1
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
2
|
Wang Q, Zhang H, Wang X, Ma C, Zhang J, Wu J, Li L, Lu Y, Wei J, Han L. Amygdalin alleviates psoriasis-like lesions by improving skin barrier function. Arch Dermatol Res 2024; 317:115. [PMID: 39673560 DOI: 10.1007/s00403-024-03550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 12/16/2024]
Abstract
Psoriasis is a chronic, relapsing, inflammatory skin disease that is caused by the immune system. Amygdalin possesses immune-modulating and anti-inflammatory effects. To explore the possible effects of amygdalin on psoriasis and its pathogenesis of action, we examined the effects of amygdalin on imiquimod-induced psoriasis, tape-stripping-induced skin barrier disruption, and investigated the potential mechanism of action in vitro. The fact that amygdalin could reduce the thickness of the epidermis and inflammatory cell infiltration in two animal models inhibited the production of IL-1β, IL-6, and TNF-a, and the expression of filaggrin, involucrin, and keratin10 was increased. Also, in IL-17 A and TNF-α induced HaCaT, amygdalin inhibits the expression of IL-6, IL-1β, and TNF-a, promoting the expression of skin barrier recovery-related proteins flaggrin, involucrin, and keratin10. Combined in vivo and in vitro experiments suggest that amygdalin modulates inflammation and the skin barrier in psoriasis. The same study also conducted a preliminary mechanistic exploration and found that amygdalin inhibited the phosphorylation of the p38MAPK signaling pathway. In conclusion, Amygdalin can alleviate psoriasis lesions and improve skin barrier impairment, and the research provides an experimental basis for its future development as a drug candidate for psoriasis therapy.
Collapse
Affiliation(s)
- Qing Wang
- Department of Dermatology, Chongqing Clinical Research Center for Dermatology, Chongqing Key Laboratory of Integrative Dermatology Research, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510006, China
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Hongyu Zhang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510006, China
| | - Xuehua Wang
- College of Traditional Chinese Medicine, Zhanjiang University of Science and Technology, Zhanjiang, 524094, China
| | - Changju Ma
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Cancer Research Institute of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Junhong Zhang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510006, China
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Jingjing Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510006, China
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li Li
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510006, China
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue Lu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510006, China
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jianan Wei
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510006, China
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ling Han
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510006, China.
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510006, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Hua X, Ficaro MK, Wallace NL, Dai J. Epidermal RORα Maintains Barrier Integrity and Prevents Allergic Inflammation by Regulating Late Differentiation and Lipid Metabolism. Int J Mol Sci 2024; 25:10698. [PMID: 39409027 PMCID: PMC11476758 DOI: 10.3390/ijms251910698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The skin epidermis provides a barrier that is imperative for preventing transepidermal water loss (TEWL) and protecting against environmental stimuli. The underlying molecular mechanisms for regulating barrier functions and sustaining its integrity remain unclear. RORα is a nuclear receptor highly expressed in the epidermis of normal skin. Clinical studies showed that the epidermal RORα expression is significantly reduced in the lesions of multiple inflammatory skin diseases. In this study, we investigate the central roles of RORα in stabilizing skin barrier function using mice with an epidermis-specific Rora gene deletion (RoraEKO). While lacking spontaneous skin lesions or dermatitis, RoraEKO mice exhibited an elevated TEWL rate and skin characteristics of barrier dysfunction. Immunostaining and Western blot analysis revealed low levels of cornified envelope proteins in the RoraEKO epidermis, suggesting disturbed late epidermal differentiation. In addition, an RNA-seq analysis showed the altered expression of genes related to "keratinization" and "lipid metabolism" in RORα deficient epidermis. A lipidomic analysis further uncovered an aberrant ceramide composition in the RoraEKO epidermis. Importantly, epidermal Rora ablation greatly exaggerated percutaneous allergic inflammatory responses to oxazolone in an allergic contact dermatitis (ACD) mouse model. Our results substantiate the essence of epidermal RORα in maintaining late keratinocyte differentiation and normal barrier function while suppressing cutaneous inflammation.
Collapse
Affiliation(s)
- Xiangmei Hua
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Maria K. Ficaro
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Nicole L. Wallace
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Jun Dai
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
- Carbone Cancer Center, The University of Wisconsin, Madison, WI 53705, USA
- Skin Disease Research Center, The University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
4
|
Berdyshev E. Skin Lipid Barrier: Structure, Function and Metabolism. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:445-461. [PMID: 39363765 PMCID: PMC11450438 DOI: 10.4168/aair.2024.16.5.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Lipids are important skin components that provide, together with proteins, barrier function of the skin. Keratinocyte terminal differentiation launches unique metabolic changes to lipid metabolism that result in the predominance of ceramides within lipids of the stratum corneum (SC)-the very top portion of the skin. Differentiating keratinocytes form unique ceramides that can be found only in the skin, and generate specialized extracellular structures known as lamellae. Lamellae establish tight hydrophobic layers between dying keratinocytes to protect the body from water loss and also from penetration of allergens and bacteria. Genetic and immunological factors may lead to the failure of keratinocyte terminal differentiation and significantly alter the proportion between SC components. The consequence of such changes is loss or deterioration of skin barrier function that can lead to pathological changes in the skin. This review summarizes our current understanding of the role of lipids in skin barrier function. It also draws attention to the utility of testing SC for lipid and protein biomarkers to predict future onset of allergic skin diseases.
Collapse
Affiliation(s)
- Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
5
|
Fluhr JW, Moore DJ, Lane ME, Lachmann N, Rawlings AV. Epidermal barrier function in dry, flaky and sensitive skin: A narrative review. J Eur Acad Dermatol Venereol 2024; 38:812-820. [PMID: 38140732 DOI: 10.1111/jdv.19745] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
The stratum corneum (SC)-the outermost layer of the epidermis-is the principal permeability and protective barrier of the skin. Different components of the SC, including corneocytes, natural moisturizing factor, a variety of enzymes and their inhibitors, antimicrobial peptides and lipids, work interactively to maintain barrier function. The main barrier properties of the SC are the limitation of water loss and the prevention of infection and contact with potentially harmful exogenous factors. Although the SC functions consistently as a protective barrier throughout the body, variations in functions and morphology occur across body sites with age and skin type. Healthy SC function also depends on the interplay between the chemosensory barrier, the skin's microbiome and the innate immune system. Dysregulation of SC barrier function can lead to the development of skin disorders, such as dry, flaky or sensitive skin, but the complete underlying pathophysiology of these are not fully understood. This review provides insight into the current literature and emerging themes related to epidermal barrier changes that occur in the context of dry, flaky and sensitive skin. Additional studies are needed to further elucidate the underlying aetiology of dry, flaky and sensitive skin and to provide tailored treatment.
Collapse
Affiliation(s)
- Joachim W Fluhr
- Institute of Allergology IFA Charité Universitätsmedizin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | | | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
| | | | - Anthony V Rawlings
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
- AVR Consulting Ltd., Northwich, UK
| |
Collapse
|
6
|
Komlosi K, Glocker C, Hsu-Rehder HH, Alter S, Kopp J, Hotz A, Zimmer AD, Hausser I, Sandhoff R, Oji V, Fischer J. Autosomal Dominant Lamellar Ichthyosis Due to a Missense Variant in the Gene NKPD1. J Invest Dermatol 2024:S0022-202X(24)00303-8. [PMID: 38642798 DOI: 10.1016/j.jid.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 04/22/2024]
Abstract
The identification of monogenic causes for cornification disorders has enhanced our understanding of epidermal differentiation and skin barrier function. Autosomal dominant lamellar ichthyosis is a rare condition, and ASPRV1 was the only gene linked to autosomal dominant lamellar ichthyosis to date. We identified a heterozygous variant (ENST00000686631.1:c.1372G>T, p.[Val458Phe]) in the NKPD1 gene in 7 individuals from a 4-generation German pedigree with generalized lamellar ichthyosis by whole-exome sequencing. Segregation analysis confirmed its presence in affected individuals, resulting in a logarithm of the odds score of 3.31. NKPD1 encodes the NKPD1 protein, implicated in the plasma membrane; its role in human disease is as yet unknown. Skin histology showed moderate acanthosis and compact orthohyperkeratosis, and the ultrastructure differed clearly from that in ASPRV1-autosomal dominant lamellar ichthyosis. Although NKPD1 mRNA expression increased during keratinocyte differentiation, stratum corneum ceramides exhibited no significant changes. However, affected individuals showed an elevated ratio of protein-bound ceramides to omega-esterified ceramides. This highlights NKPD1's role in autosomal dominant lamellar ichthyosis, impacting ceramide metabolism and skin lipid barrier formation, as demonstrated through functional characterization.
