1
|
Wang Y, Wu G, Wan Q, Wang J, Wen G. Comparisons on the evaluation methods of chlorine resistance fungi in drinking water. ENVIRONMENTAL RESEARCH 2025; 278:121650. [PMID: 40258467 DOI: 10.1016/j.envres.2025.121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Chlorine disinfection is fundamental for ensuring microbial safety in drinking water systems. However, fungi pose significant pathogenic risks due to their substantially higher chlorine resistance compared to bacteria. Existing approaches for evaluating fungal chlorine resistance face challenges, including the absence of standardized protocols, labor-intensive procedures, prolonged experimental durations, and limited real-time detection capabilities. Moreover, the mechanisms underlying fungal chlorine resistance remain inadequately understood. This study provides a comprehensive and systematic comparison of the primary methods used to assess fungal chlorine resistance, including log reduction, concentration-time (CT) values, and minimum inhibitory concentration (MIC). The CT value method incorporates disinfectant decay, contact time, and experimental conditions to reflect the dynamics of the disinfection process. In contrast, the log reduction method focuses on endpoint inactivation, while MIC provides a retrospective evaluation. Therefore, the CT method is recommended as the most effective method. This study investigates the underlying mechanisms of fungal chlorine resistance, emphasizing the critical roles played by fungal cell wall components, such as melanin and chitosan, the antioxidant enzyme systems, and the formation of biofilms in conferring enhanced resistance to chlorine exposure. The findings provide a theoretical foundation for the development of standardized methods and more effective strategies for controlling fungal contamination in water treatment process.
Collapse
Affiliation(s)
- Yihan Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
2
|
Muñiz-Paredes F, Ishchuk OP, Petranovic D. Impact of liquid and solid-state cultures on hemoglobin production and oxidative state in Saccharomyces cerevisiae. J Biotechnol 2025; 400:1-7. [PMID: 39929304 DOI: 10.1016/j.jbiotec.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Recombinant human hemoglobin gained attention due to its potential use as a blood-free oxygen carrier substitute. To enhance human hemoglobin production in Saccharomyces cerevisiae, various genetic engineering strategies have been employed, including: increasing intracellular heme levels, minimizing heme and protein degradation pathways, and co-expressing the α-hemoglobin stabilizing protein (AHSP). Solid-state culture (SSC) may enhance hemoglobin production by increasing heme biosynthesis, as it relates to intracellular oxygen availability. A comparative analysis of heme and hemoglobin production was conducted between liquid culture (LC) and SSC using the S. cerevisiae AHSP strain. While both systems exhibited comparable heme and hemoglobin yields per cell, a significant 18 % increase in biomass was observed in SSC. The expression of the aerobic master gene HAP1 remained consistent between both systems, however, CYC1 (regulated by HAP1) was two-fold overexpressed in SSC, indicating higher oxygen transference and possibly more efficient electron transport. Several antioxidant genes were downregulated in the SSC, suggesting that LC may be more susceptible to electron leakage during oxidative phosphorylation, potentially due to the lower expression of CYC1. It is proposed that high expression of antioxidant genes in LC inhibits biomass production due to the metabolic burden of maintaining redox homeostasis. These differences between LC and SSC may explain the suitability of SSC as a platform for recombinant protein production.
Collapse
Affiliation(s)
- Facundo Muñiz-Paredes
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, Göteborg 412 96, Sweden.
| | - Olena P Ishchuk
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, Göteborg 412 96, Sweden.
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, Göteborg 412 96, Sweden; Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads, Lyngby 2800 Kgs, Denmark.
| |
Collapse
|
3
|
Ishtuganova VV, Sidorin AV, Makeeva AS, Padkina MV, Rumyantsev AM. Effect of Phosphate Starvation on Gene Expression in Komagataella phaffii Cells. Microorganisms 2024; 13:39. [PMID: 39858807 PMCID: PMC11768071 DOI: 10.3390/microorganisms13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Phosphorus is a key nutrient for all organisms. The study of phosphate metabolism and its regulation is important for understanding the evolutionary processes of regulatory systems in eukaryotic cells. The methylotrophic yeast Komagataella phaffii is an efficient producer organism, and it is actively used in biotechnological production. The high practical importance of K. phaffii has stimulated active research to find new tools to work with this yeast and optimize its cultivation conditions. In this work, we observed the effect of phosphate starvation on gene expression in K. phaffii at the transcriptome level. Phosphate starvation had a significant effect on general cell metabolism. K. phaffii cells demonstrated a response to this macronutrient deficiency through an altered gene expression of carbon and amino acid metabolism. We observed the activation of phosphate and polyphosphate metabolism gene expression. In this case, there was a suppression of ribosome biogenesis genes and genes involved in fatty acid beta-oxidation and translation processes.
Collapse
Affiliation(s)
| | | | | | | | - Andrey M. Rumyantsev
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 St. Petersburg, Russia; (V.V.I.)
| |
Collapse
|
4
|
Scherschel M, Niemeier JO, Jacobs LJHC, Hoffmann MDA, Diederich A, Bell C, Höhne P, Raetz S, Kroll JB, Steinbeck J, Lichtenauer S, Multhoff J, Zimmermann J, Sadhanasatish T, Rothemann RA, Grashoff C, Messens J, Ampofo E, Laschke MW, Riemer J, Roma LP, Schwarzländer M, Morgan B. A family of NADPH/NADP + biosensors reveals in vivo dynamics of central redox metabolism across eukaryotes. Nat Commun 2024; 15:10704. [PMID: 39702652 DOI: 10.1038/s41467-024-55302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024] Open
Abstract
The NADPH/NADP+ redox couple is central to metabolism and redox signalling. NADP redox state is differentially regulated by distinct enzymatic machineries at the subcellular compartment level. Nonetheless, a detailed understanding of subcellular NADP redox dynamics is limited by the availability of appropriate tools. Here, we introduce NAPstars, a family of genetically encoded, fluorescent protein-based NADP redox state biosensors. NAPstars offer real-time, specific measurements, across a broad-range of NADP redox states, with subcellular resolution. NAPstar measurements in yeast, plants, and mammalian cell models, reveal a conserved robustness of cytosolic NADP redox homoeostasis. NAPstars uncover cell cycle-linked NADP redox oscillations in yeast and illumination- and hypoxia-dependent NADP redox changes in plant leaves. By applying NAPstars in combination with selective impairment of the glutathione and thioredoxin antioxidative pathways under acute oxidative challenge, we find an unexpected and conserved role for the glutathione system as the primary mediator of antioxidative electron flux.
Collapse
Affiliation(s)
- Marie Scherschel
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Jan-Ole Niemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Lianne J H C Jacobs
- Redox Metabolism, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Markus D A Hoffmann
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Anika Diederich
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Christopher Bell
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Pascal Höhne
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Sonja Raetz
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Johanna B Kroll
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Janina Steinbeck
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Jan Multhoff
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Jannik Zimmermann
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Tanmay Sadhanasatish
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, Münster, Germany
| | - R Alexander Rothemann
- Redox Metabolism, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Carsten Grashoff
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, Münster, Germany
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Jan Riemer
- Redox Metabolism, Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany.
| | - Bruce Morgan
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
5
|
de la Fuente-Colmenares I, González J, Sánchez NS, Ochoa-Gutiérrez D, Escobar-Sánchez V, Segal-Kischinevzky C. Regulation of Catalase Expression and Activity by DhHog1 in the Halotolerant Yeast Debaryomyces hansenii Under Saline and Oxidative Conditions. J Fungi (Basel) 2024; 10:740. [PMID: 39590660 PMCID: PMC11595881 DOI: 10.3390/jof10110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Efficient transcriptional regulation of the stress response is critical for microorganism survival. In yeast, stress-related gene expression, particularly for antioxidant enzymes like catalases, mitigates reactive oxygen species such as hydrogen peroxide (H2O2), preventing cell damage. The halotolerant yeast Debaryomyces hansenii shows oxidative stress tolerance, largely due to high catalase activity from DhCTA and DhCTT genes. This study evaluates D. hansenii's response to oxidative stress caused by H2O2 under saline conditions, focusing on cell viability, gene expression, and catalase activity. Chromatin organization in the promoter of DhCTA and DhCTT was analyzed, revealing low nucleosome occupancy in promoter regions, correlating with active gene expression. Stress-related motifs for transcription factors like Msn2/4 and Sko1 were found, suggesting regulation by the DhHog1 MAP kinase. Analysis of a Dhhog1Δ mutant showed DhHog1's role in DhCTA expression under H2O2 or NaCl conditions. These findings highlight DhHog1's critical role in regulating the stress response in D. hansenii, offering insights for enhancing stress tolerance in halotolerant yeasts, particularly for industrial applications in saline wastewater management.
