1
|
Collins J, Basarab GS, Chibale K, Osheroff N. Interactions between Zoliflodacin and Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enzymological Basis for Cellular Targeting. ACS Infect Dis 2024; 10:3071-3082. [PMID: 39082980 PMCID: PMC11320581 DOI: 10.1021/acsinfecdis.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Gyrase and topoisomerase IV are the cellular targets for fluoroquinolones, a critically important class of antibacterial agents used to treat a broad spectrum of human infections. Unfortunately, the clinical efficacy of the fluoroquinolones has been curtailed by the emergence of target-mediated resistance. This is especially true for Neisseria gonorrhoeae, the causative pathogen of the sexually transmitted infection gonorrhea. Spiropyrimidinetriones (SPTs), a new class of antibacterials, were developed to combat the growing antibacterial resistance crisis. Zoliflodacin is the most clinically advanced SPT and displays efficacy against uncomplicated urogenital gonorrhea in human trials. Like fluoroquinolones, the primary target of zoliflodacin in N. gonorrhoeae is gyrase, and topoisomerase IV is a secondary target. Because unbalanced gyrase/topoisomerase IV targeting has facilitated the evolution of fluoroquinolone-resistant bacteria, it is important to understand the underlying basis for the differential targeting of zoliflodacin in N. gonorrhoeae. Therefore, we assessed the effects of this SPT on the catalytic and DNA cleavage activities of N. gonorrhoeae gyrase and topoisomerase IV. In all reactions examined, zoliflodacin displayed higher potency against gyrase than topoisomerase IV. Moreover, zoliflodacin generated more DNA cleavage and formed more stable enzyme-cleaved DNA-SPT complexes with gyrase. The SPT also maintained higher activity against fluoroquinolone-resistant gyrase than topoisomerase IV. Finally, when compared to zoliflodacin, the novel SPT H3D-005722 induced more balanced double-stranded DNA cleavage with gyrase and topoisomerase IV from N. gonorrhoeae, Escherichia coli, and Bacillus anthracis. This finding suggests that further development of the SPT class could yield compounds with a more balanced targeting against clinically important bacterial infections.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Gregory S. Basarab
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Holistic
Drug Discovery and Development (H3D) Centre, and South African Medical
Research Council Drug Discovery and Development Research Unit, Department
of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Collins J, Oviatt AA, Chan PF, Osheroff N. Target-Mediated Fluoroquinolone Resistance in Neisseria gonorrhoeae: Actions of Ciprofloxacin against Gyrase and Topoisomerase IV. ACS Infect Dis 2024; 10:1351-1360. [PMID: 38606464 PMCID: PMC11015056 DOI: 10.1021/acsinfecdis.4c00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 04/13/2024]
Abstract
Fluoroquinolones make up a critically important class of antibacterials administered worldwide to treat human infections. However, their clinical utility has been curtailed by target-mediated resistance, which is caused by mutations in the fluoroquinolone targets, gyrase and topoisomerase IV. An important pathogen that has been affected by this resistance is Neisseria gonorrhoeae, the causative agent of gonorrhea. Over 82 million new cases of this sexually transmitted infection were reported globally in 2020. Despite the impact of fluoroquinolone resistance on gonorrhea treatment, little is known about the interactions of this drug class with its targets in this bacterium. Therefore, we investigated the effects of the fluoroquinolone ciprofloxacin on the catalytic and DNA cleavage activities of wild-type gyrase and topoisomerase IV and the corresponding enzymes that harbor mutations associated with cellular and clinical resistance to fluoroquinolones. Results indicate that ciprofloxacin interacts with both gyrase (its primary target) and topoisomerase IV (its secondary target) through a water-metal ion bridge that has been described in other species. Moreover, mutations in amino acid residues that anchor this bridge diminish the susceptibility of the enzymes for the drug, leading to fluoroquinolone resistance. Results further suggest that ciprofloxacin primarily induces its cytotoxic effects by enhancing gyrase-mediated DNA cleavage as opposed to inhibiting the DNA supercoiling activity of the enzyme. In conclusion, this work links the effects of ciprofloxacin on wild-type and resistant gyrase to results reported for cellular and clinical studies and provides a mechanistic explanation for the targeting and resistance of fluoroquinolones in N. gonorrhoeae.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alexandria A. Oviatt
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Pan F. Chan
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Collins J, Osheroff N. Gyrase and Topoisomerase IV: Recycling Old Targets for New Antibacterials to Combat Fluoroquinolone Resistance. ACS Infect Dis 2024; 10:1097-1115. [PMID: 38564341 PMCID: PMC11019561 DOI: 10.1021/acsinfecdis.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
4
|
Dalvie ED, Stacy JC, Neuman KC, Osheroff N. Recognition of DNA Supercoil Handedness during Catenation Catalyzed by Type II Topoisomerases. Biochemistry 2022; 61:2148-2158. [PMID: 36122251 PMCID: PMC9548324 DOI: 10.1021/acs.biochem.2c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the presence of catenanes (i.e., intermolecular tangles) in chromosomal DNA stabilizes interactions between daughter chromosomes, a lack of resolution can have serious consequences for genomic stability. In all species, from bacteria to humans, type II topoisomerases are the enzymes primarily responsible for catenating/decatenating DNA. DNA topology has a profound influence on the rate at which these enzymes alter the superhelical state of the double helix. Therefore, the effect of supercoil handedness on the ability of human topoisomerase IIα and topoisomerase IIβ and bacterial topoisomerase IV to catenate DNA was examined. Topoisomerase IIα preferentially catenated negatively supercoiled over positively supercoiled substrates. This is opposite to its preference for relaxing (i.e., removing supercoils from) DNA and may prevent the enzyme from tangling the double helix ahead of replication forks and transcription complexes. The ability of topoisomerase IIα to recognize DNA supercoil handedness during catenation resides in its C-terminal domain. In contrast to topoisomerase IIα, topoisomerase IIβ displayed little ability to distinguish DNA geometry during catenation. Topoisomerase IV from three bacterial species preferentially catenated positively supercoiled substrates. This may not be an issue, as these enzymes work primarily behind replication forks. Finally, topoisomerase IIα and topoisomerase IV maintain lower levels of covalent enzyme-cleaved DNA intermediates with catenated over monomeric DNA. This allows these enzymes to perform their cellular functions in a safer manner, as catenated daughter chromosomes may be subject to stress generated by the mitotic spindle that could lead to irreversible DNA cleavage.
Collapse
Affiliation(s)
- Esha D. Dalvie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Jordan C. Stacy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20982, United States
| | - Neil Osheroff
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, United States; VA Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| |
Collapse
|
5
|
Zafar N, Uzair B, Menaa F, Khan BA, Niazi MBK, Alaryani FS, Majrashi KA, Sajjad S. Moringa concanensis-Mediated Synthesis and Characterizations of Ciprofloxacin Encapsulated into Ag/TiO 2/Fe 2O 3/CS Nanocomposite: A Therapeutic Solution against Multidrug Resistant E. coli Strains of Livestock Infectious Diseases. Pharmaceutics 2022; 14:pharmaceutics14081719. [PMID: 36015345 PMCID: PMC9412270 DOI: 10.3390/pharmaceutics14081719] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Multidrug resistant MDR bacterial strains are causing fatal infections, such as mastitis. Thus, there is a need for the development of new target-oriented antimicrobials. Nanomaterials have many advantages over traditional antibiotics, including improved stability, controlled antibiotic release, targeted administration, enhanced bioavailability, and the use of antibiotic-loaded nanomaterials, such as the one herein reported for the first time, appear to be a promising strategy to combat antibiotic-resistant bacteria. The use of rationally designed metallic nanocomposites, rather than the use of single metallic nanoparticles (NPs), should further minimize the bacterial resistance. Aim: Green synthesis of a multimetallic/ternary nanocomposite formed of silver (Ag), titanium dioxide (TiO2), and iron(III) oxide (Fe2O3), conjugated to chitosan (CS), in which the large spectrum fluoroquinolone antibiotic ciprofloxacin (CIP) has been encapsulated. Methods: The metallic nanoparticles (NPs) Ag NPs, TiO2 NPs, and Fe2O3 NPs were synthesized by reduction of Moringa concanensis leaf aqueous extract. The ternary junction was obtained by wet chemical impregnation technique. CIP was encapsulated into the ternary nanocomposite Ag/TiO2/Fe2O3, followed by chitosan (CS) conjugation using the ionic gelation method. The resulting CS-based nanoparticulate drug delivery system (NDDS), i.e., CIP-Ag/TiO2/Fe2O3/CS, was characterized in vitro by gold standard physical techniques such as X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), Fourier-transform infrared (FTIR) spectroscopy. Pharmacological analyses (i.e., LC, EE, ex-vivo drug release behavior) were also assessed. Further, biological studies were carried out both ex vivo (i.e., by disk diffusion method (DDM), fluorescence-activated single cell sorting (FACS), MTT assay) and in vivo (i.e., antibacterial activity in a rabbit model, colony-forming unit (CFU) on blood agar, histopathological analysis using H&E staining). Results: The encapsulation efficiency (EE) and the loading capacity (LC) of the NDDS were as high as 94% ± 1.26 and 57% ± 3.5, respectively. XRD analysis confirmed the crystalline nature of the prepared formulation. FESEM revealed nanorods with an average diameter of 50−70 ± 12 nm. FTIR confirmed the Fe-O-Ti-CS linkages as well as the successful encapsulation of CIP into the NDDS. The zeta potential (ZP) of the NDDS was determined as 85.26 ± 0.12 mV. The antimicrobial potential of the NDDS was elicited by prominent ZIs against MDR E. coli (33 ± 1.40 mm) at the low MIC of 0.112 μg/mL. Morphological alterations (e.g., deformed shape and structural damages) of MDR pathogens were clearly visible overtime by FESEM after treatment with the NDDS at MIC value, which led to the cytolysis ultimately. FACS analysis confirmed late apoptotic of the MDR E. coli (80.85%) after 6 h incubation of the NDDS at MIC (p < 0.05 compared to untreated MDR E. coli used as negative control). The highest drug release (89% ± 0.57) was observed after 8 h using PBS medium at pH 7.4. The viability of bovine mammary gland epithelial cells (BMGE) treated with the NDDS remained superior to 90%, indicating a negligible cytotoxicity (p < 0.05). In the rabbit model, in which infection was caused by injecting MDR E. coli intraperitoneally (IP), no colonies were detected after 72 h of treatment. Importantly, the histopathological analysis showed no changes in the vital rabbit organs in the treated group compared to the untreated group. Conclusions: Taken together, the newly prepared CIP-Ag/TiO2/Fe2O3/CS nanoformulation appears safe, biocompatible, and therapeutically active to fight MDR E. coli strains-causing mastitis.