Collapse
Affiliation(s)
- Katalin Komlosi
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Cristina Glocker
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Hao-Hsiang Hsu-Rehder
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Svenja Alter
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Julia Kopp
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Alrun Hotz
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Andreas David Zimmer
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Vinzenz Oji
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Judith Fischer
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Pondeljak N, Lugović-Mihić L, Tomić L, Parać E, Pedić L, Lazić-Mosler E. Key Factors in the Complex and Coordinated Network of Skin Keratinization: Their Significance and Involvement in Common Skin Conditions. Int J Mol Sci 2023; 25:236. [PMID: 38203406 PMCID: PMC10779394 DOI: 10.3390/ijms25010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The epidermis serves many vital roles, including protecting the body from external influences and healing eventual injuries. It is maintained by an incredibly complex and perfectly coordinated keratinization process. In this process, desquamation is essential for the differentiation of epidermal basal progenitor cells into enucleated corneocytes, which subsequently desquamate through programmed death. Numerous factors control keratinocyte differentiation: epidermal growth factor, transforming growth factor-α, keratinocyte growth factor, interleukins IL-1-β and IL-6, elevated vitamin A levels, and changes in Ca2+ concentration. The backbone of the keratinocyte transformation process from mitotically active basal cells into fully differentiated, enucleated corneocytes is the expression of specific proteins and the creation of a Ca2+ and pH gradient at precise locations within the epidermis. Skin keratinization disorders (histologically characterized predominantly by dyskeratosis, parakeratosis, and hyperkeratosis) may be categorized into three groups: defects in the α-helical rod pattern, defects outside the α-helical rod domain, and disorders of keratin-associated proteins. Understanding the process of keratinization is essential for the pathogenesis of many dermatological diseases because improper desquamation and epidermopoiesis/keratinization (due to genetic mutations of factors or due to immune pathological processes) can lead to various conditions (ichthyoses, palmoplantar keratodermas, psoriasis, pityriasis rubra pilaris, epidermolytic hyperkeratosis, and others).
Collapse
Affiliation(s)
- Nives Pondeljak
- Department of Dermatology and Venereology, General Hospital, 44000 Sisak, Croatia; (N.P.); (L.T.); (E.L.-M.)
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Liborija Lugović-Mihić
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Dermatovenereology, Sestre milosrdnice University Hospital Center, 10000 Zagreb, Croatia;
| | - Lucija Tomić
- Department of Dermatology and Venereology, General Hospital, 44000 Sisak, Croatia; (N.P.); (L.T.); (E.L.-M.)
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ena Parać
- Department of Dermatovenereology, Sestre milosrdnice University Hospital Center, 10000 Zagreb, Croatia;
| | - Lovre Pedić
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Elvira Lazić-Mosler
- Department of Dermatology and Venereology, General Hospital, 44000 Sisak, Croatia; (N.P.); (L.T.); (E.L.-M.)
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Ohno Y, Nakamura T, Iwasaki T, Katsuyama A, Ichikawa S, Kihara A. Determining the structure of protein-bound ceramides, essential lipids for skin barrier function. iScience 2023; 26:108248. [PMID: 37965138 PMCID: PMC10641502 DOI: 10.1016/j.isci.2023.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Protein-bound ceramides, specialized ceramides covalently bound to corneocyte surface proteins, are essential for skin permeability barrier function. However, their exact structure and target amino acid residues are unknown. Here, we found that epoxy-enone (EE) ceramides, precursors of protein-bound ceramides, as well as their synthetic analog, formed stable conjugates only with Cys among nucleophilic amino acids. NMR spectroscopy revealed that the β-carbon of the enone was attached by the thiol group of Cys via a Michael addition reaction. We confirmed the presence of Cys-bound EE ceramides in mouse epidermis by mass spectrometry analysis of protease-digested epidermis samples. EE ceramides were reversibly released from protein-bound ceramides via sulfoxide elimination. We found that protein-bound ceramides with reversible release properties accounted for approximately 60% of total protein-bound ceramides, indicating that Cys-bound EE ceramides are the predominant protein-bound ceramides. Our findings provide clues to the molecular mechanism of skin barrier formation by protein-bound ceramides.
Collapse
Affiliation(s)
- Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Tetsuya Nakamura
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Takafumi Iwasaki
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Katsuyama
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
9
|
Rajkumar J, Chandan N, Lio P, Shi V. The Skin Barrier and Moisturization: Function, Disruption, and Mechanisms of Repair. Skin Pharmacol Physiol 2023; 36:174-185. [PMID: 37717558 DOI: 10.1159/000534136] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND The anatomic layers of the skin are well-defined, and a functional model of the skin barrier has recently been described. Barrier disruption plays a key role in several skin conditions, and moisturization is recommended as an initial treatment in conditions such as atopic dermatitis. This review aimed to analyze the skin barrier in the context of the function model, with a focus on the mechanisms by which moisturizers support each of the functional layers of the skin barrier to promote homeostasis and repair. SUMMARY The skin barrier is comprised of four interdependent layers - physical, chemical, microbiologic, and immunologic - which maintain barrier structure and function. Moisturizers target disruption affecting each of these four layers through several mechanisms and were shown to improve transepidermal water loss in several studies. Occlusives, humectants, and emollients occlude the surface of the stratum corneum (SC), draw water from the dermis into the epidermis, and assimilate into the SC, respectively, in order to strengthen the physical skin barrier. Acidic moisturizers bolster the chemical skin barrier by supporting optimal enzymatic function, increasing ceramide production, and facilitating ideal conditions for commensal microorganisms. Regular moisturization may strengthen the immunologic skin barrier by reducing permeability and subsequent allergen penetration and sensitization. KEY MESSAGES The physical, chemical, microbiologic, and immunologic layers of the skin barrier are each uniquely impacted in states of skin barrier disruption. Moisturizers target each of the layers of the skin barrier to maintain homeostasis and facilitate repair.
Collapse
Affiliation(s)
- Jeffrey Rajkumar
- Department of Dermatology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Neha Chandan
- Department of Dermatology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Peter Lio
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vivian Shi
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Alaska, USA
| |
Collapse
|
10
|
Brash AR, Noguchi S, Boeglin WE, Calcutt MW, Stec DF, Schneider C, Meyer JM. Two C18 hydroxy-cyclohexenone fatty acids from mammalian epidermis: Potential relation to 12R-lipoxygenase and covalent binding of ceramides. J Biol Chem 2023; 299:104739. [PMID: 37086788 PMCID: PMC10209020 DOI: 10.1016/j.jbc.2023.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023] Open
Abstract
A key requirement in forming the water permeability barrier in the mammalian epidermis is the oxidation of linoleate esterified in a skin-specific acylceramide by the sequential actions of 12R-lipoxygenase, epidermal lipoxygenase-3, and the epoxyalcohol dehydrogenase SDR9C7 (short-chain dehydrogenase-reductase family 7 member 9). By mechanisms that remain unclear, this oxidation pathway promotes the covalent binding of ceramides to protein, forming a critical structure of the epidermal barrier, the corneocyte lipid envelope. Here, we detected, in porcine, mouse, and human epidermis, two novel fatty acid derivatives formed by KOH treatment from precursors covalently bound to protein: a "polar" lipid chromatographing on normal-phase HPLC just before omega-hydroxy ceramide and a "less polar" lipid nearer the solvent front. Approximately 100 μg of the novel lipids were isolated from porcine epidermis, and the structures were established by UV-spectroscopy, LC-MS, GC-MS, and NMR. Each is a C18 fatty acid and hydroxy-cyclohexenone with the ring on carbons C9-C14 in the polar lipid and C8-C13 in the less polar lipid. Overnight culture of [14C]linoleic acid with whole mouse skin ex vivo led to recovery of the 14C-labeled hydroxy-cyclohexenones. We deduce they are formed from covalently bound precursors during the KOH treatment used to release esterified lipids. KOH-induced intramolecular aldol reactions from a common precursor can account for their formation. Discovery of these hydroxy-cyclohexenones presents an opportunity for a reverse pathway analysis, namely to work back from these structures to identify their covalently bound precursors and relationship to the linoleate oxidation pathway.
Collapse
Affiliation(s)
- Alan R Brash
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Saori Noguchi
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William E Boeglin
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - M Wade Calcutt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Donald F Stec
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jason M Meyer
- Department of Dermatology, Vanderbilt University Medical Center, and Dermatology Service, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Sakamaki JI, Mizushima N. Cell biology of protein-lipid conjugation. Cell Struct Funct 2023; 48:99-112. [PMID: 37019684 PMCID: PMC10721952 DOI: 10.1247/csf.23016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Protein-lipid conjugation is a widespread modification involved in many biological processes. Various lipids, including fatty acids, isoprenoids, sterols, glycosylphosphatidylinositol, sphingolipids, and phospholipids, are covalently linked with proteins. These modifications direct proteins to intracellular membranes through the hydrophobic nature of lipids. Some of these membrane-binding processes are reversible through delipidation or by reducing the affinity to membranes. Many signaling molecules undergo lipid modification, and their membrane binding is important for proper signal transduction. The conjugation of proteins to lipids also influences the dynamics and function of organellar membranes. Dysregulation of lipidation has been associated with diseases such as neurodegenerative diseases. In this review, we first provide an overview of diverse forms of protein-lipid conjugation and then summarize the catalytic mechanisms, regulation, and roles of these modifications.Key words: lipid, lipidation, membrane, organelle, protein modification.
Collapse
Affiliation(s)
- Jun-ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Sassa T, Kihara A. Involvement of ω-O-acylceramides and protein-bound ceramides in oral permeability barrier formation. Cell Rep 2023; 42:112363. [PMID: 37054712 DOI: 10.1016/j.celrep.2023.112363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
The permeability barrier present in the oral cavity is critical for protection from infection. Although lipids have properties suitable for permeability barrier formation, little is known about their role in oral barrier formation. Here, we show the presence of ω-O-acylceramides (acylceramides) and protein-bound ceramides, which are essential for the formation of permeability barriers in the epidermis, in the oral mucosae (buccal and tongue mucosae), esophagus, and stomach in mice. Conditional knockout of the fatty acid elongase Elovl1, which is involved in the synthesis of ≥C24 ceramides including acylceramides and protein-bound ceramides, in the oral mucosae and esophagus causes increased pigment penetration into the mucosal epithelium of the tongue and enhanced aversive responses to capsaicin-containing water. We find acylceramides in the buccal and gingival mucosae and protein-bound ceramides in the gingival mucosa in humans. These results indicate that acylceramides and protein-bound ceramides are important for oral permeability barrier formation.