Collapse
Affiliation(s)
- Ileana de la Fuente-Colmenares
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico; (I.d.l.F.-C.); (D.O.-G.); (V.E.-S.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - James González
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico; (I.d.l.F.-C.); (D.O.-G.); (V.E.-S.)
| | - Norma Silvia Sánchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Daniel Ochoa-Gutiérrez
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico; (I.d.l.F.-C.); (D.O.-G.); (V.E.-S.)
| | - Viviana Escobar-Sánchez
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico; (I.d.l.F.-C.); (D.O.-G.); (V.E.-S.)
| | - Claudia Segal-Kischinevzky
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico; (I.d.l.F.-C.); (D.O.-G.); (V.E.-S.)
| |
Collapse
|
6
|
Xie J, Xiao C, Pan Y, Xue S, Huang M. ER stress-induced transcriptional response reveals tolerance genes in yeast. Biotechnol J 2024; 19:e2400082. [PMID: 38896412 DOI: 10.1002/biot.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/21/2024]
Abstract
Saccharomyces cerevisiae is important for protein secretion studies, yet the complexities of protein synthesis and secretion under endoplasmic reticulum (ER) stress conditions remain not fully understood. ER stress, triggered by alterations in the ER protein folding environment, poses substantial challenges to cells, especially during heterologous protein production. In this study, we used RNA-seq to analyze the transcriptional responses of yeast strains to ER stress induced by reagents such as tunicamycin (Tm) or dithiothreitol (DTT). Our gene expression analysis revealed several crucial genes, such as HMO1 and BIO5, that are involved in ER-stress tolerance. Through metabolic engineering, the best engineered strain R23 with HMO1 overexpression and BIO5 deletion, showed enhanced ER stress tolerance and improved protein folding efficiency, leading to a 2.14-fold increase in α-amylase production under Tm treatment and a 2.04-fold increase in cell density under DTT treatment. Our findings contribute to the understanding of cellular responses to ER stress and provide a basis for further investigations into the mechanisms of ER stress at the cellular level.
Collapse
Affiliation(s)
- Jingrong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Songlyu Xue
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Lu P, Wang K, Wang J, Xia C, Yang S, Ma L, Shi H. A novel zinc finger transcription factor, BcMsn2, is involved in growth, development, and virulence in Botrytis cinerea. Front Microbiol 2023; 14:1247072. [PMID: 37915851 PMCID: PMC10616473 DOI: 10.3389/fmicb.2023.1247072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Reactive oxygen species (ROS) are important for plant defense against fungal attack. As a necrotrophic fungus, Botrytis cinerea can exploit ROS that originated from both sides of the host and pathogen during interaction to facilitate its infestation. Meanwhile, B. cinerea needs to exert an efficient oxidative stress responsive system to balance the intracellular redox state when encountering deleterious ROS levels. However, the machinery applied by B. cinerea to cope with ROS remains obscure. Herein, we investigated the role of the transcription factor BcMsn2 in regulating B. cinerea redox homeostasis. Disruption of the BcMsn2 gene severely impaired vegetative growth, sclerotium formation, conidial yield, and fungal virulence. The intracellular oxidative homeostasis of the ∆bcmsn2 mutant was disrupted, leading to significantly elevated levels of ROS and reduced activities of enzymes closely associated with oxygen stress, such as catalase (CAT) and superoxide dismutase (SOD). RNA-Seq and qRT-PCR analyses showed remarkable downregulation of the expression of several genes encoding ROS scavenging factors involved in maintaining the redox homeostasis in ∆bcmsn2, suggesting that BcMsn2 functions as a transcriptional regulator of these genes. Our findings indicated that BcMsn2 plays an indispensable role in maintaining the equilibrium of the redox state in B. cinerea, and intracellular ROS serve as signaling molecules that regulate the growth, asexual reproduction, and virulence of this pathogen.
Collapse
Affiliation(s)
- Ping Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Ke Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Jiaqi Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Chunbo Xia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Shu Yang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Liang Ma
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Haojie Shi
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
8
|
Liu J, Huang T, Hong W, Peng F, Lu Z, Peng G, Fu X, Liu G, Wang Z, Peng Q, Gong X, Zhou L, Li L, Li B, Xu Z, Lan H. A comprehensive study on ultrasonic deactivation of opportunistic pathogen Saccharomyces cerevisiae in food processing: From transcriptome to phenotype. Lebensm Wiss Technol 2022; 170:114069. [DOI: 10.1016/j.lwt.2022.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zerong Lu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Fu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gongliang Liu
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Zhi Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qingmei Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiangjun Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Lizhen Zhou
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Li S, Feng X, Zhang X, Xie S, Ma F. Phospholipid and antioxidant responses of oleaginous fungus Cunninghamella echinulata against hydrogen peroxide stress. Arch Biochem Biophys 2022; 731:109447. [DOI: 10.1016/j.abb.2022.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
10
|
Yeast Protein Kinase A Isoforms: A Means of Encoding Specificity in the Response to Diverse Stress Conditions? Biomolecules 2022; 12:biom12070958. [PMID: 35883514 PMCID: PMC9313097 DOI: 10.3390/biom12070958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells have developed a complex circuitry of signalling molecules which monitor changes in their intra- and extracellular environments. One of the most widely studied signalling pathways is the highly conserved cyclic AMP (cAMP)/protein kinase A (PKA) pathway, which is a major glucose sensing circuit in the yeast Saccharomyces cerevisiae. PKA activity regulates diverse targets in yeast, positively activating the processes that are associated with rapid cell growth (e.g., fermentative metabolism, ribosome biogenesis and cell division) and negatively regulating the processes that are associated with slow growth, such as respiratory growth, carbohydrate storage and entry into stationary phase. As in higher eukaryotes, yeast has evolved complexity at the level of the PKA catalytic subunit, and Saccharomyces cerevisiae expresses three isoforms, denoted Tpk1-3. Despite evidence for isoform differences in multiple biological processes, the molecular basis of PKA signalling specificity remains poorly defined, and many studies continue to assume redundancy with regards to PKA-mediated regulation. PKA has canonically been shown to play a key role in fine-tuning the cellular response to diverse stressors; however, recent studies have now begun to interrogate the requirement for individual PKA catalytic isoforms in coordinating distinct steps in stress response pathways. In this review, we discuss the known non-redundant functions of the Tpk catalytic subunits and the evolving picture of how these isoforms establish specificity in the response to different stress conditions.
Collapse
|
11
|
Songdech P, Intasit R, Yingchutrakul Y, Butkinaree C, Ratanakhanokchai K, Soontorngun N. Activation of cryptic xylose metabolism by a transcriptional activator Znf1 boosts up xylitol production in the engineered Saccharomyces cerevisiae lacking xylose suppressor BUD21 gene. Microb Cell Fact 2022; 21:32. [PMID: 35248023 PMCID: PMC8897867 DOI: 10.1186/s12934-022-01757-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Xylitol is a valuable pentose sugar alcohol, used in the food and pharmaceutical industries. Biotechnological xylitol production is currently attractive due to possible conversion from abundant and low-cost industrial wastes or agricultural lignocellulosic biomass. In this study, the transcription factor Znf1 was characterised as being responsible for the activation of cryptic xylose metabolism in a poor xylose-assimilating S. cerevisiae for xylitol production.
Results
The results suggest that the expression of several xylose-utilising enzyme genes, encoding xylose reductases for the reduction of xylose to xylitol was derepressed by xylose. Their expression and those of a pentose phosphate shunt and related pathways required for xylose utilisation were strongly activated by the transcription factor Znf1. Using an engineered S. cerevisiae strain overexpressing ZNF1 in the absence of the xylose suppressor bud21Δ, xylitol production was maximally by approximately 1200% to 12.14 g/L of xylitol, corresponding to 0.23 g/g xylose consumed, during 10% (w/v) xylose fermentation. Proteomic analysis supported the role of Znf1 and Bud21 in modulating levels of proteins associated with carbon metabolism, xylose utilisation, ribosomal protein synthesis, and others. Increased tolerance to lignocellulosic inhibitors and improved cell dry weight were also observed in this engineered bud21∆ + pLJ529-ZNF1 strain. A similar xylitol yield was achieved using fungus-pretreated rice straw hydrolysate as an eco-friendly and low-cost substrate.
