1
|
Solis-Leal A, Karlinsey DC, Sithole ST, Lopez JB, Carlson A, Planelles V, Poole BD, Berges BK. The HIV-1 vpr R77Q Mutant Induces Apoptosis, G 2 Cell Cycle Arrest, and Lower Production of Pro-Inflammatory Cytokines in Human CD4+ T Cells. Viruses 2024; 16:1642. [PMID: 39459974 PMCID: PMC11512211 DOI: 10.3390/v16101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) occurs when HIV depletes CD4+ helper T cells. Some patients develop AIDS slowly or not at all, and are termed long-term non-progressors (LTNP), and while mutations in the HIV-1 Viral Protein R (vpr) gene such as R77Q are associated with LTNP, mechanisms for this correlation are unclear. This study examines the induction of apoptosis, cell cycle arrest, and pro-inflammatory cytokine release in the HUT78 T cell line following infection with replication-competent wild-type strain NL4-3, the R77Q mutant, or a vpr Null mutant. Our results show a significant enhancement of apoptosis and G2 cell cycle arrest in HUT78 cells infected with R77Q, but not with WT NL4-3 or the vpr Null strain. Conversely, HUT78 cells infected with the WT virus show higher levels of necrosis. We also detected lower TNF and IL-6 release after infection with R77Q vs. WT. The apoptotic phenotype was also seen in the CEM cell line and in primary CD4+ T cells. Protein expression of the R77Q vpr variant was low compared to WT vpr, but expression levels alone cannot explain these phenotypes because the Null virus did not show apoptosis or G2 arrest. These results suggest that R77Q triggers a non-inflammatory apoptotic pathway that attenuates inflammation, possibly contributing to LTNP.
Collapse
Affiliation(s)
- Antonio Solis-Leal
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Dalton C. Karlinsey
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Sidney T. Sithole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Jack Brandon Lopez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Amanda Carlson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Vicente Planelles
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA;
| | - Brian D. Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| |
Collapse
|
2
|
Kesel AJ. Novel Antineoplastic Inducers of Mitochondrial Apoptosis in Human Cancer Cells. Molecules 2024; 29:914. [PMID: 38398665 PMCID: PMC10892984 DOI: 10.3390/molecules29040914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
I propose a new strategy to suppress human cancer completely with two entirely new drug compounds exploiting cancer's Warburg effect characterized by a defective mitochondrial aerobic respiration, substituted by cytosolic aerobic fermentation/glycolysis of D-(+)-glucose into L-(+)-lactic acid. The two essentially new drugs, compound 1 [P(op)T(est)162] and compound 3 (PT167), represent new highly symmetric, four-bladed propeller-shaped polyammonium cations. The in vitro antineoplastic highly efficacious drug compound 3 represents a covalent combination of compound 1 and compound 2 (PT166). The intermediate drug compound 2 is an entirely new colchic(in)oid derivative synthesized from colchicine. Compound 2's structure was determined using X-ray crystallography. Compound 1 and compound 3 were active in vitro versus 60 human cancer cell lines of the National Cancer Institute (NCI) Developmental Therapeutics Program (DTP) 60-cancer cell testing. Compound 1 and compound 3 not only stop the growth of cancer cells to ±0% (cancerostatic effect) but completely kill nearly all 60 cancer cells to a level of almost -100% (tumoricidal effect). Compound 1 and compound 3 induce mitochondrial apoptosis (under cytochrome c release) in all cancer cells tested by (re)activating (in most cancers impaired) p53 function, which results in a decrease in cancer's dysregulated cyclin D1 and an induction of the cell cycle-halting cyclin-dependent kinase inhibitor p21Waf1/p21Cip1.
Collapse
Affiliation(s)
- Andreas J Kesel
- Independent Researcher, Chammünsterstr. 47, D-81827 München, Bavaria, Germany
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW This review aims to elucidate the multifaceted role of the tumor suppressor protein p53 in the context of HIV infection. We explore how p53, a pivotal regulator of cellular processes, interacts with various facets of the HIV life cycle. Understanding these interactions could provide valuable insights into potential therapeutic interventions and the broader implications of p53 in viral infections. RECENT FINDINGS Recent research has unveiled a complex interplay between p53 and HIV. Several reports have highlighted the involvement of p53 in restricting the replication of HIV within both immune and nonimmune cells. Various mechanisms have been suggested to unveil how p53 enforces this restriction on HIV replication. However, HIV has developed strategies to manipulate p53, benefiting its replication and evading host defenses. In summary, p53 plays a multifaceted role in HIV infection, impacting viral replication and disease progression. Recent findings underscore the importance of understanding the intricate interactions between p53 and HIV for the development of innovative therapeutic approaches. Manipulating p53 pathways may offer potential avenues to suppress viral replication and ameliorate immune dysfunction, ultimately contributing to the management of HIV/AIDS. Further research is warranted to fully exploit the therapeutic potential of p53 in the context of HIV infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
4
|
Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 2023; 19:668-687. [PMID: 37816937 PMCID: PMC11052664 DOI: 10.1038/s41582-023-00879-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - María J Marquine
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
McAllister JJ, Dahiya S, Berman R, Collins M, Nonnemacher MR, Burdo TH, Wigdahl B. Altered recruitment of Sp isoforms to HIV-1 long terminal repeat between differentiated monoblastic cell lines and primary monocyte-derived macrophages. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.971293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transcription in cells of the monocyte-macrophage lineage is regulated by interactions between the HIV-1 long terminal repeat (LTR) and a variety of host cell and viral proteins. Binding of the Sp family of transcription factors (TFs) to the G/C box array of the LTR governs both basal as well as activated LTR-directed transcriptional activity. The effect of monocytic differentiation on Sp factor binding and transactivation was examined with respect to the HIV-1 LTR. The binding of Sp1, full-length Sp3 and truncated Sp3 to a high affinity HIV-1 Sp element was specifically investigated and results showed that Sp1 binding increased relative to the binding of the sum of full-length and truncated Sp3 binding following chemically-induced monocytic differentiation in monoblastic (U-937, THP-1) and myelomonocytic (HL-60) cells. In addition, Sp binding ratios from PMA-induced cell lines were shown to more closely approximate those derived from primary monocyte-derived macrophages (MDMs) than did ratios derived from uninduced cell lines. The altered Sp binding phenotype associated with changes in the transcriptional activation mediated by the HIV-1 G/C box array. Additionally, analysis of post-translational modifications on Sp1 and Sp3 revealed a loss of phosphorylation on serine and threonine residues with chemically-induced differentiation indicating that the activity of Sp factors is additionally regulated at the level of post-translational modifications (PTMs).
Collapse
|
6
|
Singh J, Ronsard L, Pandey M, Kapoor R, Ramachandran VG, Banerjea AC. Molecular and Genetic Characterization of Natural Variants of HIV-1 Nef Gene from North India and its Functional Implication in Down-Regulation of MHC-I and CD-4. Curr HIV Res 2021; 19:172-187. [PMID: 32981506 DOI: 10.2174/1570162x18666200925160755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND HIV-1 Nef is an important accessory protein with multiple effector functions. Genetic studies of the HIV-1 Nef gene show extensive genetic diversity and the functional studies have been carried out mostly with Nef derived from regions dominated by subtype B (North America & Europe). OBJECTIVE This study was carried out to characterize genetic variations of the Nef gene from HIV-1 infected individuals from North India and to find out their functional implications. METHODS The unique representative variants were sub-cloned in a eukaryotic expression vector and further characterized with respect to their ability to downregulate cell surface expression of CD4 and MHC-1 molecules. RESULTS The phylogenetic analysis of Nef variants revealed sequence similarity with either consensus subtype B or B/C recombinants. Boot scan analysis of some of our variants showed homology to B/C recombinant and some to wild type Nef B. Extensive variations were observed in most of the variants. The dN/dS ratio revealed 80% purifying selection and 20% diversifying selection implying the importance of mutations in Nef variants. Intracellular stability of Nef variants differed greatly when compared with wild type Nef B and C. There were some variants that possessed mutations in the functional domains of Nef and responsible for its differential CD4 and MHC-1 downregulation activity. CONCLUSION We observed enhanced biological activities in some of the variants, perhaps arising from amino acid substitutions in their functional domains. The CD4 and MHC-1 down-regulation activity of Nef is likely to confer immense survival advantage allowing the most rare genotype in a population to become the most abundant after a single selection event.
Collapse
Affiliation(s)
- J Singh
- National Institute of Immunology, New Delhi, India
| | - L Ronsard
- National Institute of Immunology, New Delhi, India
| | - M Pandey
- King George`s Medical University, India
| | - R Kapoor
- National Institute of Immunology, New Delhi, India
| | - V G Ramachandran
- Department of Virology, National Institute of Immunology, New Delhi-110067, India
| | - A C Banerjea
- Department of Virology, National Institute of Immunology, New Delhi-110067, India
| |
Collapse
|
7
|
Wallet C, Rohr O, Schwartz C. Evolution of a concept: From accessory protein to key virulence factor, the case of HIV-1 Vpr. Biochem Pharmacol 2020; 180:114128. [PMID: 32619426 DOI: 10.1016/j.bcp.2020.114128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Back in 1989 some studies have shown that the viral protein Vpr was dispensable for HIV-1 replication in vitro. From then the concept of accessory or auxiliary protein for Vpr has emerged and it is still used to date. However, Vpr soon appeared to be very important for in vivo virus spread and pathogenesis. Vpr has been involved in many biological functions including regulation of reverse transcriptase activity, the nuclear import of the pre-integration complex (PIC), HIV-1 transcription, gene splicing, apoptosis and in cell cycle arrest. Thus, we might rather consider Vpr as a true virulence factor instead of just an accessory factor. At present, Vpr can be regarded as a potential and promising target in different strategies aiming to fight infected cells including latently infected cells.