Collapse
Affiliation(s)
- Naheed Zafar
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
- Correspondence: (B.U.); (F.M.)
| | - Farid Menaa
- Department of Internal Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA
- Correspondence: (B.U.); (F.M.)
| | - Barkat Ali Khan
- Department of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Bilal Khan Niazi
- School of Chemical and Materials Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Fatima S. Alaryani
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Shamaila Sajjad
- Department of Physics, International Islamic University, Islamabad 44000, Pakistan
| |
Collapse
|
6
|
Gibson EG, Oviatt AA, Cacho M, Neuman KC, Chan PF, Osheroff N. Bimodal Actions of a Naphthyridone/Aminopiperidine-Based Antibacterial That Targets Gyrase and Topoisomerase IV. Biochemistry 2019; 58:4447-4455. [PMID: 31617352 PMCID: PMC7450530 DOI: 10.1021/acs.biochem.9b00805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gyrase and topoisomerase IV are the targets of fluoroquinolone antibacterials. However, the rise in antimicrobial resistance has undermined the clinical use of this important drug class. Therefore, it is critical to identify new agents that maintain activity against fluoroquinolone-resistant strains. One approach is to develop non-fluoroquinolone drugs that also target gyrase and topoisomerase IV but interact differently with the enzymes. This has led to the development of the "novel bacterial topoisomerase inhibitor" (NBTI) class of antibacterials. Despite the clinical potential of NBTIs, there is a relative paucity of data describing their mechanism of action against bacterial type II topoisomerases. Consequently, we characterized the activity of GSK126, a naphthyridone/aminopiperidine-based NBTI, against a variety of Gram-positive and Gram-negative bacterial type II topoisomerases, including gyrase from Mycobacterium tuberculosis and gyrase and topoisomerase IV from Bacillus anthracis and Escherichia coli. GSK126 enhanced single-stranded DNA cleavage and suppressed double-stranded cleavage mediated by these enzymes. It was also a potent inhibitor of gyrase-catalyzed DNA supercoiling and topoisomerase IV-catalyzed decatenation. Thus, GSK126 displays a similar bimodal mechanism of action across a variety of species. In contrast, GSK126 displayed a variable ability to overcome fluoroquinolone resistance mutations across these same species. Our results suggest that NBTIs elicit their antibacterial effects by two different mechanisms: inhibition of gyrase/topoisomerase IV catalytic activity or enhancement of enzyme-mediated DNA cleavage. Furthermore, the relative importance of these two mechanisms appears to differ from species to species. Therefore, we propose that the mechanistic basis for the antibacterial properties of NBTIs is bimodal in nature.
Collapse
Affiliation(s)
- Elizabeth G. Gibson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Alexandria A. Oviatt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Monica Cacho
- Department of Diseases of the Developing World, GlaxoSmithKline, Parque Tecnológico de Madrid, Calle de Severo Ochoa, 2, 28760 Tres Cantos, Madrid, Spain
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20982, United States
| | - Pan F. Chan
- Infectious Diseases Discovery, Medicines Opportunities Research Unit, GlaxoSmithKline, Collegeville, PA 19426, United States
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| |
Collapse
|
7
|
Fief CA, Hoang KG, Phipps SD, Wallace JL, Deweese JE. Examining the Impact of Antimicrobial Fluoroquinolones on Human DNA Topoisomerase IIα and IIβ. ACS OMEGA 2019; 4:4049-4055. [PMID: 31459613 PMCID: PMC6648947 DOI: 10.1021/acsomega.8b03428] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/11/2019] [Indexed: 05/29/2023]
Abstract
Fluoroquinolones are a class of widely prescribed antibiotics with a broad range of activity against Gram-positive, Gram-negative, and some atypical microbes. Unfortunately, these drugs are associated with significant adverse events including neuropathy, tendinopathy, cardiac rhythm abnormalities, and mental health side effects. The mechanism by which fluoroquinolones cause many of these toxicities is unknown. The antibacterial mechanism of action involves disruption of the catalytic mechanism of type-II topoisomerases in bacteria, namely topoisomerase IV and DNA gyrase. Fluoroquinolones inhibit the ability of the enzymes to ligate cleaved DNA and result in single- and double-stranded DNA breaks. Thus, there is an interest in investigating whether human topoisomerase II is involved in mediating the adverse events associated with quinolones. Previous studies demonstrate some response of human topoisomerase IIα and IIβ to high levels of ciprofloxacin. However, it is not clear whether the concentration of ciprofloxacin utilized in those studies corresponds to concentrations that would be routinely achievable in patients. Therefore, this study set out to examine three clinically relevant fluoroquinolones along with two older agents to determine whether these compounds display activity against topoisomerase IIα and IIβ at drug concentrations that more closely approximate typical patient plasma values. On the basis of our evidence, none of the quinolones studied were able to poison DNA cleavage by either human enzyme. Ciprofloxacin, desethylene-ciprofloxacin, and the recently removed from market gemifloxacin were able to inhibit topoisomerase II-mediated DNA relaxation at concentrations of 200-300 μM. On the basis of these data, we propose that human topoisomerase II is not likely to be the main cause of these adverse events and that additional targets need to be identified to clarify the mechanisms underlying quinolone toxicities.
Collapse
Affiliation(s)
- Cole A. Fief
- Department
of Pharmaceutical Sciences and Department of Pharmacy Practice, Lipscomb University College of Pharmacy and Health
Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Kristine G. Hoang
- Department
of Pharmaceutical Sciences and Department of Pharmacy Practice, Lipscomb University College of Pharmacy and Health
Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Stephen D. Phipps
- Department
of Pharmaceutical Sciences and Department of Pharmacy Practice, Lipscomb University College of Pharmacy and Health
Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Jessica L. Wallace
- Department
of Pharmaceutical Sciences and Department of Pharmacy Practice, Lipscomb University College of Pharmacy and Health
Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
- Veterans
Affairs Tennessee Valley Healthcare System, 1310 24th, Avenue South, Nashville, Tennessee 37232, United States
| | - Joseph E. Deweese
- Department
of Pharmaceutical Sciences and Department of Pharmacy Practice, Lipscomb University College of Pharmacy and Health
Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland
Avenue, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
8
|
van der Putten BCL, Remondini D, Pasquini G, Janes VA, Matamoros S, Schultsz C. Quantifying the contribution of four resistance mechanisms to ciprofloxacin MIC inEscherichia coli: a systematic review. J Antimicrob Chemother 2018; 74:298-310. [DOI: 10.1093/jac/dky417] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/16/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Boas C L van der Putten
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| | - Daniel Remondini
- Department of Physics and Astronomy (DIFA), University of Bologna, Viale Berti Pichat 6/2, Bologna, Bologna, Italy
| | - Giovanni Pasquini
- Department of Physics and Astronomy (DIFA), University of Bologna, Viale Berti Pichat 6/2, Bologna, Bologna, Italy
| | - Victoria A Janes
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| | - Sébastien Matamoros
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| | - Constance Schultsz
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| |
Collapse
|
9
|
Hangas A, Aasumets K, Kekäläinen NJ, Paloheinä M, Pohjoismäki JL, Gerhold JM, Goffart S. Ciprofloxacin impairs mitochondrial DNA replication initiation through inhibition of Topoisomerase 2. Nucleic Acids Res 2018; 46:9625-9636. [PMID: 30169847 PMCID: PMC6182158 DOI: 10.1093/nar/gky793] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022] Open
Abstract
Maintenance of topological homeostasis is vital for gene expression and genome replication in all organisms. Similar to other circular genomes, also mitochondrial DNA (mtDNA) is known to exist in various different topological forms, although their functional significance remains unknown. We report here that both known type II topoisomerases Top2α and Top2β are present in mammalian mitochondria, with especially Top2β regulating the supercoiling state of mtDNA. Loss of Top2β or its inhibition by ciprofloxacin results in accumulation of positively supercoiled mtDNA, followed by cessation of mitochondrial transcription and replication initiation, causing depletion of mtDNA copy number. These mitochondrial effects block both cell proliferation and differentiation, possibly explaining some of the side effects associated with fluoroquinolone antibiotics. Our results show for the first time the importance of topology for maintenance of mtDNA homeostasis and provide novel insight into the mitochondrial effects of fluoroquinolones.