Conclusions
Thus, we identified the key modulators of pentose sugar metabolism, namely the transcription factor Znf1 and the suppressor Bud21, for enhanced xylose utilisation, providing a potential application of a generally recognised as safe yeast in supporting the sugar industry and the sustainable lignocellulose-based bioeconomy.
Graphical Abstract
Collapse
|
12
|
Pex7 selectively imports PTS2 target proteins to peroxisomes and is required for anthracnose disease development in Colletotrichum scovillei. Fungal Genet Biol 2021; 157:103636. [PMID: 34742890 DOI: 10.1016/j.fgb.2021.103636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022]
Abstract
Pex7 is a shuttling receptor that imports matrix proteins with a type 2 peroxisomal targeting signal (PTS2) to peroxisomes. The Pex7-mediated PTS2 protein import contributes to crucial metabolic processes such as the fatty acid β-oxidation and glucose metabolism in a number of fungi, but cellular roles of Pex7 between the import of PTS2 target proteins and metabolic processes have not been fully understood. In this study, we investigated the functional roles of CsPex7, a homolog of the yeast Pex7, by targeted gene deletion in the pepper anthracnose fungus Colletotrichum scovillei. CsPex7 was required for carbon source utilization, scavenging of reactive oxygen species, conidial production, and disease development in C. scovillei. The expression of fluorescently tagged PTS2 signal of hexokinases and 3-ketoacyl-CoA thiolases showed that peroxisomal localization of the hexokinase CsGlk1 PTS2 is dependent on CsPex7, but those of the 3-ketoacyl-CoA thiolases are independent on CsPex7. In addition, GFP-tagged CsPex7 proteins were intensely localized to the peroxisomes on glucose-containing media, indicating a role of CsPex7 in glucose utilization. Collectively, these findings indicate that CsPex7 selectively recognizes specific PTS2 signal for import of PTS2-containing proteins to peroxisomes, thereby mediating peroxisomal targeting efficiency of PTS2-containing proteins in C. scovillei. On pepper fruits, the ΔCspex7 mutant exhibited significantly reduced virulence, in which excessive accumulation of hydrogen peroxide was observed in the pepper cells. We think the reduced virulence results from the abnormality in hydrogen peroxide metabolism of the ΔCspex7 mutant. Our findings provide insight into the cellular roles of CsPex7 in PTS2 protein import system.
Collapse
|
13
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
14
|
Jiang T, Amadei CA, Lin Y, Gou N, Rahman SM, Lan J, Vecitis CD, Gu AZ. Dependence of Graphene Oxide (GO) Toxicity on Oxidation Level, Elemental Composition, and Size. Int J Mol Sci 2021; 22:ijms221910578. [PMID: 34638921 PMCID: PMC8508828 DOI: 10.3390/ijms221910578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The mass production of graphene oxide (GO) unavoidably elevates the chance of human exposure, as well as the possibility of release into the environment with high stability, raising public concern as to its potential toxicological risks and the implications for humans and ecosystems. Therefore, a thorough assessment of GO toxicity, including its potential reliance on key physicochemical factors, which is lacking in the literature, is of high significance and importance. In this study, GO toxicity, and its dependence on oxidation level, elemental composition, and size, were comprehensively assessed. A newly established quantitative toxicogenomic-based toxicity testing approach, combined with conventional phenotypic bioassays, were employed. The toxicogenomic assay utilized a GFP-fused yeast reporter library covering key cellular toxicity pathways. The results reveal that, indeed, the elemental composition and size do exert impacts on GO toxicity, while the oxidation level exhibits no significant effects. The UV-treated GO, with significantly higher carbon-carbon groups and carboxyl groups, showed a higher toxicity level, especially in the protein and chemical stress categories. With the decrease in size, the toxicity level of the sonicated GOs tended to increase. It is proposed that the covering and subsequent internalization of GO sheets might be the main mode of action in yeast cells.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
| | - Carlo Alberto Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (C.A.A.); (C.D.V.)
| | - Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
- Correspondence: (Y.L.); (A.Z.G.)
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sheikh Mokhlesur Rahman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (C.A.A.); (C.D.V.)
| | - April Z. Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (Y.L.); (A.Z.G.)
| |
Collapse
|
15
|
Jiang T, Lin Y, Amadei CA, Gou N, Rahman SM, Lan J, Vecitis CD, Gu AZ. Comparative and mechanistic toxicity assessment of structure-dependent toxicity of carbon-based nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126282. [PMID: 34111749 PMCID: PMC10631494 DOI: 10.1016/j.jhazmat.2021.126282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
The wide application of carbon-based nanomaterials (CNMs) has resulted in the ubiquity of CNMs in the natural environment and they potentially impose adverse consequences on ecosystems and human health. In this study, we comprehensively evaluated and compared potential toxicological effects and mechanisms of seven CNMs in three representative types (carbon blacks, graphene nanoplatelets, and fullerenes), to elucidate the correlation between their physicochemical/structural properties and toxicity. We employed a recently-developed quantitative toxicogenomics-based toxicity testing system with GFP-fused yeast reporter library targeting main cellular stress response pathways, as well as conventional phenotype-based bioassays. The results revealed that DNA damage, oxidative stress, and protein stress were the major mechanisms of action for all the CNMs at sub-cytotoxic concentration levels. The molecular toxicity nature were concentration-dependent, and they exhibited both similarity within the same structural group and distinctiveness among different CNMs, evidencing the structure-driven toxicity of CNMs. The toxic potential based on toxicogenomics molecular endpoints revealed the remarkable impact of size and structure on the toxicity. Furthermore, the phenotypic endpoints derived from conventional phenotype-based bioassays correlated with quantitative molecular endpoints derived from the toxicogenomics assay, suggesting that the selected protein biomarkers captured the main cellular effects that are associated with phenotypic adverse outcomes.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Carlo Alberto Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States; School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853, United States
| | - Sheikh Mokhlesur Rahman
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States; Department of Civil Engineering, Bangladesh University of Engineering and Technology, BUET Central Road, Dhaka 1000, Bangladesh
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chad D Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853, United States.
| |
Collapse
|
16
|
Gene Expression of Putative Pathogenicity-Related Genes in Verticillium dahliae in Response to Elicitation with Potato Extracts and during Infection Using Quantitative Real-Time PCR. Pathogens 2021; 10:pathogens10050510. [PMID: 33922492 PMCID: PMC8146963 DOI: 10.3390/pathogens10050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Quantitative real-time PCR was used to monitor the expression of 15 Verticillium dahliae's genes, putatively involved in pathogenicity, highly (HAV) and weakly aggressive (WAV) V. dahliae isolates after either (i) elicitation with potato leaf, stem, or root extracts, or (ii) inoculation of potato detached petioles. These genes, i.e., coding for Ras-GAP-like protein, serine/threonine protein kinase, Ubiquitin-conjugating enzyme variant-MMS2, NADH-ubiquinone oxidoreductase, Thioredoxin, Pyruvate dehydrogenase E1 VdPDHB, myo-inositol 2-dehydrogenase, and HAD-superfamily hydrolase, showed differential upregulation in the HAV versus WAV isolate in response to plant extracts or after inoculation of potato leaf petioles. This suggests their potential involvement in the observed differential aggressiveness between isolates. However, other genes like glucan endo-1,3-alpha-glucosidase and nuc-1 negative regulatory protein VdPREG showed higher activity in the WAV than in the HAV in response to potato extracts and/or during infection. This, in contrast, may suggest a role in their lower aggressiveness. These findings, along with future functional analysis of selected genes, will contribute to improving our understanding of V. dahliae's pathogenesis. For example, expression of VdPREG negatively regulates phosphorus-acquisition enzymes, which may indicate a lower phosphorus acquisition activity in the WAV. Therefore, integrating the knowledge about the activity of both genes enhancing pathogenicity and those restraining it will provide a guild line for further functional characterization of the most critical genes, thus driving new ideas towards better Verticillium wilt management.