Collapse
Affiliation(s)
- Clémentine Wallet
- University of Strasbourg, Research Unit7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, Research Unit7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- University of Strasbourg, Research Unit7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
8
|
Fields JA, Ellis RJ. HIV in the cART era and the mitochondrial: immune interface in the CNS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:29-65. [PMID: 31208526 DOI: 10.1016/bs.irn.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) persist in the era of effective combined antiretroviral therapy (cART). A large body of literature suggests that mitochondrial dysfunction is a prospective etiology of HAND in the cART era. While viral load is often suppressed and the immune system remains intact in HIV+ patients on cART, evidence suggests that the central nervous system (CNS) acts as a reservoir for virus and low-level expression of viral proteins, which interact with mitochondria. In particular, the HIV proteins glycoprotein 120, transactivator of transcription, viral protein R, and negative factor have each been linked to mitochondrial dysfunction in the brain. Moreover, cART drugs have also been shown to have detrimental effects on mitochondrial function. Here, we review the evidence generated from human studies, animal models, and in vitro models that support a role for HIV proteins and/or cART drugs in altered production of adenosine triphosphate, mitochondrial dynamics, mitophagy, calcium signaling and apoptosis, oxidative stress, mitochondrial biogenesis, and immunometabolism in the CNS. When insightful, evidence of HIV or cART-induced mitochondrial dysfunction in the peripheral nervous system or other cell types is discussed. Lastly, therapeutic approaches to targeting mitochondrial dysfunction have been summarized with the aim of guiding new investigations and providing hope that mitochondrial-based drugs may provide relief for those suffering with HAND.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| | - Ronald J Ellis
- Department of Neuroscience, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
9
|
Hossain D, Ferreira Barbosa JA, Cohen ÉA, Tsang WY. HIV-1 Vpr hijacks EDD-DYRK2-DDB1 DCAF1 to disrupt centrosome homeostasis. J Biol Chem 2018; 293:9448-9460. [PMID: 29724823 PMCID: PMC6005440 DOI: 10.1074/jbc.ra117.001444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Viruses exploit the host cell machinery for their own profit. To evade innate immune sensing and promote viral replication, HIV type 1 (HIV-1) subverts DNA repair regulatory proteins and induces G2/M arrest. The preintegration complex of HIV-1 is known to traffic along microtubules and accumulate near the microtubule-organizing center. The centrosome is the major microtubule-organizing center in most eukaryotic cells, but precisely how HIV-1 impinges on centrosome biology remains poorly understood. We report here that the HIV-1 accessory protein viral protein R (Vpr) localized to the centrosome through binding to DCAF1, forming a complex with the ubiquitin ligase EDD-DYRK2-DDB1DCAF1 and Cep78, a resident centrosomal protein previously shown to inhibit EDD-DYRK2-DDB1DCAF1 Vpr did not affect ubiquitination of Cep78. Rather, it enhanced ubiquitination of an EDD-DYRK2-DDB1DCAF1 substrate, CP110, leading to its degradation, an effect that could be overcome by Cep78 expression. The down-regulation of CP110 and elongation of centrioles provoked by Vpr were independent of G2/M arrest. Infection of T lymphocytes with HIV-1, but not with HIV-1 lacking Vpr, promoted CP110 degradation and centriole elongation. Elongated centrioles recruited more γ-tubulin to the centrosome, resulting in increased microtubule nucleation. Our results suggest that Vpr is targeted to the centrosome where it hijacks a ubiquitin ligase, disrupting organelle homeostasis, which may contribute to HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Delowar Hossain
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | | | - Éric A Cohen
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, and
| | - William Y Tsang
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada,
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
10
|
Aloni-Grinstein R, Charni-Natan M, Solomon H, Rotter V. p53 and the Viral Connection: Back into the Future ‡. Cancers (Basel) 2018; 10:cancers10060178. [PMID: 29866997 PMCID: PMC6024945 DOI: 10.3390/cancers10060178] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/14/2023] Open
Abstract
The discovery of the tumor suppressor p53, through its interactions with proteins of tumor-promoting viruses, paved the way to the understanding of p53 roles in tumor virology. Over the years, accumulating data suggest that WTp53 is involved in the viral life cycle of non-tumor-promoting viruses as well. These include the influenza virus, smallpox and vaccinia viruses, the Zika virus, West Nile virus, Japanese encephalitis virus, Human Immunodeficiency Virus Type 1, Human herpes simplex virus-1, and more. Viruses have learned to manipulate WTp53 through different strategies to improve their replication and spreading in a stage-specific, bidirectional way. While some viruses require active WTp53 for efficient viral replication, others require reduction/inhibition of WTp53 activity. A better understanding of WTp53 functionality in viral life may offer new future clinical approaches, based on WTp53 manipulation, for viral infections.
Collapse
Affiliation(s)
- Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Box 19, 74100 Ness-Ziona, Israel.
| | - Meital Charni-Natan
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Hilla Solomon
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
11
|
Shi B, Sharifi HJ, DiGrigoli S, Kinnetz M, Mellon K, Hu W, de Noronha CMC. Inhibition of HIV early replication by the p53 and its downstream gene p21. Virol J 2018; 15:53. [PMID: 29587790 PMCID: PMC5870690 DOI: 10.1186/s12985-018-0959-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background The tumor suppressor gene p53 has been found to suppress HIV infection by various mechanisms, but the inhibition of HIV at an early stage of replication by host cell p53 and its downstream gene p21 has not been well studied. Method VSV-G pseudotyped HIV-1 or HIV-2 viruses with GFP or luciferase reporter gene were used to infect HCT116 p53+/+ cells, HCT116 p53−/− cells and hMDMs. The infections were detected by flow cytometry or measured by luciferase assay. Reverse transcription products were quantified by a TaqMan real time PCR. siRNA knockdown experiments were applied to study potential roles of p53 and p21 genes in their restriction to HIV infection. Western blot experiments were used to analyze changes in gene expression. Results The infection of HIV-1 was inhibited in HCT116 p53+/+ cells in comparison to HCT116 p53−/− cells. The fold of inhibition was largely increased when cell cycle switched from cycling to non-cycling status. Further analysis showed that both p53 and p21 expressions were upregulated in non-cycling HCT116 p53+/+ cells and HIV-1 reverse transcription was subsequently inhibited. siRNA knockdown of either p53 or p21 rescued HIV-1 reverse transcription from the inhibition in non-cycling HCT116 p53+/+ cells. It was identified that the observed restrictions by p53 and p21 were associated with the suppression of RNR2 expression and phosphorylation of SAMHD1. These observations were confirmed by using siRNA knockdown experiments. In addition, p53 also inhibited HIV-2 infection in HCT116 p53+/+ cells and siRNA knockdown of p21 increased HIV-2 infection in hMDMs. Finally the expressions of p53 and p21 were found to be induced in hMDMs shortly after HIV-1 infection. Conclusions The p53 and its downstream gene p21 interfere with HIV early stage of replication in non-cycling cells and hMDMs.
Collapse
Affiliation(s)
- Binshan Shi
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA.
| | - Hamayun J Sharifi
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA
| | - Sara DiGrigoli
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA
| | - Michaela Kinnetz
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA
| | - Katie Mellon
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Carlos M C de Noronha
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, Albany, NY, 12208, USA
| |
Collapse
|
12
|
González ME. The HIV-1 Vpr Protein: A Multifaceted Target for Therapeutic Intervention. Int J Mol Sci 2017; 18:ijms18010126. [PMID: 28075409 PMCID: PMC5297760 DOI: 10.3390/ijms18010126] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein is an attractive target for antiretroviral drug development. The conservation both of the structure along virus evolution and the amino acid sequence in viral isolates from patients underlines the importance of Vpr for the establishment and progression of HIV-1 disease. While its contribution to virus replication in dividing and non-dividing cells and to the pathogenesis of HIV-1 in many different cell types, both extracellular and intracellular forms, have been extensively studied, its precise mechanism of action nevertheless remains enigmatic. The present review discusses how the apparently multifaceted interplay between Vpr and host cells may be due to the impairment of basic metabolic pathways. Vpr protein modifies host cell energy metabolism, oxidative status, and proteasome function, all of which are likely conditioned by the concentration and multimerization of the protein. The characterization of Vpr domains along with new laboratory tools for the assessment of their function has become increasingly relevant in recent years. With these advances, it is conceivable that drug discovery efforts involving Vpr-targeted antiretrovirals will experience substantial growth in the coming years.
Collapse
Affiliation(s)
- María Eugenia González
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
13
|
Peng M, Xiao X, He Y, Jiang Y, Zhang M, Peng F, Tian Y, Xu Y, Gong G. HIV Vpr protein upregulates microRNA-122 expression and stimulates hepatitis C virus replication. J Gen Virol 2015; 96:2453-2463. [PMID: 25920531 PMCID: PMC4681072 DOI: 10.1099/vir.0.000169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus (HIV)/hepatitis C virus (HCV) co-infection is characterized by higher serum HCV RNA loads compared with HCV mono-infection. However, the relationship between HIV and HCV replication remains to be clarified. HIV Vpr has been shown to play an essential role in HIV replication. In this study, we aimed to explore the role of Vpr in HCV replication and pathogenesis. We therefore used the genotype 2a full-length HCV strain JFH1 infection system and the genotype 1b full-length HCV replicon OR6 cell line to analyse the effects of Vpr on HCV replication. We found that Vpr promoted HCV 5′ UTR activity, HCV RNA replication and HCV protein expression in two HCV infection cell models. Additionally, lymphocyte-produced Vpr significantly induced HCV 5′ UTR activity and HCV replication in hepatocytes. We also found that Vpr upregulated the expression of miR-122 by stimulating its promoter activity. Furthermore, an miR-122 inhibitor suppressed the Vpr-mediated enhancement of both HCV 5′ UTR activity and HCV replication. In summary, our results revealed that the Vpr-upregulated expression of miR-122 is closely related to the stimulation of HCV 5′ UTR activity and HCV replication by Vpr, providing new evidence for how HIV interacts with HCV during HIV/HCV co-infection.