Collapse
Affiliation(s)
- Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
13
|
Berdyshev E, Kim J, Kim BE, Goleva E, Lyubchenko T, Bronova I, Bronoff AS, Xiao O, Kim J, Kim S, Kwon M, Lee S, Seo YJ, Kim K, Choi SJ, Oh SY, Kim SH, Yu SY, Hwang SY, Ahn K, Leung DYM. Stratum corneum lipid and cytokine biomarkers at age 2 months predict the future onset of atopic dermatitis. J Allergy Clin Immunol 2023; 151:1307-1316. [PMID: 36828081 DOI: 10.1016/j.jaci.2023.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) commonly occurs in children and can progress into severe phenotypes or atopic march, causing significant impairment in quality of life. It is important to find early biomarkers of future onset of AD before any clinical manifestations. OBJECTIVE We sought to find early predictors of future onset of AD in skin stratum corneum (SC). METHODS Skin tape strips were collected from the forearm of newborns (n = 111) with and without family history of atopic diseases at the age of 2 months before any signs of clinical AD. Children were clinically monitored until they reached age 2 years to ensure the presence or absence of AD. Skin tape strips were subjected to lipidomic analyses by the liquid chromatography electrospray ionization tandem mass spectrometry and cytokine determination by Meso Scale Discovery U-Plex assay. RESULTS Overall, 22 of 74 (29.7%) and 5 of 37 (13.5%) infants developed AD in the risk group and the control group, respectively. In the SC of future AD children, protein-bound ceramides were decreased (P < .001), whereas unsaturated sphingomyelin species (P < .0001) and "short-chain" nonhydroxy fatty acid sphingosine and alpha-hydroxy fatty acid sphingosine ceramides were elevated (P < .01 and .05, respectively) as compared with healthy children. Thymic stromal lymphopoietin and IL-13 levels were increased in the SC of future AD subjects (by 74.5% and 78.3%, P = .0022 and P < .0001, respectively). Multivariable logistic regression analysis revealed strong AD predicting power of the combination of family history, type 2 cytokines, and dysregulated lipids, with an odds ratio reaching 54.0 (95% CI, 9.2-317.5). CONCLUSIONS Noninvasive skin tape strip analysis at age 2 months can identify asymptomatic children at risk of future AD development with a high probability.
Collapse
Affiliation(s)
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea
| | - Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Irina Bronova
- Department of Medicine, National Jewish Health, Denver, Colo
| | | | - Olivia Xiao
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Jiwon Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea
| | - Sukyung Kim
- Department of Pediatrics, Hallym University Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Hwasung, Korea
| | - Mijeong Kwon
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sungjoo Lee
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Yu Jeong Seo
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Kyunga Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea; Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea; Department of Data Convergence & Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Hwan Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, Korea
| | - So Yeon Yu
- Department of Molecular and Life Science, Hanyang University, Ansan, Korea
| | - Seung Yong Hwang
- Department of Molecular and Life Science, Hanyang University, Ansan, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea.
| | | |
Collapse
|
14
|
Arai A, Takeichi T, Wakamoto H, Sassa T, Ito Y, Murase Y, Ogi T, Akiyama M, Kihara A. Ceramide profiling of stratum corneum in Sjögren-Larsson syndrome. J Dermatol Sci 2022; 107:114-122. [PMID: 35973883 DOI: 10.1016/j.jdermsci.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 08/07/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Sjögren-Larsson syndrome (SLS) is a neurocutaneous disorder whose causative gene is the fatty aldehyde dehydrogenase ALDH3A2 and of which ichthyosis is the major skin symptom. The stratum corneum contains a variety of ceramides, among which ω-O-acylceramides (acylceramides) and protein-bound ceramides are essential for skin permeability barrier formation. OBJECTIVES To determine the ceramide classes/species responsible for SLS pathogenesis and the enzymes that are impaired in SLS. METHODS Genomic DNA was collected from peripheral blood samples from an SLS patient and her parents, and whole-genome sequencing and Sanger sequencing were performed. Lipids were extracted from stratum corneum samples from the SLS patient and healthy volunteers and subjected to ceramide profiling via liquid chromatography coupled with tandem mass spectrometry. RESULTS A duplication (c.55_130dup) and a missense mutation (p.Lys447Glu) were found in the patient's ALDH3A2 gene. The patient had reduced levels of all acylceramide classes, with total acylceramide levels at 25 % of healthy controls. Reductions were also observed for several nonacylated ceramides: ceramides with phytosphingosine or 6-hydroxysphingosine in the long-chain base moiety were reduced to 24 % and 41 % of control levels, respectively, and ceramides with an α-hydroxy fatty acid as the fatty acid moiety were reduced to 29 %. The fatty acid moiety was shortened in many nonacylated ceramide classes. CONCLUSION These results suggest that reduced acylceramide levels are a primary cause of the ichthyosis symptoms of SLS, but reductions in other ceramide classes may also be involved.
Collapse
Affiliation(s)
- Ayami Arai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Wakamoto
- Department of Pediatrics, Ehime Rehabilitation Center for Children, Ehime, Japan
| | - Takayuki Sassa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yasutoshi Ito
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Murase
- Department of Pediatrics, Ehime Rehabilitation Center for Children, Ehime, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
15
|
Nohara T, Ohno Y, Kihara A. Impaired production of skin barrier lipid acylceramides and abnormal localization of PNPLA1 due to ichthyosis-causing mutations in PNPLA1. J Dermatol Sci 2022; 107:89-94. [DOI: 10.1016/j.jdermsci.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 10/16/2022]
|
16
|
Dähnhardt D, Dähnhardt-Pfeiffer S, Schulte-Walter J, Hanisch E, Neubourg T, Fölster-Holst R. Comparison of lipid foam cream and basic cream on epidermal reconstruction in mild atopic eczema. Skin Pharmacol Physiol 2022; 35:282-290. [PMID: 35705066 DOI: 10.1159/000525283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/11/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Basic therapy is of central importance in the treatment of atopic eczema. Using electron microscopic images, the morphology of epidermal skin barrier and its lipids was investigated after application of a lipid foam cream and basic cream. METHODS Patients with two contralateral comparable atopic eczema (local SCORAD 1-10) on the forearms were tested. Eczema was treated with a lipid foam cream or basic cream twice daily for 28 days. At the beginning, after 14 days and at the end of application, the local SCORAD, transepidermal water loss (TEWL), skin hydration, intercellular lipid length (ICLL) in the intercellular space (ICS) of the stratum corneum (SC) and skin lipids were determined. RESULTS After application of the foam cream, the epidermal skin barrier could be completely restored and corresponded to skin-healthy skin, while the epiderrmal skin barrier could not reach this state after care with the basic cream. The content of lipids in the SC increases significantly by 31% after basic cream treatment, whereas they are significantly increased by 85% after application of the lipid foam cream. The local SCORAD improved for both treatments to about the same extent, no significant results could be shown for TEWL and skin hydration. CONCLUSION In subjects with mild atopic eczema, the lipid foam cream leads to a measurable recovery of the skin barrier which is much more pronounced in comparison to the basic cream.
Collapse
Affiliation(s)
| | | | | | | | | | - Regina Fölster-Holst
- Klinik für Dermatologie, Allergologie und Venerologie, UKSH, Campus Kiel, Universitäts-Hautklinik Kiel, Kiel, Germany
| |
Collapse
|
17
|
Suzuki M, Ohno Y, Kihara A. Whole picture of human stratum corneum ceramides, including the chain-length diversity of long-chain bases. J Lipid Res 2022; 63:100235. [PMID: 35654151 PMCID: PMC9240646 DOI: 10.1016/j.jlr.2022.100235] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Ceramides are essential lipids for skin permeability barrier function, and a wide variety of ceramide species exist in the stratum corneum (SC). Although ceramides with long-chain bases (LCBs) of various lengths have been identified in the human SC, a quantitative analysis that distinguishes ceramide species with different LCB chain lengths has not been yet published. Therefore, the whole picture of human SC ceramides remains unclear. Here, we conducted LC/MS/MS analyses to detect individual ceramide species differing in both the LCB and FA chain lengths and quantified 1,327 unbound ceramides and 254 protein-bound ceramides: the largest number of ceramide species reported to date. Ceramides containing an LCB whose chain length was C16–26 were present in the human SC. Of these, C18 (28.6%) was the most abundant, followed by C20 (24.8%) and C22 (12.8%). Each ceramide class had a characteristic distribution of LCB chain lengths and was divided into five groups according to this distribution. There was almost no difference in FA composition between the ceramide species containing LCBs of different chain lengths. Furthermore, we demonstrated that one of the serine palmitoyltransferase (SPT) complexes, SPTLC1/SPTLC3/SPTSSB, was able to produce C16–24 LCBs. The expression levels of all subunits constituting the SPT complexes increased during keratinocyte differentiation, resulting in the observed chain-length diversity of LCBs in the human SC. This study provides a molecular basis for elucidating human SC ceramide diversity and the pathogenesis of skin disorders.
