1
|
Ding Y, Yu Y. Therapeutic potential of flavonoids in gastrointestinal cancer: Focus on signaling pathways and improvement strategies (Review). Mol Med Rep 2025; 31:109. [PMID: 40017144 PMCID: PMC11884236 DOI: 10.3892/mmr.2025.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
Flavonoids are a group of polyphenolic compounds distributed in vegetables, fruits and other plants, which have considerable antioxidant, anti‑tumor and anti‑inflammatory activities. Several types of gastrointestinal (GI) cancer are the most common malignant tumors in the world. A large number of studies have shown that flavonoids have inhibitory effects on cancer, and they are recognized as a class of potential anti‑tumor drugs. Therefore, the present review investigated the molecular mechanisms of flavonoids in the treatment of different types of GI cancer and summarized the drug delivery systems commonly used to improve their bioavailability. First, the classification of flavonoids and the therapeutic effects of various flavonoids on human diseases were briefly introduced. Then, to clarify the mechanism of action of flavonoids on different types of GI cancer in the human body, the metabolic process of flavonoids in the human body and the associated signaling pathways causing five common types of GI cancer were discussed, as well as the corresponding therapeutic targets of flavonoids. Finally, in clinical settings, flavonoids have poor water solubility, low permeability and inferior stability, which lead to low absorption efficiency in vivo. Therefore, the three most widely used drug delivery systems were summarized. Suggestions for improving the bioavailability of flavonoids and the focus of the next stage of research were also put forward.
Collapse
Affiliation(s)
- Ye Ding
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yong Yu
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
2
|
Liu C, Zhang X, Xu J, Gao M, Wang S, Li H. Fluorescent biosensor for ultra-stability detection of Pax-5a based on a double cascade amplification strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125632. [PMID: 39709862 DOI: 10.1016/j.saa.2024.125632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
The development of B-lymphoblastic leukemia is tightly associated with aberrant expression of Pax-5a. This work presented a novel dual signal amplification strategy-based Pax-5a detection method by combining the rolling circle amplification reaction (RCA) and the Entropy-driven toehold-mediated strand displacement (ETSD). Particularly noteworthy is the employed ETSD, which effectively improves the rate and stability of the reaction due to its unique entropy-driven principle. The uniqueness of this method is the combination of two amplification techniques, each utilizing its own strengths to achieve our intended purpose. This sensing method has been effectively used to determine the Pax-5a gene which with a reliable linear correlation for detection within a range and achieving a detection limit of 3.34 pM, calculated using the formula (3σ/S). Furthermore, even in 1 % of human serum samples, the biosensor can identify the target gene with exceptional sensitivity. The recovery rates fall within the range of 96.68-101.76 %, with a relative standard deviation (RSD) of 5.47 %. The method has a strong specificity based on sequence-specific hybridization of nucleic acids, thereby effectively preventing potential false-positive results. This fluorescent biosensor has a high detection capability for Pax-5a, and offers stable results. It provides a new way for early clinical diagnosis of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Xinyi Zhang
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jun Xu
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Min Gao
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Suqin Wang
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Hongbo Li
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China.
| |
Collapse
|
3
|
Li WW, Fan XX, Xu ZS, Zhu ZX, Zhu ZY, Cao XJ, Pei DS, Wang YZ, Zhang JY, Wang YY, Zheng HX. BLK positively regulates TLR/IL-1R signaling by catalyzing TOLLIP phosphorylation. J Cell Biol 2024; 223:e202302081. [PMID: 38078859 PMCID: PMC10711807 DOI: 10.1083/jcb.202302081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/24/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
TLR/IL-1R signaling plays a critical role in sensing various harmful foreign pathogens and mounting efficient innate and adaptive immune responses, and it is tightly controlled by intracellular regulators at multiple levels. In particular, TOLLIP forms a constitutive complex with IRAK1 and sequesters it in the cytosol to maintain the kinase in an inactive conformation under unstimulated conditions. However, the underlying mechanisms by which IRAK1 dissociates from TOLLIP to activate TLR/IL-1R signaling remain obscure. Herein, we show that BLK positively regulates TLR/IL-1R-mediated inflammatory response. BLK-deficient mice produce less inflammatory cytokines and are more resistant to death upon IL-1β challenge. Mechanistically, BLK is preassociated with IL1R1 and IL1RAcP in resting cells. IL-1β stimulation induces heterodimerization of IL1R1 and IL1RAcP, which further triggers BLK autophosphorylation at Y309. Activated BLK directly phosphorylates TOLLIP at Y76/86/152 and further promotes TOLLIP dissociation from IRAK1, thereby facilitating TLR/IL-1R-mediated signal transduction. Overall, these findings highlight the importance of BLK as an active regulatory component in TLR/IL-1R signaling.
Collapse
Affiliation(s)
- Wei-Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xu-Xu Fan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhi-Sheng Xu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zi-Xiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhao-Yu Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xue-Jing Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Dan-Shi Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yi-Zhuo Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Ji-Yan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hai-Xue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
4
|
Ni J, Li X, Tu X, Zhu H, Wang S, Hou Y, Dou H. Halofuginone ameliorates systemic lupus erythematosus by targeting Blk in myeloid-derived suppressor cells. Int Immunopharmacol 2023; 114:109487. [PMID: 36493694 DOI: 10.1016/j.intimp.2022.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic, inflammatory autoimmune disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells participated in the pathogenesis of SLE. MDSCs has been considered a potential therapeutic target for lupus. As traditional Chinese medicine, Halofuginone (HF) has the extensive immunomodulatory effects on some autoimmune disorders. Our research was dedicated to discovering therapeutic efficacy of HF for lupus to explore novel mechanisms on MDSCs. We found that HF prominently alleviated the systemic symptoms especially nephritis in Imiquimod-induced lupus mice, and simultaneously repaired the immune system, reflected in the alteration of autoantibodies. HF diminished the quantity of MDSCs in lupus mice, and induced apoptosis of MDSCs. Through RNA sequencing performed on the sorted MDSC from lupus mice and HF-treated lupus mice, B lymphoid tyrosine kinase (Blk, a non-receptor cytoplasmic tyrosine kinase) was screened as the target molecule of HF. It's proven that HF had two independent effects on Blk. On the one hand, HF increased the mRNA expression of Blk in MDSCs by inhibiting the nuclear translocation of p65/p50 heterodimer. On the other hand, HF enhanced the kinase activity of Blk in MDSCs through direct molecular binding. We further investigated that Blk suppressed the phosphorylation of downstream ERK signaling pathway to increase the apoptosis of MDSCs. In conclusion, our study illustrated that HF alleviated the disease progression of lupus mice by targeting Blk to promote the apoptosis of MDSCs, which indicated the immunotherapeutic potential of HF to treat lupus.