Collapse
|
17
|
Pandita M, Shoket H, Rakewal A, Wazir S, Kumar P, Kumar R, Bairwa NK. Genetic interaction between glyoxylate pathway regulator UCC1 and La-motif-encoding SRO9 regulates stress response and growth rate improvement in Saccharomyces cerevisiae. J Biochem Mol Toxicol 2021; 35:e22781. [PMID: 33797855 DOI: 10.1002/jbt.22781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 11/11/2022]
Abstract
Nonavailability of glucose as a carbon source results in glyoxylate pathway activation, which metabolizes nonfermentable carbon for energy generation in Saccharomyces cerevisiae. Ucc1p of S. cerevisiae inhibits activation of the glyoxylate pathway by targeting Cit2p, a key glyoxylate enzyme for ubiquitin-mediated proteasomal degradation when glucose is available as a carbon source. Sro9p, a La-motif protein involved in RNA biogenesis, interacts physically with the messenger RNA of UCC1; however, its functional relevance is yet to be discovered. This study presents binary epistatic interaction between UCC1 and SRO9, with functional implication on the growth rate, response to genotoxic stress, resistance to apoptosis, and petite mutation. Cells with ucc1Δsro9Δ, as their genetic background, exhibit alteration in morphology, improvement in growth rate, resistance to apoptosis, and petite mutation. Moreover, the study indicates a cross-link between ubiquitin-proteasome system and RNA biogenesis and metabolism, with applications in industrial fermentation and screening for cancer therapeutics.
Collapse
Affiliation(s)
- Monika Pandita
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Heena Shoket
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Aayushi Rakewal
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Shreya Wazir
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Prabhat Kumar
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Rakesh Kumar
- Cancer Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| |
Collapse
|
18
|
Hatinguais R, Pradhan A, Brown GD, Brown AJP, Warris A, Shekhova E. Mitochondrial Reactive Oxygen Species Regulate Immune Responses of Macrophages to Aspergillus fumigatus. Front Immunol 2021; 12:641495. [PMID: 33841423 PMCID: PMC8026890 DOI: 10.3389/fimmu.2021.641495] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Reactive Oxygen Species (ROS) are highly reactive molecules that can induce oxidative stress. For instance, the oxidative burst of immune cells is well known for its ability to inhibit the growth of invading pathogens. However, ROS also mediate redox signalling, which is important for the regulation of antimicrobial immunity. Here, we report a crucial role of mitochondrial ROS (mitoROS) in antifungal responses of macrophages. We show that mitoROS production rises in murine macrophages exposed to swollen conidia of the fungal pathogen Aspergillus fumigatus compared to untreated macrophages, or those treated with resting conidia. Furthermore, the exposure of macrophages to swollen conidia increases the activity of complex II of the respiratory chain and raises mitochondrial membrane potential. These alterations in mitochondria of infected macrophages suggest that mitoROS are produced via reverse electron transport (RET). Significantly, preventing mitoROS generation via RET by treatment with rotenone, or a suppressor of site IQ electron leak, S1QEL1.1, lowers the production of pro-inflammatory cytokines TNF-α and IL-1β in macrophages exposed to swollen conidia of A. fumigatus. Rotenone and S1QEL1.1 also reduces the fungicidal activity of macrophages against swollen conidia. Moreover, we have established that elevated recruitment of NADPH oxidase 2 (NOX2, also called gp91phox) to the phagosomal membrane occurs prior to the increase in mitoROS generation. Using macrophages from gp91phox-/- mice, we have further demonstrated that NOX2 is required to regulate cytokine secretion by RET-associated mitoROS in response to infection with swollen conidia. Taken together, these observations demonstrate the importance of RET-mediated mitoROS production in macrophages infected with A. fumigatus.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Shekhova
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
19
|
Larrimore KE, Barattin-Voynova NS, Reid DW, Ng DTW. Aneuploidy-induced proteotoxic stress can be effectively tolerated without dosage compensation, genetic mutations, or stress responses. BMC Biol 2020; 18:117. [PMID: 32900371 PMCID: PMC7487686 DOI: 10.1186/s12915-020-00852-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The protein homeostasis (proteostasis) network maintains balanced protein synthesis, folding, transport, and degradation within a cell. Failure to maintain proteostasis is associated with aging and disease, leading to concerted efforts to study how the network responds to various proteotoxic stresses. This is often accomplished using ectopic overexpression of well-characterized, model misfolded protein substrates. However, how cells tolerate large-scale, diverse burden to the proteostasis network is not understood. Aneuploidy, the state of imbalanced chromosome content, adversely affects the proteostasis network by dysregulating the expression of hundreds of proteins simultaneously. Using aneuploid haploid yeast cells as a model, we address whether cells can tolerate large-scale, diverse challenges to the proteostasis network. RESULTS Here we characterize several aneuploid Saccharomyces cerevisiae strains isolated from a collection of stable, randomly generated yeast aneuploid cells. These strains exhibit robust growth and resistance to multiple drugs which induce various forms of proteotoxic stress. Whole genome re-sequencing of the strains revealed this was not the result of genetic mutations, and transcriptome profiling combined with ribosome footprinting showed that genes are expressed and translated in accordance to chromosome copy number. In some strains, various facets of the proteostasis network are mildly upregulated without chronic activation of environmental stress response or heat shock response pathways. No severe defects were observed in the degradation of misfolded proteins, using model misfolded substrates of endoplasmic reticulum-associated degradation or cytosolic quality control pathways, and protein biosynthesis capacity was not impaired. CONCLUSIONS We show that yeast strains of some karyotypes in the genetic background studied here can tolerate the large aneuploidy-associated burden to the proteostasis machinery without genetic changes, dosage compensation, or activation of canonical stress response pathways. We suggest that proteotoxic stress, while common, is not always an obligate consequence of aneuploidy, but rather certain karyotypes and genetic backgrounds may be able to tolerate the excess protein burden placed on the protein homeostasis machinery. This may help clarify how cancer cells are paradoxically both highly aneuploid and highly proliferative at the same time.
Collapse
Affiliation(s)
- Katherine E Larrimore
- Temasek Life Sciences Laboratory, Singapore, 117604, Singapore.
- Current address: Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore.
| | | | - David W Reid
- Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
- Current address: Moderna Inc., Cambridge, MA, 02139, USA
| | - Davis T W Ng
- Temasek Life Sciences Laboratory, Singapore, 117604, Singapore
- Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
20
|
Chaput V, Martin A, Lejay L. Redox metabolism: the hidden player in carbon and nitrogen signaling? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3816-3826. [PMID: 32064525 DOI: 10.1093/jxb/eraa078] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/12/2020] [Indexed: 05/05/2023]
Abstract
While decades of research have considered redox metabolism as purely defensive, recent results show that reactive oxygen species (ROS) are necessary for growth and development. Close relationships have been found between the regulation of nitrogen metabolism and ROS in response to both carbon and nitrogen availability. Root nitrate uptake and nitrogen metabolism have been shown to be regulated by a signal from the oxidative pentose phosphate pathway (OPPP) in response to carbon signaling. As a major source of NADP(H), the OPPP is critical to maintaining redox balance under stress situations. Furthermore, recent results suggest that at least part of the regulation of the root nitrate transporter by nitrogen signaling is also linked to the redox status of the plant. This leads to the question of whether there is a more general role of redox metabolism in the regulation of nitrogen metabolism by carbon and nitrogen. This review highlights the role of the OPPP in carbon signaling and redox metabolism, and the interaction between redox and nitrogen metabolism. We discuss how redox metabolism could be an important player in the regulation of nitrogen metabolism in response to carbon/nitrogen interaction and the implications for plant adaptation to extreme environments and future crop development.
