecular condensates. We conclude with a discussion of areas of future interest in the field for better understanding of the structural architecture of neuronal synapses and its contribution to synaptic functions.
Collapse
Affiliation(s)
- Zhe Feng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiandeng Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
31
|
Emperador-Melero J, Wong MY, Wang SSH, de Nola G, Nyitrai H, Kirchhausen T, Kaeser PS. PKC-phosphorylation of Liprin-α3 triggers phase separation and controls presynaptic active zone structure. Nat Commun 2021; 12:3057. [PMID: 34031393 PMCID: PMC8144191 DOI: 10.1038/s41467-021-23116-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/16/2021] [Indexed: 01/24/2023] Open
Abstract
The active zone of a presynaptic nerve terminal defines sites for neurotransmitter release. Its protein machinery may be organized through liquid-liquid phase separation, a mechanism for the formation of membrane-less subcellular compartments. Here, we show that the active zone protein Liprin-α3 rapidly and reversibly undergoes phase separation in transfected HEK293T cells. Condensate formation is triggered by Liprin-α3 PKC-phosphorylation at serine-760, and RIM and Munc13 are co-recruited into membrane-attached condensates. Phospho-specific antibodies establish phosphorylation of Liprin-α3 serine-760 in transfected cells and mouse brain tissue. In primary hippocampal neurons of newly generated Liprin-α2/α3 double knockout mice, synaptic levels of RIM and Munc13 are reduced and the pool of releasable vesicles is decreased. Re-expression of Liprin-α3 restored these presynaptic defects, while mutating the Liprin-α3 phosphorylation site to abolish phase condensation prevented this rescue. Finally, PKC activation in these neurons acutely increased RIM, Munc13 and neurotransmitter release, which depended on the presence of phosphorylatable Liprin-α3. Our findings indicate that PKC-mediated phosphorylation of Liprin-α3 triggers its phase separation and modulates active zone structure and function.
Collapse
Affiliation(s)
| | - Man Yan Wong
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Shan Shan H Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Hajnalka Nyitrai
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,VIB-KU Leuven Center for Brain and Disease Research, Campus Gasthuisberg, Leuven, Belgium
| | - Tom Kirchhausen
- Departments of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Bilecki W, Latusz J, Gawlińska K, Chmelova M, Maćkowiak M. Prenatal MAM treatment altered fear conditioning following social isolation: Relevance to schizophrenia. Behav Brain Res 2021; 406:113231. [PMID: 33737089 DOI: 10.1016/j.bbr.2021.113231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
Adolescent social isolation (SI) might change the trajectory of brain development. In the present study, we investigated the effect of short-term adolescent SI on fear memory, anxiety and protein levels in the adult medial prefrontal cortex of rats prenatally treated with methylazoxymethanol, MAM-E17 model of schizophrenia. The animals were maintained in standard housing (SH) or social isolation (P30-P40, SI) conditions. Behavioural tests (trace or delay fear conditioning, light/dark box) were performed in late adolescence and early adulthood. The results showed that MAM treatment did not alter fear memory, which was investigated with the use of either trace or delay fear conditioning, at any age, and SI decreased the fear response in adult control animals only under trace conditioning. Neither MAM nor SI influenced anxiety-related behaviour measured in the light/dark box. A proteomics study showed that both MAM and SI changed the protein levels related to synapse maturation and cytoskeletal organization, energy transfer and metabolic processes. Prenatal or adolescent environmental factors are able to change the expression of proteins that are correlated with behavioural impairments. Moreover, SI reversed some alterations in proteins induced by MAM. Thus, normally developing brains showed different responses to adolescent SI than those with altering courses of MAM administration.
Collapse
Affiliation(s)
- Wiktor Bilecki
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Joachim Latusz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Kinga Gawlińska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Magdalena Chmelova
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Marzena Maćkowiak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland.