Collapse
Affiliation(s)
- Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Xiaoying Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Xiaodi Tu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Haiyan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Shiqi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| |
Collapse
|
5
|
Cheng CW, Yang SF, Wang YH, Fang WF, Lin YC, Tang KT, Lin JD. Associations of secreted phosphoprotein 1 and B lymphocyte kinase gene polymorphisms with autoimmune thyroid disease. Eur J Clin Invest 2019; 49:e13065. [PMID: 30589937 DOI: 10.1111/eci.13065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dysregulation of the type 1 interferon (IFN)-related signalling pathway predisposes one to autoimmune diseases. Possible associations of single-nucleotide polymorphisms (SNPs) of secreted phosphoprotein 1 (SPP1) and B lymphocyte kinase (BLK) of the type 1 IFN-related signalling pathway with autoimmune thyroid disease (AITD) in an ethnic Chinese (ie Taiwanese) population were tested. METHODS Totally, 83 Hashimoto's thyroiditis (HT) patients, 319 Graves' disease (GD) patients and 369 controls were enrolled. Genotypes of the two SNPs (rs1126772 and rs1126616) of SPP1 and two SNPs (rs13277113 and rs2736340) of BLK were determined. RESULTS Our results showed reduced percentages of the G allele of rs13277113 of BLK in GD (P = 0.037, odds ratio [OR] = 0.78, 95% confidence interval [CI] = 0.62-0.99) and HT (P = 0.002, OR = 0.54, 95% CI = 0.36-0.81), compared to the controls. At the same time, lower frequencies of the C allele of rs2736340 of BLK in GD (P = 0.025, OR = 0.76, 95% CI = 0.60-0.97) and HT (P = 0.003, OR = 0.53, 95% CI = 0.35-0.81) than the controls were also observed. There were significantly higher AT haplotype frequencies of rs1327713 and rs2736340 in GD and HT patients than in the controls (P = 0.025, OR = 1.31, 95% CI = 1.03-1.67, and P = 0.003, OR = 1.89, 95% CI = 1.24-2.87, respectively). Moreover, the anti-microsomal antibody titre was associated with rs2736340. CONCLUSIONS Genetic variants of rs13277113 and rs2736340 of BLK were associated with susceptibility to GD, HT and AITD in an ethnic Chinese population. Our results suggest the BLK may participate in the pathogenesis of GD, HT and AITD.
Collapse
Affiliation(s)
- Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Traditional Herb Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Fang Fang
- Department of Family Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kam-Tsun Tang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiunn-Diann Lin
- Division of Endocrinology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Abstract
The genes associated with Sjögren syndrome (SS) can be assigned to the NF-kB pathway, the IFN signaling pathway, lymphocyte signaling, and antigen presentation. The frequencies of risk variants show they are common with modest genetic effects. The strongest genetic association outside the human leukocyte antigen region is in IRF5, a gene relevant in the IFN signaling pathway and for B cell differentiation. Although no association has been found with the NF-kB gene itself, associations in TNFAIP3 and TNIP1 (both genome-wide significant), VCAM1 and IRAK1BP (both suggestive), point to genetic explanations for dysregulation of the NF-kB pathway in SS.
Collapse
Affiliation(s)
- Tove Ragna Reksten
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK 73104, USA; Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, The Laboratory Building, Haukeland University Hospital, Jonas Lies vei 87, N-5021 Bergen, Norway
| | - Christopher J Lessard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, MBSB 451, Oklahoma City, OK 73104, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, MBSB 451, Oklahoma City, OK 73104, USA.
| |
Collapse
|
7
|
Kumari S, Saradhi M, Rana M, Chatterjee S, Aumercier M, Mukhopadhyay G, Tyagi RK. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun. Exp Cell Res 2015; 330:398-411. [DOI: 10.1016/j.yexcr.2014.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 11/16/2022]
|
8
|
Zwollo P, Ray JC, Sestito M, Kiernan E, Wiens GD, Kaattari S, StJacques B, Epp L. B cell signatures of BCWD-resistant and susceptible lines of rainbow trout: a shift towards more EBF-expressing progenitors and fewer mature B cells in resistant animals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:1-12. [PMID: 25101978 DOI: 10.1016/j.dci.2014.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
Bacterial cold water disease (BCWD) is a chronic disease of rainbow trout, and is caused by the Gram-negative bacterium Flavobacterium psychrophilum (Fp), a common aquaculture pathogen. The National Center for Cool and Cold Water Aquaculture has bred two genetic lines of rainbow trout: a line of Fp-resistant trout (ARS-Fp-R or R-line trout) and a line of susceptible trout (ARS-Fp-S, or S-line). Little is known about how phenotypic selection alters immune response parameters or how such changes relate to genetic disease resistance. Herein, we quantify interindividual variation in the distribution and abundance of B cell populations (B cell signatures) and examine differences between genetic lines of naive animals. There are limited trout-specific cell surface markers currently available to resolve B cell subpopulations and thus we developed an alternative approach based on detection of differentially expressed transcription factors and intracellular cytokines. B cell signatures were compared between R-line and S-line trout by flow cytometry using antibodies against transcription factors early B cell factor-1 (EBF1) and paired domain box protein Pax5, the pro-inflammatory cytokine IL-1β, and the immunoglobulin heavy chain mu. R-line trout had higher percentages of EBF(+) B myeloid/ progenitor and pre-B cells in PBL, anterior and posterior kidney tissues compared to S-line trout. The opposite pattern was detected in more mature B cell populations: R-line trout had lower percentages of both IgM(+) mature B cells and IgM-secreting cells in anterior kidney and PBL compared to S-line trout. In vitro LPS-activation studies of PBL and spleen cell cultures revealed no significant induction differences between R-line and S-line trout. Together, our findings suggest that selective resistance to BCWD may be associated with shifts in naive animal developmental lineage commitment that result in decreased B lymphopoiesis and increased myelopoiesis in BCWD resistant trout relative to susceptible trout.