Collapse
Affiliation(s)
- Madoka Suzuki
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
18
|
Murata T, Honda T, Mostafa A, Kabashima K. Stratum corneum as polymer sheet: concept and cornification processes. Trends Mol Med 2022; 28:350-359. [PMID: 35337733 DOI: 10.1016/j.molmed.2022.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
The skin barrier protects our body from external insults and water loss through a specialized layer, the stratum corneum. The stratum corneum, an accumulation of dead keratinocytes (corneocytes), comprises lipids and supporting cell bodies. We propose a framework of lipid-filled polymer sheet of corneocytes, a unique structure that achieves flexibility and robustness, updating the rigid image of the historical bricks-and-mortar model. The polymerization of polymer sheet (cornification) by cell death of keratinocytes (corneoptosis) is delicately and dynamically controlled by cytoplasmic calcium ion and pH. Understanding the structure and formation of the stratum corneum can lead to better treatments for skin diseases and a better understanding of the evolution of the stratum corneum.
Collapse
Affiliation(s)
- Teruasa Murata
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Alshimaa Mostafa
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| |
Collapse
|
19
|
The Linoleic Acid Content of the Stratum Corneum of Ichthyotic Golden Retriever Dogs Is Reduced as Compared to Healthy Dogs and a Significant Part Is Oxidized in Both Free and Esterified Forms. Metabolites 2021; 11:metabo11120803. [PMID: 34940561 PMCID: PMC8704365 DOI: 10.3390/metabo11120803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Golden Retrievers may suffer from Pnpl1-related inherited ichthyosis. Our study shows that in the stratum corneum (SC) of ichthyotic dogs, linoleic acid (LA) is also present in the form of 9-keto-octadecadienoic acid (9-KODE) instead of the acylacid form as in normal dogs. The fatty acids purified from SC strips (LA, acylacids) were characterized by liquid chromatography-tandem mass spectrometry (LC-MS) and atmospheric pressure chemical ionization (APCI). Electrospray ionization (ESI) and MS2(MS/MS Tandem mass spectrum/spectra)/M3 (MS/MS/MS Tandem mass spectrum/spectra) fragmentation indicated the positions of the double bonds in 9-KODE. We showed that ichthyotic dogs have a threefold lower LA content in the form of acylacids. The MS2 fragmentation of acyl acids showed in some peaks the presenceof an ion at the m/z 279, instead of an ion at m/z 293 which is characteristic of LA. The detected variant was identified upon MS3 fragmentation as 9-keto-octadecadienoic acid (9-KODE), and the level of this keto-derivative was increased in ichthyotic dogs. We showed by the APCI that such keto forms of LA are produced from hydroperoxy-octadecadienoic acids (HpODE) upon dehydration. In conclusion, the free form of 9-KODE was detected in ichthyotic SC up to fivefold as compared to unaffected dogs, and analyses by HPLC (High performance liquid chromatography) and ESI-MS (Electrospray Ionization-Mass Spectrometry) indicated its production via dehydration of native 9-HpODE.
Collapse
|
20
|
Ohta K, Hiraki S, Miyanabe M, Ueki T, Manabe Y, Sugawara T. Dietary Ceramide Prepared from Soy Sauce Lees Improves Skin Barrier Function in Hairless Mice. J Oleo Sci 2021; 70:1325-1334. [PMID: 34373410 DOI: 10.5650/jos.ess21128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dietary sphingolipids such as glucosylceramide and sphingomyelin are known to improve the skin barrier function of damaged skin. In this study, we focused on free-ceramide prepared from soy sauce lees, which is a byproduct of soy sauce production. The effects of dietary soy sauce lees ceramide on the skin of normal mice were evaluated and compared with those of dietary maize glucosylceramide. We found that transepidermal water loss value was significantly suppressed by dietary supplementation with soy sauce lees ceramide as effectively as or more effectively than maize glucosylceramide. Although the content of total and each subclass of ceramide in the epidermis was not significantly altered by dietary sphingolipids, that of 12 types of ceramide molecules, which were not present in dietary sources, was significantly increased upon ingestion of maize glucosylceramide and showed a tendency to increase with soy sauce lees ceramide intake. In addition, the mRNA expression of ceramide synthase 4 and involucrin in the skin was downregulated by sphingolipids. This study, for the first time, demonstrated that dietary soy sauce lees ceramide enhances skin barrier function in normal hairless mice, although further studies are needed to clarify the molecular mechanism.
Collapse
Affiliation(s)
- Kazushi Ohta
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | | | | | | | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
21
|
Bouwstra JA, Helder RW, El Ghalbzouri A. Human skin equivalents: Impaired barrier function in relation to the lipid and protein properties of the stratum corneum. Adv Drug Deliv Rev 2021; 175:113802. [PMID: 34015420 DOI: 10.1016/j.addr.2021.05.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022]
Abstract
To advance drug development representative reliable skin models are indispensable. Animal skin as test model for human skin delivery is restricted as their properties greatly differ from human skin. In vitro 3D-human skin equivalents (HSEs) are valuable tools as they recapitulate important aspects of the human skin. However, HSEs still lack the full barrier functionality as observed in native human skin, resulting in suboptimal screening outcome. In this review we provide an overview of established in-house and commercially available HSEs and discuss in more detail to what extent their skin barrier biology is mimicked in vitro focusing on the lipid properties and cornified envelope. Further, we will illustrate how underlying factors, such as culture medium improvements and environmental factors affect the barrier lipids. Lastly, potential improvements in skin barrier function will be proposed aiming at a new generation of HSEs that may replace animal skin delivery studies fully.
Collapse
|
22
|
Lim SH, Kim EJ, Lee CH, Park GH, Yoo KM, Nam SJ, Shin KO, Park K, Choi EH. A Lipid Mixture Enriched by Ceramide NP with Fatty Acids of Diverse Chain Lengths Contributes to Restore the Skin Barrier Function Impaired by Topical Corticosteroid. Skin Pharmacol Physiol 2021; 35:112-123. [PMID: 34348350 DOI: 10.1159/000518517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/10/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The stratum corneum (SC) is a skin barrier that consists of corneocytes, intercellular lipids, and corneodesmosomes. Ceramides are composed of sphingoid bases linked with various types of fatty acids (FAs), and they are an essential constituent of SC intercellular lipids. Among their subtypes, ceramide NP with a phytosphingosine base is especially important. Most of the previous studies on barrier recovery have focused on a specific ceramide with a single chain FA, not with diverse chain lengths. Skin barrier function is impaired by various factors, including topical corticosteroid. OBJECTIVE We evaluated whether a lipid mixture enriched by ceramide NP with FAs of diverse chain lengths (CER [NP]*) can restore the skin barrier function impaired by topical corticosteroid. METHODS Twenty-seven healthy adult male volunteers were recruited. Topical corticosteroid was applied on both volar forearms of volunteers. Then, the test cream containing a lipid mixture with CER (NP)* was applied on the left forearm, and a vehicle cream without a lipid mixture was applied on the right forearm of each subject. The functional parameters of the skin barrier were compared before and after the treatment. Epidermal differentiation markers, hyaluronic acid synthase 3 (HAS3), cytokine levels, and the lipid profiles in the SC were analyzed. RESULTS The functional parameters of the skin barrier, such as barrier recovery rate, SC integrity, and SC hydration were significantly improved in the test cream-applied site compared to the vehicle cream-applied sites. Filaggrin and HAS3 levels were significantly higher in the sites applied with the test cream. Interleukin (IL)-1α levels were also significantly increased in these sites. IL-2, IL-6, IL-10, and IL-13 levels were significantly decreased in the test cream-applied sites. Lipid analyses showed that C18, C20, and total ceramide NP levels significantly increased in the sites where the test cream was applied. Also, C16, C18, C20, C24, and total ceramide NP levels were significantly elevated in the test cream-applied sites after acute barrier disruption. CONCLUSION Our results demonstrate that a lipid mixture enriched by CER (NP)* could recover the barrier function impaired by topical corticosteroid.
Collapse
Affiliation(s)
- Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eun Jung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Chung Hyuk Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | | | | | | | - Kyong-Oh Shin
- The Korean Institute of Nutrition, Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Kyungho Park
- The Korean Institute of Nutrition, Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
23
|
Role of the Permeability Barrier in Contact Dermatitis. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Role of Antimicrobial Peptides in Skin Barrier Repair in Individuals with Atopic Dermatitis. Int J Mol Sci 2020; 21:ijms21207607. [PMID: 33066696 PMCID: PMC7589391 DOI: 10.3390/ijms21207607] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease that exhibits a complex interplay of skin barrier disruption and immune dysregulation. Patients with AD are susceptible to cutaneous infections that may progress to complications, including staphylococcal septicemia. Although most studies have focused on filaggrin mutations, the physical barrier and antimicrobial barrier also play critical roles in the pathogenesis of AD. Within the physical barrier, the stratum corneum and tight junctions play the most important roles. The tight junction barrier is involved in the pathogenesis of AD, as structural and functional defects in tight junctions not only disrupt the physical barrier but also contribute to immunological impairments. Furthermore, antimicrobial peptides, such as LL-37, human b-defensins, and S100A7, improve tight junction barrier function. Recent studies elucidating the pathogenesis of AD have led to the development of barrier repair therapy for skin barrier defects in patients with this disease. This review analyzes the association between skin barrier disruption in patients with AD and antimicrobial peptides to determine the effect of these peptides on skin barrier repair and to consider employing antimicrobial peptides in barrier repair strategies as an additional approach for AD management.