| |
Collapse
|
33
|
Xie X, Liang M, Yu C, Wei Z. Liprin-α-Mediated Assemblies and Their Roles in Synapse Formation. Front Cell Dev Biol 2021; 9:653381. [PMID: 33869211 PMCID: PMC8044993 DOI: 10.3389/fcell.2021.653381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 01/20/2023] Open
Abstract
Brain's functions, such as memory and learning, rely on synapses that are highly specialized cellular junctions connecting neurons. Functional synapses orchestrate the assembly of ion channels, receptors, enzymes, and scaffold proteins in both pre- and post-synapse. Liprin-α proteins are master scaffolds in synapses and coordinate various synaptic proteins to assemble large protein complexes. The functions of liprin-αs in synapse formation have been largely uncovered by genetic studies in diverse model systems. Recently, emerging structural and biochemical studies on liprin-α proteins and their binding partners begin to unveil the molecular basis of the synaptic assembly. This review summarizes the recent structural findings on liprin-αs, proposes the assembly mechanism of liprin-α-mediated complexes, and discusses the liprin-α-organized assemblies in the regulation of synapse formation and function.
Collapse
Affiliation(s)
- Xingqiao Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Mingfu Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
34
|
Emperador-Melero J, de Nola G, Kaeser PS. Intact synapse structure and function after combined knockout of PTPδ, PTPσ, and LAR. eLife 2021; 10:e66638. [PMID: 33656439 PMCID: PMC7963474 DOI: 10.7554/elife.66638] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/28/2021] [Indexed: 12/18/2022] Open
Abstract
It has long been proposed that leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are cell-adhesion proteins that control synapse assembly. Their synaptic nanoscale localization, however, is not established, and synapse fine structure after knockout of the three vertebrate LAR-RPTPs (PTPδ, PTPσ, and LAR) has not been tested. Here, superresolution microscopy reveals that PTPδ localizes to the synaptic cleft precisely apposed to postsynaptic scaffolds of excitatory and inhibitory synapses. We next assessed synapse structure in newly generated triple-conditional-knockout mice for PTPδ, PTPσ, and LAR, complementing a recent independent study of synapse function after LAR-RPTP ablation (Sclip and Südhof, 2020). While mild effects on synaptic vesicle clustering and active zone architecture were detected, synapse numbers and their overall structure were unaffected, membrane anchoring of the active zone persisted, and vesicle docking and release were normal. Hence, despite their localization at synaptic appositions, LAR-RPTPs are dispensable for presynapse structure and function.
Collapse
Affiliation(s)
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
35
|
Liang M, Jin G, Xie X, Zhang W, Li K, Niu F, Yu C, Wei Z. Oligomerized liprin-α promotes phase separation of ELKS for compartmentalization of presynaptic active zone proteins. Cell Rep 2021; 34:108901. [PMID: 33761347 DOI: 10.1016/j.celrep.2021.108901] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 01/09/2023] Open
Abstract
Synaptic scaffold proteins (e.g., liprin-α, ELKS, RIM, and RIM-BP) orchestrate ion channels, receptors, and enzymes at presynaptic terminals to form active zones for neurotransmitter release. The underlying mechanism of the active zone assembly remains elusive. Here, we report that liprin-α proteins have the potential to oligomerize through the N-terminal coiled-coil region. Our structural and biochemical characterizations reveal that a gain-of-function mutation promotes the self-assembly of the coiled coils in liprin-α2 by disrupting intramolecular interactions and promoting intermolecular interactions. By enabling multivalent interactions with ELKS proteins, the oligomerized coiled-coil region of liprin-α2 enhances the phase separation of the ELKS N-terminal segment. We further show that liprin-α2, by regulating the interplay between two phase separations of ELKS and RIM/RIM-BP, controls the protein distributions. These results imply that the complicated protein-protein interactions allow liprin-α to function with the active zone scaffolds and compartmentalize protein assemblies to achieve comprehensive functions in the active zone.
Collapse
Affiliation(s)
- Mingfu Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gaowei Jin
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xingqiao Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenchao Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kaiyue Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fengfeng Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong 518055, China.