Collapse
Affiliation(s)
- Patty Zwollo
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185, USA.
| | - Jocelyn C Ray
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185, USA
| | - Michael Sestito
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185, USA
| | - Elizabeth Kiernan
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185, USA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, WV 25430, USA
| | - Steve Kaattari
- Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, The College of William and Mary, Williamsburg, VA 23185, USA
| | - Brittany StJacques
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185, USA
| | - Lidia Epp
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185, USA
| |
Collapse
|
9
|
Abstract
UNLABELLED Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM(+) WBC. The presence of the CyHV-3 genome in IgM(+) WBC was about 20-fold greater than in IgM(-) WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat was investigated in IgM(+) WBC from koi with latent CyHV-3 infection. Only a spliced ORF6 transcript was found to be abundantly expressed in IgM(+) WBC from CyHV-3 latently infected koi. The spliced ORF6 transcript was also detected in vitro during productive infection as early as 1 day postinfection. The ORF6 transcript from in vitro infection begins at -127 bp upstream of the ATG codon and ends +188 bp downstream of the stop codon, +20 bp downstream of the polyadenylation signal. The hypothetical protein of ORF6 contains a consensus sequence with homology to a conserved domain of EBNA-3B and ICP4 from Epstein-Barr virus and herpes simplex virus 1, respectively, both members of the Herpesviridae. This is the first report of latent CyHV-3 in B cells and identification of gene transcription during latency for a member of the Alloherpesviridae. IMPORTANCE This is the first demonstration that a member of the Alloherpesviridae, cyprinid herpesvirus 3 (CyHV-3), establishes a latent infection in the B cells of its host, Cyprinus carpio. In addition, this is the first report of identification of gene transcription during latency for a member of Herpesvirales outside Herpesviridae. This is also the first report that the hypothetical protein of latent transcript of CyHV-3 contains a consensus sequence with homology to a conserved domain of EBNA-3B from Epstein-Barr virus and ICP4 from herpes simplex virus 1, which are genes important for latency. These strongly suggest that latency is evolutionally conserved across vertebrates.
Collapse
|
10
|
MacMurray E, Barr M, Bruce A, Epp L, Zwollo P. Alternative splicing of the trout Pax5 gene and identification of novel B cell populations using Pax5 signatures. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:270-81. [PMID: 23796789 PMCID: PMC3932526 DOI: 10.1016/j.dci.2013.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/11/2013] [Accepted: 06/15/2013] [Indexed: 05/21/2023]
Abstract
Pax5 is an alternatively spliced transcription factor that regulates B cell development and activation. The function of specific Pax5 isoforms is unknown. Here we report the existence of seven alternatively spliced isoforms of Pax5 in the rainbow trout. We hypothesized that B cells differentially express specific Pax5 isoforms as a means of modulating Pax5 activity during cell maturation. Flow cytometric analyses using Pax5-specific antibodies recognizing the paired domain, a central (exon 6-encoding) domain, or the C-terminus, revealed the existence of distinct Pax5-expressing cell populations in trout immune tissues. Additionally, using the transcription factor EBF, we show that Pax5 isoforms lacking a paired domain are already expressed at the earliest stages of trout (B) lymphopoiesis, and unexpectedly, that minor populations of such cells reside in blood and spleen. These data support use of differentially expressed Pax5 isoforms to identify novel B cell subsets in the form of Pax5 tissue signatures, and as such, provides new biomarkers for malignancy, infectious disease, and disease resistance in trout and humans.
Collapse
Affiliation(s)
- Elizabeth MacMurray
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
| | - Maggie Barr
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
| | - Amber Bruce
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
| | - Lidia Epp
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
| | - Patty Zwollo
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
- To whom correspondence should be addressed: Patty Zwollo, Department of Biology, The College of William and Mary, Williamsburg, VA 23185-8795, FAX: 757-221-6483; Phone: 757-221-1969;
| |
Collapse
|
11
|
Schouten J, Clister T, Bruce A, Epp L, Zwollo P. Sockeye salmon retain immunoglobulin-secreting plasma cells throughout their spawning journey and post-spawning. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:202-9. [PMID: 23434463 PMCID: PMC3654005 DOI: 10.1016/j.dci.2013.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 01/27/2013] [Accepted: 01/29/2013] [Indexed: 05/04/2023]
Abstract
Antibody-producing plasma cells are a major source of protective immunity in vertebrates, including salmon. During the spawning phase, salmon undergo drastic, hormonally driven changes in their physiology, including elevated levels of cortisol, which are known to suppress the immune system. As adult fish need to survive their long journey to the spawning grounds, we hypothesized that humoral immunity, in the form of IgM-secreting plasma cells, remains functional until post-spawning. This was investigated by measuring changes in membrane and secreted immunoglobulin heavy chain mu and Pax5 transcripts in spleen and kidney from migrating sockeye salmon, using real-time qPCR. As an additional measurement, the abundance of developing B, mature B, and plasma cells was determined in spawning fish, using flow cytometry. Immune tissue samples were collected from fish from the Kenai River drainage and Main Bay, Prince William Sound. Our results reveal that spawning fish express high levels of secreted heavy chain mu transcripts in their spleen and anterior kidney throughout the spawning journey. Furthermore, we show that IgM-secreting PCs (HCmu++/Pax5-) remain abundant in anterior kidney and spleen of post-spawning sockeye salmon, with a concomitant loss in developing B cells (HCmu-/Pax5+). This suggests that successful spawners retain their PCs throughout the spawning journey and post-spawning.
Collapse
Affiliation(s)
- Jonathan Schouten
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
| | - Terri Clister
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
| | - Amber Bruce
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
| | - Lidia Epp
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
| | - Patty Zwollo
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
- Corresponding author: Patty Zwollo, PhD, Department of Biology, The College of William and Mary, Williamsburg, VA 23188, FAX: 757-221-6483, Phone: 757-221-1969,
| |
Collapse
|
12
|
Lewis CA, Cristol DA, Swaddle JP, Varian-Ramos CW, Zwollo P. Decreased immune response in zebra finches exposed to sublethal doses of mercury. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:327-336. [PMID: 23229191 DOI: 10.1007/s00244-012-9830-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/22/2012] [Indexed: 06/01/2023]
Abstract
Mercury (Hg) is a ubiquitous contaminant with deleterious effects on many wildlife species. Most studies to date have focused on fish-eating birds and mammals because much historical Hg pollution is aquatic. Recently, however, comparable blood-Hg levels have been found in terrestrial insectivorous songbirds. As a result, research is needed to clarify the effects of Hg exposure on songbirds. One fundamental end point that is still poorly understood is the effect of Hg on the songbird immune system. If Hg affects the functioning of the immune system, exposed songbirds may be less able to mount an appropriate immune response against invading pathogens. To gain insight into how Hg affects songbird immune function on a cellular level, a flow cytometric assay was developed to measure lipopolysaccharide-induced B-lymphocyte proliferation in zebra finches (Taeniopygia guttata). This is the first experimental (dosing) study of the potential effect of Hg on songbird immune system functioning. Decreased B cell proliferation was observed after lipopolysaccharide exposure in individuals with greater concentrations of Hg in their blood and tissues. In addition, these individuals had decreased ratios of proliferating-to-resting B cells. This decrease in lymphocyte proliferation in response to an effective mitogen suggests that environmental exposure to sublethal levels of Hg may inhibit or delay B cell proliferation in songbirds, potentially increasing susceptibility to disease and decreasing survivorship.