Collapse
Affiliation(s)
- Anu Hangas
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Koit Aasumets
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Nina J Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Mika Paloheinä
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Jaakko L Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Joachim M Gerhold
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| |
Collapse
|
10
|
Wendorff TJ, Berger JM. Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage. eLife 2018; 7:31724. [PMID: 29595473 PMCID: PMC5922973 DOI: 10.7554/elife.31724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 03/28/2018] [Indexed: 01/09/2023] Open
Abstract
Type II topoisomerases manage DNA supercoiling and aid chromosome segregation using a complex, ATP-dependent duplex strand passage mechanism. Type IIB topoisomerases and their homologs support both archaeal/plant viability and meiotic recombination. Topo VI, a prototypical type IIB topoisomerase, comprises two Top6A and two Top6B protomers; how these subunits cooperate to engage two DNA segments and link ATP turnover to DNA transport is poorly understood. Using multiple biochemical approaches, we show that Top6B, which harbors the ATPase activity of topo VI, recognizes and exploits the DNA crossings present in supercoiled DNA to stimulate subunit dimerization by ATP. Top6B self-association in turn induces extensive DNA bending, which is needed to support duplex cleavage by Top6A. Our observations explain how topo VI tightly coordinates DNA crossover recognition and ATP binding with strand scission, providing useful insights into the operation of type IIB topoisomerases and related meiotic recombination and GHKL ATPase machineries. Each human cell contains genetic information stored on approximately two meters of DNA. Like holiday lights in a storage box, packing so much DNA into such a small space leads to its entanglement. This snarled DNA prevents the cell from properly accessing and copying its genes. Type II topoisomerases are a group of enzymes that remove DNA tangles. They attach to one segment of a DNA tangle, cut it in half, remove the knot, and then repair the broken DNA strand. The process requires the proteins to ‘burn’ chemical energy. If topoisomerases make mistakes when they cut and reseal DNA, they could damage genetic information and harm cells. It is still unclear how these proteins recognize DNA tangles and use energy to remove knots instead of adding them. Here, Wendorff and Berger use biochemical approaches to look into topo VI, a type II topoisomerase found in plants and certain single-celled organisms. When DNA is tangled, it forms sharp bends and crossings. Their experiments reveal that topo VI has certain ‘sensors’ that detect where DNA bends, and others that recognize the crossings. Only when both features are present does the enzyme start working and using energy. These sensors act as fail-safes to ensure that topo VI only breaks DNA when it encounters a proper knot, and is not ‘set loose’ on untangled DNA. Future work will look at topo VI at an atom-by-atom level to reveal how exactly the enzymes ‘see’ DNA bends and crossings, and how interactions with the correct type of DNA triggers energy use and DNA untangling. Knowing more about topo VI can help researchers to understand how human and bacterial topoisomerases work. These results could also be generalized to other enzymes, for example those that help the genetic processes at play when sperm and egg cells form.
Collapse
Affiliation(s)
- Timothy J Wendorff
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, United States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
11
|
Aldilla VR, Martin AD, Nizalapur S, Marjo CE, Rich AM, Ho KKK, Ittner LM, Black DS, Thordarson P, Kumar N. Glyoxylamide-based self-assembly hydrogels for sustained ciprofloxacin delivery. J Mater Chem B 2018; 6:6089-6098. [DOI: 10.1039/c8tb01290c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glyoxylamide-based hydrogels have high ciprofloxacin (CIP) loading capacity and demonstrate a sustained release profile of over 15 days.
Collapse
Affiliation(s)
| | - Adam D. Martin
- School of Chemistry
- UNSW
- Sydney
- Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
| | | | | | - Anne M. Rich
- Mark Wainwright Analytical Centre
- UNSW
- Sydney
- Australia
| | | | - Lars M. Ittner
- Dementia Research Unit
- School of Medical Sciences
- UNSW
- Sydney
- Australia
| | | | - Pall Thordarson
- School of Chemistry
- UNSW
- Sydney
- Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
| | - Naresh Kumar
- School of Chemistry
- UNSW
- Sydney
- Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
| |
Collapse
|
12
|
Stefańska J, Stępień K, Bielenica A, Wrzosek M, Struga M. Antistaphylococcal Activity of Selected Thiourea Derivatives. Pol J Microbiol 2016; 65:451-460. [DOI: 10.5604/17331331.1227671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Five of thiourea derivatives were prepared using as a starting compound 3-(trifluoromethyl)aniline, 4-chloro-3-nitroaniline, 1,3-thiazol-2-amine, 2H-1,2,3-triazol-4-amine and commercial isothiocyanates. All compounds were evaluated in vitro for antimicrobial activity. Derivatives 2 and 3 showed the highest inhibition against Gram-positive cocci (standard and hospital strains). The observed MIC values were in the range of 0.5–8 μg/ml. The products effectively inhibited the formation of biofilms of methicillin-resistant and standard strains of Staphylococcus epidermidis. Inhibitory activity of thioureas 2 and 3 against Staphylococcus aureus topoisomerase IV was studied. The examined compounds were nongenotoxic.
Collapse
Affiliation(s)
- Joanna Stefańska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Poland
| | - Karolina Stępień
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Poland
| | - Anna Bielenica
- Chair and Department of Biochemistry, Medical University of Warsaw, Poland
| | - Małgorzata Wrzosek
- Department of Pharmacogenomics, Faculty of Pharmacy, Medical University, Warsaw, Poland
| | - Marta Struga
- Department of Pharmacogenomics, Faculty of Pharmacy, Medical University, Warsaw, Poland
| |
Collapse
|
13
|
Oppegard LM, Schwanz HA, Towle TR, Kerns RJ, Hiasa H. Fluoroquinolones stimulate the DNA cleavage activity of topoisomerase IV by promoting the binding of Mg(2+) to the second metal binding site. Biochim Biophys Acta Gen Subj 2015; 1860:569-75. [PMID: 26723176 DOI: 10.1016/j.bbagen.2015.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction. METHODS We conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg(2+)-, Mn(2+)-, or Ca(2+)-supported DNA cleavage activity of Escherichia coli Topo IV. RESULTS In the absence of any drug, 20-30 mM Mg(2+) was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1mM of either Mn(2+) or Ca(2+) was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg(2+) concentrations where Topo IV alone could not efficiently cleave DNA. CONCLUSIONS AND GENERAL SIGNIFICANCE At low Mg(2+) concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg(2+) binding to metal binding site B through the structural distortion in DNA. As Mg(2+) concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg(2+) at site B or inhibition the binding of Mg(2+) to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg(2+) binding.
Collapse
Affiliation(s)
- Lisa M Oppegard
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | - Heidi A Schwanz
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA 52242, USA.
| | - Tyrell R Towle
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA 52242, USA.
| | - Robert J Kerns
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA 52242, USA.
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Wolański M, Łebkowski T, Kois-Ostrowska A, Zettler J, Apel AK, Jakimowicz D, Zakrzewska-Czerwińska J. Two transcription factors, CabA and CabR, are independently involved in multilevel regulation of the biosynthetic gene cluster encoding the novel aminocoumarin, cacibiocin. Appl Microbiol Biotechnol 2015; 100:3147-64. [PMID: 26637421 DOI: 10.1007/s00253-015-7196-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 11/30/2022]
Abstract
Aminocoumarins are potent antibiotics belonging to a relatively small group of secondary metabolites produced by actinomycetes. Genome mining of Catenulispora acidiphila has recently led to the discovery of a gene cluster responsible for biosynthesis of novel aminocoumarins, cacibiocins. However, regulation of the expression of this novel gene cluster has not yet been analyzed. In this study, we identify transcriptional regulators of the cacibiocin gene cluster. Using a heterologous expression system, we show that the CabA and CabR proteins encoded by cabA and cabR genes in the cacibiocin gene cluster control the expression of genes involved in the biosynthesis, modification, regulation, and potentially, efflux/resistance of cacibiocins. CabA positively regulates the expression of cabH (the first gene in the cabHIYJKL operon) and cabhal genes encoding key enzymes responsible for the biosynthesis and halogenation of the aminocoumarin moiety, respectively. We provide evidence that CabA is a direct inducer of cacibiocin production, whereas the second transcriptional factor, CabR, is involved in the negative regulation of its own gene and cabT-the latter of which encodes a putative cacibiocin transporter. We also demonstrate that CabR activity is negatively regulated in vitro by aminocoumarin compounds, suggesting the existence of analogous regulation in vivo. Finally, we propose a model of multilevel regulation of gene transcription in the cacibiocin gene cluster by CabA and CabR.
Collapse
Affiliation(s)
- Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383, Wrocław, Poland.
| | - Tomasz Łebkowski
- Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383, Wrocław, Poland
| | | | - Judith Zettler
- Pharmazeutische Biologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany
| | - Alexander K Apel
- Pharmazeutische Biologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383, Wrocław, Poland.,Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114, Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383, Wrocław, Poland.,Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114, Wrocław, Poland
| |
Collapse
|
15
|
Bielenica A, Stefańska J, Stępień K, Napiórkowska A, Augustynowicz-Kopeć E, Sanna G, Madeddu S, Boi S, Giliberti G, Wrzosek M, Struga M. Synthesis, cytotoxicity and antimicrobial activity of thiourea derivatives incorporating 3-(trifluoromethyl)phenyl moiety. Eur J Med Chem 2015; 101:111-25. [PMID: 26119992 DOI: 10.1016/j.ejmech.2015.06.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
A total of 31 of thiourea derivatives was prepared reacting 3-(trifluoromethyl)aniline and commercial aliphatic and aromatic isothiocyanates. The yields varied from 35% to 82%. All compounds were evaluated in vitro for antimicrobial activity. Derivatives 3, 5, 6, 9, 15, 24 and 27 showed the highest inhibition against Gram-positive cocci (standard and hospital strains). The observed MIC values were in the range of 0.25-16 μg/ml. Inhibitory activity of thioureas 5 and 15 against topoisomerase IV isolated from Staphylococcus aureus was studied. Products 5 and 15 effectively inhibited the formation of biofilms of methicillin-resistant and standard strains of Staphylococcus epidermidis. Moreover, all obtained thioureas were evaluated for cytotoxicity and antiviral activity against a large panel of DNA and RNA viruses. Compounds 5, 6, 8-12, 15 resulted cytotoxic against MT-4 cells (CC50 ≤ 10 μM).