Collapse
Affiliation(s)
- Valentin Chaput
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Antoine Martin
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Laurence Lejay
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
21
|
Jiang T, Amadei CA, Gou N, Lin Y, Lan J, Vecitis CD, Gu AZ. Toxicity of Single-Walled Carbon Nanotubes (SWCNTs): Effect of Lengths, Functional Groups and Electronic Structures Revealed by a Quantitative Toxicogenomics Assay. ENVIRONMENTAL SCIENCE. NANO 2020; 7:1348-1364. [PMID: 33537148 PMCID: PMC7853656 DOI: 10.1039/d0en00230e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are a group of widely used carbon-based nanomaterials (CNMs) with various applications, which raise increasing public concerns associated with their potential toxicological effect and risks on human and ecosystems. In this report, we comprehensively evaluated the nanotoxicity of SWCNTs with their relationship to varying lengths, functional groups and electronic structures, by employing both newly established quantitative toxicogenomics test, as well as conventional phenotypic bioassays. The objective is to reveal potential cellular toxicity and mechanisms of SWCNTs at the molecular level, and to probe their potential relationships with their morphological, surface, and electronic properties. The results indicated that DNA damage and oxidative stress were the dominant mechanisms of action for all SWCNTs and, the toxicity level and characteristics varied with length, surface functionalization and electronic structure. Distinguishable molecular toxicity fingerprints were revealed for the two SWCNTs with varying length, with short SWCNT exhibiting higher toxicity level than the long one. In terms of surface properties, SWCNT functionalization, namely carboxylation and hydroxylation, led to elevated overall toxicity, especially genotoxicity, as compared to unmodified SWCNT. Carboxylated SWCNT induced a greater toxicity than the hydroxylated SWCNT. The nucleus is likely the primary target site for long, short, and carboxylated SWCNTs and mechanical perturbation is likely responsible for the DNA damage, specifically related to degradation of the DNA double helix structure. Finally, dramatically different electronic structure-dependent toxicity was observed with metallic SWCNT exerting much higher toxicity than the semiconducting one that exhibited minimal toxicity among all SWCNTs.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
| | - Carlo Alberto Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
| | - Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Corresponding authors: ,
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - April Z. Gu
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
- Corresponding authors: ,
| |
Collapse
|
22
|
Hou Y, Wang F, Tan Z, Cui J, Jia S. Antifungal mechanisms of ε-poly-L-Lysine with different molecular weights on Saccharomyces cerevisiae. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0466-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
A History of Molecular Chaperone Structures in the Protein Data Bank. Int J Mol Sci 2019; 20:ijms20246195. [PMID: 31817979 PMCID: PMC6940948 DOI: 10.3390/ijms20246195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Thirty years ago a class of proteins was found to prevent the aggregation of Rubisco. These proteins’ ability to prevent unwanted associations led to their being called chaperones. These chaperone proteins also increased in expression as a response to heat shock, hence their label as heat shock proteins (Hsps). However, neither label encompasses the breadth of these proteins’ functional capabilities. The term “unfoldases” has been proposed, as this basic function is shared by most members of this protein family. Onto this is added specializations that allow the different family members to perform various cellular functions. This current article focuses on the resolved structural bases for these functions. It reviews the currently available molecular structures in the Protein Data Bank for several classes of Hsps (Hsp60, Hsp70, Hsp90, and Hsp104). When possible, it discusses the complete structures for these proteins, and the types of molecular machines to which they have been assigned. The structures of domains and the associated functions are discussed in order to illustrate the rationale for the proposed unfoldase function.
Collapse
|
24
|
Candida glabrata peroxiredoxins, Tsa1 and Tsa2, and sulfiredoxin, Srx1, protect against oxidative damage and are necessary for virulence. Fungal Genet Biol 2019; 135:103287. [PMID: 31654781 DOI: 10.1016/j.fgb.2019.103287] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/22/2022]
Abstract
Candida glabrata is an opportunistic fungal pathogen that can cause life-threatening infections in immunocompromised patients. To ensure a successful infection, C. glabrata has evolved a variety of strategies to avoid killing within the host. One of these strategies is the resistance to oxidative stress. Here we show that the sulfiredoxin Srx1 and the peroxiredoxins, Tsa1 and Tsa2, are implicated in the oxidative stress response (OSR) and required for virulence. We analyzed null mutations in SRX1, TSA1 and TSA2 and showed that TSA2 and SRX1 are required to respond to oxidative stress. While TSA1 expression is constitutive, SRX1 and TSA2 are induced in the presence of H2O2 in a process dependent on H2O2 concentration and on both transcription factors Yap1 and Skn7. Msn2 and Msn4 are not necessary for the regulation of SRX1, TSA1 and TSA2. Interestingly, TSA1 and TSA2, which are localized in the cytoplasm, are induced in the presence of neutrophils and required for survival in these phagocytic cells.
Collapse
|
25
|
Christodoulou D, Kuehne A, Estermann A, Fuhrer T, Lang P, Sauer U. Reserve Flux Capacity in the Pentose Phosphate Pathway by NADPH Binding Is Conserved across Kingdoms. iScience 2019; 19:1133-1144. [PMID: 31536961 PMCID: PMC6831883 DOI: 10.1016/j.isci.2019.08.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 07/13/2019] [Accepted: 08/24/2019] [Indexed: 02/03/2023] Open
Abstract
All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive oxygen species (ROS). To test whether a potentially conserved mechanism exists for the rapid response, we investigated immediate metabolic dynamics of Escherichia coli, yeast, and human dermal fibroblasts to oxidative stress that we found to be conserved between species. To elucidate the regulatory mechanisms that implement this metabolic response, we developed mechanistic kinetic models for each organism's central metabolism and systematically tested activation and inactivation of each irreversible reaction by each metabolite. This ensemble modeling predicts in vivo relevant metabolite-enzyme interactions based on their ability to quantitatively describe metabolite dynamics. All three species appear to inhibit their oxidative pentose phosphate pathway during normal growth by the redox cofactor NADPH and relieve this inhibition to increase the pathway flux for detoxification of ROS during stress, with the sole exception of yeast when exposed to high levels of stress.
Collapse
Affiliation(s)
- Dimitris Christodoulou
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Systems Biology Graduate School, Zurich 8057, Switzerland
| | - Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Systems Biology Graduate School, Zurich 8057, Switzerland
| | | | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Paul Lang
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Effects of Methanol on Carotenoids as Well as Biomass and Fatty Acid Biosynthesis in Schizochytrium limacinum B4D1. Appl Environ Microbiol 2019; 85:AEM.01243-19. [PMID: 31375482 DOI: 10.1128/aem.01243-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
Schizochytrium is a promising source for the production of docosahexaenoic acid and astaxanthin. The effects of different methanol concentrations on astaxanthin, biomass, and production of the lipids, squalene, and total sterol in Schizochytrium limacinum B4D1 were investigated. Astaxanthin began to accumulate when the methanol concentration reached 3.2% and peaked at 5.6% methanol, with a 2,000-fold increase over that in the control. However, under cultivation with 5.6% methanol, the biomass, lipids, squalene, and total sterol decreased to various degrees. Transcriptomic analysis was performed to explore the effects of different methanol concentrations (0%, 3.2%, and 5.6%) on the expression profile of B4D1. Three key signaling pathways were found to play important roles in regulating cell growth and metabolism under cultivation with methanol. Five central carbon metabolism-associated genes were significantly downregulated in response to 5.6% methanol and thus were expected to result in less ATP and NADPH being available for cell growth and synthesis. High methanol conditions significantly downregulated three genes involved in fatty acid and squalene/sterol precursor biosynthesis but significantly upregulated geranylgeranyl diphosphate synthase, lycopene β-cyclase, and β-carotene 3-hydroxylase, which are involved in astaxanthin synthesis, thus resulting in an increase in the levels of precursors and the final production of astaxanthin. Additionally, the transcriptional levels of three stress response genes were upregulated. This study investigates gene expression profiles in the astaxanthin producer Schizochytrium when grown under various methanol concentrations. These results broaden current knowledge regarding genetic expression and provide important information for promoting astaxanthin biosynthesis in Schizochytrium IMPORTANCE Schizochytrium strains are usually studied as oil-producing strains, but they can also synthesize other secondary metabolites, such as astaxanthin. In this study, methanol was used as an inducer, and we explored its effects on the production of astaxanthin, a highly valuable substance in Schizochytrium Methanol induced Schizochytrium to synthesize large amounts of astaxanthin. Transcriptomic analysis was used to investigate the regulation of signaling and metabolic pathways (mainly relative gene expression) in Schizochytrium grown in the presence of various concentrations of methanol. These results contribute to the understanding of the underlying molecular mechanisms and may aid in the future optimization of Schizochytrium for astaxanthin biosynthesis.
Collapse
|
27
|
Olin-Sandoval V, Yu JSL, Miller-Fleming L, Alam MT, Kamrad S, Correia-Melo C, Haas R, Segal J, Peña Navarro DA, Herrera-Dominguez L, Méndez-Lucio O, Vowinckel J, Mülleder M, Ralser M. Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism. Nature 2019; 572:249-253. [PMID: 31367038 PMCID: PMC6774798 DOI: 10.1038/s41586-019-1442-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 06/28/2019] [Indexed: 11/25/2022]
Abstract
Both single and multicellular organisms depend on anti-stress mechanisms that enable them to deal with sudden changes in the environment, including exposure to heat and oxidants. Central to the stress response are dynamic changes in metabolism, such as the transition from the glycolysis to the pentose phosphate pathway-a conserved first-line response to oxidative insults1,2. Here we report a second metabolic adaptation that protects microbial cells in stress situations. The role of the yeast polyamine transporter Tpo1p3-5 in maintaining oxidant resistance is unknown6. However, a proteomic time-course experiment suggests a link to lysine metabolism. We reveal a connection between polyamine and lysine metabolism during stress situations, in the form of a promiscuous enzymatic reaction in which the first enzyme of the polyamine pathway, Spe1p, decarboxylates lysine and forms an alternative polyamine, cadaverine. The reaction proceeds in the presence of extracellular lysine, which is taken up by cells to reach concentrations up to one hundred times higher than those required for growth. Such extensive harvest is not observed for the other amino acids, is dependent on the polyamine pathway and triggers a reprogramming of redox metabolism. As a result, NADPH-which would otherwise be required for lysine biosynthesis-is channelled into glutathione metabolism, leading to a large increase in glutathione concentrations, lower levels of reactive oxygen species and increased oxidant tolerance. Our results show that nutrient uptake occurs not only to enable cell growth, but when the nutrient availability is favourable it also enables cells to reconfigure their metabolism to preventatively mount stress protection.