Collapse
Affiliation(s)
- Catherine A Lewis
- Department of Biology, The College of William and Mary, Institute for Integrative Bird Behavior Studies, Williamsburg, VA 23187, USA
| | | | | | | | | |
Collapse
|
13
|
Delgado-Vega AM, Dozmorov MG, Quirós MB, Wu YY, Martínez-García B, Kozyrev SV, Frostegård J, Truedsson L, de Ramón E, González-Escribano MF, Ortego-Centeno N, Pons-Estel BA, D'Alfonso S, Sebastiani GD, Witte T, Lauwerys BR, Endreffy E, Kovács L, Vasconcelos C, da Silva BM, Wren JD, Martin J, Castillejo-López C, Alarcón-Riquelme ME. Fine mapping and conditional analysis identify a new mutation in the autoimmunity susceptibility gene BLK that leads to reduced half-life of the BLK protein. Ann Rheum Dis 2012; 71:1219-26. [PMID: 22696686 PMCID: PMC3375585 DOI: 10.1136/annrheumdis-2011-200987] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/31/2012] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To perform fine mapping of the autoimmunity susceptibility gene BLK and identify functional variants involved in systemic lupus erythematosus (SLE). METHODS Genotyping of 1163 European SLE patients and 1482 controls and imputation were performed covering the BLK gene with 158 single-nucleotide polymorphisms. Logistic regression analysis was done using PLINK and conditional analyses using GENABEL's test score. Transfections of BLK constructs on HEK293 cells containing the novel mutation or the wild type form were analysed for their effect on protein half-life using a protein stability assay, cycloheximide and western blot. CHiP-qPCR for detection of nuclear factor κ B (NFkB) binding. RESULTS Fine mapping of BLK identified two independent genetic effects with functional consequences: one represented by two tightly linked associated haplotype blocks significantly enriched for NFκB-binding sites and numerous putative regulatory variants whose risk alleles correlated with low BLK mRNA levels. Binding of NFkBp50 and p65 to an associated 1.2 Kb haplotype segment was confirmed. A second independent genetic effect was represented by an Ala71Thr, low-frequency missense substitution with an OR=2.31 (95% CI 1.38 to 3.86). The 71Thr decreased BLK protein half-life. CONCLUSIONS These results show that rare and common regulatory variants in BLK are involved in disease susceptibility and both, albeit independently, lead to reduced levels of BLK protein.
Collapse
Affiliation(s)
- Angélica M Delgado-Vega
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Mikhail G Dozmorov
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, 73104, United States of America
| | - Manuel Bernal Quirós
- Centro de Genómica e Investigación Oncológica GENYO Pfizer-Universidad de Granada-Junta de Andalucía, Granada, 18007, Spain
| | - Ying-Yu Wu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, 73104, United States of America
| | - Belén Martínez-García
- Centro de Genómica e Investigación Oncológica GENYO Pfizer-Universidad de Granada-Junta de Andalucía, Granada, 18007, Spain
| | - Sergey V Kozyrev
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23, Uppsala, Sweden
| | - Johan Frostegård
- Institute of Environmental Medicine, Unit of Immnology and Chronic diseases, Karolinska Institut, 761 77, Solna, Sweden
| | - Lennart Truedsson
- Department of Laboratory Medicine, section of M.I.G., Lund University, 221 00, Lund, Sweden
| | | | | | | | | | - Sandra D'Alfonso
- Department of Medical Sciences and Institute of Research in Chronic Autoimmune Diseases (IRCAD), University of Eastern Piedmont, 28100, Novara, Italy
| | - Gian Domenico Sebastiani
- Unità Operativa Complessa Reumatología, Azienda Ospedaliera San Camillo-Forlanini, Roma, 00152, Italy
| | | | - Bernard R Lauwerys
- Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 1200 Bruxelles, Belgium
| | - Emoke Endreffy
- Department of Pediatrics and Health Center, University of Szeged, H-6721, Szeged, Hungary
| | - László Kovács
- Department of Rheumatology, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725, Szeged, Hungary
| | - Carlos Vasconcelos
- Hospital Santo Antonio and Unidade Multidisciplinar em Investigação Biomédica/IInstituto de Ciências Biomédicas de Abel Salazar – Universidade do Porto, 4099-003, Porto, Portugal
| | - Berta Martins da Silva
- Unidade Multidisciplinar em Investigação Biomédica/Instituto de Ciências Biomédicas de Abel Salazar – Universidade do Porto, 4099-003, Porto, Portugal
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, 73104, United States of America
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Armilla, Spain
| | - Casimiro Castillejo-López
- Centro de Genómica e Investigación Oncológica GENYO Pfizer-Universidad de Granada-Junta de Andalucía, Granada, 18007, Spain
| | - Marta E Alarcón-Riquelme
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, 73104, United States of America
- Centro de Genómica e Investigación Oncológica GENYO Pfizer-Universidad de Granada-Junta de Andalucía, Granada, 18007, Spain
| |
Collapse
|
14
|
Barr M, Mott K, Zwollo P. Defining terminally differentiating B cell populations in rainbow trout immune tissues using the transcription factor XbpI. FISH & SHELLFISH IMMUNOLOGY 2011; 31:727-35. [PMID: 21784159 PMCID: PMC3220772 DOI: 10.1016/j.fsi.2011.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/19/2011] [Accepted: 06/20/2011] [Indexed: 05/04/2023]
Abstract
The nature of antibody-secreting cells in the rainbow trout is poorly defined. Here we describe a flow cytometric approach to help differentiate between four major trout B cell subsets present during terminal B cell differentiation: resting B cells, activated B cells, plasmablasts, and plasma cells. To aid in the identification of B cell subsets, the LPS-inducible transcription factor XbpI-S was used as a marker. An antibody specific to the stable form of inducible transcription factor X-box protein I (XbpI) was generated, which detects XbpI-S protein expression for species within the Oncorhyncus genus, including rainbow trout. Combinatorial expression patterns, or B cell signatures, were established using antibodies to XbpI-S, Pax5, and IgM in combination with a proliferation marker. We show that XbpI-S induction in trout splenic B cells increases throughout a 10-day in vitro LPS-induction period and that increased XbpI-S expression correlates with increased HCmu expression in the cell. PBLs displayed a lower level of XbpI-S induction during this incubation period, compared to spleen. We conclude that trout B cells follow a highly conserved B cell activation pathway, albeit slower than what has been observed in mammalian species. The use of XbpI-S as an activation marker for trout humoral immune activation promises to be useful for future in vivo studies, and can be applied to a broad range of teleost species.