Collapse
Affiliation(s)
- Milin Peng
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Xinqiang Xiao
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yan He
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yongfang Jiang
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Min Zhang
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Feng Peng
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yi Tian
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yun Xu
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Guozhong Gong
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| |
Collapse
|
14
|
Yamada E, Yoshikawa R, Nakano Y, Misawa N, Koyanagi Y, Sato K. Impacts of humanized mouse models on the investigation of HIV-1 infection: illuminating the roles of viral accessory proteins in vivo. Viruses 2015; 7:1373-90. [PMID: 25807049 PMCID: PMC4379576 DOI: 10.3390/v7031373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes four accessory genes: vif, vpu, vpr, and nef. Recent investigations using in vitro cell culture systems have shed light on the roles of these HIV-1 accessory proteins, Vif, Vpr, Vpu, and Nef, in counteracting, modulating, and evading various cellular factors that are responsible for anti-HIV-1 intrinsic immunity. However, since humans are the exclusive target for HIV-1 infection, conventional animal models are incapable of mimicking the dynamics of HIV-1 infection in vivo. Moreover, the effects of HIV-1 accessory proteins on viral infection in vivo remain unclear. To elucidate the roles of HIV-1 accessory proteins in the dynamics of viral infection in vivo, humanized mouse models, in which the mice are xenotransplanted with human hematopoietic stem cells, has been utilized. This review describes the current knowledge of the roles of HIV-1 accessory proteins in viral infection, replication, and pathogenicity in vivo, which are revealed by the studies using humanized mouse models.
Collapse
Affiliation(s)
- Eri Yamada
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Rokusuke Yoshikawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Yusuke Nakano
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
- CREST, Japan Science and Technology Agency, Saitama 3220012, Japan.
| |
Collapse
|
15
|
Bagashev A, Mukerjee R, Santerre M, Del Carpio-Cano FE, Shrestha J, Wang Y, He JJ, Sawaya BE. Involvement of miR-196a in HIV-associated neurocognitive disorders. Apoptosis 2014; 19:1202-14. [PMID: 24872081 DOI: 10.1007/s10495-014-1003-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Involvement of the human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription (Tat) protein in neuronal deregulation and in the development of HIV-1 associated neurocognitive disorders (HAND) has been amply explored; however the mechanisms involved remain unclear. In search for the mechanisms, we demonstrated that Tat deregulates neuronal functions through a pathway that involved p73 and p53 pathway. We showed that Tat uses microRNA-196a (miR-196a) to deregulate the p73 pathway. Further, we found that the Abelson murine leukemia (c-Abl) phosphorylates p73 on tyrosine residue 99 (Tyr-99) in Tat-treated cells. Interestingly, Tat lost its ability to promote accumulation and phosphorylation of p73 in the presence of miR-196a mimic. Interestingly, accumulation of p73 did not lead to neuronal cell death by apoptosis as obtained by cell viability assay. Western blot analysis using antibodies directed against serine residues 807 and 811 of retinoblastoma (Rb) protein was also used to validate our data regarding lack of cell death. Hyperphosphorylation of RB (S807/811) is an indication of cell neuronal viability. These results highlight the key role played by p73 and microRNA in Tat-treated neurons leading to their deregulation and it deciphers mechanistically one of the pathways used by Tat to cause neuronal dysfunction that contributes to the development of HAND.
Collapse
Affiliation(s)
- Asen Bagashev
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, PHA # 302, 3307 North Broad Street, Philadelphia, PA, 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Guenzel CA, Hérate C, Benichou S. HIV-1 Vpr-a still "enigmatic multitasker". Front Microbiol 2014; 5:127. [PMID: 24744753 PMCID: PMC3978352 DOI: 10.3389/fmicb.2014.00127] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/12/2014] [Indexed: 11/13/2022] Open
Abstract
Like other HIV-1 auxiliary proteins, Vpr is conserved within all the human (HIV-1, HIV-2) and simian (SIV) immunodeficiency viruses. However, Vpr and homologous HIV-2, and SIV Vpx are the only viral auxiliary proteins specifically incorporated into virus particles through direct interaction with the Gag precursor, indicating that this presence in the core of the mature virions is mainly required for optimal establishment of the early steps of the virus life cycle in the newly infected cell. In spite of its small size, a plethora of effects and functions have been attributed to Vpr, including induction of cell cycle arrest and apoptosis, modulation of the fidelity of reverse transcription, nuclear import of viral DNA in macrophages and other non-dividing cells, and transcriptional modulation of viral and host cell genes. Even if some more recent studies identified a few cellular targets that HIV-1 Vpr may utilize in order to perform its different tasks, the real role and functions of Vpr during the course of natural infection are still enigmatic. In this review, we will summarize the main reported functions of HIV-1 Vpr and their significance in the context of the viral life cycle.
Collapse
Affiliation(s)
- Carolin A Guenzel
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| | - Cécile Hérate
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| | - Serge Benichou
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| |
Collapse
|
17
|
Barrero CA, Datta PK, Sen S, Deshmane S, Amini S, Khalili K, Merali S. HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis. PLoS One 2013; 8:e68376. [PMID: 23874603 PMCID: PMC3709966 DOI: 10.1371/journal.pone.0068376] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/29/2013] [Indexed: 01/09/2023] Open
Abstract
Human immunodeficiency virus type 1 encoded viral protein Vpr is essential for infection of macrophages by HIV-1. Furthermore, these macrophages are resistant to cell death and are viral reservoir. However, the impact of Vpr on the macrophage proteome is yet to be comprehended. The goal of the present study was to use a stable-isotope labeling by amino acids in cell culture (SILAC) coupled with mass spectrometry-based proteomics approach to characterize the Vpr response in macrophages. Cultured human monocytic cells, U937, were differentiated into macrophages and transduced with adenovirus construct harboring the Vpr gene. More than 600 proteins were quantified in SILAC coupled with LC-MS/MS approach, among which 136 were significantly altered upon Vpr overexpression in macrophages. Quantified proteins were selected and clustered by biological functions, pathway and network analysis using Ingenuity computational pathway analysis. The proteomic data illustrating increase in abundance of enzymes in the glycolytic pathway (pentose phosphate and pyruvate metabolism) was further validated by western blot analysis. In addition, the proteomic data demonstrate down regulation of some key mitochondrial enzymes such as glutamate dehydrogenase 2 (GLUD2), adenylate kinase 2 (AK2) and transketolase (TKT). Based on these observations we postulate that HIV-1 hijacks the macrophage glucose metabolism pathway via the Vpr-hypoxia inducible factor 1 alpha (HIF-1 alpha) axis to induce expression of hexokinase (HK), glucose-6-phosphate dehyrogenase (G6PD) and pyruvate kinase muscle type 2 (PKM2) that facilitates viral replication and biogenesis, and long-term survival of macrophages. Furthermore, dysregulation of mitochondrial glutamate metabolism in macrophages can contribute to neurodegeneration via neuroexcitotoxic mechanisms in the context of NeuroAIDS.
Collapse
Affiliation(s)
- Carlos A. Barrero
- Department of Biochemistry, Temple University School of Medicine, Fels Institute, Philadelphia, Pennsylvania, United States of America
- Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Prasun K. Datta
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Satarupa Sen
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Satish Deshmane
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shohreh Amini
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Kamel Khalili
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Salim Merali
- Department of Biochemistry, Temple University School of Medicine, Fels Institute, Philadelphia, Pennsylvania, United States of America
- Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
18
|
Casey Klockow L, Sharifi HJ, Wen X, Flagg M, Furuya AKM, Nekorchuk M, de Noronha CMC. The HIV-1 protein Vpr targets the endoribonuclease Dicer for proteasomal degradation to boost macrophage infection. Virology 2013; 444:191-202. [PMID: 23849790 DOI: 10.1016/j.virol.2013.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/09/2013] [Indexed: 12/13/2022]
Abstract
The HIV-1 protein Vpr enhances macrophage infection, triggers G2 cell cycle arrest, and targets cells for NK-cell killing. Vpr acts through the CRL4(DCAF1) ubiquitin ligase complex to cause G2 arrest and trigger expression of NK ligands. Corresponding ubiquitination targets have not been identified. UNG2 and SMUG1 are the only known substrates for Vpr-directed depletion through CRL4(DCAF1). Here we identify the endoribonuclease Dicer as a target of HIV-1 Vpr-directed proteasomal degradation through CRL4(DCAF1). We show that HIV-1 Vpr inhibits short hairpin RNA function as expected upon reduction of Dicer levels. Dicer inhibits HIV-1 replication in T cells. We demonstrate that Dicer also restricts HIV-1 replication in human monocyte-derived macrophages (MDM) and that reducing Dicer expression in MDMs enhances HIV-1 infection in a Vpr-dependent manner. Our results support a model in which Vpr complexes with human Dicer to boost its interaction with the CRL4(DCAF1) ubiquitin ligase complex and its subsequent degradation.