Collapse
|
25
|
Takeichi T, Hirabayashi T, Miyasaka Y, Kawamoto A, Okuno Y, Taguchi S, Tanahashi K, Murase C, Takama H, Tanaka K, Boeglin WE, Calcutt MW, Watanabe D, Kono M, Muro Y, Ishikawa J, Ohno T, Brash AR, Akiyama M. SDR9C7 catalyzes critical dehydrogenation of acylceramides for skin barrier formation. J Clin Invest 2020; 130:890-903. [PMID: 31671075 DOI: 10.1172/jci130675] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
The corneocyte lipid envelope, composed of covalently bound ceramides and fatty acids, is important to the integrity of the permeability barrier in the stratum corneum, and its absence is a prime structural defect in various skin diseases associated with defective skin barrier function. SDR9C7 encodes a short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7) recently found mutated in ichthyosis. In a patient with SDR9C7 mutation and a mouse Sdr9c7-KO model, we show loss of covalent binding of epidermal ceramides to protein, a structural fault in the barrier. For reasons unresolved, protein binding requires lipoxygenase-catalyzed transformations of linoleic acid (18:2) esterified in ω-O-acylceramides. In Sdr9c7-/- epidermis, quantitative liquid chromatography-mass spectometry (LC-MS) assays revealed almost complete loss of a species of ω-O-acylceramide esterified with linoleate-9,10-trans-epoxy-11E-13-ketone; other acylceramides related to the lipoxygenase pathway were in higher abundance. Recombinant SDR9C7 catalyzed NAD+-dependent dehydrogenation of linoleate 9,10-trans-epoxy-11E-13-alcohol to the corresponding 13-ketone, while ichthyosis mutants were inactive. We propose, therefore, that the critical requirement for lipoxygenases and SDR9C7 is in producing acylceramide containing the 9,10-epoxy-11E-13-ketone, a reactive moiety known for its nonenzymatic coupling to protein. This suggests a mechanism for coupling of ceramide to protein and provides important insights into skin barrier formation and pathogenesis.
Collapse
Affiliation(s)
- Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akane Kawamoto
- Biological Science Research Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Shijima Taguchi
- Division of Dermatology, Mito Kyodo General Hospital, Mito, Ibaraki, Japan
| | - Kana Tanahashi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chiaki Murase
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Takama
- Department of Dermatology, Aichi Medical University, Nagakute, Japan
| | - Kosei Tanaka
- Analytical Science Research Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | | | - M Wade Calcutt
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Daisuke Watanabe
- Department of Dermatology, Aichi Medical University, Nagakute, Japan
| | - Michihiro Kono
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinao Muro
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junko Ishikawa
- Biological Science Research Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Alan R Brash
- Departments of Pharmacology and Biochemistry and
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
26
|
Akiyama M. Acylceramide is a key player in skin barrier function: insight into the molecular mechanisms of skin barrier formation and ichthyosis pathogenesis. FEBS J 2020. [DOI: 10.1111/febs.15497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
27
|
Role of the Permeability Barrier in Contact Dermatitis. Contact Dermatitis 2020. [DOI: 10.1007/978-3-319-72451-5_6-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Assi A, Bakar J, Libong D, Sarkees E, Solgadi A, Baillet-Guffroy A, Michael-Jubeli R, Tfayli A. Comprehensive characterization and simultaneous analysis of overall lipids in reconstructed human epidermis using NPLC/HR-MSn: 1-O-E (EO) Cer, a new ceramide subclass. Anal Bioanal Chem 2019; 412:777-793. [DOI: 10.1007/s00216-019-02301-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
29
|
Petrunin DD. Pharmacotherapy: Its impact on morphofunctional characteristics of the epidermal barrier. VESTNIK DERMATOLOGII I VENEROLOGII 2019. [DOI: 10.25208/0042-4609-2019-95-1-59-76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Various pharmaceuticals used for topical and systemic therapy are capable of exerting significant impact on morphological and physiological characteristics of human epidermis, as well as its barrier properties. This may affect the course of dermatologic diseases and the efficacy of their treatment. In this literature review, the author analyzes the impact of various pharmaceutical classes on the morphofunctional characteristics of the epidermal barrier and formulates recommendations for skin disease treatment.
Collapse
|
30
|
Boiten W, Helder R, van Smeden J, Bouwstra J. Selectivity in cornified envelop binding of ceramides in human skin and the role of LXR inactivation on ceramide binding. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1206-1213. [PMID: 31112754 DOI: 10.1016/j.bbalip.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
The cornified lipid envelope (CLE) is a lipid monolayer covalently bound to the outside of corneocytes and is part of the stratum corneum (SC). The CLE is suggested to act as a scaffold for the unbound SC lipids. By profiling the bound CLE ceramides, a new subclass was discovered and identified as an omega-hydroxylated dihydrosphingosine (OdS) ceramide. Bound glucosylceramides were observed in superficial SC layers of healthy human skin. To investigate the relation between bound and unbound SC ceramides, the composition of both fractions was analyzed and compared. Selectivity in ceramide binding towards unsaturated ceramides and ceramides with a shorter chain length was observed. The selectivity in ceramide species bound to the cornified envelope is thought to have a physiological function in corneocyte flexibility. Next, it was examined if skin models exhibit an altered bound ceramide composition and if the composition was dependent on liver X-receptor (LXR) activation. The effects of an LXR agonist and antagonist on the bound ceramides composition of a full thickness model (FTM) were analyzed. In FTMs, a decreased amount of bound ceramides was observed compared to native human skin. Furthermore, FTMs had a bound ceramide fraction which consisted mostly of unsaturated and shorter ceramides. The LXR antagonist had a normalizing effect on the FTM bound ceramide composition. The agonist exhibited minimal effects. We show that ceramide binding is a selective process, yet, still is contingent on lipid synthesized.
Collapse
Affiliation(s)
- Walter Boiten
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Richard Helder
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Jeroen van Smeden
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Joke Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
31
|
Leung DYM, Calatroni A, Zaramela LS, LeBeau PK, Dyjack N, Brar K, David G, Johnson K, Leung S, Ramirez-Gama M, Liang B, Rios C, Montgomery MT, Richers BN, Hall CF, Norquest KA, Jung J, Bronova I, Kreimer S, Talbot CC, Crumrine D, Cole RN, Elias P, Zengler K, Seibold MA, Berdyshev E, Goleva E. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Sci Transl Med 2019; 11:eaav2685. [PMID: 30787169 PMCID: PMC7676854 DOI: 10.1126/scitranslmed.aav2685] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
Skin barrier dysfunction has been reported in both atopic dermatitis (AD) and food allergy (FA). However, only one-third of patients with AD have FA. The purpose of this study was to use a minimally invasive skin tape strip sampling method and a multiomics approach to determine whether children with AD and FA (AD FA+) have stratum corneum (SC) abnormalities that distinguish them from AD without FA (AD FA-) and nonatopic (NA) controls. Transepidermal water loss was found to be increased in AD FA+. Filaggrin and the proportion of ω-hydroxy fatty acid sphingosine ceramide content in nonlesional skin of children with AD FA+ were substantially lower than in AD FA- and NA skin. These abnormalities correlated with morphologic changes in epidermal lamellar bilayer architecture responsible for barrier homeostasis. Shotgun metagenomic studies revealed that the nonlesional skin of AD FA+ had increased abundance of Staphylococcus aureus compared to NA. Increased expression of keratins 5, 14, and 16 indicative of hyperproliferative keratinocytes was observed in the SC of AD FA+. The skin transcriptome of AD FA+ had increased gene expression for dendritic cells and type 2 immune pathways. A network analysis revealed keratins 5, 14, and 16 were positively correlated with AD FA+, whereas filaggrin breakdown products were negatively correlated with AD FA+. These data suggest that the most superficial compartment of nonlesional skin in AD FA+ has unique properties associated with an immature skin barrier and type 2 immune activation.