Collapse
Affiliation(s)
- Maggie Barr
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
| | - Katrina Mott
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
| | - Patty Zwollo
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185
- Corresponding author, Patty Zwollo, Department of Biology, The College of William and Mary, Williamsburg, VA 23188, FAX: 757-221-6483, Phone: 757-221-1969,
| |
Collapse
|
15
|
Zwollo P, Mott K, Barr M. Comparative analyses of B cell populations in trout kidney and mouse bone marrow: establishing "B cell signatures". DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1291-9. [PMID: 20705088 PMCID: PMC2945407 DOI: 10.1016/j.dci.2010.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 08/01/2010] [Accepted: 08/02/2010] [Indexed: 05/07/2023]
Abstract
This study aimed to identify the frequency and distribution of developing B cell populations in the kidney of the rainbow trout, using four molecular B cell markers that are highly conserved between species, including two transcription factors, Pax5 and EBF1, recombination-activating gene RAG1, and the immunoglobulin heavy chain mu. Three distinct B cell stages were defined: early developing B cells (CLP, pro-B, and early pre-B cells), late developing B cell (late pre-B, immature B, and mature B cells), and IgM-secreting cells. Developmental stage-specific, combinatorial expression of Pax5, EBF1, RAG1 and immunoglobulin mu was determined in trout anterior kidney cells by flow cytometry. Trout staining patterns were compared to a well-defined primary immune tissue, mouse bone marrow, and using mouse surface markers B220 and CD43. A remarkable level of similarity was uncovered between the primary immune tissues of both species. Subsequent analysis of the entire trout kidney, divided into five contiguous segments K1-K5, revealed a complex pattern of early developing, late developing, and IgM-secreting B cells. Patterns in anterior kidney segment K1 were most similar to those of mouse bone marrow, while the most posterior part of the kidney, K5, had many IgM-secreting cells, but lacked early developing B cells. A potential second B lymphopoiesis site was uncovered in segment K4 of the kidney. The B cell patterns, or "B cell signatures" described here provide information on the relative abundance of distinct developing B cell populations in the trout kidney, and can be used in future studies on B cell development in other vertebrate species.
Collapse
Affiliation(s)
- Patty Zwollo
- Department of Biology, The College of William and Mary, Williamsburg, VA 23188, FAX: 757-221-6483, Phone: 757-221-1969,
| | - Katrina Mott
- Department of Biology, The College of William and Mary, Williamsburg, VA 23188, FAX: 757-221-6483, Phone: 757-221-1969,
| | - Maggie Barr
- Department of Biology, The College of William and Mary, Williamsburg, VA 23188, FAX: 757-221-6483, Phone: 757-221-1969,
| |
Collapse
|
16
|
Torres O, Palomino-Morales R, Vazquez-Rodriguez TR, Castañeda S, Morado IC, Miranda-Filloy JA, Ortego-Centeno N, Fernandez-Gutierrez B, Martin J, Gonzalez-Gay MA. Role of the C8orf13-BLK region in biopsy-proven giant cell arteritis. Hum Immunol 2010; 71:525-9. [DOI: 10.1016/j.humimm.2010.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/18/2010] [Accepted: 02/09/2010] [Indexed: 11/15/2022]
|
17
|
Gourh P, Agarwal SK, Martin E, Divecha D, Rueda B, Bunting H, Assassi S, Paz G, Shete S, McNearney T, Draeger H, Reveille JD, Radstake TRDJ, Simeon CP, Rodriguez L, Vicente E, Gonzalez-Gay MA, Mayes MD, Tan FK, Martin J, Arnett FC. Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J Autoimmun 2009; 34:155-62. [PMID: 19796918 DOI: 10.1016/j.jaut.2009.08.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/21/2009] [Accepted: 08/29/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Genetic studies in the systemic sclerosis (SSc), an autoimmune disease that clinically manifests with dermal and internal organ fibrosis and small vessel vasculopathy, have identified multiple susceptibility genes including HLA-class II, PTPN22, IRF5, and STAT4 which have also been associated with other autoimmune diseases, such as systemic lupus erythematosus (SLE). These data suggest that there are common autoimmune disease susceptibility genes. The current report sought to determine if polymorphisms in the C8orf13-BLK region (chromosome 8p23.1-B lymphoid tyrosine kinase), which is associated with SLE, are associated also with SSc. METHODS Two variants in the C8orf13-BLK region (rs13277113 & rs2736340) were tested for association with 1050 SSc cases and 694 controls of North Americans of European descent and replicated in a second series 589 SSc cases and 722 controls from Spain. RESULTS The "T" allele at rs2736340 variant was associated with SSc in both the U.S. and Spanish case-control series (P = 6.8 x 10(-5), OR 1.27, 95% CI 1.1-1.4). The "A" allele at rs13277113 variant was associated with SSc in the U.S. series only (P = 3.6 x 10(-4), OR 1.32, 95% CI 1.1-1.6) and was significant in the combined analyses of the two series (P = 2.0 x 10(-3); OR 1.20, 95% CI 1.1-1.3). Both variants demonstrated an association with the anti-centromere antibody (P = 2.2 x 10(-6) and P = 5.5 x 10(-4), respectively) and limited SSc (P = 3.3 x 10(-5) and P = 2.9 x 10(-3), respectively) in the combined analysis. Peripheral blood gene expression profiles suggest that B-cell receptor and NFkappaB signaling are dysregulated based on the risk haplotype of these variants. CONCLUSION We identify and replicate the association of the C8orf13-BLK region as a novel susceptibility factor for SSc, placing it in the category of common autoimmune disease susceptibility genes.