Collapse
Affiliation(s)
- Laurieann Casey Klockow
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Kofman AV, Letson C, Dupart E, Bao Y, Newcomb WW, Schiff D, Brown J, Abounader R. The p53-microRNA-34a axis regulates cellular entry receptors for tumor-associated human herpes viruses. Med Hypotheses 2013; 81:62-7. [PMID: 23643704 DOI: 10.1016/j.mehy.2013.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
Abstract
A growing number of reports indicate the frequent presence of DNA sequences and gene products of human cytomegalovirus in various tumors as compared to adjacent normal tissues, the brain tumors being studied most intensely. The mechanisms underlying the tropism of human cytomegalovirus to the tumor cells or to the cells of tumor origin, as well as the role of the host's genetic background in virus-associated oncogenesis are not well understood. It is also not clear why cytomegalovirus can be detected in many but not in all tumor specimens. Our in silico prediction results indicate that microRNA-34a may be involved in replication of some human DNA viruses by targeting and downregulating the genes encoding a diverse group of proteins, such as platelet-derived growth factor receptor-alpha, complement component receptor 2, herpes simplex virus entry mediators A, B, and C, and CD46. Notably, while their functions vary, these surface molecules have one feature in common: they serve as cellular entry receptors for human DNA viruses (cytomegalovirus, Epstein-Barr virus, human herpes virus 6, herpes simplex viruses 1 and 2, and adenoviruses) that are either proven or suspected to be linked with malignancies. MicroRNA-34a is strictly dependent on its transcriptional activator tumor suppressor protein p53, and both p53 and microRNA-34a are frequently mutated or downregulated in various cancers. We hypothesize that p53-microRNA-34a axis may alter susceptibility of cells to infection with some viruses that are detected in tumors and either proven or suspected to be associated with tumor initiation and progression.
Collapse
Affiliation(s)
- Alexander V Kofman
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bagashev A, Fan S, Mukerjee R, Claudio PP, Chabrashvili T, Leng RP, Benchimol S, Sawaya BE. Cdk9 phosphorylates Pirh2 protein and prevents degradation of p53 protein. Cell Cycle 2013; 12:1569-77. [PMID: 23603988 DOI: 10.4161/cc.24733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several reports have pointed to the negative involvement of p53 in transcriptional regulation of the human immunodeficiency virus type 1 long-terminal repeat (HIV-1 LTR). We recently demonstrated that through their physical interaction, cdk9 phosphorylates p53 on Ser-392, leading to p53 stability and accumulation. As a result, p53 stalled transcriptional elongation of the HIV-1 LTR and significantly reduced HIV-1 replication in primary microglia and astrocytes. Therefore, we sought to identify the mechanisms used by cdk9 to allow this p53 function. Using western blot analysis, we found that cdk9 promotes inhibition and phosphorylation of Mdm2 on Ser-395, thus preventing degradation of p53, a protein that is directly involved in promoting p53 ubiquitination. On the other hand, we showed that cdk9 phosphorylates Pirh2 on Ser-211 and Thr-217 residues through their physical interaction. Phosphorylation of Pirh2 renders it inactive and may contribute to p53-inhibition of transcriptional elongation of the HIV-1 LTR. Hence, we suggest that phosphorylation of Pirh2 may be a novel target for the inhibition of HIV-1 gene expression.
Collapse
Affiliation(s)
- Asen Bagashev
- Molecular Studies of Neurodegenerative Diseases Lab, The Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sato Y, Tsurumi T. Genome guardian p53 and viral infections. Rev Med Virol 2012; 23:213-20. [PMID: 23255396 DOI: 10.1002/rmv.1738] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 01/07/2023]
Abstract
Because virus infections elicit various cellular responses that inhibit viral replication and growth, viruses must intervene to attenuate antiviral measures in order to thrive. The genome guardian p53 plays a central part not only in DNA damage responses, inducing cell cycle arrest or apoptosis, but also in the innate host immune control of viral infections by orchestrating diverse signaling pathways originating from many different cellular receptors and sensors. Many viruses have acquired sophisticated mechanisms to regulate p53 functions by deploying subversive proteins and modulating its post-transcriptional status. In this review, we overview the mechanisms by which DNA and RNA viruses manage p53 signaling in favor of their continued survival.
Collapse
Affiliation(s)
- Yoshitaka Sato
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | | |
Collapse
|
22
|
Chua HH, Chiu HY, Lin SJ, Weng PL, Lin JH, Wu SW, Tsai SC, Tsai CH. p53 and Sp1 cooperate to regulate the expression of Epstein-Barr viral Zta protein. J Med Virol 2012; 84:1279-88. [PMID: 22711357 DOI: 10.1002/jmv.23316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus (EBV) belongs to the gammaherpesvirus family. To produce infectious progeny, EBV reactivates from latency into the lytic cycle by expressing the determinative lytic transactivator, Zta. In the presence of histone deacetylase inhibitor (HDACi), p53 is a prerequisite for the initiation of the EBV lytic cycle by facilitating the expression of Zta. In this study, a serial mutational analysis of Zta promoter (Zp) indicated an important role for the ZID element in responding to HDACi induction and p53 binds to this ZID element together with Sp1, a universal transcription factor. Abolition of the DNA-binding ability of Sp1 reduces the inducibility of ZID by HDACi and also reduces the amount of p53 binding to ZID. Finally, it was shown that EBV in p53-positive-lymphoblastoid cell lines (LCLs) can enter into the lytic cycle spontaneously; however, knockdown of p53 in LCLs leads to retardation of EBV reactivation.
Collapse
Affiliation(s)
- Huey-Huey Chua
- College of Medicine, Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Downstream and intermediate interactions of synovial sarcoma-associated fusion oncoproteins and their implication for targeted therapy. Sarcoma 2012; 2012:249219. [PMID: 22550415 PMCID: PMC3329658 DOI: 10.1155/2012/249219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022] Open
Abstract
Synovial sarcoma (SS), an aggressive type of soft tissue tumor, occurs mostly in adolescents and young adults. The origin and molecular mechanism of the development of SS remain only partially known. Over 90% of SS cases are characterized by the t(X;18)(p11.2;q11.2) translocation, which results mainly in the formation of
SS18-SSX1 or SS18-SSX2 fusion genes. In recent years, several reports describing direct and indirect interactions of SS18-SSX1/SSX2 oncoproteins have been published. These reports suggest that the fusion proteins particularly affect the cell growth, cell proliferation, TP53 pathway, and chromatin remodeling mechanisms, contributing to SS oncogenesis. Additional research efforts are required to fully explore the protein-protein interactions of SS18-SSX oncoproteins and the pathways that are regulated by these partnerships for the development of effective targeted therapy.
Collapse
|
24
|
Ferrucci A, Nonnemacher MR, Wigdahl B. Human immunodeficiency virus viral protein R as an extracellular protein in neuropathogenesis. Adv Virus Res 2012; 81:165-99. [PMID: 22094081 DOI: 10.1016/b978-0-12-385885-6.00010-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerous studies published in the past two decades have identified the viral protein R (Vpr) as one of the most versatile proteins in the life cycle of human immunodeficiency virus type 1 (HIV-1). In this regard, more than a thousand Vpr molecules are present in extracellular viral particles. Subsequent to viral entry, Vpr participates in early replicative events by assisting in viral genome nuclear import and, during the viral life cycle, by shuttling between the nucleus and the cytoplasm to accomplish its functions within the context of other replicative functions. Additionally, several studies have implicated Vpr as a proapoptotic protein because it promotes formation of permeability transition pores in mitochondria, which in turn affects transmembrane potential and adenosine triphosphate synthesis. Recent studies have identified Vpr as a virion-free protein in the serum and cerebrospinal fluid of patients infected with HIV-1 whose plasma viremia directly correlates with the extracellular concentration of Vpr. These observations pointed to a new role for Vpr as an additional weapon in the HIV-1 arsenal, involving the use of an extracellular protein to target and possibly inhibit HIV-1-uninfected bystander cells to enable them to escape immune surveillance. In addition, extracellular Vpr decreases adenosine triphosphate levels and affects the intracellular redox balance in neurons, ultimately causing their apoptosis. Herein, we review the role of Vpr as an extracellular protein and its downstream effects on cellular metabolism, functionality, and survival, with particular emphasis on how extracellular Vpr-induced oxidative stress might aggravate HIV-1-induced symptoms, thus affecting pathogenesis and disease progression.
Collapse
Affiliation(s)
- Adriano Ferrucci
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
25
|
Chang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, He JJ, Sawaya BE. HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem 2011; 286:41125-34. [PMID: 21956116 PMCID: PMC3220514 DOI: 10.1074/jbc.m111.268466] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/13/2011] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, small noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators in the expression and function of eukaryotic genomes. It has been suggested that viral infections and neurological disease outcome may also be shaped by the influence of small RNAs. This has prompted us to suggest that HIV infection alters the endogenous miRNA expression patterns, thereby contributing to neuronal deregulation and AIDS dementia. Therefore, using primary cultures and neuronal cell lines, we examined the impact of a viral protein (HIV-1 Tat) on the expression of miRNAs due to its characteristic features such as release from the infected cells and taken up by noninfected cells. Using microRNA array assay, we demonstrated that Tat deregulates the levels of several miRNAs. Interestingly, miR-34a was among the most highly induced miRNAs in Tat-treated neurons. Tat also decreases the levels of miR-34a target genes such as CREB protein as shown by real time PCR. The effect of Tat was neutralized in the presence of anti-miR-34a. Using in situ hybridization assay, we found that the levels of miR-34a increase in Tat transgenic mice when compared with the parental mice. Therefore, we conclude that deregulation of neuronal functions by HIV-1 Tat protein is miRNA-dependent.