Collapse
Affiliation(s)
- Anna Bielenica
- Chair and Department of Biochemistry, Medical University, 02-097 Warszawa, Poland.
| | - Joanna Stefańska
- Department of Pharmaceutical Microbiology, Medical University, 02-007 Warszawa, Poland
| | - Karolina Stępień
- Department of Pharmaceutical Microbiology, Medical University, 02-007 Warszawa, Poland
| | - Agnieszka Napiórkowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warszawa, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warszawa, Poland
| | - Giuseppina Sanna
- Department of Biomedical Science, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Silvia Madeddu
- Department of Biomedical Science, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Stefano Boi
- Department of Biomedical Science, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Gabriele Giliberti
- Department of Biomedical Science, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Małgorzata Wrzosek
- Department of Pharmacogenomics, Faculty of Pharmacy, Medical University, 02-097 Warszawa, Poland
| | - Marta Struga
- Department of Pharmacogenomics, Faculty of Pharmacy, Medical University, 02-097 Warszawa, Poland
| |
Collapse
|
16
|
Litwin TR, Solà M, Holt IJ, Neuman KC. A robust assay to measure DNA topology-dependent protein binding affinity. Nucleic Acids Res 2014; 43:e43. [PMID: 25552413 PMCID: PMC4402506 DOI: 10.1093/nar/gku1381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/18/2014] [Indexed: 02/04/2023] Open
Abstract
DNA structure and topology pervasively influence aspects of DNA metabolism including replication, transcription and segregation. However, the effects of DNA topology on DNA-protein interactions have not been systematically explored due to limitations of standard affinity assays. We developed a method to measure protein binding affinity dependence on the topology (topological linking number) of supercoiled DNA. A defined range of DNA topoisomers at equilibrium with a DNA binding protein is separated into free and protein-bound DNA populations using standard nitrocellulose filter binding techniques. Electrophoretic separation and quantification of bound and free topoisomers combined with a simple normalization procedure provide the relative affinity of the protein for the DNA as a function of linking number. Employing this assay we measured topology-dependent DNA binding of a helicase, a type IB topoisomerase, a type IIA topoisomerase, a non-specific mitochondrial DNA binding protein and a type II restriction endonuclease. Most of the proteins preferentially bind negatively supercoiled DNA but the details of the topology-dependent affinity differ among proteins in ways that expose differences in their interactions with DNA. The topology-dependent binding assay provides a robust and easily implemented method to probe topological influences on DNA-protein interactions for a wide range of DNA binding proteins.
Collapse
Affiliation(s)
- Tamara R Litwin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA Mitochondrial Biology Unit, Medical Research Council, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Maria Solà
- Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), 08028 Barcelona, Spain
| | - Ian J Holt
- National Institute for Medical Research, Medical Research Council, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Keir C Neuman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
17
|
Aldred KJ, Breland EJ, Vlčková V, Strub MP, Neuman KC, Kerns RJ, Osheroff N. Role of the water-metal ion bridge in mediating interactions between quinolones and Escherichia coli topoisomerase IV. Biochemistry 2014; 53:5558-67. [PMID: 25115926 PMCID: PMC4151693 DOI: 10.1021/bi500682e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Although
quinolones have been in clinical use for decades, the
mechanism underlying drug activity and resistance has remained elusive.
However, recent studies indicate that clinically relevant quinolones
interact with Bacillus anthracis (Gram-positive)
topoisomerase IV through a critical water–metal ion bridge
and that the most common quinolone resistance mutations decrease drug
activity by disrupting this bridge. As a first step toward determining
whether the water–metal ion bridge is a general mechanism of
quinolone–topoisomerase interaction, we characterized drug
interactions with wild-type Escherichia coli (Gram-negative)
topoisomerase IV and a series of ParC enzymes with mutations (S80L,
S80I, S80F, and E84K) in the predicted bridge-anchoring residues.
Results strongly suggest that the water–metal ion bridge is
essential for quinolone activity against E. coli topoisomerase
IV. Although the bridge represents a common and critical mechanism
that underlies broad-spectrum quinolone function, it appears to play
different roles in B. anthracis and E. coli topoisomerase IV. The water–metal ion bridge is the most
important binding contact of clinically relevant quinolones with the
Gram-positive enzyme. However, it primarily acts to properly align
clinically relevant quinolones with E. coli topoisomerase
IV. Finally, even though ciprofloxacin is unable to increase levels
of DNA cleavage mediated by several of the Ser80 and Glu84 mutant E. coli enzymes, the drug still retains the ability to inhibit
the overall catalytic activity of these topoisomerase IV proteins.
Inhibition parallels drug binding, suggesting that the presence of
the drug in the active site is sufficient to diminish DNA relaxation
rates.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry and ‡Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Dzitko K, Paneth A, Plech T, Pawełczyk J, Stączek P, Stefańska J, Paneth P. 1,4-Disubstituted thiosemicarbazide derivatives are potent inhibitors of Toxoplasma gondii proliferation. Molecules 2014; 19:9926-43. [PMID: 25010466 PMCID: PMC6290556 DOI: 10.3390/molecules19079926] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/16/2022] Open
Abstract
A series of 4-arylthiosemicarbazides substituted at the N1 position with a 5-membered heteroaryl ring was synthesized and evaluated in vitro for T. gondii inhibition proliferation and host cell cytotoxicity. At non-toxic concentrations for the host cells all studied compounds displayed excellent anti-parasitic effects when compared to sulfadiazine, indicating a high selectivity of their anti-T. gondii activity. The differences in bioactivity investigated by DFT calculations suggest that the inhibitory activity of 4-aryl-thiosemicarbazides towards T. gondii proliferation is connected with the electronic structure of the molecule. Further, these compounds were tested as potential antibacterial agents. No growth-inhibiting effect on any of the test microorganisms was observed for all the compounds, even at high concentrations.
Collapse
Affiliation(s)
- Katarzyna Dzitko
- Department of Immunoparasitology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Agata Paneth
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Tomasz Plech
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Jakub Pawełczyk
- Institute for Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland.
| | - Paweł Stączek
- Department of Genetics of Microorganisms, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Joanna Stefańska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Oczki 3, 02-007 Warszawa, Poland.
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
19
|
Abstract
![]()
Quinolones
are one of the most commonly prescribed classes of antibacterials
in the world and are used to treat a variety of bacterial infections
in humans. Because of the wide use (and overuse) of these drugs, the
number of quinolone-resistant bacterial strains has been growing steadily
since the 1990s. As is the case with other antibacterial agents, the
rise in quinolone resistance threatens the clinical utility of this
important drug class. Quinolones act by converting their targets,
gyrase and topoisomerase IV, into toxic enzymes that fragment the
bacterial chromosome. This review describes the development of the
quinolones as antibacterials, the structure and function of gyrase
and topoisomerase IV, and the mechanistic basis for quinolone action
against their enzyme targets. It will then discuss the following three
mechanisms that decrease the sensitivity of bacterial cells to quinolones.
Target-mediated resistance is the most common and clinically significant
form of resistance. It is caused by specific mutations in gyrase and
topoisomerase IV that weaken interactions between quinolones and these
enzymes. Plasmid-mediated resistance results from extrachromosomal
elements that encode proteins that disrupt quinolone–enzyme
interactions, alter drug metabolism, or increase quinolone efflux.
Chromosome-mediated resistance results from the underexpression of
porins or the overexpression of cellular efflux pumps, both of which
decrease cellular concentrations of quinolones. Finally, this review
will discuss recent advancements in our understanding of how quinolones
interact with gyrase and topoisomerase IV and how mutations in these
enzymes cause resistance. These last findings suggest approaches to
designing new drugs that display improved activity against resistant
strains.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry and ‡Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | |
Collapse
|
20
|
Miranda CD, Tello A, Keen PL. Mechanisms of antimicrobial resistance in finfish aquaculture environments. Front Microbiol 2013; 4:233. [PMID: 23986749 PMCID: PMC3749489 DOI: 10.3389/fmicb.2013.00233] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/29/2013] [Indexed: 11/13/2022] Open
Abstract
Consumer demand for affordable fish drives the ever-growing global aquaculture industry. The intensification and expansion of culture conditions in the production of several finfish species has been coupled with an increase in bacterial fish disease and the need for treatment with antimicrobials. Understanding the molecular mechanisms of antimicrobial resistance prevalent in aquaculture environments is important to design effective disease treatment strategies, to prioritize the use and registration of antimicrobials for aquaculture use, and to assess and minimize potential risks to public health. In this brief article we provide an overview of the molecular mechanisms of antimicrobial resistance in genes found in finfish aquaculture environments and highlight specific research that should provide the basis of sound, science-based policies for the use of antimicrobials in aquaculture.