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
36
|
Muniesh MS, Barmaver SN, Huang HY, Bayansan O, Wagner OI. PTP-3 phosphatase promotes intramolecular folding of SYD-2 to inactivate kinesin-3 UNC-104 in neurons. Mol Biol Cell 2020; 31:2932-2947. [PMID: 33147118 PMCID: PMC7927192 DOI: 10.1091/mbc.e19-10-0591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNC-104 is the Caenorhabditis elegans homolog of kinesin-3 KIF1A known for its fast shuffling of synaptic vesicle protein transport vesicles in axons. SYD-2 is the homolog of liprin-α in C. elegans known to activate UNC-104; however, signals that trigger SYD-2 binding to the motor remain unknown. Because SYD-2 is a substrate of PTP-3/LAR PTPR, we speculate a role of this phosphatase in SYD–2-mediated motor activation. Indeed, coimmunoprecipitation assays revealed increased interaction between UNC-104 and SYD-2 in ptp-3 knockout worms. Intramolecular FRET analysis in living nematodes demonstrates that SYD-2 largely exists in an open conformation state in ptp-3 mutants. These assays also revealed that nonphosphorylatable SYD-2 (Y741F) exists predominately in folded conformations, while phosphomimicking SYD-2 (Y741E) primarily exists in open conformations. Increased UNC-104 motor clustering was observed along axons likely as a result of elevated SYD-2 scaffolding function in ptp-3 mutants. Also, both motor velocities as well as cargo transport speeds were visibly increased in neurons of ptp-3 mutants. Lastly, epistatic analysis revealed that PTP-3 is upstream of SYD-2 to regulate its intramolecular folding.
Collapse
Affiliation(s)
| | - Syed Nooruzuha Barmaver
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Yi Huang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Odvogmed Bayansan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Oliver Ingvar Wagner
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
37
|
Fukai S, Yoshida T. Roles of type IIa receptor protein tyrosine phosphatases as synaptic organizers. FEBS J 2020; 288:6913-6926. [PMID: 33301645 DOI: 10.1111/febs.15666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
Neurons establish circuits for brain functions such as cognition, emotion, learning, and memory. Their connections are mediated by synapses, which are specialized cell-cell adhesions responsible for neuronal signal transmission. During neurodevelopment, synapse formation is triggered by interactions of cell adhesion molecules termed synaptic organizers or synapse organizers. Type IIa receptor protein tyrosine phosphatases (IIa RPTPs; also known as leukocyte common antigen-related receptor tyrosine phosphatases or LAR-RPTPs) play important roles in axon guidance and neurite extension, and also serve as presynaptic organizers. IIa RPTPs transsynaptically interact with multiple sets of postsynaptic organizers, mostly in a splicing-dependent fashion. Here, we review and update research progress on IIa RPTPs, particularly regarding their functional roles in vivo demonstrated using conditional knockout approach and structural insights into their extracellular and intracellular molecular interactions revealed by crystallography and other biophysical techniques. Future directions in the research field of IIa RPTPs are also discussed, including recent findings of the molecular assembly mechanism underlying the formation of synapse-specific nanostructures essential for synaptic functions.
Collapse
Affiliation(s)
- Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| |
Collapse
|
38
|
Paiva JT, Peixoto MGCD, Bruneli FAT, Alvarenga AB, Oliveira HR, Silva AA, Silva DA, Veroneze R, Silva FF, Lopes PS. Genetic parameters, genome-wide association and gene networks for milk and reproductive traits in Guzerá cattle. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Alfarsi LH, El Ansari R, Craze ML, Masisi BK, Ellis IO, Rakha EA, Green AR. PPFIA1 expression associates with poor response to endocrine treatment in luminal breast cancer. BMC Cancer 2020; 20:425. [PMID: 32410585 PMCID: PMC7227113 DOI: 10.1186/s12885-020-06939-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND PPFIA1 is an important regulator of cell migration and invasion, regulating focal adhesion signalling and disassembly. PPFIA1 is frequently amplified in breast cancer, and recent functional studies indicate that PPFIA1 is an important promoter of migration and invasion in breast cancer. This study aims to evaluate the utility of PPFIA1 expression in the luminal breast cancer as a prognostic marker to predict the response to endocrine therapy. METHODS Large, well-characterised cohorts of primary luminal breast cancer patients with long-term follow-up was assessed for the clinical impact of PPFIA1 expression at the transcriptomic and proteomic levels. Prognostic significance of PPFIA1 and its relationship with clinical outcome and benefit of endocrine therapy were analysed. In addition, its association with other related-genes was analysed. RESULTS There was significant association between PPFIA1 expression and a member of the liprin family that involves in cell invasion (PPFIBPI), and the cell cycle regulator (CCND1), whereas a negative association was observed with the tumour suppressor gene (CD82). Patients with high PPFIA1 expression were associated with high risk of recurrence, distant metastasis and death from breast cancer (P < 0.05). Importantly, high PPFIA1 expression predicted relapse in a subset of patients who were subject to endocrine treatment alone, and was an independent prognostic marker of unfavourable outcome in these patients (P < 0.05). CONCLUSIONS These findings support the proposed role for PPFIA1 as a regulator of cell migration in breast cancer and provides definitive evidence for the clinical utility of PPFIA1 expression in patients with luminal breast cancer. Most importantly, our data suggests that PPFIA1 might be a potential predictive marker for poor benefit from endocrine therapy.