Collapse
Affiliation(s)
- Viridiana Olin-Sandoval
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jason Shu Lim Yu
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Leonor Miller-Fleming
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Stephan Kamrad
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Clara Correia-Melo
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Robert Haas
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Joanna Segal
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Oscar Méndez-Lucio
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jakob Vowinckel
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Biognosys AG, Schlieren, Switzerland
| | - Michael Mülleder
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, Charité University Medicine, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Department of Biochemistry, Charité University Medicine, Berlin, Germany.
| |
Collapse
|
28
|
Thomas SC, Tamadonfar KO, Seymour CO, Lai D, Dodsworth JA, Murugapiran SK, Eloe-Fadrosh EA, Dijkstra P, Hedlund BP. Position-Specific Metabolic Probing and Metagenomics of Microbial Communities Reveal Conserved Central Carbon Metabolic Network Activities at High Temperatures. Front Microbiol 2019; 10:1427. [PMID: 31333598 PMCID: PMC6624737 DOI: 10.3389/fmicb.2019.01427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/05/2019] [Indexed: 12/02/2022] Open
Abstract
Temperature is a primary driver of microbial community composition and taxonomic diversity; however, it is unclear to what extent temperature affects characteristics of central carbon metabolic pathways (CCMPs) at the community level. In this study, 16S rRNA gene amplicon and metagenome sequencing were combined with 13C-labeled metabolite probing of the CCMPs to assess community carbon metabolism along a temperature gradient (60–95°C) in Great Boiling Spring, NV. 16S rRNA gene amplicon diversity was inversely proportional to temperature, and Archaea were dominant at higher temperatures. KO richness and diversity were also inversely proportional to temperature, yet CCMP genes were similarly represented across the temperature gradient and many individual metagenome-assembled genomes had complete pathways. In contrast, genes encoding cellulosomes and many genes involved in plant matter degradation and photosynthesis were absent at higher temperatures. In situ13C-CO2 production from labeled isotopomer pairs of glucose, pyruvate, and acetate suggested lower relative oxidative pentose phosphate pathway activity and/or fermentation at 60°C, and a stable or decreased maintenance energy demand at higher temperatures. Catabolism of 13C-labeled citrate, succinate, L-alanine, L-serine, and L-cysteine was observed at 85°C, demonstrating broad heterotrophic activity and confirming functioning of the TCA cycle. Together, these results suggest that temperature-driven losses in biodiversity and gene content in geothermal systems may not alter CCMP function or maintenance energy demands at a community level.
Collapse
Affiliation(s)
- Scott C Thomas
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Kevin O Tamadonfar
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Dengxun Lai
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, United States
| | | | - Emiley A Eloe-Fadrosh
- Department of Energy Joint Genome Institute, Joint Genome Institute, Walnut Creek, CA, United States
| | - Paul Dijkstra
- Department of Biological Sciences, Center of Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
29
|
Hernández-Elizárraga VH, Olguín-López N, Hernández-Matehuala R, Ocharán-Mercado A, Cruz-Hernández A, Guevara-González RG, Caballero-Pérez J, Ibarra-Alvarado C, Sánchez-Rodríguez J, Rojas-Molina A. Comparative Analysis of the Soluble Proteome and the Cytolytic Activity of Unbleached and Bleached Millepora complanata ("Fire Coral") from the Mexican Caribbean. Mar Drugs 2019; 17:E393. [PMID: 31277227 PMCID: PMC6669453 DOI: 10.3390/md17070393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/24/2023] Open
Abstract
Coral bleaching caused by global warming has resulted in massive damage to coral reefs worldwide. Studies addressing the consequences of elevated temperature have focused on organisms of the class Anthozoa, and up to now, there is little information regarding the mechanisms by which reef forming Hydrozoans face thermal stress. In this study, we carried out a comparative analysis of the soluble proteome and the cytolytic activity of unbleached and bleached Millepora complanata ("fire coral") that inhabited reef colonies exposed to the 2015-2016 El Niño-Southern Oscillation in the Mexican Caribbean. A differential proteomic response involving proteins implicated in key cellular processes, such as glycolysis, DNA repair, stress response, calcium homeostasis, exocytosis, and cytoskeleton organization was found in bleached hydrocorals. Four of the proteins, whose levels increased in bleached specimens, displayed sequence similarity to a phospholipase A2, an astacin-like metalloprotease, and two pore forming toxins. However, a protein, which displayed sequence similarity to a calcium-independent phospholipase A2, showed lower levels in bleached cnidarians. Accordingly, the hemolytic effect of the soluble proteome of bleached hydrocorals was significantly higher, whereas the phospholipase A2 activity was significantly reduced. Our results suggest that bleached M. complanata is capable of increasing its toxins production in order to balance the lack of nutrients supplied by its symbionts.
Collapse
Affiliation(s)
- Víctor Hugo Hernández-Elizárraga
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Norma Olguín-López
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Rosalina Hernández-Matehuala
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrea Ocharán-Mercado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrés Cruz-Hernández
- Laboratorio de Biología Molecular. Escuela de Agronomía, Universidad de La Salle Bajío, Av. Universidad 15 602, Colonia Lomas del Campestre, C.P. 37150 León, Guanajuato, México
| | - Ramón Gerardo Guevara-González
- C.A Ingeniería de Biosistemas, Facultad de Ingeniería-Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Amazcala Km. 1, S/N, C.P. 76265 Amazcala, El Marqués, Querétaro, México
| | - Juan Caballero-Pérez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Judith Sánchez-Rodríguez
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prolongación Niños Héroes S/N, Puerto Morelos, C.P. 77580 Quintana Roo, México
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México.
| |
Collapse
|
30
|
Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae. Sci Rep 2019; 9:9185. [PMID: 31235707 PMCID: PMC6591360 DOI: 10.1038/s41598-019-45070-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of Saccharomyces cerevisiae to the common antifungals, fluconazole and miconazole, for which we report minimum inhibitory concentrations (MICs) of 104 and 19 μM, respectively. At sub-MIC concentrations, fluconazole and miconazole stimulate catalase activity 2-3-fold but, unexpectedly, deletion of cytosolic catalase (ctt1) makes cells more resistant to these azoles and to clotrimazole, itraconazole and posaconazole. On the other hand, upregulating Ctt1 activity by preconditioning with 0.2 mM H2O2 potentiates miconazole 32-fold and fluconazole 4-fold. Since H2O2 preconditioning does not alter the resistance of ctt1Δ cells, which possess negligible catalase activity, we link azole potentiation with Ctt1 upregulation. In contrast, sod2Δ cells deleted for mitochondrial superoxide dismutase are 4–8-fold more azole sensitive than wild-type cells, revealing that Sod2 activity protects cells against azole toxicity. In fact, the ctt1Δ mutant has double the Sod2 activity of wild-type cells so ctt1 deletion increases azole resistance in part by Sod2 upregulation. Notably, deletion of peroxisomal/mitochondrial cta1 or cytosolic sod1 does not alter fluconazole or miconazole potency.
Collapse
|
31
|
Szatkowska R, Garcia-Albornoz M, Roszkowska K, Holman SW, Furmanek E, Hubbard SJ, Beynon RJ, Adamczyk M. Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1. Biochem J 2019; 476:1053-1082. [PMID: 30885983 PMCID: PMC6448137 DOI: 10.1042/bcj20180701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
Abstract
Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the Saccharomyces cerevisiae proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in S. cerevisiae In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis de novo at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux.