Collapse
Affiliation(s)
- Claudio D Miranda
- Department of Aquaculture, Universidad Católica del Norte Coquimbo, Chile
| | | | | |
Collapse
|
21
|
Vos SM, Lee I, Berger JM. Distinct regions of the Escherichia coli ParC C-terminal domain are required for substrate discrimination by topoisomerase IV. J Mol Biol 2013; 425:3029-45. [PMID: 23867279 DOI: 10.1016/j.jmb.2013.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/14/2013] [Accepted: 04/16/2013] [Indexed: 11/16/2022]
Abstract
Type IIA DNA topoisomerases are essential enzymes that use ATP to maintain chromosome supercoiling and remove links between sister chromosomes. In Escherichia coli, the type IIA topoisomerase topo IV rapidly removes positive supercoils and catenanes from DNA but is significantly slower when confronted with negatively supercoiled substrates. The ability of topo IV to discriminate between positively and negatively supercoiled DNA requires the C-terminal domain (CTD) of one of its two subunits, ParC. To determine how the ParC CTD might assist with substrate discrimination, we identified potential DNA interacting residues on the surface of the CTD, mutated these residues, and tested their effect on both topo IV enzymatic activity and DNA binding by the isolated domain. Surprisingly, different regions of the ParC CTD do not bind DNA equivalently, nor contribute equally to the action of topo IV on different types of DNA substrates. Moreover, we find that the CTD contains an autorepressive element that inhibits activity on negatively supercoiled and catenated substrates, as well as a distinct region that aids in bending the DNA duplex that tracks through the enzyme's nucleolytic center. Our data demonstrate that the CTD is essential for proper engagement of both gate and transfer segment DNAs, reconciling different models to explain how topo IV discriminates between distinct DNAs topologies.
Collapse
Affiliation(s)
- Seychelle M Vos
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
22
|
Lee I, Dong KC, Berger JM. The role of DNA bending in type IIA topoisomerase function. Nucleic Acids Res 2013; 41:5444-56. [PMID: 23580548 PMCID: PMC3664819 DOI: 10.1093/nar/gkt238] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type IIA topoisomerases control DNA supercoiling and separate newly replicated chromosomes using a complex DNA strand cleavage and passage mechanism. Structural and biochemical studies have shown that these enzymes sharply bend DNA by as much as 150°; an invariant isoleucine, which has been seen structurally to intercalate between two base pairs outside of the DNA cleavage site, has been suggested to promote deformation. To test this assumption, we examined the role of isoleucine on DNA binding, bending and catalytic activity for a bacterial type IIA topoisomerase, Escherichia coli topoisomerase IV (topo IV), using a combination of site-directed mutagenesis and biochemical assays. Our data show that alteration of the isoleucine (Ile172) did not affect the basal ATPase activity of topo IV or its affinity for DNA. However, the amino acid was important for DNA bending, DNA cleavage and supercoil relaxation. Moreover, an ability to bend DNA correlated with efficacy with which nucleic acid substrates stimulate ATP hydrolysis. These data show that DNA binding and bending by topo IV can be uncoupled, and indicate that the stabilization of a highly curved DNA geometry is critical to the type IIA topoisomerase catalytic cycle.
Collapse
Affiliation(s)
- Imsang Lee
- Department of Molecular and Cell Biology, MC 3220 University of California, Berkeley, CA 94720-3220, USA
| | | | | |
Collapse
|
23
|
Abstract
Ciprofloxacin (CP) is a fluoroquinolone that is highly active against diverse microorganisms. At concentrations less than 1 µg/ml it is active against a diverse types of bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Bacillius subtilius, Escherichia coli and Mycobacterium tuberculosis. In addition, it has shown to be effective against other diseases such as malaria, cancer and AIDS. The extended antimicrobial activity, lack of plasmid-mediated resistance, large volume of distribution and minimal adverse effects of CP are therapeutically advantageous. In the pursuit of increasing their effectiveness against these diseases and prevent unwanted resistance, researchers have begun to synthesize a class of organic, inorganic and organometallic derivatives, which have displayed interesting activities. This review describes the development and recent advances on the evaluation of CP and its derivatives as a new class of drugs with potential for clinical development.
Collapse
|
24
|
Chopra S, Matsuyama K, Tran T, Malerich JP, Wan B, Franzblau SG, Lun S, Guo H, Maiga MC, Bishai WR, Madrid PB. Evaluation of gyrase B as a drug target in Mycobacterium tuberculosis. J Antimicrob Chemother 2012; 67:415-21. [PMID: 22052686 PMCID: PMC3254195 DOI: 10.1093/jac/dkr449] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES New classes of drugs are needed to treat tuberculosis (TB) in order to combat the emergence of resistance to existing agents and shorten the duration of therapy. Targeting DNA gyrase is a clinically validated therapeutic approach using fluoroquinolone antibiotics to target the gyrase subunit A (GyrA) of the heterotetramer. Increasing resistance to fluoroquinolones has driven interest in targeting the gyrase subunit B (GyrB), which has not been targeted for TB. The biological activities of two potent small-molecule inhibitors of GyrB have been characterized to validate its targeting as a therapeutic strategy for treating TB. MATERIALS AND METHODS Novobiocin and aminobenzimidazole 1 (AB-1) were tested for their activity against Mycobacterium tuberculosis (Mtb) H37Rv and other mycobacteria. AB-1 and novobiocin were also evaluated for their interaction with rifampicin and isoniazid as well as their potential for cytotoxicity. Finally, AB-1 was tested for in vivo efficacy in a murine model of TB. RESULTS Novobiocin and AB-1 have both been shown to be active against Mtb with MIC values of 4 and 1 mg/L, respectively. Only AB-1 exhibited time-dependent bactericidal activity against drug-susceptible and drug-resistant mycobacteria, including a fluoroquinolone-resistant strain. AB-1 had potent activity in the low oxygen recovery assay model for non-replicating persistent Mtb. Additionally, AB-1 has no interaction with isoniazid and rifampicin, and has no cross-resistance with fluoroquinolones. In a murine model of TB, AB-1 significantly reduced lung cfu counts in a dose-dependent manner. CONCLUSIONS Aminobenzimidazole inhibitors of GyrB exhibit many of the characteristics required for their consideration as a potential front-line antimycobacterial therapeutic.
Collapse
Affiliation(s)
- Sidharth Chopra
- Center for Infectious Disease and Biodefense Research, Bioscience Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, USA
| | - Karen Matsuyama
- Center for Infectious Disease and Biodefense Research, Bioscience Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, USA
| | - Tran Tran
- Center for Infectious Disease and Biodefense Research, Bioscience Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, USA
| | - Jeremiah P. Malerich
- Center for Infectious Disease and Biodefense Research, Bioscience Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, USA
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, USA
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, 1550 Orleans St., Baltimore, MD, USA
| | - Haidan Guo
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, 1550 Orleans St., Baltimore, MD, USA
| | - Mariama C. Maiga
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, 1550 Orleans St., Baltimore, MD, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, 1550 Orleans St., Baltimore, MD, USA
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Suite Z310 Doris Duke Building, 719 Umbilo Road, Durban, 4001, Republic of South Africa
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| | - Peter B. Madrid
- Center for Infectious Disease and Biodefense Research, Bioscience Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, USA
| |
Collapse
|
25
|
Aldred KJ, McPherson SA, Wang P, Kerns RJ, Graves DE, Turnbough CL, Osheroff N. Drug interactions with Bacillus anthracis topoisomerase IV: biochemical basis for quinolone action and resistance. Biochemistry 2011; 51:370-81. [PMID: 22126453 DOI: 10.1021/bi2013905] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, is considered a serious threat as a bioweapon. The drugs most commonly used to treat anthrax are quinolones, which act by increasing the levels of DNA cleavage mediated by topoisomerase IV and gyrase. Quinolone resistance most often is associated with specific serine mutations in these enzymes. Therefore, to determine the basis for quinolone action and resistance, we characterized wild-type B. anthracis topoisomerase IV, the GrlA(S81F) and GrlA(S81Y) quinolone-resistant mutants, and the effects of quinolones and a related quinazolinedione on these enzymes. Ser81 is believed to anchor a water-Mg(2+) bridge that coordinates quinolones to the enzyme through the C3/C4 keto acid. Consistent with this hypothesized bridge, ciprofloxacin required increased Mg(2+) concentrations to support DNA cleavage by GrlA(S81F) topoisomerase IV. The three enzymes displayed similar catalytic activities in the absence of drugs. However, the resistance mutations decreased the affinity of topoisomerase IV for ciprofloxacin and other quinolones, diminished quinolone-induced inhibition of DNA religation, and reduced the stability of the enzyme-quinolone-DNA ternary complex. Wild-type DNA cleavage levels were generated by mutant enzymes at high quinolone concentrations, suggesting that increased drug potency could overcome resistance. 8-Methyl-quinazoline-2,4-dione, which lacks the quinolone keto acid (and presumably does not require the water-Mg(2+) bridge to mediate protein interactions), was more potent than quinolones against wild-type topoisomerase IV and was equally efficacious. Moreover, it maintained high potency and efficacy against the mutant enzymes, effectively inhibited DNA religation, and formed stable ternary complexes. Our findings provide an underlying biochemical basis for the ability of quinazolinediones to overcome clinically relevant quinolone resistance mutations in bacterial type II topoisomerases.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | |
Collapse
|
26
|
Casu L, Cottiglia F, Leonti M, De Logu A, Agus E, Tse-Dinh YC, Lombardo V, Sissi C. Ungeremine effectively targets mammalian as well as bacterial type I and type II topoisomerases. Bioorg Med Chem Lett 2011; 21:7041-4. [PMID: 22014547 DOI: 10.1016/j.bmcl.2011.09.097] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/16/2022]
Abstract
From the methanol extract of the bulbs of Pancratium illyricum L., three phenanthridine type alkaloids, ungeremine (1), (-)-lycorine (2) and (+)-vittatine (3) were isolated. For the evaluation of their anticancer and antibacterial potential, compounds 1-3 were tested against human (I, IIα) and bacterial (IA, IV) topoisomerases. Our data demonstrated that ungeremine impairs the activity of both, human and bacterial topoisomerases. Remarkably, ungeremine was found to largely increments the DNA cleavage promoted by bacterial topoisomerase IA, a new target in antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Laura Casu
- Dipartimento Farmaco Chimico Tecnologico, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Effect of topoisomerase inhibitors and DNA-binding drugs on the cell proliferation and ultrastructure of Trypanosoma cruzi. Int J Antimicrob Agents 2011; 37:449-56. [DOI: 10.1016/j.ijantimicag.2010.11.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/31/2010] [Accepted: 11/01/2010] [Indexed: 11/22/2022]
|
28
|
Pitts SL, Liou GF, Mitchenall LA, Burgin AB, Maxwell A, Neuman KC, Osheroff N. Use of divalent metal ions in the DNA cleavage reaction of topoisomerase IV. Nucleic Acids Res 2011; 39:4808-17. [PMID: 21300644 PMCID: PMC3113566 DOI: 10.1093/nar/gkr018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has long been known that type II topoisomerases require divalent metal ions in order to cleave DNA. Kinetic, mutagenesis and structural studies indicate that the eukaryotic enzymes utilize a novel variant of the canonical two-metal-ion mechanism to promote DNA scission. However, the role of metal ions in the cleavage reaction mediated by bacterial type II enzymes has been controversial. Therefore, to resolve this critical issue, this study characterized the DNA cleavage reaction of Escherichia coli topoisomerase IV. We utilized a series of divalent metal ions with varying thiophilicities in conjunction with oligonucleotides that replaced bridging and non-bridging oxygen atoms at (and near) the scissile bond with sulfur atoms. DNA scission was enhanced when thiophilic metal ions were used with substrates that contained bridging sulfur atoms. In addition, the metal-ion dependence of DNA cleavage was sigmoidal in nature, and rates and levels of DNA cleavage increased when metal ion mixtures were used in reactions. Based on these findings, we propose that topoisomerase IV cleaves DNA using a two-metal-ion mechanism in which one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate and facilitates DNA scission by the bacterial type II enzyme.