Collapse
Affiliation(s)
- Lutfi H Alfarsi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Rokaya El Ansari
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Madeleine L Craze
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Brendah K Masisi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK.,Cellular Pathology, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK.,Cellular Pathology, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
41
|
Transcriptome profiling of gastric-type endocervical adenocarcinomas identifies key signaling pathways for tumor progression. Gynecol Oncol 2020; 157:775-782. [PMID: 32317172 DOI: 10.1016/j.ygyno.2020.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Gastric-type endocervical carcinoma is a rare entity of carcinoma of the cervix. In contrast to the intestinal type, the gastric type is not related to Human Papilloma Virus (HPV) infection and has been reported to be much more aggressive than the usual type. Oncogenic pathways involved in this poor-prognosis phenotype are largely unexplored. METHODS We compared activation of the main signaling pathways involved in cancer progression between the intestinal- (n = 5), gastric- (n = 6) and usual-type (n = 6) adenocarcinomas of the cervix using a targeted transcriptomic approach (expression of 770 genes) on FFPE samples. RESULTS We identified a gene-expression signature composed of 11 genes that allows the classification of these endocervical carcinoma as three distinct molecular entities. There were similarities between mucinous endocervical carcinomas (gastric and intestinal types) despite difference in pathogenesis related to HPV infection. Among HPV-related endocervical carcinoma, the intestinal type could be molecularly distinguished from the usual type by high expression of EIF2AK3 and low expression of PPFIBP2 genes, supporting its classification as a distinct entity. Overexpression of TAL1 and S1PR1 genes were characteristic of the gastric type. The usual type was characterized by high expression of occludin and VAV3 genes. Tight junction disruptions might play an essential role in the metastatic potential of mucinous endocervical carcinoma with concomitant loss of OCLN and claudin 4 proteins. An overexpression of NTRK1 transcript was observed in mucinous endocervical carcinomas when compared to the usual type. CONCLUSIONS This transcriptomic study identified a signature that supports the classification of endocervical carcinomas as three distinct entities: usual-, intestinal- and gastric-type. It also points out to disruption of tight junctions as a potential mechanism of metastatic dissemination of these rare tumors.
Collapse
|
42
|
Kim K, Shin W, Kang M, Lee S, Kim D, Kang R, Jung Y, Cho Y, Yang E, Kim H, Bae YC, Kim E. Presynaptic PTPσ regulates postsynaptic NMDA receptor function through direct adhesion-independent mechanisms. eLife 2020; 9:54224. [PMID: 32142410 PMCID: PMC7069723 DOI: 10.7554/elife.54224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Synaptic adhesion molecules regulate synapse development and function. However, whether and how presynaptic adhesion molecules regulate postsynaptic NMDAR function remains largely unclear. Presynaptic LAR family receptor tyrosine phosphatases (LAR-RPTPs) regulate synapse development through mechanisms that include trans-synaptic adhesion; however, whether they regulate postsynaptic receptor functions remains unknown. Here we report that presynaptic PTPσ, a LAR-RPTP, enhances postsynaptic NMDA receptor (NMDAR) currents and NMDAR-dependent synaptic plasticity in the hippocampus. This regulation does not involve trans-synaptic adhesions of PTPσ, suggesting that the cytoplasmic domains of PTPσ, known to have tyrosine phosphatase activity and mediate protein-protein interactions, are important. In line with this, phosphotyrosine levels of presynaptic proteins, including neurexin-1, are strongly increased in PTPσ-mutant mice. Behaviorally, PTPσ-dependent NMDAR regulation is important for social and reward-related novelty recognition. These results suggest that presynaptic PTPσ regulates postsynaptic NMDAR function through trans-synaptic and direct adhesion-independent mechanisms and novelty recognition in social and reward contexts.