Collapse
Affiliation(s)
| | | | | | - Petra K LeBeau
- Rho Federal Systems Division Inc., Chapel Hill, NC 27517, USA
| | | | | | - Gloria David
- Rho Federal Systems Division Inc., Chapel Hill, NC 27517, USA
| | - Keli Johnson
- Rho Federal Systems Division Inc., Chapel Hill, NC 27517, USA
| | - Susan Leung
- National Jewish Health, Denver, CO 80206, USA
| | | | - Bo Liang
- University of California, San Diego, La Jolla, CA 92093, USA
| | - Cydney Rios
- National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | - John Jung
- National Jewish Health, Denver, CO 80206, USA
| | | | | | | | - Debra Crumrine
- University of California, San Francisco, San Francisco, CA 94121, USA
| | | | - Peter Elias
- University of California, San Francisco, San Francisco, CA 94121, USA
| | - Karsten Zengler
- University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
32
|
Hirabayashi T, Murakami M, Kihara A. The role of PNPLA1 in ω-O-acylceramide synthesis and skin barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:869-879. [PMID: 30290227 DOI: 10.1016/j.bbalip.2018.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/14/2022]
Abstract
The human genome encodes nine enzymes belonging to the patatin-like phospholipase domain-containing lipase (PNPLA)/Ca2+-independent phospholipase A2 (iPLA2) family. Although most PNPLA/iPLA2 enzymes are widely distributed and act on phospholipids or neutral lipids as (phospho)lipases to play homeostatic roles in lipid metabolism, the function of PNPLA1 remained a mystery until a few years ago. However, the recent finding that mutations in the human PNPLA1 gene are linked to autosomal recessive congenital ichthyosis (ARCI), as well as evidence obtained from biochemical and gene knockout studies, has shed light on the function of this enzyme in skin-specific sphingolipid metabolism rather than glycerophospholipid metabolism. PNPLA1 is specifically expressed in differentiated keratinocytes and plays a crucial role in the biosynthesis of ω-O-acylceramide, a particular class of sphingolipids that is essential for skin barrier function. PNPLA1 acts as a unique transacylase that specifically transfers linoleic acid from triglyceride to ω-hydroxy fatty acid in ceramide, thus giving rise to ω-O-acylceramide. In this review, we overview the biosynthetic route and biological role of epidermal ω-O-acylceramide, highlight the function of PNPLA1 as a bona fide acylceramide synthase required for proper skin barrier function and keratinocyte differentiation, and summarize the mutations of PNPLA1 currently identified in ARCI patients. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Tetsuya Hirabayashi
- Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
33
|
Wu L, Oshima T, Li M, Tomita T, Fukui H, Watari J, Miwa H. Filaggrin and tight junction proteins are crucial for IL-13-mediated esophageal barrier dysfunction. Am J Physiol Gastrointest Liver Physiol 2018; 315:G341-G350. [PMID: 29746170 DOI: 10.1152/ajpgi.00404.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eosinophilic esophagitis (EoE) is an allergy-mediated disease that is accompanied by IL-13 overexpression and an impaired esophageal barrier. Filaggrin (FLG) and tight junction (TJ) proteins are considered to contribute to epithelial barrier function. However, their functional involvement in EoE has not been elucidated. Here, we aimed to determine the IL-13-mediated barrier dysfunction and expression of TJ-related proteins in EoE and to characterize interactions among TJ-related proteins involved in the barrier function of the esophageal epithelium. Biopsy specimens from EoE patients were analyzed. Primary human esophageal epithelial cells (HEECs) were cultured using an air-liquid interface (ALI) system. The permeability of TJs was assayed by biotinylation. Transepithelial electrical resistance (TEER) was measured after stimulation with IL-13 and after siRNA silencing of FLG expression. FLG and TJ genes and proteins were assessed by quantitative RT-PCR, Western blot analysis, and immunofluorescent staining. The biotinylation reagent diffused through the paracellular spaces of whole stratified epithelial layers in EoE biopsy samples. The TEER decreased in ALI-cultured HEECs after IL-13 stimulation. Although the protein level of FLG decreased, that of the TJ proteins increased in the mucosa of EoE biopsy samples and in ALI-cultured HEECs after IL-13 stimulation. IL-13 altered the staining patterns of TJ proteins and the epithelial morphology. FLG siRNA transfection significantly decreased TEER. The IL-13-mediated reduced esophageal barrier is associated with the altered expression pattern but not with the levels of TJ-associated proteins. A deficiency of FLG altered the stratified epithelial barrier. NEW & NOTEWORTHY Esophageal permeability to small molecules was increased in patients with eosinophilic esophagitis (EoE) and could be induced by IL-13 in our unique air-liquid interface-cultured primary multilayer human esophageal epithelial cells in vitro. A deficiency of filaggrin disrupted the esophageal stratified epithelial barrier. The decreased esophageal barrier in EoE was associated with the altered staining pattern of tight junction proteins, although the levels of the proteins themselves do not appear to be changed.
Collapse
Affiliation(s)
- Liping Wu
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine , Nishinomiya , Japan.,Department of Gastroenterology, The Third People's Hospital of Chengdu , Chengdu , China
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine , Nishinomiya , Japan
| | - Min Li
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine , Nishinomiya , Japan.,Department of Gastroenterology, The Third People's Hospital of Chengdu , Chengdu , China
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine , Nishinomiya , Japan
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine , Nishinomiya , Japan
| | - Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine , Nishinomiya , Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine , Nishinomiya , Japan
| |
Collapse
|
34
|
Ishida-Yamamoto A, Igawa S, Kishibe M. Molecular basis of the skin barrier structures revealed by electron microscopy. Exp Dermatol 2018; 27:841-846. [PMID: 29704884 DOI: 10.1111/exd.13674] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
The barrier function of skin is indispensable for terrestrial animals. This function is mainly carried out by the epidermis, more specifically by its granular and cornified layers. The major structural components associated with this function are the intercellular lipid layer, desmosomes, corneodesmosomes, tight junctions, cornified cell envelope and keratin filaments. In this review, we discuss the current knowledge of their ultrastructure, their molecular basis and their relevance to skin disease.
Collapse
Affiliation(s)
| | - Satomi Igawa
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Mari Kishibe
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
35
|
From Mice to Men: An Evolutionary Conserved Breakdown of the Epidermal Calcium Gradient and Its Impact on the Cornified Envelope. COSMETICS 2018. [DOI: 10.3390/cosmetics5020035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, Banecki B, Gabig-Cimińska M. Abnormal Sphingolipid World in Inflammation Specific for Lysosomal Storage Diseases and Skin Disorders. Int J Mol Sci 2018; 19:E247. [PMID: 29342918 PMCID: PMC5796195 DOI: 10.3390/ijms19010247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Research in recent years has shown that sphingolipids are essential signalling molecules for the proper biological and structural functioning of cells. Long-term studies on the metabolism of sphingolipids have provided evidence for their role in the pathogenesis of a number of diseases. As many inflammatory diseases, such as lysosomal storage disorders and some dermatologic diseases, including psoriasis, atopic dermatitis and ichthyoses, are associated with the altered composition and metabolism of sphingolipids, more studies precisely determining the responsibilities of these compounds for disease states are required to develop novel pharmacological treatment opportunities. It is worth emphasizing that knowledge from the study of inflammatory metabolic diseases and especially the possibility of their treatment may lead to insight into related metabolic pathways, including those involved in the formation of the epidermal barrier and providing new approaches towards workable therapies.
Collapse
Affiliation(s)
- Marta Moskot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | | | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Magdalena Gabig-Cimińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
37
|
Honda Y, Kitamura T, Naganuma T, Abe T, Ohno Y, Sassa T, Kihara A. Decreased Skin Barrier Lipid Acylceramide and Differentiation-Dependent Gene Expression in Ichthyosis Gene Nipal4-Knockout Mice. J Invest Dermatol 2017; 138:741-749. [PMID: 29174370 DOI: 10.1016/j.jid.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/12/2022]
Abstract
NIPAL4 is one of the causative genes for autosomal recessive congenital ichthyosis. However, the role of NIPAL4 in skin barrier formation and the molecular mechanism of ichthyosis pathology caused by NIPAL4 mutations, have not yet been determined. Here, we found that Nipal4-knockout (KO) mice exhibited neonatal lethality due to skin barrier defects. Histological analyses showed several morphological abnormalities in the Nipal4-KO epidermis, including impairment of lipid multilayer structure formation, hyperkeratosis, immature keratohyalin granules, and developed heterochromatin structures. The levels of the skin barrier lipid acylceramide were decreased in Nipal4-KO mice. Expression of genes involved in skin barrier formation normally increases during keratinocyte differentiation, in which chromatin remodeling is involved. However, the induction of Krt1, Lor, Flg, Elovl1, and Dgat2 was impaired in Nipal4-KO mice. NIPAL4 is a putative Mg2+ transporter, and Mg2+ concentration in differentiated keratinocytes of Nipal4-KO mice was indeed lower than that of wild-type mice. Our results suggest that low Mg2+ concentration causes aberration in the proper chromatin remodeling process, which in turn leads to failure of differentiation-dependent gene induction in keratinocytes. Our findings provide insights into Mg2+-dependent regulation of gene expression and skin barrier formation during keratinocyte differentiation.
Collapse
Affiliation(s)
- Yuichi Honda
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Kitamura
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tatsuro Naganuma
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takaya Abe
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
38
|
Proksch E, Dähnhardt D, S. Dähnhardt-Pfeiffer, Fölster-Holst R. Epidermale Barrierestörung bei Dermatosen. Hautarzt 2016; 67:907-921. [DOI: 10.1007/s00105-016-3883-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Grond S, Eichmann TO, Dubrac S, Kolb D, Schmuth M, Fischer J, Crumrine D, Elias PM, Haemmerle G, Zechner R, Lass A, Radner FPW. PNPLA1 Deficiency in Mice and Humans Leads to a Defect in the Synthesis of Omega-O-Acylceramides. J Invest Dermatol 2016; 137:394-402. [PMID: 27751867 DOI: 10.1016/j.jid.2016.08.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 01/22/2023]
Abstract
Mutations in PNPLA1 have been identified as causative for autosomal recessive congenital ichthyosis in humans and dogs. So far, the underlying molecular mechanisms are unknown. In this study, we generated and characterized PNPLA1-deficient mice and found that PNPLA1 is crucial for epidermal sphingolipid synthesis. The absence of functional PNPLA1 in mice impaired the formation of omega-O-acylceramides and led to an accumulation of nonesterified omega-hydroxy-ceramides. As a consequence, PNPLA1-deficient mice lacked a functional corneocyte-bound lipid envelope leading to a severe skin barrier defect and premature death of newborn animals. Functional analyses of differentiated keratinocytes from a patient with mutated PNPLA1 demonstrated an identical defect in omega-O-acylceramide synthesis in human cells, indicating that PNPLA1 function is conserved among mammals and indispensable for normal skin physiology. Notably, topical application of epidermal lipids from wild-type onto Pnpla1-mutant mice promoted rebuilding of the corneocyte-bound lipid envelope, indicating that supplementation of ichthyotic skin with omega-O-acylceramides might be a therapeutic approach for the treatment of skin symptoms in individuals affected by omega-O-acylceramide deficiency.