Collapse
Affiliation(s)
- Roza Szatkowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Manuel Garcia-Albornoz
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, U.K
| | - Katarzyna Roszkowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Stephen W Holman
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Emil Furmanek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Simon J Hubbard
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, U.K
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Malgorzata Adamczyk
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
32
|
Dose dependent gene expression is dynamically modulated by the history, physiology and age of yeast cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:457-471. [DOI: 10.1016/j.bbagrm.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022]
|
33
|
Ghanbari Movahed Z, Rastegari-Pouyani M, Mohammadi MH, Mansouri K. Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell? Biomed Pharmacother 2019; 112:108690. [PMID: 30798124 DOI: 10.1016/j.biopha.2019.108690] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells can adapt to low energy sources in the face of ATP depletion as well as to their high levels of ROS by altering their metabolism and energy production networks which might also have a role in determining cell fate and developing drug resistance. Cancer cells are generally characterized by increased glycolysis. This is while; cancer stem cells (CSCs) exhibit an enhanced pentose phosphate pathway (PPP) metabolism. Based on the current literature, we suggest that cancer cells when encountering ROS, first increase the glycolysis rate and then following the continuation of oxidative stress, the metabolic balance is skewed from glycolysis to PPP. Therefore, we hypothesize in this review that in cancer cells this metabolic deviation during persistent oxidative stress might be a sign of cancer cells' shift towards CSCs, an issue that might be pivotal in more effective targeting of cancer cells and CSCs.
Collapse
Affiliation(s)
- Zahra Ghanbari Movahed
- Medical Biology Research Center, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mohammadi
- HSCT research center, Laboratory Hematology and blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical sciences, Kermanshah, Iran; Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
34
|
Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:240-251. [DOI: 10.1016/j.bbamcr.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
|
35
|
Qiu L, Feng J, Dai Y, Chang S. Mechanisms of strontium's adsorption by Saccharomyces cerevisiae: Contribution of surface and intracellular uptakes. CHEMOSPHERE 2019; 215:15-24. [PMID: 30300807 DOI: 10.1016/j.chemosphere.2018.09.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
The objective of this work was to explore the mechanisms participating in strontium sorption by living Saccharomyces cerevisiae (S. cerevisiae). The location of strontium adsorbed by S. cerevisiae was studied by our plasmolysis treatment. The contribution of physical and chemical mechanisms was determined quantitatively by desorption and blockage of functional groups. Moreover, our results indicated that bioaccumulation also played a major role in biosorption by living cells. Thus, supplementary methods including 2-DE (two-dimensional electrophoresis) and Matrix-Assisted Laser Desorption/Ionization Tandem Time of Flight Mass Spectrometry (MALDI-TOF-TOF) were employed to analyze the different proteins. The subsequent desorption % of Sr2+ by Distilled Water (DW), NH4NO3 and EDTA-Na2 from Sr2+ loaded sorbents indicated a minor role for physical adsorption, while ion exchange and complexation were responsible for approximately 20% and 40%. Specific blockage of functional groups revealed that carboxyl and amine groups played an important role in Sr2+ binding to the living S. cerevisiae. From our MALDI-TOF-TOF results, we concluded that 38 proteins showed up-regulated expression profiles and 11 proteins showed down-regulated after biosorption. Moreover, proteins belong to: phagocytic function (Act1p); ion channel (S-adenosylmethionine synthase); glycolysis (Tubulin) may directly involve in strontium bioaccumulation. In conclusion, the present work indicates that the strontium sorption mechanism by living S. cerevisiae is complicated including ion-exchange along with complexation as the main mechanism, whereas the other mechanisms such as physical adsorption play a minor contribution. Metabolically-dependent proteins may play an important role in bioaccumulation.
Collapse
Affiliation(s)
- Liang Qiu
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, PR China
| | - Jundong Feng
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, PR China.
| | - Yaodong Dai
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, PR China
| | - Shuquan Chang
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, PR China
| |
Collapse
|
36
|
Molecular and Functional Characterization of a Rice Thioredoxin m Isoform and Its Interaction Proteins. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
The oxygen concentration in cultures modulates protein expression and enzymatic antioxidant responses in Metarhizium lepidiotae conidia. Fungal Biol 2018; 122:487-496. [DOI: 10.1016/j.funbio.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022]
|
38
|
Cortés A, Muñoz-Antolí C, Álvarez-Izquierdo M, Sotillo J, Esteban JG, Toledo R. Adaptation of the secretome of Echinostoma caproni may contribute to parasite survival in a Th1 milieu. Parasitol Res 2018; 117:947-957. [PMID: 29435719 DOI: 10.1007/s00436-018-5758-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
Abstract
Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, broadly employed to study the host-dependent mechanisms that govern the evolution of intestinal helminth infections. Resistance against E. caproni homologous secondary infections has been reported in mice and appears to be related to the generation of a local Th2 response, whereas Th1 responses promote the development of chronic primary infections. Herein, the ability of E. caproni to modulate its secretome according to the host environment is investigated. A two-dimensional differential in gel electrophoresis (2D-DIGE) analysis was performed to elucidate changes in the excretory/secretory products of E. caproni adults after primary and secondary infections in mice. A total of 16 protein spots showed significant differences between groups, and 7 of them were successfully identified by mass spectrometry. Adult worms exposed to a primary infection appear to upregulate proteins involved in detoxification (aldo-keto reductase), stress response (GroEL), and enhancement of parasite survival (acetyl-CoA A-acetyltransferase and UTP-glucose-1-phosphate urydyltransferase). In contrast, any protein was found to be significantly upregulated after secondary infection. Upregulation of such proteins may serve to withstand the hostile Th1 environment generated in primary infections in mice. These results provide new insights into the resistance mechanisms developed by the parasites to ensure their long-term survival.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain.
| | - Carla Muñoz-Antolí
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - María Álvarez-Izquierdo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
- Centre for Biodiscovery and Molecular Development of Therapeutics, Building E4, James Cook University, McGregor Rd., Smithfield, Townsville, QLD, 4878, Australia
| | - J Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| |
Collapse
|
39
|
Marshall AC, Bond CS, Bruning JB. Structure of Aspergillus fumigatus Cytosolic Thiolase: Trapped Tetrahedral Reaction Intermediates and Activation by Monovalent Cations. ACS Catal 2018. [DOI: 10.1021/acscatal.7b02873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Andrew C. Marshall
- Institute
for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Charles S. Bond
- School
of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - John B. Bruning
- Institute
for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
40
|
Bi ZQ, Ren LJ, Hu XC, Sun XM, Zhu SY, Ji XJ, Huang H. Transcriptome and gene expression analysis of docosahexaenoic acid producer Schizochytrium sp. under different oxygen supply conditions. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:249. [PMID: 30245741 PMCID: PMC6142690 DOI: 10.1186/s13068-018-1250-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/06/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Schizochytrium sp. is a promising strain for the production of docosahexaenoic acid (DHA)-rich oil and biodiesel, and has been widely used in the food additive and bioenergy industries. Oxygen is a particularly important environmental factor for cell growth and DHA synthesis. In general, higher oxygen supply favors lipid accumulation, but could lead to a reduction of the DHA percentage in total fatty acids in Schizochytrium sp. To tackle this problem, it is essential to understand the mechanisms regulating the response of Schizochytrium sp. to oxygen. In this study, we aimed to explore the acclimatization of this DHA producer to different oxygen supply conditions by examining the transcriptome changes. RESULTS Two different fermentation processes, namely normal oxygen supply condition (shift agitation speeds from 400 rpm to 300 rpm) and high oxygen supply condition (constant agitation speeds: 400 rpm), were designed to study how the fermentation characteristics of Schizochytrium sp. HX-308 were affected by different oxygen supply conditions. The results indicated that high oxygen supply condition resulted in 49% and 37.5% improvement in the maximum cell dry weight (CDW) and total lipid concentration, respectively. However, the DHA percentage in total fatty acids decreased to 35%, which was 31.4% lower than that produced by normal oxygen supply condition. Moreover, transcriptome analysis was performed to explore the effect of the oxygen supply condition on genetic expression and metabolism. The results showed that glycolysis and pentose phosphate pathway metabolism-associated genes (hexokinase, phosphofructokinase, fructose-bisphosphate aldolase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase) were substantially upregulated in response to high oxygen supply, resulting in more NADPH was available for Schizochytrium. Specially, high oxygen supply condition also led to genes (Δ6 desaturase, Δ12 desaturase, FAS, ORFA, ORFB, and ORFC) involved in fatty acid biosynthesis upregulation. In addition, a transcriptional upregulation of catalase (CAT) became apparent under high oxygen supply condition, while superoxide dismutase (SOD) and ascorbate peroxidase (APX) were found to be down-regulated. CONCLUSIONS This study is the first to investigate the differences of gene expression at different levels of oxygen availability in the DHA producer Schizochytrium. The results of transcriptome analyses indicated that high oxygen supply condition resulting in more NADPH and acetyl-CoA production for cell growth and lipid synthesis in Schizochytrium. Δ12 desaturase and ORFC showed higher expression levels at high oxygen supply condition, which might be the key regulators for enhancing fatty acid biosynthesis in the future. These results enrich the current knowledge regarding genetic expression and provide important information to enhance DHA production in Schizochytrium sp.