Collapse
Affiliation(s)
- Kyungdeok Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Wangyong Shin
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Muwon Kang
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Ryeonghwa Kang
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Yewon Jung
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Yisul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Eunjoon Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| |
Collapse
|
43
|
Structural insights into selective interaction between type IIa receptor protein tyrosine phosphatases and Liprin-α. Nat Commun 2020; 11:649. [PMID: 32005855 PMCID: PMC6994669 DOI: 10.1038/s41467-020-14516-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/15/2020] [Indexed: 01/07/2023] Open
Abstract
Synapse formation is induced by transsynaptic interaction of neuronal cell-adhesion molecules termed synaptic organizers. Type IIa receptor protein tyrosine phosphatases (IIa RPTPs) function as presynaptic organizers. The cytoplasmic domain of IIa RPTPs consists of two phosphatase domains, and the membrane-distal one (D2) is essential for synapse formation. Liprin-α, which is an active zone protein critical for synapse formation, interacts with D2 via its C-terminal domain composed of three tandem sterile alpha motifs (tSAM). Structural mechanisms of this critical interaction for synapse formation remain elusive. Here, we report the crystal structure of the complex between mouse PTPδ D2 and Liprin-α3 tSAM at 1.91 Å resolution. PTPδ D2 interacts with the N-terminal helix and the first and second SAMs (SAM1 and SAM2, respectively) of Liprin-α3. Structure-based mutational analyses in vitro and in cellulo demonstrate that the interactions with Liprin-α SAM1 and SAM2 are essential for the binding and synaptogenic activity.
Collapse
|
44
|
Xie X, Luo L, Liang M, Zhang W, Zhang T, Yu C, Wei Z. Structural basis of liprin-α-promoted LAR-RPTP clustering for modulation of phosphatase activity. Nat Commun 2020; 11:169. [PMID: 31924785 PMCID: PMC6954185 DOI: 10.1038/s41467-019-13949-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023] Open
Abstract
Leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are cell adhesion molecules involved in mediating neuronal development. The binding of LAR-RPTPs to extracellular ligands induces local clustering of LAR-RPTPs to regulate axon growth and synaptogenesis. LAR-RPTPs interact with synaptic liprin-α proteins via the two cytoplasmic phosphatase domains, D1 and D2. Here we solve the crystal structure of LAR_D1D2 in complex with the SAM repeats of liprin-α3, uncovering a conserved two-site binding mode. Cellular analysis shows that liprin-αs robustly promote clustering of LAR in cells by both the liprin-α/LAR interaction and the oligomerization of liprin-α. Structural analysis reveals a unique homophilic interaction of LAR via the catalytically active D1 domains. Disruption of the D1/D1 interaction diminishes the liprin-α-promoted LAR clustering and increases tyrosine dephosphorylation, demonstrating that the phosphatase activity of LAR is negatively regulated by forming clusters. Additionally, we find that the binding of LAR to liprin-α allosterically regulates the liprin-α/liprin-β interaction. Leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) mediate guided axon growth and synapse formation and liprin-α proteins are their intracellular binding partners. Here the authors present the crystal structure of the phosphatase domains from the LAR-RPTP family member LAR bound to the SAM repeats of liprin-α3 and show that liprin-α binding enhances LAR cluster formation and reduces LAR phosphatase activity in cells.
Collapse
Affiliation(s)
- Xingqiao Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ling Luo
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Mingfu Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wenchao Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ting Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, 518055, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China. .,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
45
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
46
|
Abstract
The metastasis-promoting S100A4 protein, a member of the S100 family, has recently been discovered as a potent factor implicated in various inflammation-associated diseases. S100A4 is involved in a range of biological functions such as angiogenesis, cell differentiation, apoptosis, motility, and invasion. Moreover, S100A4 is also a potent trigger of inflammatory processes and induces the release of cytokines and growth factors under different pathological conditions.Indeed, the release of S100A4 upon stress and mainly its pro-inflammatory role emerges as the most decisive activity in disease development, such as rheumatoid arthritis (RA), systemic sclerosis (SSc) allergy, psoriasis, and cancer. In the scope of this review, we will focus on the role of S100A4 as a mediator of pro-inflammatory pathways and its associated biological processes involved in the pathogenesis of various human noncommunicable diseases (NCDs) including cancer.