Collapse
Affiliation(s)
- Susanne Grond
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venerology, and Allergology, Innsbruck Medical University, Innsbruck, Austria
| | - Dagmar Kolb
- ZMF, Center for Medical Research, Medical University of Graz, Graz, Austria; Institute of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venerology, and Allergology, Innsbruck Medical University, Innsbruck, Austria
| | - Judith Fischer
- Institute for Human Genetics, University Medical Center Freiburg, Freiburg i. Br., Germany
| | - Debra Crumrine
- Dermatology Service, Department of Veterans Affairs Medical Center, University of California, San Francisco, California, USA
| | - Peter M Elias
- Dermatology Service, Department of Veterans Affairs Medical Center, University of California, San Francisco, California, USA
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| |
Collapse
|
40
|
Cubillos S, Norgauer J. Low vitamin D-modulated calcium-regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol Med 2016; 38:1083-92. [PMID: 27573000 PMCID: PMC5029959 DOI: 10.3892/ijmm.2016.2718] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/01/2016] [Indexed: 11/06/2022] Open
Abstract
Psoriasis is an inflammatory skin disease with or without joint involvement. In this disease, the thickened epidermis and impaired barrier are associated with altered calcium gradients. Calcium and vitamin D are known to play important roles in keratinocyte differentiation and bone metabolism. Intracellular calcium is regulated by calcium-sensing receptor (CASR), calcium release-activated calcium modulator (ORAI) and stromal interaction molecule (STIM). Other proteins modulated by vitamin D play important roles in calcium regulation e.g., calbindin 1 (CALB1) and transient receptor potential cation channel 6 (TRPV6). In this study, we aimed to investigate the expression of calcium-regulating proteins in the plaques of patients with psoriasis vulgaris with or without joint inflammation. We confirmed low calcium levels, keratinocyte hyperproliferation and an altered epidermal barrier. The CASR, ORAI1, ORAI3, STIM1, CALB1 and TRPV6 mRNA, as well as the sterol 27-hydroxylase (CYP27A1), 25-hydroxyvitamin D3 1-α-hydroxylase (CYP27B1) and 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1) protein levels were low in the plaques of patients with psoriasis. We demonstrated S100 calcium-binding protein A7 (S100A7) overexpression in the plaques of patients with psoriasis vulgaris with joint inflammation, compared with those without joint involvement. We suggest an altered capacity to regulate the intracellular Ca2+ concentration ([Ca2+]i), characterized by a reduced expression of CASR, ORAI1, ORAI3, STIM1, CALB1 and TRPV6 associated with diminished levels of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], which may be associated with an altered balance between keratinocyte proliferation and differentiation in the psoriatic epidermis. Additionally, differences in S100A7 expression depend on the presence of joint involvement.
Collapse
Affiliation(s)
- Susana Cubillos
- Department of Dermatology, Jena University Hospital, D-07743 Jena, Germany
| | - Johannes Norgauer
- Department of Dermatology, Jena University Hospital, D-07743 Jena, Germany
| |
Collapse
|
41
|
CHA HWAJUN, HE CONGFEN, ZHAO HUA, DONG YINMAO, AN INSOOK, AN SUNGKWAN. Intercellular and intracellular functions of ceramides and their metabolites in skin (Review). Int J Mol Med 2016; 38:16-22. [DOI: 10.3892/ijmm.2016.2600] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/06/2016] [Indexed: 11/06/2022] Open
|
42
|
Chiba T, Thomas CP, Calcutt MW, Boeglin WE, O'Donnell VB, Brash AR. The Precise Structures and Stereochemistry of Trihydroxy-linoleates Esterified in Human and Porcine Epidermis and Their Significance in Skin Barrier Function: IMPLICATION OF AN EPOXIDE HYDROLASE IN THE TRANSFORMATIONS OF LINOLEATE. J Biol Chem 2016; 291:14540-54. [PMID: 27151221 PMCID: PMC4938176 DOI: 10.1074/jbc.m115.711267] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/02/2022] Open
Abstract
Creation of an intact skin water barrier, a prerequisite for life on dry land,
requires the lipoxygenase-catalyzed oxidation of the essential fatty acid linoleate,
which is esterified to the ω-hydroxyl of an epidermis-specific ceramide.
Oxidation of the linoleate moiety by lipoxygenases is proposed to facilitate
enzymatic cleavage of the ester bond, releasing free ω-hydroxyceramide for
covalent binding to protein, thus forming the corneocyte lipid envelope, a key
component of the epidermal barrier. Herein, we report the transformations of
esterified linoleate proceed beyond the initial steps of oxidation and epoxyalcohol
synthesis catalyzed by the consecutive actions of 12R-LOX and
epidermal LOX3. The major end product in human and porcine epidermis is a trihydroxy
derivative, formed with a specificity that implicates participation of an epoxide
hydrolase in converting epoxyalcohol to triol. Of the 16 possible triols arising from
hydrolysis of 9,10-epoxy-13-hydroxy-octadecenoates, using LC-MS and chiral analyses,
we identify and quantify specifically
9R,10S,13R-trihydroxy-11E-octadecenoate
as the single major triol esterified in porcine epidermis and the same isomer with
lesser amounts of its 10R diastereomer in human epidermis. The
9R,10S,13R-triol is formed by
SN2 hydrolysis of the
9R,10R-epoxy-13R-hydroxy-octadecenoate
product of the LOX enzymes, a reaction specificity characteristic of epoxide
hydrolase. The high polarity of triol over the primary linoleate products enhances
the concept that the oxidations disrupt corneocyte membrane lipids, promoting release
of free ω-hydroxyceramide for covalent binding to protein and sealing of the
waterproof barrier.
Collapse
Affiliation(s)
| | - Christopher P Thomas
- the Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - M Wade Calcutt
- Biochemistry and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | | | - Valerie B O'Donnell
- the Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | | |
Collapse
|
43
|
Tholen S, Wolf C, Mayer B, Knopf JD, Löffek S, Qian Y, Kizhakkedathu JN, Biniossek ML, Franzke CW, Schilling O. Skin Barrier Defects Caused by Keratinocyte-Specific Deletion of ADAM17 or EGFR Are Based on Highly Similar Proteome and Degradome Alterations. J Proteome Res 2016; 15:1402-17. [PMID: 27089454 DOI: 10.1021/acs.jproteome.5b00691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Keratinocyte-specific deletion of ADAM17 in mice impairs terminal differentiation of keratinocytes leading to severe epidermal barrier defects. Mice deficient for ADAM17 in keratinocytes phenocopy mice with a keratinocyte-specific deletion of epidermal growth factor receptor (EGFR), which highlights the role of ADAM17 as a "ligand sheddase" of EGFR ligands. In this study, we aim for the first proteomic/degradomic approach to characterize the disruption of the ADAM17-EGFR signaling axis and its consequences for epidermal barrier formation. Proteomic profiling of the epidermal proteome of mice deficient for either ADAM17 or EGFR in keratinocytes at postnatal days 3 and 10 revealed highly similar protein alterations for ADAM17 and EGFR deficiency. These include massive proteome alterations of structural and regulatory components important for barrier formation such as transglutaminases, involucrin, filaggrin, and filaggrin-2. Cleavage site analysis using terminal amine isotopic labeling of substrates revealed increased proteolytic processing of S100 fused-type proteins including filaggrin-2. Alterations in proteolytic processing are supported by altered abundance of numerous proteases upon keratinocyte-specific Adam17 or Egfr deletion, among them kallikreins, cathepsins, and their inhibitors. This study highlights the essential role of proteolytic processing for maintenance of a functional epidermal barrier. Furthermore, it suggests that most defects in formation of the postnatal epidermal barrier upon keratinocyte-specific ADAM17 deletion are mediated via EGFR.
Collapse
Affiliation(s)
- Stefan Tholen
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany
| | - Cristina Wolf
- Department of Dermatology, University Medical Center Freiburg , 79104 Freiburg, Germany
| | - Bettina Mayer
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany
| | - Julia D Knopf
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany
| | - Stefanie Löffek
- Department of Dermatology, University Medical Center Freiburg , 79104 Freiburg, Germany
| | - Yawen Qian
- Department of Dermatology, University Medical Center Freiburg , 79104 Freiburg, Germany
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine and Department of Chemistry, Centre for Blood Research, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany
| | - Claus-Werner Franzke
- Department of Dermatology, University Medical Center Freiburg , 79104 Freiburg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg , D-79104 Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| |
Collapse
|
44
|
Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog Lipid Res 2016; 63:50-69. [PMID: 27107674 DOI: 10.1016/j.plipres.2016.04.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Ceramide (Cer) is a structural backbone of sphingolipids and is composed of a long-chain base and a fatty acid. Existence of a variety of Cer species, which differ in chain-length, hydroxylation status, and/or double bond number of either of their hydrophobic chains, has been reported. Ceramide is produced by Cer synthases. Mammals have six Cer synthases (CERS1-6), each of which exhibits characteristic substrate specificity toward acyl-CoAs with different chain-lengths. Knockout mice for each Cer synthase show corresponding, isozyme-specific phenotypes, revealing the functional differences of Cers with different chain-lengths. Cer diversity is especially prominent in epidermis. Changes in Cer levels, composition, and chain-lengths are associated with atopic dermatitis. Acylceramide (acyl-Cer) specifically exists in epidermis and plays an essential role in skin permeability barrier formation. Accordingly, defects in acyl-Cer synthesis cause the cutaneous disorder ichthyosis with accompanying severe skin barrier defects. Although the molecular mechanism by which acyl-Cer is generated was long unclear, most genes involved in its synthesis have been identified recently. In Cer degradation pathways, the long-chain base moiety of Cer is converted to acyl-CoA, which is then incorporated mainly into glycerophospholipids. This pathway generates the lipid mediator sphingosine 1-phosphate. This review will focus on recent advances in our understanding of the synthesis and degradation pathways, physiological functions, and pathology of Cers/acyl-Cers.