Collapse
Affiliation(s)
- J. Robert Chang
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Ruma Mukerjee
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Asen Bagashev
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Luis Del Valle
- the Department of Medicine, Section of Hematology/Oncology, and Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University School of Medicine, New Orleans, Louisiana 70112
| | - Tinatin Chabrashvili
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Brian J. Hawkins
- Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington 98109, and
| | - Johnny J. He
- the Center for AIDS Research, Department of Microbiology and Immunology, School of Medicine, University of Indiana, Indianapolis, Indiana 46202
| | - Bassel E. Sawaya
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
26
|
Chang JR, Ghafouri M, Mukerjee R, Bagashev A, Chabrashvili T, Sawaya BE. Role of p53 in neurodegenerative diseases. NEURODEGENER DIS 2011; 9:68-80. [PMID: 22042001 DOI: 10.1159/000329999] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/09/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND p53 plays an important role in many areas of cellular physiology and biology, ranging from cellular development and differentiation to cell cycle arrest and apoptosis. Many of its functions are attributed to its role in assuring proper cellular division. However, since the establishment of its role in cell cycle arrest, damage repair, and apoptosis (thus also establishing its importance in cancer development), numerous reports have demonstrated additional functions of p53 in various cells. In particular, p53 appears to have important functions as it relates to neurodegeneration and synaptic plasticity. OBJECTIVE In this review, we will address p53 functions as it relates to various neurodegenerative diseases, mainly its implications in the development of HIV-associated neurocognitive disorders. CONCLUSION p53 plays a pivotal role in the development of neurodegenerative diseases through its interaction with cellular factors, viral factors, and/or small RNAs that have the ability to promote the development of these diseases. Hence, inhibition of p53 may present an ideal target to restore neuronal functions.
Collapse
Affiliation(s)
- J Robert Chang
- Molecular Studies of Neurodegenerative Diseases Laboratory, Department of Neurology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
27
|
Deshmane SL, Amini S, Sen S, Khalili K, Sawaya BE. Regulation of the HIV-1 promoter by HIF-1α and Vpr proteins. Virol J 2011; 8:477. [PMID: 22023789 PMCID: PMC3210103 DOI: 10.1186/1743-422x-8-477] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/24/2011] [Indexed: 01/02/2023] Open
Abstract
We previously demonstrated the ability of HIV-1 Vpr protein to activate the oxidative stress pathway, thus leading to the induction of the hypoxia inducible factor 1 alpha (HIF-1α). Therefore, we sought to examine the interplay between the two proteins and the impact of HIF-1α activation on HIV-1 transcription. Using transient transfection assays, we identified the optimal concentration of HIF-1α necessary for the activation of the HIV-1 promoter as well as the domain within HIF-1α responsible for this activation. Our findings indicated that activation of the HIV-1 LTR by Vpr is HIF-1α dependent. Furthermore, we showed that both Vpr and HIF-1α activate the HIV-1 promoter through the GC-rich binding domain within the LTR. Taken together, these data shed more light on the mechanisms used by Vpr to activate the HIV-1 promoter and placed HIF-1α as a major participant in this activation.
Collapse
Affiliation(s)
- Satish L Deshmane
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
28
|
Mukerjee R, Chang JR, Del Valle L, Bagashev A, Gayed MM, Lyde RB, Hawkins BJ, Brailoiu E, Cohen E, Power C, Azizi SA, Gelman BB, Sawaya BE. Deregulation of microRNAs by HIV-1 Vpr protein leads to the development of neurocognitive disorders. J Biol Chem 2011; 286:34976-85. [PMID: 21816823 PMCID: PMC3186354 DOI: 10.1074/jbc.m111.241547] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 08/02/2011] [Indexed: 12/23/2022] Open
Abstract
Studies have shown that HIV-infected patients develop neurocognitive disorders characterized by neuronal dysfunction. The lack of productive infection of neurons by HIV suggests that viral and cellular proteins, with neurotoxic activities, released from HIV-1-infected target cells can cause this neuronal deregulation. The viral protein R (Vpr), a protein encoded by HIV-1, has been shown to alter the expression of various important cytokines and inflammatory proteins in infected and uninfected cells; however the mechanisms involved remain unclear. Using a human neuronal cell line, we found that Vpr can be taken up by neurons causing: (i) deregulation of calcium homeostasis, (ii) endoplasmic reticulum-calcium release, (iii) activation of the oxidative stress pathway, (iv) mitochondrial dysfunction and v- synaptic retraction. In search for the cellular factors involved, we performed microRNAs and gene array assays using human neurons (primary cultures or cell line, SH-SY5Y) that we treated with recombinant Vpr proteins. Interestingly, Vpr deregulates the levels of several microRNAs (e.g. miR-34a) and their target genes (e.g. CREB), which could lead to neuronal dysfunctions. Therefore, we conclude that Vpr plays a major role in neuronal dysfunction through deregulating microRNAs and their target genes, a phenomenon that could lead to the development of neurocognitive disorders.
Collapse
Affiliation(s)
| | | | - Luis Del Valle
- the Department of Medicine, Section of Hematology/Oncology, and Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University School of Medicine, New Orleans, Louisiana 70112
| | | | | | | | - Brian J. Hawkins
- Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington 98109
| | - Eugen Brailoiu
- Pharmacology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Eric Cohen
- the Institut de Recherches Cliniques de Montréal (IRCM) and Department of Microbiology and Immunology, Université de Montréal, Quebec, Canada
| | - Chris Power
- the Departments of Medicine (Neurology), Medical Microbiology & Immunology, and Psychiatry, University of Alberta, Edmonton, Alberta T6G 2S2, Canada, and
| | | | - Benjamin B. Gelman
- the Departments of Pathology and Neuroscience & Cell Biology, Texas NeuroAIDS Research Center, University of Texas Medical Branch, Galveston, Texas 77555-0609
| | | |
Collapse
|
29
|
Abstract
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.
Collapse
Affiliation(s)
- Mong-Hong Lee
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | | |
Collapse
|
30
|
Lazo PA, Santos CR. Interference with p53 functions in human viral infections, a target for novel antiviral strategies? Rev Med Virol 2011; 21:285-300. [PMID: 21726011 DOI: 10.1002/rmv.696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/02/2011] [Accepted: 05/06/2011] [Indexed: 12/11/2022]
Abstract
Viral infections cause a major stress in host cells. The cellular responses to stress are mediated by p53, which by deregulation of cell cycle and apoptosis, may also be part of the host cell reaction to fight infections. Therefore, during evolutionary viral adaptation to host organisms, viruses have developed strategies to manipulate host cell p53 dependent pathways to facilitate their viral life cycles. Thus, interference with p53 function is an important component in viral pathogenesis. Many viruses have proteins that directly affect p53, whereas others alter the regulation of p53 in an indirect manner, mediated by Hdm2 or Akt, or induction of interferon. Rescue of p53 activity is becoming an area of therapeutic development in oncology. It might be feasible that manipulation of p53 mediated responses can become a therapeutic option to limit viral replication or dissemination. In this report, the mechanisms by which viral proteins manipulate p53 responses are reviewed, and it is proposed that a pharmacological rescue of p53 functions might help to control viral infections.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain.
| | | |
Collapse
|
31
|
Mukerjee R, Claudio PP, Chang JR, Del Valle L, Sawaya BE. Transcriptional regulation of HIV-1 gene expression by p53. Cell Cycle 2010; 9:4569-78. [PMID: 21088492 DOI: 10.4161/cc.9.22.13836] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several reports have pointed to the negative involvement of p53 in transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat (HIV-1 LTR). However, the mechanisms of this negative effect remain unclear. In here, we showed that over expression of p53 wild type prevented the phosphorylation of serine 2 in the carboxyl terminal domain (CTD) of RNA polymerase II. As a result of this inhibition, p53 stalled transcriptional elongation on the HIV-1 LTR leading to a significant reduction of HIV-1 replication in primary microglia and astrocytes. However, despite the delay/pause caused by p53, viral transcription and replication decreased and then salvaged. These studies suggest that the negative effect of p53 is alleviated by a third factor. In this regard, our Preliminary Data point to the involvement of the Pirh2 protein in p53 inhibition. Therefore, we suggest that p53 may be a novel therapeutic target for the inhibition of HIV-1 gene expression and replication and the treatment of AIDS.
Collapse
Affiliation(s)
- Ruma Mukerjee
- Molecular Virology Lab, Department of Neurology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
32
|
Herbein G, Gras G, Khan KA, Abbas W. Macrophage signaling in HIV-1 infection. Retrovirology 2010; 7:34. [PMID: 20380698 PMCID: PMC2865443 DOI: 10.1186/1742-4690-7-34] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/09/2010] [Indexed: 02/07/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection.
Collapse
Affiliation(s)
- Georges Herbein
- Department of Virology, UPRES 4266 Pathogens and Inflammation, IFR 133 INSERM, University of Franche-Comté, CHU Besançon, F-25030 Besançon, France.
| | | | | | | |
Collapse
|
33
|
Abstract
Like most viral regulatory proteins, HIV-1 Vpr and homologous proteins from primate lentiviruses are small and multifunctional. They are associated with a plethora of effects and functions, including induction of cell cycle arrest in the G(2) phase, induction of apoptosis, transactivation, enhancement of the fidelity of reverse transcription, and nuclear import of viral DNA in macrophages and other nondividing cells. This review focuses on the cellular proteins that have been reported to interact with Vpr and their significance with respect to the known functions and effects of Vpr on cells and on viral replication.