Collapse
Affiliation(s)
- Steven L Pitts
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Guo DS, Jing BY, Yuan XY. Influence of Mg+2 and Cu+2 on the interaction between quinolone and calf thymus DNA. J Fluoresc 2010; 21:113-8. [PMID: 20602253 DOI: 10.1007/s10895-010-0694-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 06/22/2010] [Indexed: 11/28/2022]
Abstract
Mg(+2) and Cu(+2) have different binding capacities to quinolone drugs and have different binding modes with calf thymus DNA. Using the method of absorption and fluorescence spectroscopy, the influence of Mg(+2) and Cu(+2) on the binding between calf thymus DNA and each of four quinolone drugs has been studied. The results show that both Mg(+2) and Cu(+2) can bind with the four drugs. In the absence of divalent metal ions, quinolone drugs interact with DNA double helix by forming hydrogen bonds between the carboxyl and carbonyl groups of the drugs and the phosphate groups of the DNA bases, and the binding capacity shows a close relationship with the drug structures. The two metal ions show different influences on the binding between the drug and DNA, which depends on the type of ion, concentration of the metal ions and the structure of drugs. Mg(+2) in lower concentrations (0.01 mM to 3.0 mM) can act as a bridge between the carboxyl group/carbonyl group of the drug and the phosphate group of the DNA by electrostatic interaction, while Cu(+2) can act as an intermediary ion between carboxyl group/carbonyl group of the drug and the DNA bases by a co-ordinate bond. Both actions can increase the interaction of the π electron between the condensed rings of the drugs and the DNA bases. In some conditions, Cu(+2) can weaken the binding between the drug and the DNA by competitive inhibition if there is a site on the drug that can directly bind both DNA bases and Cu(+2).
Collapse
Affiliation(s)
- Dong-Sheng Guo
- College of Environment and Resources, Shanxi University, Taiyuan, China.
| | | | | |
Collapse
|
30
|
Jung HY, Kim KH, Hyoung JH, Han MR, Kim HK, Lee KJ, Kim Y, Kim HJ, Heo YS. Preliminary X-ray crystallographic analysis of the breakage-reunion domain of the GyrA subunit of DNA gyrase from Colwellia psychrerythraea strain 34H. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:439-41. [PMID: 20383017 PMCID: PMC2852339 DOI: 10.1107/s1744309110005567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 02/10/2010] [Indexed: 04/20/2024]
Abstract
DNA gyrase is a type II topoisomerase that is essential for chromosome segregation and cell division owing to its ability to modify the topological forms of bacterial DNA. In this study, the N-terminal breakage-reunion domain of the GyrA subunit of DNA gyrase from Colwellia psychrerythraea 34H was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.60 A resolution using a synchrotron-radiation source. The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 98.98, b = 101.56, c = 141.83 A. The asymmetric unit contained two molecules, with a corresponding V(M) of 3.18 A(3) Da(-1) and a solvent content of 59.9%.
Collapse
Affiliation(s)
- Ha Yun Jung
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Kyung Ha Kim
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ji Hye Hyoung
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Mi Ra Han
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Hyun Kyoung Kim
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ki Jeung Lee
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Hak Jun Kim
- Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
31
|
Jung HY, Lee KJ, Kim KH, Hyoung JH, Han MR, Kim HK, Kang LW, Ahn YJ, Heo YS. Crystallization and preliminary X-ray crystallographic analysis of DNA gyrase GyrB subunit from Xanthomonas oryzae pv. oryzae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:48-50. [PMID: 20057069 DOI: 10.1107/s1744309109047721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/11/2009] [Indexed: 11/11/2022]
Abstract
DNA gyrase is a type II topoisomerase that is essential for chromosome segregation and cell division owing to its ability to modify the topological forms of bacterial DNA. In this study, the N-terminal fragment of the GyrB subunit of DNA gyrase from Xanthomonas oryzae pv. oryzae was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.10 A resolution using a synchrotron-radiation source. The crystal belonged to space group I4(1), with unit-cell parameters a = b = 110.27, c = 70.75 A. The asymmetric unit contained one molecule, with a V(M) of 2.57 A(3) Da(-1) and a solvent content of 50.2%.
Collapse
Affiliation(s)
- Ha Yun Jung
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shin HJ, Yun M, Song JY, Kim HJ, Heo YS. Crystallization and X-ray diffraction data collection of topoisomerase IV ParE subunit from Xanthomonas oryzae pv. oryzae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:612-4. [PMID: 19478444 PMCID: PMC2688423 DOI: 10.1107/s1744309109016649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 05/04/2009] [Indexed: 11/10/2022]
Abstract
Topoisomerase IV is involved in topological changes in the bacterial genome using the free energy from ATP hydrolysis. Its functions are the decatenation of daughter chromosomes following replication by DNA relaxation and double-strand DNA breakage. In this study, the N-terminal fragment of the topoisomerase IV ParE subunit from Xanthomonas oryzae pv. oryzae was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.15 A resolution using a synchrotron-radiation source. The crystal belonged to space group P4(2)2(1)2, with unit-cell parameters a = b = 105.30, c = 133.76 A. The asymmetric unit contains one molecule, with a corresponding V(M) of 4.21 A(3) Da(-1) and a solvent content of 69.6%.
Collapse
Affiliation(s)
- Hye Jeong Shin
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Mirim Yun
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ju-Yeon Song
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Hyun Jeong Kim
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
33
|
|
34
|
Morgan-Linnell SK, Hiasa H, Zechiedrich L, Nitiss JL. Assessing sensitivity to antibacterial topoisomerase II inhibitors. CURRENT PROTOCOLS IN PHARMACOLOGY 2007; Chapter 3:Unit3.13. [PMID: 21948169 PMCID: PMC2850120 DOI: 10.1002/0471141755.ph0313s39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Both prokaryotes and eukaryotes have two major classes of topoisomerases that make transient single- or double-strand cuts in DNA. While these enzymes play critical roles in cellular processes, they are also important targets of therapeutic agents. This unit describes assays to use in characterizing topoisomerase II-targeting agents in vitro and in bacterial cells. It provides protocols for characterizing the action of small molecules against bacterial type II topoisomerases in vitro and the in vivo effects of putative topoisomerase II-targeting antibiotics, as well as for measuring trapped enzyme/DNA covalent complexes, the major cytotoxic lesion induced by fluoroquinolones.
Collapse
|
35
|
Cortázar TM, Coombs GH, Walker J. Leishmania panamensis: Comparative inhibition of nuclear DNA topoisomerase II enzymes from promastigotes and human macrophages reveals anti-parasite selectivity of fluoroquinolones, flavonoids and pentamidine. Exp Parasitol 2007; 116:475-82. [PMID: 17466980 DOI: 10.1016/j.exppara.2007.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
Certain model inhibitors exerted selective action against the catalytic activity of nuclear DNA topoisomerase II (TOPII) of Leishmania panamensis promastigotes. The second-generation fluoroquinolones enoxacin and ciprofloxacin exhibited extraordinarily high anti-parasite selectivity displaying 582- and 40-fold greater potencies against L. panamensis TOPII as compared with the human macrophage enzyme. The flavonoids quercetin and ellagic acid showed inverse specificities, the former being 161-fold more potent against L. panamensis TOPII, and the latter 15.7-fold more active against macrophage TOPII. The protoberberine coralyne was a potent inhibitor of both Leishmania and macrophage TOPII. Bis-benzimidazoles and the diamidine diminazene aceturate exhibited uniformly high potencies against parasite and host TOPII, but a second diamidine pentamidine showed 17.6-fold greater specificity for Leishmania TOPII. The antimonial sodium stibogluconate was an ineffective inhibitor of parasite TOPII showing 4.3-fold greater potency against the macrophage enzyme. These findings suggest that the leishmanicidal activities of certain fluoroquinolones and pentamidine may be mediated partly through TOPII inhibition.