Collapse
Affiliation(s)
- Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
45
|
Rizzello CG, Hernández-Ledesma B, Fernández-Tomé S, Curiel JA, Pinto D, Marzani B, Coda R, Gobbetti M. Italian legumes: effect of sourdough fermentation on lunasin-like polypeptides. Microb Cell Fact 2015; 14:168. [PMID: 26494432 PMCID: PMC4618940 DOI: 10.1186/s12934-015-0358-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background There is an increasing interest toward the use of legumes in food industry, mainly due to the quality of their protein fraction. Many legumes are cultivated and consumed around the world, but few data is available regarding the chemical or technological characteristics, and especially on their suitability to be fermented. Nevertheless,
sourdough fermentation with selected lactic acid bacteria has been recognized as the most efficient tool to improve some nutritional and functional properties. This study investigated the presence of lunasin-like polypeptides in nineteen traditional Italian legumes, exploiting the potential of the fermentation with selected lactic acid bacteria to increase the native concentration. An integrated approach based on chemical, immunological and ex vivo (human adenocarcinoma Caco-2 cell cultures) analyses was used to show the physiological potential of the lunasin-like polypeptides. Results Italian legume varieties, belonging to Phaseulus vulgaris, Cicer arietinum, Lathyrus sativus, Lens culinaris and Pisum sativum species, were milled and flours were chemically characterized and subjected to sourdough fermentation with selected Lactobacillus plantarum C48 and Lactobacillus brevis AM7, expressing different peptidase activities. Extracts from legume doughs (unfermented) and sourdoughs were subjected to western blot analysis, using an anti-lunasin primary antibody. Despite the absence of lunasin, different immunoreactive polypeptide bands were found. The number and the intensity of lunasin-like polypeptides increased during sourdough fermentation, as the consequence of the proteolysis of the native proteins carried out by the selected lactic acid bacteria. A marked inhibitory effect on the proliferation of human adenocarcinoma Caco-2 cells was observed using extracts from legume sourdoughs. In particular, sourdoughs from Fagiolo di Lamon, Cece dell’Alta Valle di Misa, and Pisello riccio di Sannicola flours were the most active, showing a decrease of Caco-2 cells viability up to 70 %. The over-expression of Caco-2 filaggrin and involucrin genes was also induced. Nine lunasin-like polypeptides, having similarity to lunasin, were identified. Conclusions The features of the sourdough fermented legume flours suggested the use for the manufacture of novel functional foods and/or pharmaceuticals preparations.
Collapse
Affiliation(s)
- Carlo Giuseppe Rizzello
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126, Bari, Italy.
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM CEI UAM + CSIC), Nicolás Cabrera, 9, 28049, Madrid, Spain.
| | - Samuel Fernández-Tomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM CEI UAM + CSIC), Nicolás Cabrera, 9, 28049, Madrid, Spain.
| | - José Antonio Curiel
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126, Bari, Italy.
| | | | | | - Rossana Coda
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Marco Gobbetti
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126, Bari, Italy.
| |
Collapse
|
46
|
Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules 2015; 5:545-89. [PMID: 25906193 PMCID: PMC4496685 DOI: 10.3390/biom5020545] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.
Collapse
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Johannes Bischof
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Maria Karolin Streubel
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Andrea Trost
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria.
| | - Klaus Richter
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|
47
|
Rinnerthaler M, Streubel MK, Bischof J, Richter K. Skin aging, gene expression and calcium. Exp Gerontol 2014; 68:59-65. [PMID: 25262846 DOI: 10.1016/j.exger.2014.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 02/07/2023]
Abstract
The human epidermis provides a very effective barrier function against chemical, physical and microbial insults from the environment. This is only possible as the epidermis renews itself constantly. Stem cells located at the basal lamina which forms the dermoepidermal junction provide an almost inexhaustible source of keratinocytes which differentiate and die during their journey to the surface where they are shed off as scales. Despite the continuous renewal of the epidermis it nevertheless succumbs to aging as the turnover rate of the keratinocytes is slowing down dramatically. Aging is associated with such hallmarks as thinning of the epidermis, elastosis, loss of melanocytes associated with an increased paleness and lucency of the skin and a decreased barrier function. As the differentiation of keratinocytes is strictly calcium dependent, calcium also plays an important role in the aging epidermis. Just recently it was shown that the epidermal calcium gradient in the skin that facilitates the proliferation of keratinocytes in the stratum basale and enables differentiation in the stratum granulosum is lost in the process of skin aging. In the course of this review we try to explain how this calcium gradient is built up on the one hand and is lost during aging on the other hand. How this disturbed calcium homeostasis is affecting the gene expression in aged skin and is leading to dramatic changes in the composition of the cornified envelope will also be discussed. This loss of the epidermal calcium gradient is not only specific for skin aging but can also be found in skin diseases such as Darier disease, Hailey-Hailey disease, psoriasis and atopic dermatitis, which might be very helpful to get a deeper insight in skin aging.
Collapse
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Maria Karolin Streubel
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Johannes Bischof
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Klaus Richter
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
48
|
van Smeden J, Janssens M, Gooris GS, Bouwstra JA. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:295-313. [PMID: 24252189 DOI: 10.1016/j.bbalip.2013.11.006] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 01/28/2023]
Abstract
The skin protects the body from unwanted influences from the environment as well as excessive water loss. The barrier function of the skin is located in the stratum corneum (SC). The SC consists of corneocytes embedded in a lipid matrix. This lipid matrix is crucial for the lipid skin barrier function. This paper provides an overview of the reported SC lipid composition and organization mainly focusing on healthy and diseased human skin. In addition, an overview is provided on the data describing the relation between lipid modulations and the impaired skin barrier function. Finally, the use of in vitro lipid models for a better understanding of the relation between the lipid composition, lipid organization and skin lipid barrier is discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- J van Smeden
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - M Janssens
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - G S Gooris
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - J A Bouwstra
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
49
|
Schulze H, Sandhoff K. Sphingolipids and lysosomal pathologies. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:799-810. [PMID: 24184515 DOI: 10.1016/j.bbalip.2013.10.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 01/12/2023]
Abstract
Endocytosed (glyco)sphingolipids are degraded, together with other membrane lipids in a stepwise fashion by endolysosomal enzymes with the help of small lipid binding proteins, the sphingolipid activator proteins (SAPs), at the surface of intraluminal lysosomal vesicles. Inherited defects in a sphingolipid-degrading enzyme or SAP cause the accumulation of the corresponding lipid substrates, including cytotoxic lysosphingolipids, such as galactosylsphingosine and glucosylsphingosine, and lead to a sphingolipidosis. Analysis of patients with prosaposin deficiency revealed the accumulation of intra-endolysosmal vesicles and membrane structures (IM). Feeding of prosaposin reverses the storage, suggesting inner membrane structures as platforms of sphingolipid degradation. Water soluble enzymes can hardly attack sphingolipids embedded in the membrane of inner endolysosomal vesicles. The degradation of sphingolipids with few sugar residues therefore requires the help of the SAPs, and is strongly stimulated by anionic membrane lipids. IMs are rich in anionic bis(monoacylglycero)phosphate (BMP). This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Heike Schulze
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53115 Bonn, Germany
| | - Konrad Sandhoff
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53115 Bonn, Germany.
| |
Collapse
|
50
|
Elias PM, Gruber R, Crumrine D, Menon G, Williams ML, Wakefield JS, Holleran WM, Uchida Y. Formation and functions of the corneocyte lipid envelope (CLE). Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:314-8. [PMID: 24076475 DOI: 10.1016/j.bbalip.2013.09.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Corneocytes in mammalian stratum corneum are surrounded by a monolayer of covalently bound ω-OH-ceramides that form the corneocyte (-bound) lipid envelope (CLE). We review here the structure, composition, and possible functions of this structure, with insights provided by inherited and acquired disorders of lipid metabolism. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA.
| | - Robert Gruber
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria; Department of Dermatology, University of California, San Francisco, CA, USA
| | - Debra Crumrine
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| | - Gopinathan Menon
- Department of Ornithology & Mammals, California Academy of Sciences, San Francisco, CA, USA
| | - Mary L Williams
- Departments of Dermatology and Pediatrics, University of California, San Francisco, CA, USA
| | - Joan S Wakefield
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| | - Walter M Holleran
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| | - Yoshikazu Uchida
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| |
Collapse
|