Collapse
Affiliation(s)
- Vicente Planelles
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East #2100-Room 2520, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
34
|
Mameli G, Poddighe L, Astone V, Delogu G, Arru G, Sotgiu S, Serra C, Dolei A. Novel reliable real-time PCR for differential detection of MSRVenv and syncytin-1 in RNA and DNA from patients with multiple sclerosis. J Virol Methods 2009; 161:98-106. [PMID: 19505508 DOI: 10.1016/j.jviromet.2009.05.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 01/01/2023]
Abstract
Two components of the HERV-W family of human endogenous retroviruses are activated during multiple sclerosis (MS) and proposed immunopathogenic co-factors: MSRV (MS-associated retrovirus), and ERVWE1 (whose env protein, syncytin-1, reaches the plasma membrane). MSRVenv and syncytin-1 are closely related, and difficult to distinguish each other. The sequences of extracellular MSRVenv and of syncytin-1 available in GenBank were compared with those found in MS patients and controls of the cohort under study. With respect to syncytin-1, MSRVenv sequences have a 12-nucleotide insertion in the trans-membrane moiety. Based on this insertion, discriminatory real-time PCR assays were developed, that can amplify selectively either MSRVenv or syncytin-1. The data of MS patients and controls indicated that MSRV and ERVWE1 are both expressed in the brain of MS patients, while only MSRV is present in the blood; MSRV was released in culture by PBMCs of MSRV-producer individuals. These cells expressed the complete MSRVenv gene in the absence of syncytin-1 expression, up to the final, fully glycosylated envelope protein product, since western blot staining with anti-HERV-Wenv antibody detected two bands of the same molecular weight (73 and 61kDa) of the fully glycosylated and partially glycosylated HERV-Wenv uncleaved proteins. Beyond MSRVenv DNA copy numbers were more abundant in MS patients than in healthy humans, while syncytin-1 were unchanged. These findings reinforce the link between MSRV and MS.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Section of Microbiology, Department of Biomedical Sciences, Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Viale San Pietro 43B, Sassari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Romani B, Engelbrecht S. Human immunodeficiency virus type 1 Vpr: functions and molecular interactions. J Gen Virol 2009; 90:1795-1805. [PMID: 19458171 DOI: 10.1099/vir.0.011726-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is an accessory protein that interacts with a number of cellular and viral proteins. The functions of many of these interactions in the pathogenesis of HIV-1 have been identified. Deletion of the vpr gene reduces the virulence of HIV-1 dramatically, indicating the importance of this protein for the virus. This review describes the current findings on several established functions of HIV-1 Vpr and some possible roles proposed for this protein. Because Vpr exploits cellular proteins and pathways to influence the biology of HIV-1, understanding the functions of Vpr usually involves the study of cellular pathways. Several functions of Vpr are attributed to the virion-incorporated protein, but some of them are attributed to the expression of Vpr in HIV-1-infected cells. The structure of Vpr may be key to understanding the variety of its interactions. Due to the critical role of Vpr in HIV-1 pathogenicity, study of the interactions between Vpr and cellular proteins may help us to understand the mechanism(s) of HIV-1 pathogenicity.
Collapse
Affiliation(s)
- Bizhan Romani
- Department of Pathology, Division of Medical Virology, University of Stellenbosch, Tygerberg 7505, South Africa
| | - Susan Engelbrecht
- National Health Laboratory Services, Tygerberg 7505, South Africa.,Department of Pathology, Division of Medical Virology, University of Stellenbosch, Tygerberg 7505, South Africa
| |
Collapse
|
36
|
Deshmane SL, Mukerjee R, Fan S, Del Valle L, Michiels C, Sweet T, Rom I, Khalili K, Rappaport J, Amini S, Sawaya BE. Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression. J Biol Chem 2009; 284:11364-73. [PMID: 19204000 PMCID: PMC2670142 DOI: 10.1074/jbc.m809266200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/06/2009] [Indexed: 12/14/2022] Open
Abstract
The detection of biomarkers of oxidative stress in brain tissue and cerebrospinal fluid of patients with human immunodeficiency virus, type 1 (HIV)-associated dementia indicates the involvement of stress pathways in the neuropathogenesis of AIDS. Although the biological importance of oxidative stress on events involved in AIDS neuropathogenesis and the HIV-1 proteins responsible for oxidative stress remain to be elucidated, our results point to the activation of hypoxia-inducible factor 1 (HIF-1) upon HIV-1 infection and its elevation in brain cells of AIDS patients with dementia. HIF-1 is a transcription factor that is responsive to oxygen. Under hypoxic conditions, HIF-1alpha becomes stable and translocates to the nucleus where it dimerizes with aryl hydrocarbon receptor nuclear translocator and modulates gene transcription. Activation of HIF-1 can also be mediated by the HIV-1 accessory protein Vpr. In addition, cellular components, including reactive oxygen species, contribute to the induction of HIF-1alpha. Our results show that Vpr induces reactive oxygen species by increasing H(2)O(2) production, which can contribute to HIF-1alpha accumulation. Interestingly, increased levels of HIF-1alpha stimulated HIV-1 gene transcription through HIF-1 association with HIV-1 long terminal repeat. These observations point to the existence of a positive feedback interplay between HIF-1alpha and Vpr and that, by inducing oxidative stress via activation of HIF-1, Vpr can induce HIV-1 gene expression and dysregulate multiple host cellular pathways.
Collapse
Affiliation(s)
- Satish L Deshmane
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Imbeault M, Ouellet M, Tremblay MJ. Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4+ T cells. Retrovirology 2009; 6:5. [PMID: 19146679 PMCID: PMC2637825 DOI: 10.1186/1742-4690-6-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/15/2009] [Indexed: 11/10/2022] Open
Abstract
Background Infection with HIV-1 has been shown to alter expression of a large array of host cell genes. However, previous studies aimed at investigating the putative HIV-1-induced modulation of host gene expression have been mostly performed in established human cell lines. To better approximate natural conditions, we monitored gene expression changes in a cell population highly enriched in human primary CD4+ T lymphocytes exposed to HIV-1 using commercial oligonucleotide microarrays from Affymetrix. Results We report here that HIV-1 influences expression of genes related to many important biological processes such as DNA repair, cellular cycle, RNA metabolism and apoptosis. Notably, expression of the p53 tumor suppressor and genes involved in p53 homeostasis such as GADD34 were up-regulated by HIV-1 at the mRNA level. This observation is distinct from the previously reported p53 phosphorylation and stabilization at the protein level, which precedes HIV-1-induced apoptosis. We present evidence that the HIV-1-mediated increase in p53 gene expression is associated with virus-mediated induction of type-I interferon (i.e. IFN-α and IFN-β). Conclusion These observations have important implications for our understanding of HIV-1 pathogenesis, particularly in respect to the virus-induced depletion of CD4+ T cells.
Collapse
Affiliation(s)
- Michaël Imbeault
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Canada.
| | | | | |
Collapse
|
38
|
Abraham S, Sweet T, Khalili K, Sawaya BE, Amini S. Evidence for activation of the TGF-beta1 promoter by C/EBPbeta and its modulation by Smads. J Interferon Cytokine Res 2009; 29:1-7. [PMID: 19014341 PMCID: PMC2988467 DOI: 10.1089/jir.2008.0036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 06/16/2008] [Indexed: 12/27/2022] Open
Abstract
The transforming growth factor-beta1 (TGF-beta1) is a cytokine involved in many biological events inlcuding immunosuppression, angiogenesis, cell growth, and apoptosis. Expression of TGF-beta1 at the transcriptional level is controlled by a series of ubiquitous and specialized factors whose activities can be modulated by a variety of signaling events. Here we demonstrate that activity of the TGF-beta1 promoter is increased by C/EBPbeta, a DNA-binding transcription factor whose activity can be influenced by several immunomodulators, in astrocytes and microglial cells. Interestingly, expression of Smad3 and Smad4, the downstream regulators of the TGF-beta1-signaling pathway, impairs the activity of C/EBPbeta on the TGF-beta1 promoter. Further, we demonstrate that MH2, a common domain among Smads that has protein-binding activities, interacts with C/EBPbeta and decreases its association with a region of the TGF-beta1 promoter that is responsive to C/EBPbeta activation. Interestingly, the p65 subunit of nuclear factor-kappaB (NF-kappaB), which also interacts with C/EBPbeta, cooperates with MH2 and decreased DNA-binding and transcriptional activities of C/EBPbeta on the TGF-beta1 promoter. These observations indicate that an autoregulatory mechanism, involving the MH2 domain of Smads, modulates activation of the TGF-beta1 promoter by C/EBPbeta. Further, our results show that the interplay between NF-kappaB and C/EBPbeta has an impact on the ability of C/EBPbeta to stimulate TGF-beta1 transcription, hence, suggesting that the cross-communication of signaling pathways that modulate NF-kappaB and C/EBPbeta may dictate the level of TGF-beta1 promoter activity.
Collapse
Affiliation(s)
- Selvajothi Abraham
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Thersa Sweet
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Bassel E. Sawaya
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Shohreh Amini
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Wang T, Gong N, Liu J, Kadiu I, Kraft-Terry SD, Schlautman JD, Ciborowski P, Volsky DJ, Gendelman HE. HIV-1-infected astrocytes and the microglial proteome. J Neuroimmune Pharmacol 2008; 3:173-86. [PMID: 18587649 PMCID: PMC2579774 DOI: 10.1007/s11481-008-9110-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 05/07/2008] [Indexed: 12/22/2022]
Abstract
The human immunodeficiency virus (HIV) invades the central nervous system early after viral exposure but causes progressive cognitive, behavior, and motor impairments years later with the onset of immune deficiency. Although in the brain, HIV preferentially replicates productively in cells of mononuclear phagocyte (MP; blood borne macrophage and microglia), astrocytes also can be infected, at low and variable frequency, particularly in patients with encephalitis. Among their many functions, astrocytes network with microglia to provide the first line of defense against microbial infection; however, very little is known about astrocytes' consequences on MP. Here, we addressed this question using co-culture systems of HIV-infected mouse astrocytes and microglia. Pseudotyped vesicular stomatis virus/HIV was used to circumvent the absence of viral receptors and ensure cell genotypic uniformity for studies of intercellular communication. The study demonstrated that infected astrocytes show modest changes in protein elements compared to uninfected cells. In contrast, infected astrocytes induce robust changes in the proteome of HIV-1-infected microglia. Accelerated cell death and redox proteins, among others, were produced in abundance. The observations confirmed the potential of astrocytes to influence the neuropathogenesis of HIV-1 infection by specifically altering the neurotoxic potential of infected microglia and regulating viral maturation.