Collapse
Affiliation(s)
- Pravitt Gourh
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas Health Science Center at Houston (UTHSC-H), Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
B-lymphoid kinase (Blk) is exclusively expressed in B cells and thymocytes. Interestingly, transgenic expression of a constitutively active form of Blk in the T-cell lineage of mice results in the development of T-lymphoid lymphomas. Here, we demonstrate nuclear factor-kappa B (NF-kappaB)-mediated ectopic expression of Blk in malignant T-cell lines established from patients with cutaneous T-cell lymphoma (CTCL). Importantly, Blk is also expressed in situ in lesional tissue specimens from 26 of 31 patients with CTCL. Already in early disease the majority of epidermotropic T cells express Blk, whereas Blk expression is not observed in patients with benign inflammatory skin disorders. In a longitudinal study of an additional 24 patients biopsied for suspected CTCL, Blk expression significantly correlated with a subsequently confirmed diagnosis of CTCL. Blk is constitutively tyrosine phosphorylated in malignant CTCL cell lines and spontaneously active in kinase assays. Furthermore, targeting Blk activity and expression by Src kinase inhibitors and small interfering RNA (siRNA) inhibit the proliferation of the malignant T cells. In conclusion, this is the first report of Blk expression in CTCL, thereby providing new clues to the pathogenesis of the disease.
Collapse
|
19
|
Zwollo P, Cole S, Bromage E, Kaattari S. B cell heterogeneity in the teleost kidney: evidence for a maturation gradient from anterior to posterior kidney. THE JOURNAL OF IMMUNOLOGY 2005; 174:6608-16. [PMID: 15905499 DOI: 10.4049/jimmunol.174.11.6608] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The fish immune system is quite different from the mammalian system because the anterior kidney forms the main site for hematopoiesis in this species. Using transcription factor-specific Abs derived from the murine system, together with anti-trout Ig Abs and Percoll gradient separation, we analyzed B cells from trout kidney sections and compared them to those from spleen and blood. For this study, immune cells were separated by Percoll gradients, and the resulting subpopulations were defined based on expression of B cell-specific transcription factors Pax-5 and B lymphocyte-induced maturation protein-1, as well as proliferative and Ig-secreting properties. Comparison of kidney, blood, and spleen B cell subsets suggest that 1) the anterior kidney contains mostly proliferating B cell precursors and plasma cells; 2) posterior kidney houses significant populations of (partially) activated B cells and plasmablasts; and 3) trout blood contains resting, non-Ig-secreting cells and lacks plasma cells. After LPS induction of resting B cells in vitro, the kidney and spleen have a high capacity for the generation of plasma cells, whereas the blood has virtually none. Our results indicate that trout B cell subsets are profoundly different among blood, anterior kidney, posterior kidney, and spleen. We hypothesize that developing B cells mature in the anterior side of the kidney and then migrate to sites of activation, either the spleen or the posterior kidney. Lastly, our data support the notion that the trout kidney is a complex, multifunctional immune organ with the potential to support both hemopoiesis as well as humoral immune activation.
Collapse
Affiliation(s)
- Patty Zwollo
- Department of Biology, The College of William and Mary, Virginia Institute of Marine Science, The College of William and Mary, 23185, USA.
| | | | | | | |
Collapse
|
20
|
Tiacci E, Pileri S, Orleth A, Pacini R, Tabarrini A, Frenguelli F, Liso A, Diverio D, Lo-Coco F, Falini B. PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)-acute myelogenous leukemia. Cancer Res 2004; 64:7399-404. [PMID: 15492262 DOI: 10.1158/0008-5472.can-04-1865] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor PAX5 plays a key role in the commitment of hematopoietic precursors to the B-cell lineage, but its expression in acute leukemias has not been thoroughly investigated. Hereby, we analyzed routine biopsies from 360 acute leukemias of lymphoid (ALLs) and myeloid (AMLs) origin with a specific anti-PAX5 monoclonal antibody. Blasts from 150 B-cell ALLs showed strong PAX5 nuclear expression, paralleling that of CD79a in the cytoplasm. Conversely, PAX5 was not detected in 50 T-cell ALLs, including 20 cases aberrantly coexpressing CD79a. Among 160 cytogenetically/molecularly characterized AMLs, PAX5 was selectively detected in 15 of 42 cases bearing the t(8;21)/AML1-ETO rearrangement. Real-time reverse transcription-PCR studies in t(8;21)-AML showed a similar up-regulation of PAX5 transcript in all of the 8 tested samples (including 4 cases that were negative at anti-PAX5 immunostaining), suggesting that PAX5 is expressed in t(8;21)-AML more widely than shown by immunohistochemistry. Interestingly, PAX5(+) t(8;21)-AML also expressed CD79a and/or CD19 (major transcriptional targets of PAX5 in B-cells) in 10 of 12 evaluable cases. Our results indicate that PAX5 is a more specific marker than CD79a for B-cell ALL diagnosis. Moreover, among AMLs, PAX5 expression selectively clusters with t(8;21), allowing its immunohistochemical recognition in a proportion of cases, and likely explaining a peculiar biological feature of this subset of myeloid leukemias, i.e. the aberrant expression of B-cell genes.
Collapse
MESH Headings
- Antibodies, Monoclonal
- Antigens, CD/biosynthesis
- Antigens, CD19/biosynthesis
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/metabolism
- CD79 Antigens
- Cell Line, Tumor
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 8/genetics
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/biosynthesis
- Humans
- Immunohistochemistry
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Oncogene Proteins, Fusion/genetics
- PAX5 Transcription Factor
- RUNX1 Translocation Partner 1 Protein
- Receptors, Antigen, B-Cell/biosynthesis
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Enrico Tiacci
- Institutes of Hematology and Internal Medicine, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hamanoue M, Yoshioka A, Ohashi T, Eto Y, Takamatsu K. NF-kappaB prevents TNF-alpha-induced apoptosis in an oligodendrocyte cell line. Neurochem Res 2004; 29:1571-6. [PMID: 15260136 DOI: 10.1023/b:nere.0000029571.39497.56] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nuclear factor kappa beta (NF-kappaB) inhibits apoptosis in sensory, hippocampal, and striatal neurons of the central nervous system. Although several apoptotic stimuli have been shown to activate NF-kappaB in oligodendrocytes, the function of NF-kappaB in this cell type remains unknown. In this study, we introduced plasmids expressing either the p50- or p65-subunit of human NF-kappaB into Central Glia-4 (CG-4)--a rat oligodendrocyte precursor cell line-and determined the influence of NF-kappaB function on tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis. Expression of NF-kappaB markedly prevented CG-4 apoptosis, with p50 being more effective than p65. This anti-apoptotic activity was repressed by IkappaB-alpha, an inhibitor of NF-kappaB. These results imply that NF-kappaB acts as a potent inhibitor of TNF-induced apoptosis in oligodendrocytes.