Collapse
Affiliation(s)
- Tania M Cortázar
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Cali, Colombia
| | | | | |
Collapse
|
36
|
Dao-Thi MH, Van Melderen L, De Genst E, Afif H, Buts L, Wyns L, Loris R. Molecular basis of gyrase poisoning by the addiction toxin CcdB. J Mol Biol 2005; 348:1091-102. [PMID: 15854646 DOI: 10.1016/j.jmb.2005.03.049] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/17/2005] [Accepted: 03/18/2005] [Indexed: 11/20/2022]
Abstract
Gyrase is an ubiquitous bacterial enzyme that is responsible for disentangling DNA during DNA replication and transcription. It is the target of the toxin CcdB, a paradigm for plasmid addiction systems and related bacterial toxin-antitoxin systems. The crystal structure of CcdB and the dimerization domain of the A subunit of gyrase (GyrA14) dictates an open conformation for the catalytic domain of gyrase when CcdB is bound. The action of CcdB is one of a wedge that stabilizes a dead-end covalent gyrase:DNA adduct. Although CcdB and GyrA14 form a globally symmetric complex where the two 2-fold axes of both dimers align, the complex is asymmetric in its details. At the centre of the interaction site, the Trp99 pair of CcdB stacks with the Arg462 pair of GyrA14, explaining why the Arg462Cys mutation in the A subunit of gyrase confers resistance to CcdB. Overexpression of GyrA14 protects Escherichia coli cells against CcdB, mimicking the action of the antidote CcdA.
Collapse
Affiliation(s)
- Minh-Hoa Dao-Thi
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Instituut voor Biotechnologie, Building E, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
Dupont P, Aubry A, Cambau E, Gutmann L. Contribution of the ATP binding site of ParE to susceptibility to novobiocin and quinolones in Streptococcus pneumoniae. J Bacteriol 2005; 187:1536-40. [PMID: 15687222 PMCID: PMC545609 DOI: 10.1128/jb.187.4.1536-1540.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Streptococcus pneumoniae, an H103Y substitution in the ATP binding site of the ParE subunit of topoisomerase IV was shown to confer quinolone resistance and hypersensitivity to novobiocin when associated with an S84F change in the A subunit of DNA gyrase. We reconstituted in vitro the wild-type topoisomerase IV and its ParE mutant. The ParE mutant enzyme showed a decreased activity for decatenation at subsaturating ATP levels and was more sensitive to inhibition by novobiocin but was as sensitive to quinolones. These results show that the ParE alteration H103Y alone is not responsible for quinolone resistance and agree with the assumption that it facilitates the open conformation of the ATP binding site that would lead to novobiocin hypersensitivity and to a higher requirement of ATP.
Collapse
Affiliation(s)
- Philippe Dupont
- INSERM E0004, Laboratoire de Recherche Moléculaire sur les Antibiotiques, 15, rue de l'Ecole de Médecine, Université Paris VI, 75270 Paris Cedex 06, France
| | | | | | | |
Collapse
|
38
|
Buck GR, Zechiedrich EL. DNA disentangling by type-2 topoisomerases. J Mol Biol 2004; 340:933-9. [PMID: 15236957 DOI: 10.1016/j.jmb.2004.05.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 04/29/2004] [Accepted: 05/05/2004] [Indexed: 11/18/2022]
Abstract
A type-2 topoisomerase cleaves a DNA strand, passes another through the break, and then rejoins the severed ends. Because it appears that this action is as likely to increase as to decrease entanglements, the question is: how are entanglements removed? We argue that type-2 topoisomerases have evolved to act at "hooked" juxtapositions of strands (where the strands are curved toward each other). This type of juxtaposition is a natural consequence of entangled long strands. Our model accounts for the observed preference for unlinking and unknotting of short DNA plasmids by type-2 topoisomerases and well explains experimental observations.
Collapse
Affiliation(s)
- Gregory R Buck
- Department of Mathematics, Saint Anselm College, Manchester, NH 03102, USA
| | | |
Collapse
|
39
|
Abstract
We report for the first time low-level quinolone resistance mediated by decreased expression of topoisomerase IV in Staphylococcus aureus. A single-step mutant of wild-type S. aureus strain ISP794, P18 selected by using twice the MIC of premafloxacin, had four- and four- to eightfold greater MICs of premafloxacin and ciprofloxacin, respectively, than the wild type. Sequencing of parEC and gyrBA with their promoter regions revealed a point mutation (G-->A) 13 bp upstream of the start codon of parE. Genetic linkage studies showed that there was a high level of correlation between the mutation and the resistance phenotype, and allelic exchange confirmed the contribution of the mutation to resistance. Decreased expression of ParE and decreased steady-state levels of parEC transcripts in P18 and in resistant allelic exchange mutants were observed. The steady-state levels of gyrBA and topB transcripts were increased in P18 but not in two resistant allelic exchange mutants, and sequencing upstream of either gene did not reveal a difference between ISP794 and P18. The steady-state levels of topA transcripts were similar in the various strains. Growth competition experiments performed at 30, 37, and 41 degrees C with a susceptible allelic exchange strain and a resistant allelic exchange strain suggested that loss of fitness was associated with reduced levels of ParE at 41 degrees C. However, P18 had a growth advantage over ISP794 at all temperatures, suggesting that a compensatory mechanism was associated with the increased levels of gyrBA and topB transcripts. Thus, reduced levels of ParE appear to be compatible with cell survival, although there may be a fitness cost during rapid cell multiplication, which might be overcome by compensatory mechanisms without reversion of the resistance phenotype.
Collapse
Affiliation(s)
- Dilek Ince
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
40
|
Abstract
Although most antibiotics do not need metal ions for their biological activities, there are a number of antibiotics that require metal ions to function properly, such as bleomycin (BLM), streptonigrin (SN), and bacitracin. The coordinated metal ions in these antibiotics play an important role in maintaining proper structure and/or function of these antibiotics. Removal of the metal ions from these antibiotics can cause changes in structure and/or function of these antibiotics. Similar to the case of "metalloproteins," these antibiotics are dubbed "metalloantibiotics" which are the title subjects of this review. Metalloantibiotics can interact with several different kinds of biomolecules, including DNA, RNA, proteins, receptors, and lipids, rendering their unique and specific bioactivities. In addition to the microbial-originated metalloantibiotics, many metalloantibiotic derivatives and metal complexes of synthetic ligands also show antibacterial, antiviral, and anti-neoplastic activities which are also briefly discussed to provide a broad sense of the term "metalloantibiotics."
Collapse
Affiliation(s)
- Li-June Ming
- Department of Chemistry and Institute for Biomolecular Science, University of South Florida, Tampa, Florida 33620-5250, USA.
| |
Collapse
|
41
|
Sifaoui F, Lamour V, Varon E, Moras D, Gutmann L. ATP-bound conformation of topoisomerase IV: a possible target for quinolones in Streptococcus pneumoniae. J Bacteriol 2003; 185:6137-46. [PMID: 14526026 PMCID: PMC225018 DOI: 10.1128/jb.185.20.6137-6146.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Topoisomerase IV, a C(2)E(2) tetramer, is involved in the topological changes of DNA during replication. This enzyme is the target of antibacterial compounds, such as the coumarins, which target the ATP binding site in the ParE subunit, and the quinolones, which bind, outside the active site, to the quinolone resistance-determining region (QRDR). After site-directed and random mutagenesis, we found some mutations in the ATP binding site of ParE near the dimeric interface and outside the QRDR that conferred quinolone resistance to Streptococcus pneumoniae, a bacterial pathogen. Modeling of the N-terminal, 43-kDa ParE domain of S. pneumoniae revealed that the most frequent mutations affected conserved residues, among them His43 and His103, which are involved in the hydrogen bond network supporting ATP hydrolysis, and Met31, at the dimeric interface. All mutants showed a particular phenotype of resistance to fluoroquinolones and an increase in susceptibility to novobiocin. All mutations in ParE resulted in resistance only when associated with a mutation in the QRDR of the GyrA subunit. Our models of the closed and open conformations of the active site indicate that quinolones preferentially target topoisomerase IV of S. pneumoniae in its ATP-bound closed conformation.
Collapse
Affiliation(s)
- Farid Sifaoui
- INSERM E0004, Laboratoire de Recherche Moléculaire sur les Antibiotiques, UFR Broussais-Hôtel-Dieu, Université Paris VI, 75270 Paris Cedex 06, France
| | | | | | | | | |
Collapse
|
42
|
Pierrat OA, Maxwell A. The action of the bacterial toxin microcin B17. Insight into the cleavage-religation reaction of DNA gyrase. J Biol Chem 2003; 278:35016-23. [PMID: 12829716 DOI: 10.1074/jbc.m304516200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the effects of the bacterial toxin microcin B17 (MccB17) on the reactions of Escherichia coli DNA gyrase. MccB17 slows down but does not completely inhibit the DNA supercoiling and relaxation reactions of gyrase. A kinetic analysis of the cleavage-religation equilibrium of gyrase was performed to determine the effect of the toxin on the forward (cleavage) and reverse (religation) reactions. A simple mechanism of two consecutive reversible reactions with a nicked DNA intermediate was used to simulate the kinetics of cleavage and religation. The action of MccB17 on the kinetics of cleavage and religation was compared with that of the quinolones ciprofloxacin and oxolinic acid. With relaxed DNA as substrate, only a small amount of gyrase cleavage complex is observed with MccB17 in the absence of ATP, whereas the presence of the nucleotide significantly enhances the effect of the toxin on both the cleavage and religation reactions. In contrast, ciprofloxacin, oxolinic acid, and Ca2+ show lesser dependence on ATP to stabilize the cleavage complex. MccB17 enhances the overall rate of DNA cleavage by increasing the forward rate constant (k2) of the second equilibrium. In contrast, ciprofloxacin increases the amount of cleaved DNA by a combined effect on the forward and reverse rate constants of both equilibria. Based on these results and on the observations that MccB17 only slowly inhibits the supercoiling and relaxation reactions, we suggest a model of the interaction of MccB17 with gyrase.