Collapse
Affiliation(s)
- Tong Wang
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou, Guangdong, China 510630
| | - Nan Gong
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Jianuo Liu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Irena Kadiu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Stephanie D Kraft-Terry
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Joshua D Schlautman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Pawel Ciborowski
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - David J Volsky
- Molecular Virology Division, Columbia University Medical Center, New York, NY 10063
| | - Howard E Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880
| |
Collapse
|
40
|
Romagnoli L, Sariyer IK, Tung J, Feliciano M, Sawaya BE, Valle LD, Ferrante P, Khalili K, Safak M, White MK. Early growth response-1 protein is induced by JC virus infection and binds and regulates the JC virus promoter. Virology 2008; 375:331-41. [PMID: 18353421 PMCID: PMC2632587 DOI: 10.1016/j.virol.2008.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/22/2007] [Accepted: 02/14/2008] [Indexed: 11/18/2022]
Abstract
JC virus (JCV) is a human polyomavirus that can emerge from a latent state to cause the cytolytic destruction of oligodendrocytes in the brain resulting in the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Previous studies described a cis-acting transcriptional regulatory element in the JCV non-coding control region (NCCR) that is involved in the response of JCV to cytokines. This consists of a 23 base pair GGA/C rich sequence (GRS) near the replication origin (5112 to +4) that contains potential binding sites for Sp1 and Egr-1. Gel shift analysis showed that Egr-1, but not Sp1, bound to GRS. Evidence is presented that the GRS gel shift seen on cellular stimulation is due to Egr-1. Thus, TPA-induced GRS gel shift could be blocked by antibody to Egr-1. Further, the TPA-induced GRS DNA/protein complex was isolated and found to contain Egr-1 by Western blot. No other Egr-1 sites were found in the JCV NCCR. Functionally, Egr-1 was found to stimulate transcription of JCV late promoter but not early promoter reporter constructs. Mutation of the Egr-1 site abrogated Egr-1 binding and virus with the mutated Egr-1 site showed markedly reduced VP1 expression and DNA replication. Infection of primary astrocytes by wild-type JCV induced Egr-1 nuclear expression that was maximal at 5-10 days post-infection. Finally, upregulation of Egr-1 was detected in PML by immunohistochemistry. These data suggest that Egr-1 induction may be important in the life cycle of JCV and PML pathogenesis.
Collapse
Affiliation(s)
- Luca Romagnoli
- Center for Neurovirology Department of Neuroscience Temple University School of Medicine 1900 North 12th Street, 015-96, Room 203 Philadelphia, PA 19122
| | - Ilker K. Sariyer
- Center for Neurovirology Department of Neuroscience Temple University School of Medicine 1900 North 12th Street, 015-96, Room 203 Philadelphia, PA 19122
| | - Jacqueline Tung
- Center for Neurovirology Department of Neuroscience Temple University School of Medicine 1900 North 12th Street, 015-96, Room 203 Philadelphia, PA 19122
| | - Mariha Feliciano
- Center for Neurovirology Department of Neuroscience Temple University School of Medicine 1900 North 12th Street, 015-96, Room 203 Philadelphia, PA 19122
| | - Bassel E. Sawaya
- Center for Neurovirology Department of Neuroscience Temple University School of Medicine 1900 North 12th Street, 015-96, Room 203 Philadelphia, PA 19122
| | - Luis Del Valle
- Center for Neurovirology Department of Neuroscience Temple University School of Medicine 1900 North 12th Street, 015-96, Room 203 Philadelphia, PA 19122
| | - Pasquale Ferrante
- Laboratorio Analisi San Giuseppe Hospital Via San Vittore, 12 20123 Milan ITALY
| | - Kamel Khalili
- Center for Neurovirology Department of Neuroscience Temple University School of Medicine 1900 North 12th Street, 015-96, Room 203 Philadelphia, PA 19122
| | - Mahmut Safak
- Center for Neurovirology Department of Neuroscience Temple University School of Medicine 1900 North 12th Street, 015-96, Room 203 Philadelphia, PA 19122
| | - Martyn K. White
- Laboratorio Analisi San Giuseppe Hospital Via San Vittore, 12 20123 Milan ITALY
| |
Collapse
|
41
|
Siddiqui K, Del Valle L, Morellet N, Cui J, Ghafouri M, Mukerjee R, Urbanska K, Fan S, Pattillo CB, Deshmane SL, Kiani MF, Ansari R, Khalili K, Roques BP, Reiss K, Bouaziz S, Amini S, Srinivasan A, Sawaya BE. Molecular mimicry in inducing DNA damage between HIV-1 Vpr and the anticancer agent, cisplatin. Oncogene 2008; 27:32-43. [PMID: 17653096 DOI: 10.1038/sj.onc.1210632] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 05/17/2007] [Accepted: 05/29/2007] [Indexed: 11/09/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) viral protein R (vpr) gene is an evolutionarily conserved gene among the primate lentiviruses. Several functions are attributed to Vpr including the ability to cause cell death, cell cycle arrest, apoptosis and DNA damage. The Vpr domain responsible for DNA damage as well as the mechanism(s) through which Vpr induces this damage is unknown. Using site-directed mutagenesis, we identified the helical domain II within Vpr (aa 37-50) as the region responsible for causing DNA damage. Interestingly, Vpr Delta(37-50) failed to cause cell cycle arrest or apoptosis, to induce Ku70 or Ku80 and to suppress tumor growth, but maintained its capability to activate the HIV-1 LTR, to localize to the nucleus and to promote nonhomologous end-joining. In addition, our cytogenetic data indicated that helical domain II induced chromosomal aberrations, which mimicked those induced by cisplatin, an anticancer agent. This novel molecular mimicry function of Vpr might lead to its potential therapeutic use as a tumor suppressor.
Collapse
Affiliation(s)
- K Siddiqui
- 1Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Klase ZA, Van Duyne R, Kashanchi F. Identification of potential drug targets using genomics and proteomics: a systems approach. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:327-68. [PMID: 18086417 DOI: 10.1016/s1054-3589(07)56011-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zachary A Klase
- Department of Biochemistry, Medical Center, The George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
43
|
Wen X, Duus KM, Friedrich TD, de Noronha CMC. The HIV1 protein Vpr acts to promote G2 cell cycle arrest by engaging a DDB1 and Cullin4A-containing ubiquitin ligase complex using VprBP/DCAF1 as an adaptor. J Biol Chem 2007; 282:27046-27057. [PMID: 17620334 DOI: 10.1074/jbc.m703955200] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The roles of the HIV1 protein Vpr in virus replication and pathogenesis remain unclear. Expression of Vpr in dividing cells causes cell cycle arrest in G(2). Vpr also facilitates low titer infection of terminally differentiated macrophages, enhances transcription, promotes apoptosis, and targets cellular uracil N-glycosylase for degradation. Using co-immunoprecipitation and tandem mass spectroscopy, we found that HIV1 Vpr engages a DDB1- and cullin4A-containing ubiquitin-ligase complex through VprBP/DCAF1. HIV2 Vpr has two Vpr-like proteins, Vpr and Vpx, which cause G(2) arrest and facilitate macrophage infection, respectively. HIV2 Vpr, but not Vpx, engages the same set of proteins. We further demonstrate that the interaction between Vpr and the ubiquitin-ligase components as well as further assembly of the ubiquitin-ligase are necessary for Vpr-mediated G(2) arrest. Our data support a model in which Vpr engages the ubiquitin ligase to deplete a cellular factor that is required for cell cycle progression into mitosis. Vpr, thus, functions like the HIV1 proteins Vif and Vpu to usurp cellular ubiquitin ligases for viral functions.
Collapse
Affiliation(s)
- Xiaoyun Wen
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - Karen M Duus
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - Thomas D Friedrich
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - Carlos M C de Noronha
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208.
| |
Collapse
|
44
|
Mameli G, Astone V, Khalili K, Serra C, Sawaya BE, Dolei A. Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines. Virology 2007; 362:120-30. [PMID: 17258784 DOI: 10.1016/j.virol.2006.12.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/07/2006] [Accepted: 12/14/2006] [Indexed: 11/28/2022]
Abstract
Syncytin-1 has a physiological role during early pregnancy, as mediator of trophoblast fusion into the syncytiotrophoblast layer, hence allowing embryo implantation. In addition, its expression in nerve tissue has been proposed to contribute to the pathogenesis of multiple sclerosis (MS). Syncytin-1 is the env glycoprotein of the ERVWE1 component of the W family of human endogenous retroviruses (HERV), located on chromosome 7q21-22, in a candidate region for genetic susceptibility to MS. The mechanisms of ERVWE1 regulation in nerve tissue remain to be identified. Since there are correlations between some cytokines and MS outcome, we examined the regulation of the syncytin-1 promoter by MS-related cytokines in human U-87MG astrocytic cells. Using transient transfection assays, we observed that the MS-detrimental cytokines TNFalpha, interferon-gamma, interleukin-6, and interleukin-1 activate the ERVWE1 promoter, while the MS-protective interferon-beta is inhibitory. The effects of cytokines are reduced by the deletion of the cellular enhancer domain of the promoter that contains binding sites for several transcription factors. In particular, we found that TNFalpha had the ability to activate the ERVWE1 promoter through an NF-kappaB-responsive element located within the enhancer domain of the promoter. Electrophoretic mobility shift and ChIP assays showed that TNFalpha enhances the binding of the p65 subunit of NF-kappaB, to its cognate site within the promoter. The effect of TNFalpha is abolished by siRNA directed against p65. Taken together, these results illustrate a role for p65 in regulating the ERVWE1 promoter and in TNFalpha-mediated induction of syncytin-1 in multiple sclerosis.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Section of Microbiology, Department of Biomedical Sciences, Center of Excellence for Biotechnology Development and Biodiversity Research, Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Nakai-Murakami C, Shimura M, Kinomoto M, Takizawa Y, Tokunaga K, Taguchi T, Hoshino S, Miyagawa K, Sata T, Kurumizaka H, Yuo A, Ishizaka Y. HIV-1 Vpr induces ATM-dependent cellular signal with enhanced homologous recombination. Oncogene 2006; 26:477-86. [PMID: 16983346 DOI: 10.1038/sj.onc.1209831] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An ATM-dependent cellular signal, a DNA-damage response, has been shown to be involved during infection of human immunodeficiency virus type-1 (HIV-1), and a high incidence of malignant tumor development has been observed in HIV-1-positive patients. Vpr, an accessory gene product of HIV-1, delays the progression of the cell cycle at the G2/M phase, and ATR-Chk1-Wee-1, another DNA-damage signal, is a proposed cellular pathway responsible for the Vpr-induced cell cycle arrest. In this study, we present evidence that Vpr also activates ATM, and induces expression of gamma-H2AX and phosphorylation of Chk2. Strikingly, Vpr was found to stimulate the focus formation of Rad51 and BRCA1, which are involved in repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), and biochemical analysis revealed that Vpr dissociates the interaction of p53 and Rad51 in the chromatin fraction, as observed under irradiation-induced DSBs. Vpr was consistently found to increase the rate of HR in the locus of I-SceI, a rare cutting-enzyme site that had been introduced into the genome. An increase of the HR rate enhanced by Vpr was attenuated by an ATM inhibitor, KU55933, suggesting that Vpr-induced DSBs activate ATM-dependent cellular signal that enhances the intracellular recombination potential. In context with a recent report that KU55933 attenuated the integration of HIV-1 into host genomes, we discuss the possible role of Vpr-induced DSBs in viral integration and also in HIV-1 associated malignancy.