Collapse
Affiliation(s)
- Makoto Hamanoue
- Department of Physiology, Toho University, School of Medicine, 5-21-16 Ohmori-nishi, Ohta-ku, Tokyo 143-8540, Japan.
| | | | | | | | | |
Collapse
|
22
|
Borghaei RC, Rawlings PL, Javadi M, Woloshin J. NF-kappaB binds to a polymorphic repressor element in the MMP-3 promoter. Biochem Biophys Res Commun 2004; 316:182-8. [PMID: 15003528 DOI: 10.1016/j.bbrc.2004.02.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Indexed: 12/13/2022]
Abstract
A 5T/6T polymorphic site in the matrix metalloproteinase-3 (MMP-3) promoter has been identified as a repressor element involved in inhibiting induction of MMP-3 transcription by interleukin 1; and the 6T allele has been associated with decreased expression of MMP-3 as compared to the 5T allele. Zinc-binding protein-89 (ZBP-89) was cloned from a yeast one-hybrid assay via its ability to interact with this site, but when the protein was over-expressed, it resulted in activation of the MMP-3 promoter rather than repression. Here we show that in nuclear extracts isolated from human gingival fibroblasts stimulated with IL-1, this site is bound by p50 and p65 components of NF-kappaB in addition to ZBP-89, and that recombinant p50 binds preferentially to the 6T binding site. These results are consistent with a role for NF-kappaB in limiting the cytokine induced expression of MMP-3.
Collapse
Affiliation(s)
- Ruth C Borghaei
- Department of Biochemistry and Molecular Biology, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
A new way to identify tumor-specific genes is to compare gene expression profiles between malignant cells and their autologous normal counterparts. In patients with multiple myeloma, a major plasma cell disorder, normal plasma cells are not easily attainable in vivo. We report here that in vitro differentiation of peripheral blood B lymphocytes, purified from healthy donors and from patients with multiple myeloma, makes it possible to obtain a homogeneous population of normal plasmablastic cells. These cells were identified by their morphology, phenotype, production of polyclonal immunoglobulins, and expression of major transcription factors involved in B-cell differentiation. Oligonucleotide microarray analysis shows that these polyclonal plasmablastic cells have a gene expression pattern close to that of normal bone marrow–derived plasma cells. Detailed analysis of genes statistically differentially expressed between normal and tumor plasma cells allows the identification of myeloma-specific genes, including oncogenes and genes coding for tumor antigens. These data should help to disclose the molecular mechanisms of myeloma pathogenesis and to define new therapeutic targets in this still fatal malignancy. In addition, the comparison of gene expression between plasmablastic cells and B cells provides a new and powerful tool to identify genes specifically involved in normal plasma cell differentiation.
Collapse
|
24
|
Lowen M, Scott G, Zwollo P. Functional analyses of two alternative isoforms of the transcription factor Pax-5. J Biol Chem 2001; 276:42565-74. [PMID: 11535600 DOI: 10.1074/jbc.m106536200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pax-5 gene plays a central role in B cell development, activation, and differentiation. At least four different isoforms have been identified, of which isoform Pax-5a has been extensively studied, while functions for alternative isoforms were previously unknown. Here, using a transient transfection system, we provide evidence that alternative isoform Pax-5d acts as a dominant-negative regulator by suppressing activity of Pax-5a in a dose-dependent manner. In contrast, co-expression in the presence of alternative isoform Pax-5e causes an increase in Pax-5a activity. Protein studies on Pax-5e using Western blot analysis revealed that this 19-kDa isoform migrates as a 27-kDa species on SDS-polyacrylamide electrophoresis gels, while a mutant Pax-5e form in which a C-terminal cysteine residue has been mutated, runs at the expected 19 kDa. Using both Western blot and immunoprecipitation assays, we further provide evidence that this size discrepancy may be caused by a tight association between Pax-5e and a thioredoxin-like factor. Comparison of various B cell lines as well as resting and lipopolysaccharide-activated mature B lymphocytes shows that increased B cell proliferation correlates with increased levels of Pax-5e/thioredoxin, whereas increased Pax-5d amounts correlate with inhibition of cell growth. Together, our results suggest that during activation and differentiation of B lymphocytes, Pax-5a function is modulated by two alternative spliced isoforms: the dominant negative Pax-5d isoform may mediate inhibition of Pax-5a activity in resting B cells, while alternative isoform Pax-5e associated with thioredoxin may increase Pax-5a activity through an unknown (redox) mechanism.
Collapse
Affiliation(s)
- M Lowen
- Department of Biology, The College of William and Mary, Williamsburg, Virginia 23187, USA
| | | | | |
Collapse
|
25
|
Anspach J, Poulsen G, Kaattari I, Pollock R, Zwollo P. Reduction in DNA binding activity of the transcription factor Pax-5a in B lymphocytes of aged mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2617-26. [PMID: 11160324 DOI: 10.4049/jimmunol.166.4.2617] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aging has been associated with intrinsic changes of the humoral immune response, which may lead to an increased occurrence of autoimmune disorders and pathogenic susceptibility. The transcription factor Pax-5 is a key regulator of B cell development. Pax-5a/B cell-specific activator protein and an alternatively spliced isoform, Pax-5d, may have opposing functions in transcriptional regulation due to the lack of a transactivation domain in Pax-5d. To study B cell-specific changes that occur during the aging process, we investigated expression patterns of Pax-5a and 5d in mature B cells of young and aged mice. RNase protection assays showed a similar transcriptional pattern for both age groups that indicates that aging has no affect on transcription initiation or alternative splicing for either isoform. In contrast, a significant reduction in the DNA binding activity of Pax-5a but not Pax-5d protein was observed in aged B cells in vitro, while Western blot analyses showed that similar levels of Pax-5a and 5d proteins were present in both age groups. The observed decrease in Pax-5a binding activity correlated with changes in expression of two Pax-5 target genes in aged B cells. Expression of the Ig J chain and the secreted form of Ig mu, which are both known to be suppressed by Pax-5a in mature B cells, were increased in B cells of aged mice. Together, our studies suggest that changes associated with the aging phenotype cause posttranslational modification(s) of Pax-5a but not Pax-5d, which may lead to an abnormal B cell phenotype in aged mice, associated with elevated levels of J chain, and secretion of IgM.