Collapse
Affiliation(s)
- Olivier A Pierrat
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | | |
Collapse
|
43
|
Abstract
The continuous increase of resistant pathogens causing meningitis has limited the efficacy of standard therapeutic regimens. Due to their excellent activity in vitro and their good penetration into the cerebrospinal fluid (CSF), fluoroquinolones appear promising for the treatment of meningitis caused by gram-negative microorganisms, ie, Neisseria meningitidis and nosocomial gram-negative bacilli. The newer fluoroquinolones (moxifloxacin, gemifloxacin, gatifloxacin, and garenoxacin) have excellent activity against gram-positive microorganisms. Studies in animal models and limited clinical data indicate that they may play a future role in the treatment of pneumococcal meningitis. Analysis of pharmacodynamic parameters suggests that CSF concentrations that produce a C(peak)/minimal bactericidal concentration (MBC) ratio of at least 5 and concentrations above the MBC during the entire dosing interval are a prerequisite for maximal bactericidal activity in meningitis. Of interest, newer fluoroquinolones act synergistically with vancomycin and beta-lactam antibiotics (ceftriaxone, cefotaxime, meropenem) against penicillin-resistant pneumococci in experimental rabbit meningitis, potentially providing a new therapeutic strategy. Clinical trials are needed to further explore the usefulness of quinolones as single agents or in combination with other drugs in the therapy of pneumococcal meningitis.
Collapse
Affiliation(s)
- Philippe Cottagnoud
- *Department of Internal Medicine, Inselspital, Freiburgstrasse, 3010 Bern, Switzerland.
| | | |
Collapse
|
44
|
|
45
|
Strumberg D, Nitiss JL, Dong J, Walker J, Nicklaus MC, Kohn KW, Heddle JG, Maxwell A, Seeber S, Pommier Y. Importance of the fourth alpha-helix within the CAP homology domain of type II topoisomerase for DNA cleavage site recognition and quinolone action. Antimicrob Agents Chemother 2002; 46:2735-46. [PMID: 12183223 PMCID: PMC127396 DOI: 10.1128/aac.46.9.2735-2746.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Revised: 04/12/2002] [Accepted: 05/22/2002] [Indexed: 11/20/2022] Open
Abstract
We report that point mutations causing alteration of the fourth alpha-helix (alpha4-helix) of the CAP homology domain of eukaryotic (Saccharomyces cerevisiae) type II topoisomerases (Ser(740)Trp, Gln(743)Pro, and Thr(744)Pro) change the selection of type II topoisomerase-mediated DNA cleavage sites promoted by Ca(2+) or produced by etoposide, the fluoroquinolone CP-115,953, or mitoxantrone. By contrast, Thr(744)Ala substitution had minimal effect on Ca(2+)- and drug-stimulated DNA cleavage sites, indicating the selectivity of single amino acid substitutions within the alpha4-helix on type II topoisomerase-mediated DNA cleavage. The equivalent mutation in the gene for Escherichia coli gyrase causing Ser(83)Trp also changed the DNA cleavage pattern generated by Ca(2+) or quinolones. Finally, Thr(744)Pro substitution in the yeast type II topoisomerase rendered the enzyme sensitive to antibacterial quinolones. This study shows that the alpha4-helix within the conserved CAP homology domain of type II topoisomerases is critical for selecting the sites of DNA cleavage. It also demonstrates that selective amino acid residues in the alpha4-helix are important in determining the activity and possibly the binding of quinolones to the topoisomerase II-DNA complexes.
Collapse
Affiliation(s)
- Dirk Strumberg
- Department of Internal Medicine and Medical Oncology, West German Cancer Center, University Medical School of Essen, 45122 Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The changes in quinolone research have been fast and exciting over the past 5-7 years with the discovery and development of several new 8-methoxy quinolones. An additional factor is the design of the so-called 4th-generation quinolones that lack the C-6 fluorine, which might impact the development of quinolone resistance. The science behind the quinolone susceptibility and resistance patterns is fascinating, but has not yet been clearly delineated in discussions of the advantages of quinolone usage in the clinic.
Collapse
Affiliation(s)
- T J. Dougherty
- Department of Microbiology, Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, 06492, Wallingford, CT, USA
| | | | | |
Collapse
|
47
|
Abstract
Knotted DNA has potentially devastating effects on cells. By using two site-specific recombination systems, we tied all biologically significant simple DNA knots in Escherichia coli. When topoisomerase IV activity was blocked, either with a drug or in a temperature-sensitive mutant, the knotted recombination intermediates accumulated whether or not gyrase was active. In contrast to its decatenation activity, which is strongly affected by DNA supercoiling, topoisomerase IV unknotted DNA independently of supercoiling. This differential supercoiling effect held true regardless of the relative sizes of the catenanes and knots. Finally, topoisomerase IV unknotted DNA equally well when DNA replication was blocked with hydroxyurea. We conclude that topoisomerase IV, not gyrase, unknots DNA and that it is able to access DNA in the cell freely. With these results, it is now possible to assign completely the topological roles of the topoisomerases in E. coli. It is clear that the topoisomerases in the cell have distinct and nonoverlapping roles. Consequently, our results suggest limitations in assigning a physiological function to a protein based upon sequence similarity or even upon in vitro biochemical activity.
Collapse
Affiliation(s)
- R W Deibler
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030-3411, USA
| | | | | |
Collapse
|
48
|
Bast DJ, de Azavedo JCS. Quinolone Resistance: Older Concepts and Newer Developments. Curr Infect Dis Rep 2001; 3:20-28. [PMID: 11177727 DOI: 10.1007/s11908-001-0055-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
New quinolone compounds have been recommended for use in the treatment of respiratory tract infections, particularly pneumonia caused by multi drug-resistant Streptococcus pneumoniae. Of concern, however, is the recent emergence of pneumococcal isolates with reduced susceptibilities to both old and new quinolone compounds. This necessitates the employment of quinolone-use strategies aimed at restricting the emergence of resistance, to extend the effectiveness of this very important class of antibacterial agents. This article provides a comprehensive review of the recent discoveries in type II topoisomerase/quinolone structure-function relationships. It also addresses new insights into the mechanisms of quinolone resistance, the predicted trends in quinolone resistance, and possible strategies for quinolone use against S. pneumoniae.
Collapse
Affiliation(s)
- Darrin J. Bast
- Department of Microbiology, Toronto Medical Laboratories, Mount Sinai Hospital, University of Toronto, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | | |
Collapse
|
49
|
Fortune JM, Osheroff N. Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:221-53. [PMID: 10697411 DOI: 10.1016/s0079-6603(00)64006-0] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Topoisomerase II is an essential enzyme that plays a role in virtually every cellular DNA process. This enzyme interconverts different topological forms of DNA by passing one nucleic acid segment through a transient double-stranded break generated in a second segment. By virtue of its double-stranded DNA passage reaction, topoisomerase II is able to regulate DNA over- and underwinding, and can resolve knots and tangles in the genetic material. Beyond the critical physiological functions of the eukaryotic enzyme, topoisomerase II is the target for some of the most successful anticancer drugs used to treat human malignancies. These agents are referred to as topoisomerase II poisons, because they transform the enzyme into a potent cellular toxin. Topoisomerase II poisons act by increasing the concentration of covalent enzyme-cleaved DNA complexes that normally are fleeting intermediates in the catalytic cycle of topoisomerase II. As a result of their action, these drugs generate high levels of enzyme-mediated breaks in the genetic material of treated cells and ultimately trigger cell death pathways. Topoisomerase II is also the target for a second category of drugs referred to as catalytic inhibitors. Compounds in this category prevent topoisomerase II from carrying out its required physiological functions. Drugs from both categories vary widely in their mechanisms of actions. This review focuses on topoisomerase II function and how drugs alter the catalytic cycle of this important enzyme.
Collapse
Affiliation(s)
- J M Fortune
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
50
|
Anderson VE, Zaniewski RP, Kaczmarek FS, Gootz TD, Osheroff N. Quinolones inhibit DNA religation mediated by Staphylococcus aureus topoisomerase IV. Changes in drug mechanism across evolutionary boundaries. J Biol Chem 1999; 274:35927-32. [PMID: 10585479 DOI: 10.1074/jbc.274.50.35927] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quinolones are the most active oral antibacterials in clinical use and act by increasing DNA cleavage mediated by prokaryotic type II topoisomerases. Although topoisomerase IV appears to be the primary cytotoxic target for most quinolones in Gram-positive bacteria, interactions between the enzyme and these drugs are poorly understood. Therefore, the effects of ciprofloxacin on the DNA cleavage and religation reactions of Staphylococcus aureus topoisomerase IV were characterized. Ciprofloxacin doubled DNA scission at 150 nM drug and increased cleavage approximately 9-fold at 5 microM. Furthermore, it dramatically inhibited rates of DNA religation mediated by S. aureus topoisomerase IV. This inhibition of religation is in marked contrast to the effects of antineoplastic quinolones on eukaryotic topoisomerase II, and suggests that the mechanistic basis for quinolone action against type II topoisomerases has not been maintained across evolutionary boundaries. The apparent change in quinolone mechanism was not caused by an overt difference in the drug interaction domain on topoisomerase IV. Therefore, we propose that the mechanistic basis for quinolone action is regulated by subtle changes in drug orientation within the enzyme.drug.DNA ternary complex rather than gross differences in the site of drug binding.
Collapse
Affiliation(s)
- V E Anderson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | |
Collapse
|