Collapse
Affiliation(s)
- C Nakai-Murakami
- Department of Intractable Diseases, International Medical Center of Japan, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rossi A, Mukerjee R, Ferrante P, Khalili K, Amini S, Sawaya BE. Human immunodeficiency virus type 1 Tat prevents dephosphorylation of Sp1 by TCF-4 in astrocytes. J Gen Virol 2006; 87:1613-1623. [PMID: 16690926 DOI: 10.1099/vir.0.81691-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous examination of the effect of TCF-4 on transcription of the human immunodeficiency virus type 1 (HIV-1) promoter in human astrocytic cells found that TCF-4 affects the HIV-1 promoter through the GC-rich domain (nt -80 to nt -68). Here, the physical interaction and a functional consequence of TCF4-Sp1 contact were characterized. It was shown that expression of TCF-4 in U-87 MG (human astrocytic) cells decreased basal and Sp1-mediated transcription of the HIV-1 promoter. Results from a GST pull-down assay, as well as combined immunoprecipitation and Western blot analysis of protein extracts from U-87 MG cells, revealed an interaction of Sp1 with TCF-4. Using in vitro protein chromatography, the region of Sp1 that contacts TCF-4 was mapped to aa 266-350. It was also found that, in cell-free extracts, TCF-4 prevented dsDNA-dependent protein kinase (DNA-PK)-mediated Sp1 phosphorylation. Surprisingly, TCF-4 failed to decrease Sp1-mediated transcription of the HIV-1 long terminal repeat (LTR) and Sp1 phosphorylation in cells expressing HIV-1 Tat. Results from immunoprecipitation/Western blotting demonstrated that TCF-4 lost its ability to interact with Sp1, but not with Tat, in Tat-transfected cells. Taken together, these findings suggest that activity at the HIV-1 promoter is influenced by phosphorylation of Sp1, which is affected by Tat and DNA-PK. Interactions among TCF-4, Sp1 and/or Tat may determine the level of viral gene transcription in human astrocytic cells.
Collapse
Affiliation(s)
- Andrea Rossi
- Laboratory of Biology, Don C. Gnocchi Foundation, IRCCS, 20148 Milan, Italy
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Ruma Mukerjee
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Pasquale Ferrante
- Laboratory of Biology, Don C. Gnocchi Foundation, IRCCS, 20148 Milan, Italy
| | - Kamel Khalili
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Shohreh Amini
- Department of Biology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Bassel E Sawaya
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| |
Collapse
|
47
|
White MK, Gorrill TS, Khalili K. Reciprocal transactivation between HIV-1 and other human viruses. Virology 2006; 352:1-13. [PMID: 16725168 DOI: 10.1016/j.virol.2006.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 03/14/2006] [Accepted: 04/06/2006] [Indexed: 01/08/2023]
Abstract
A variety of rare clinical syndromes are seen with strikingly increased prevalence in HIV-1-infected individuals, many with underlying viral etiologies. The emergence of these diseases in AIDS reflects a reduction in the ability of the immune system to mount an adequate defense against viruses in general due to the damage inflicted to the immune system by HIV-1 infection. However, in many cases, it has been found that HIV-1 can enhance the level of expression and hence the life cycle of other viruses independently of immunosuppression through specific interactions with the viruses. This can occur either directly by HIV-1 proteins such as Tat enhancing the activity of heterologous viral promoters, and/or indirectly by HIV-1 inducing the expression of cytokines and activation of their downstream signaling that eventually promotes the multiplication of the other virus. In a reciprocal manner, the effects of other viruses can enhance the pathogenicity of HIV-1 infection in individuals with AIDS through stimulation of the HIV-1 promoter activity and genome expression. The purpose of this review is to examine the cross-interactions between these viruses and HIV-1.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, 1900 North 12th Street, 015-96, Room 203, Philadelphia, PA 19122, USA.
| | | | | |
Collapse
|
48
|
Claudio PP, Cui J, Ghafouri M, Mariano C, White MK, Safak M, Sheffield JB, Giordano A, Khalili K, Amini S, Sawaya BE. Cdk9 phosphorylates p53 on serine 392 independently of CKII. J Cell Physiol 2006; 208:602-12. [PMID: 16741955 DOI: 10.1002/jcp.20698] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tumor suppressor p53 is an important cellular protein, which controls cell cycle progression. Phosphorylation is one of the mechanisms by which p53 is regulated. Here we report the interaction of p53 with another key regulator, cdk9, which together with cyclin T1 forms the positive transcription elongation complex, p-TEFb. This complex cooperates with the HIV-1 Tat protein to cause the phosphorylation of the carboxyl terminal domain (CTD) of RNA polymerase II and this facilitates the elongation of HIV-1 transcription. We demonstrate that cdk9 phosphorylates p53 on serine 392 through their direct physical interaction. Results from protein-protein interaction assays revealed that cdk9 interacts with the C-terminal domain (aa 361-393) of p53, while p53 interacts with the N-terminal domain of cdk9. Transfection and protein binding assays (EMSA and ChIP) demonstrated the ability of p53 to bind and activate the cdk9 promoter. Interestingly, cdk9 phosphorylates serine 392 of p53, which could be also phosphorylated by casein kinase II. Kinase assays demonstrated that cdk9 phosphorylates p53 independently of CKII. These studies demonstrate the existence of a feedback-loop between p53 and cdk9, pinpointing a novel mechanism by which p53 regulates the basal transcriptional machinery.
Collapse
Affiliation(s)
- Pier Paolo Claudio
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Saunders M, Eldeen MB, Del Valle L, Reiss K, Peruzzi F, Mameli G, Gelman BB, Khalili K, Amini S, Sawaya BE. p73 modulates HIV-1 Tat transcriptional and apoptotic activities in human astrocytes. Apoptosis 2005; 10:1419-31. [PMID: 16235026 DOI: 10.1007/s10495-005-2467-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV-1 Tat is a potent transcriptional activator of the viral promoter with the ability to modulate a number of cellular regulatory circuits including apoptosis. Tat exerts its effects through interaction with viral as well as cellular proteins. Here, we studied the influence of p73, a protein that is implicated in apoptosis and cell cycle control, on Tat apoptotic function in the central nervous system. We recently demonstrated the ability of Tat to associate with p73, and that this association modulates Tat transcriptional activity (Amini et al., Mol Cell Biol 2005; 18: 8126-8138). We demonstrated that p73 interferes with Tat-mediated apoptosis by preventing the up-regulation of Bax and down-regulation of Bcl-2 proteins in astrocytes. Thus, the interplay between Tat and p73 may affect Tat contribution to apoptotic events in the brain, limiting its involvement in the neuropathology often observed in the brains of HIV-1 patients.
Collapse
Affiliation(s)
- M Saunders
- Department of Neuroscience & Center for Neurovirology, Temple University, 1900 North 12th Street, 015-96, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Amini S, Mameli G, Del Valle L, Skowronska A, Reiss K, Gelman BB, White MK, Khalili K, Sawaya BE. p73 Interacts with human immunodeficiency virus type 1 Tat in astrocytic cells and prevents its acetylation on lysine 28. Mol Cell Biol 2005; 25:8126-38. [PMID: 16135803 PMCID: PMC1234304 DOI: 10.1128/mcb.25.18.8126-8138.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat is a potent transcriptional activator of the HIV-1 promoter and also has the ability to modulate a number of cellular regulatory circuits including apoptosis. Tat exerts its effects through interaction with viral as well as cellular proteins. Here, we studied the influence of p73, a protein that is implicated in apoptosis and cell cycle control, on Tat functions in the central nervous system. Protein interaction studies using immunoprecipitation followed by Western blot and glutathione S-transferase pull-down assays demonstrated the association of Tat with p73. Tat bound to the N-terminal region of p73 spanning amino acids 1 to 120, and this interaction required the cysteine-rich domain (amino acids 30 to 40) of Tat. Association of p73 with Tat prevented the acetylation of Tat on lysine 28 by PCAF. Functional studies including RNA interference showed that p73 inhibited Tat stimulation of the HIV-1 promoter. Furthermore, p73 prevented the interaction of Tat with cyclin T1 in vitro but not in vivo. These findings suggest possible new therapeutic approaches, using p73, for Tat-mediated AIDS pathogenesis.
Collapse
Affiliation(s)
- Shohreh Amini
- Center for Neurovirology and Cancer Biology, Temple University, 1900 North 12th Street, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|