Collapse
Affiliation(s)
- J Anspach
- Department of Biology, The College of William and Mary, Williamsburg, VA 23187, USA
| | | | | | | | | |
Collapse
|
26
|
Maitra S, Atchison M. BSAP can repress enhancer activity by targeting PU.1 function. Mol Cell Biol 2000; 20:1911-22. [PMID: 10688639 PMCID: PMC110809 DOI: 10.1128/mcb.20.6.1911-1922.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/1999] [Accepted: 12/08/1999] [Indexed: 11/20/2022] Open
Abstract
PU.1 and BSAP are transcription factors crucial for proper B-cell development. Absence of PU.1 results in loss of B, T, and myeloid cells, while absence of BSAP results in an early block in B-cell differentiation. Both of these proteins bind to the immunoglobulin kappa chain 3' enhancer, which is developmentally regulated during B-cell differentiation. We find here that BSAP can repress 3' enhancer activity. This repression can occur in plasmacytoma lines or in a non-B-cell line in which the enhancer is activated by addition of the appropriate enhancer binding transcription factors. We show that the transcription factor PU.1 is a target of the BSAP-mediated repression. Although PU.1 and BSAP can physically interact through their respective DNA binding domains, this interaction does not affect DNA binding. When PU.1 function is assayed in isolation on a multimerized PU.1 binding site, BSAP targets a portion of the PU.1 transactivation domain (residues 7 to 30) for repression. The BSAP inhibitory domain (residues 358 to 385) is needed for this repression. Interestingly, the coactivator protein p300 can eliminate this BSAP-mediated repression. We also show that PU.1 can inhibit BSAP transactivation and that this repression requires PU.1 amino acids 7 to 30. Transfection of p300 resulted in only a partial reversal of PU.1-mediated repression of BSAP. When PU.1 function is assayed in the context of the immunoglobulin kappa chain 3' enhancer and associated binding proteins, BSAP represses PU.1 function by a distinct mechanism. This repression does not require the PU.1 transactivation or PEST domains and cannot be reversed by p300 expression. The possible roles of BSAP and PU.1 antagonistic activities in hematopoietic development are discussed.
Collapse
Affiliation(s)
- S Maitra
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
27
|
Åkerblad P, Sigvardsson M. Early B Cell Factor Is an Activator of the B Lymphoid Kinase Promoter in Early B Cell Development. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Early B cell factor (EBF) is a transcription factor suggested to be involved in the transcriptional control of several B cell restricted genes. EBF is also essential for B lymphocyte development because mice carrying a homologous disruption of the EBF gene lack mature B lymphocytes. This makes the identification of genetic targets for EBF important for the understanding of early B cell development. Examination of the nucleotide sequence of the B lymphoid kinase (Blk) promoter suggested the presence of an EBF binding site, and in vivo footprinting analysis showed that the site was protected from methylation in a pre-B cell line. EMSA indicated that recombinant and cellular EBF interact physically with this site; furthermore, transient transfections indicated that ectopic expression of EBF in nonlymphoid HeLa cells activate a Blk promoter-controlled reporter construct 9-fold. The defined EBF binding site was also important for the function of the Blk promoter in pre-B cells, because transient transfections of a reporter construct under the control of an EBF site-mutated Blk promoter displayed only 20–30% of the activity of the wild-type promoter. Furthermore, transient transfections in HeLa cells proposed that EBF and B cell-specific activator protein were able to cooperate in the activation of a Blk promoter-controlled reporter construct. These data indicate that EBF plays an important role in the regulation of the Blk promoter in early B cell development and that EBF and BSAP are capable to act in cooperation to induce a target gene.
Collapse
Affiliation(s)
- Peter Åkerblad
- Immunology Group, Cell and Molecular Biology, Lund University, Lund, Sweden
| | - Mikael Sigvardsson
- Immunology Group, Cell and Molecular Biology, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Hagman J, Wheat W, Fitzsimmons D, Hodsdon W, Negri J, Dizon F. Pax-5/BSAP: regulator of specific gene expression and differentiation in B lymphocytes. Curr Top Microbiol Immunol 1999; 245:169-94. [PMID: 10533313 DOI: 10.1007/978-3-642-57066-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- J Hagman
- Division of Basic Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Libermann TA, Pan Z, Akbarali Y, Hetherington CJ, Boltax J, Yergeau DA, Zhang DE. AML1 (CBFalpha2) cooperates with B cell-specific activating protein (BSAP/PAX5) in activation of the B cell-specific BLK gene promoter. J Biol Chem 1999; 274:24671-6. [PMID: 10455134 DOI: 10.1074/jbc.274.35.24671] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AML1 plays a critical role during hematopoiesis and chromosomal translocations involving AML1 are commonly associated with different forms of leukemia, including pre-B acute lymphoblastic leukemia. To understand the function of AML1 during B cell differentiation, we analyzed regulatory regions of B cell-specific genes for potential AML1-binding sites and have identified a putative AML1-binding site in the promoter of the B cell-specific tyrosine kinase gene, blk. Gel mobility shift assays and transient transfection assays demonstrate that AML1 binds specifically to this site in the blk promoter and this binding site is important for blk promoter activity. Furthermore, in vitro binding analysis revealed that the AML1 runt DNA-binding domain physically interacts with the paired DNA-binding domain of BSAP, a B cell-specific transcription factor. BSAP has been shown previously to be important for B cell-specific regulation of the blk gene. Physical interaction of AML1 with BSAP correlates with functional cooperativity in transfection studies where AML1 and BSAP synergistically activate blk promoter transcription by more than 50-fold. These results demonstrate physical and functional interactions between AML1 and BSAP and suggest that AML1 is an important factor for regulating a critical B cell-specific gene, blk.
Collapse
Affiliation(s)
- T A Libermann
- New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|