Collapse
|
47
|
Ahn B, Choi MK, Yum J, Cho IC, Kim JH, Park C. Analysis of allele-specific expression using RNA-seq of the Korean native pig and Landrace reciprocal cross. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1816-1825. [PMID: 31208168 PMCID: PMC6819674 DOI: 10.5713/ajas.19.0097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/25/2019] [Indexed: 11/27/2022]
Abstract
Objective We tried to analyze allele-specific expression in the pig neocortex using bioinformatic analysis of high-throughput sequencing results from the parental genomes and offspring transcriptomes from reciprocal crosses between Korean Native and Landrace pigs. Methods We carried out sequencing of parental genomes and offspring transcriptomes using next generation sequencing. We subsequently carried out genome scale identification of single nucleotide polymorphisms (SNPs) in two different ways using either individual genome mapping or joint genome mapping of the same breed parents that were used for the reciprocal crosses. Using parent-specific SNPs, allele-specifically expressed genes were analyzed. Results Because of the low genome coverage (~4×) of the sequencing results, most SNPs were non-informative for parental lineage determination of the expressed alleles in the offspring and were thus excluded from our analysis. Consequently, 436 SNPs covering 336 genes were applicable to measure the imbalanced expression of paternal alleles in the offspring. By calculating the read ratios of parental alleles in the offspring, we identified seven genes showing allele-biased expression (p<0.05) including three previously reported and four newly identified genes in this study. Conclusion The newly identified allele-specifically expressing genes in the neocortex of pigs should contribute to improving our knowledge on genomic imprinting in pigs. To our knowledge, this is the first study of allelic imbalance using high throughput analysis of both parental genomes and offspring transcriptomes of the reciprocal cross in outbred animals. Our study also showed the effect of the number of informative animals on the genome level investigation of allele-specific expression using RNA-seq analysis in livestock species.
Collapse
Affiliation(s)
- Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Min-Kyeung Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Joori Yum
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - In-Cheol Cho
- Subtropical Livestock Research Institute, National Institute of Animal Science, Jeju 63242, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
48
|
Bomkamp C, Padmanabhan N, Karimi B, Ge Y, Chao JT, Loewen CJR, Siddiqui TJ, Craig AM. Mechanisms of PTPσ-Mediated Presynaptic Differentiation. Front Synaptic Neurosci 2019; 11:17. [PMID: 31191292 PMCID: PMC6540616 DOI: 10.3389/fnsyn.2019.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
Formation of synapses between neurons depends in part on binding between axonal and dendritic cell surface synaptic organizing proteins, which recruit components of the developing presynaptic and postsynaptic specializations. One of these presynaptic organizing molecules is protein tyrosine phosphatase σ (PTPσ). Although the protein domains involved in adhesion between PTPσ and its postsynaptic binding partners are known, the mechanisms by which it signals into the presynaptic neuron to recruit synaptic vesicles and other necessary components for regulated transmitter release are not well understood. One attractive candidate to mediate this function is liprin-α, a scaffolding protein with well-established roles at the synapse. We systematically mutated residues of the PTPσ intracellular region (ICR) and used the yeast dihydrofolate reductase (DHFR) protein complementation assay to screen for disrupted interactions between these mutant forms of PTPσ and its various binding partners. Using a molecular replacement strategy, we show that disrupting the interaction between PTPσ and liprin-α, but not between PTPσ and itself or another binding partner, caskin, abolishes presynaptic differentiation. Furthermore, phosphatase activity of PTPσ and binding to extracellular heparan sulfate (HS) proteoglycans are dispensable for presynaptic induction. Previous reports have suggested that binding between PTPσ and liprin-α is mediated by the PTPσ membrane-distal phosphatase-like domain. However, we provide evidence here that both of the PTPσ phosphatase-like domains mediate binding to liprin-α and are required for PTPσ-mediated presynaptic differentiation. These findings further our understanding of the mechanistic basis by which PTPσ acts as a presynaptic organizer.
Collapse
Affiliation(s)
- Claire Bomkamp
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Nirmala Padmanabhan
- Health Sciences Centre, Kleysen Institute for Advanced Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Benyamin Karimi
- Health Sciences Centre, Kleysen Institute for Advanced Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Yuan Ge
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jesse T Chao
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tabrez J Siddiqui
- Health Sciences Centre, Kleysen Institute for Advanced Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
He Y, de Witte LD, Schubart CD, Van Gastel WA, Koeleman BPC, de Jong S, Ophoff RA, Hol EM, Boks MP. Liprin alfa 2 gene expression is increased by cannabis use and associated with neuropsychological function. Eur Neuropsychopharmacol 2019; 29:643-652. [PMID: 30879928 DOI: 10.1016/j.euroneuro.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/13/2019] [Accepted: 03/02/2019] [Indexed: 11/18/2022]
Abstract
The relation of heavy cannabis use with decreased neuropsychological function has frequently been described but the underlying biological mechanisms are still largely unknown. This study investigates the relation of cannabis use with genome wide gene expression and subsequently examines the relations with neuropsychological function. Genome-wide gene expression in whole blood was compared between heavy cannabis users (N = 90) and cannabis naïve participants (N = 100) that were matched for psychotic like experiences. The results were validated using quantitative real-time PCR. Psychotic like experiences were assessed using the Comprehensive Assessment of Psychotic Experiences (CAPE). Neuropsychological function was estimated using four subtasks of the Wechsler Adult Intelligence Scale (WAIS). Subsequent in vitro studies in monocytes and a neuroblastoma cell line investigated expression changes in response to two major psychotropic components of cannabis; tetrahydrocannabinol (THC) and cannabidiol (CBD). mRNA expression of Protein Tyrosine Phosphatase Receptor Type F Polypeptide-Interacting-Protein Alpha-2 (PPFIA2) was significantly higher in cannabis users (LogFold Change 0.17) and confirmed by qPCR analysis. PPFIA2 expression level was negatively correlated with estimated intelligence (B=-22.9, p = 0.002) also in the 100 non-users (B=-28.5, p = 0.037). In vitro exposure of monocytes to CBD led to significant increase in PPFIA2 expression. However, exposure of monocytes to THC and neuroblastoma cells to THC or CBD did not change PPFIA2 expression. Change in PPFIA2 gene expression in response to cannabinoids is a putative mechanism by which cannabis could influence neuropsychological functions. The findings warrant further exploration of the role of PPFIA2 in cannabis induced changes of neuropsychological function, particularly in relation to CBD.
Collapse
Affiliation(s)
- Yujie He
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Chris D Schubart
- Ter Gooi Hospital, Department of Psychiatry, Blaricum, The Netherlands
| | | | - Bobby P C Koeleman
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht University, The Netherlands
| | - Simone de Jong
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Roel A Ophoff
- UCLA Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands; Neuroimmunology, Netherlands Institute for Neuroscience, An institute of the royal academy of arts and sciences, Amsterdam, The Netherlands
| | - Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands.
| |
Collapse
|
50
|
Posbergh CJ, Thonney ML, Huson HJ. Genomic Approaches Identify Novel Gene Associations with Out of Season Lambing in Sheep. J Hered 2019; 110:577-586. [DOI: 10.1093/jhered/esz014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
Sheep are seasonally polyestrous, traditionally breeding when the day length shortens in the autumn. The changing photoperiod stimulates reproductive hormones through a series of chemical pathways, ultimately leading to cyclicity. Some breeds of sheep, such as the Polypay and Dorset, have been selected for reduced seasonality and can lamb year-round. Despite this selection, there is still variation within these breeds in the ability to lamb out of season. The identification of out of season lambing quantitative trait loci has the potential to improve genetic progress using genomic selection schemes. Association studies, fixation index (FST), and runs of homozygosity (ROH) were evaluated to identify regions of the genome that influence the ability of ewes to lamb out of season. All analyses used genotypic data from the Illumina Ovine HD beadchip. Genome-wide associations were tested both across breeds in 257 ewes and within the Dorset and Polypay breeds. FST was measured across breeds and between UK and US Dorsets to assess population differences. ROH were estimated in ewes to identify homozygous regions contributing to out of season lambing. Significant associations after multiple testing correction were found through these approaches, leading to the identification of several candidate genes for further study. Genes involved with eye development, reproductive hormones, and neuronal changes were identified as the most promising for influencing the ewe’s ability to lamb year-round. These candidate genes could be advantageous for selection for improved year-round lamb production and provide better insight into the complex regulation of seasonal reproduction.
Collapse
Affiliation(s)
| | | | - Heather J Huson
- Department of Animal Science, Cornell University, Ithaca, NY
| |
Collapse
|