Collapse
Affiliation(s)
- Zhi-Qian Bi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xue-Chao Hu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xiao-Man Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Si-Yu Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
41
|
Kwak MK, Ku M, Kang SO. Inducible NAD(H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans. Biochim Biophys Acta Gen Subj 2018; 1862:18-39. [DOI: 10.1016/j.bbagen.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 12/15/2022]
|
42
|
Dodd BJT, Kralj JM. Live Cell Imaging Reveals pH Oscillations in Saccharomyces cerevisiae During Metabolic Transitions. Sci Rep 2017; 7:13922. [PMID: 29066766 PMCID: PMC5654966 DOI: 10.1038/s41598-017-14382-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Addition of glucose to starved Saccharomyces cerevisiae initiates collective NADH dynamics termed glycolytic oscillations. Numerous questions remain about the extent to which single cells can oscillate, if oscillations occur in natural conditions, and potential physiological consequences of oscillations. In this paper, we report sustained glycolytic oscillations in single cells without the need for cyanide. Glucose addition to immobilized cells induced pH oscillations that could be imaged with fluorescent sensors. A population of cells had oscillations that were heterogeneous in frequency, start time, stop time, duration and amplitude. These changes in cytoplasmic pH were necessary and sufficient to drive changes in NADH. Oscillators had lower mitochondrial membrane potentials and budded more slowly than non-oscillators. We also uncovered a new type of oscillation during recovery from H2O2 challenge. Our data show that pH in S. cerevisiae changes over several time scales, and that imaging pH offers a new way to measure glycolytic oscillations on individual cells.
Collapse
Affiliation(s)
| | - Joel M Kralj
- BioFrontiers Institute, University of Colorado, Boulder, 80303, USA. .,Molecular Cellular and Developmental Biology Department, University of Colorado, Boulder, 80303, USA.
| |
Collapse
|
43
|
Cintra LC, Domingos FC, Lima YA, Barbosa MS, Santos RS, Faria FP, Jesuíno RS. Molecular cloning, expression and insulin reduction activity of a thioredoxin 1 homologue (TRX1) from the pathogenic fungus Paracoccidioides lutzii. Int J Biol Macromol 2017; 103:683-691. [DOI: 10.1016/j.ijbiomac.2017.05.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 11/17/2022]
|
44
|
Sun T, Chen L, Zhang W. Quantitative Proteomics Reveals Potential Crosstalk between a Small RNA CoaR and a Two-Component Regulator Slr1037 in Synechocystis sp. PCC6803. J Proteome Res 2017; 16:2954-2963. [PMID: 28677390 DOI: 10.1021/acs.jproteome.7b00243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacterial small RNAs (sRNAs) and two-component systems (TCSs) were two vital regulatory mechanisms employed by microorganisms to respond to environmental changes and stresses. As a promising "autotrophic cell factory", photosynthetic cyanobacteria have attracted a lot of attention these years. Although most studies focused on studying the roles of sRNAs or TCS regulators in stress response in photosynthetic cyanobacteria, limited work has elucidated their potential crosstalk. Our previous work has identified a negative sRNA regulator CoaR and a positive response regulator Slr1037 both related to 1-butanol stress regulation in Synechocystis sp. PCC6803. In this work, the potential crosstalk between CoaR and Slr1307 (i.e., the coregulated genes mediated by CoaR and Slr1037) was identified and validated through quantitative proteomics and quantitative real-time PCR (qRT-PCR), respectively. The results showed that the sensitive phenotype to 1-butanol of Δslr1037 could be rescued by suppressing coaR in Δslr1037, probably due to the fact that some target genes of Slr1037 could be reactivated by repression of CoaR. Twenty-eight coregulated proteins mediated by CoaR and Slr1037 were found through quantitative proteomics, and 10 of the annotated proteins were validated via qRT-PCR. This study proved the existence of crosstalk between sRNAs and response regulators and provided new insights into the coregulation of biofuel resistance in cyanobacteria.
Collapse
Affiliation(s)
- Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China.,Center for Biosafety Research and Strategy, Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|
45
|
Goulev Y, Morlot S, Matifas A, Huang B, Molin M, Toledano MB, Charvin G. Nonlinear feedback drives homeostatic plasticity in H 2O 2 stress response. eLife 2017; 6. [PMID: 28418333 PMCID: PMC5438251 DOI: 10.7554/elife.23971] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/14/2017] [Indexed: 12/20/2022] Open
Abstract
Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell’s ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties. DOI:http://dx.doi.org/10.7554/eLife.23971.001 Harmful external conditions, such as extreme heat or radiation, can cause stress to cells that may lead to permanent damage and even death. Cell stress is responsible for some cancers and degenerative diseases, and is involved in the process of aging. Cells respond to stress by modifying their activities in order to prevent damage from occurring. Some studies have suggested that the ability of cells to survive a stressful situation might depend both on the severity of the stress and also on the way in which the stress is applied. For example, the stress might start suddenly or develop more gradually. Cells exposed to a mild level of stress develop a tolerance that enables them to survive stronger doses of the same stress in the future. However, it is not clear how cells acquire such tolerance, and whether mild levels of stress can have more general benefits to cells, such as increased lifespan. Hydrogen peroxide and other “oxidative” compounds play important roles in cells, but they are also capable of causing damage so their levels must be tightly controlled. Goulev et al. developed a “microfluidic” device to study the effects of oxidative stress on yeast cells. The device made it possible to precisely control the level of hydrogen peroxide in the cells’ environment while monitoring the cells’ stress responses. The experiments show that exposing yeast cells to gradually increasing levels of hydrogen peroxide can train the cells to be able to survive when they are exposed to high levels of this compound. This ability depends on the activity of specific enzymes called peroxidases that are known to be able to destroy hydrogen peroxide inside the cells. The experiments suggest that gradually increasing levels of hydrogen peroxide trigger increases in the production of peroxidases that protect the cells against future oxidative stress. Further experiments show that even a very low dose of hydrogen peroxide is sufficient to activate the production of the enzymes, leading to an increase in the lifespan of the cells. A future challenge will be to investigate whether the principles identified in this work also apply to other stress responses in yeast. DOI:http://dx.doi.org/10.7554/eLife.23971.002
Collapse
Affiliation(s)
- Youlian Goulev
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sandrine Morlot
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Audrey Matifas
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bo Huang
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michel B Toledano
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
| | - Gilles Charvin
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
46
|
Zhao W, Zheng HZ, Zhou T, Hong XS, Cui HJ, Jiang ZW, Chen HJ, Zhou ZJ, Liu XG. CTT1 overexpression increases the replicative lifespan of MMS-sensitive Saccharomyces cerevisiae deficient in KSP1. Mech Ageing Dev 2017; 164:27-36. [PMID: 28347693 DOI: 10.1016/j.mad.2017.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Ksplp is a nuclear-localized Ser/Thr kinase that is not essential for the vegetative growth of yeast. A global gene function analysis in yeast suggested that Ksplp was involved in the oxidative stress response; however, the underlying mechanism remains unclear. Here, we showed that KSP1-deficient yeast cells exhibit hypersensitivity to the DNA alkylating agent methyl methanesulphonate (MMS), and treatment of the KSP1-deficient strain with MMS could trigger abnormal mitochondrial membrane potential and up-regulate reactive oxygen species (ROS) production. In addition, the mRNA expression level of the catalase gene CTT1 (which encodes cytosolic catalase) and total catalase activity were strongly down-regulated in the KSP1-deleted strain compared with those in wild-type cells. Moreover, the KSP1 deficiency also leads to a shortened replicative lifespan, which could be restored by the increased expression of CTT1. On the other hand, KSP1-overexpressed (KSP1OX) yeast cells exhibited increased resistance towards MMS, an effect that was, at least in part, CTT1 independent. Collectively, these findings highlight the involvement of Ksplp in the DNA damage response and implicate Ksplp as a modulator of the replicative lifespan.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China
| | - Hua-Zhen Zheng
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China
| | - Tao Zhou
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China
| | - Xiao-Shan Hong
- Institute of Gynecology, Women and Children's Hospital of Guangdong Province, Guangzhou 511442, China
| | - Hong-Jing Cui
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China
| | - Zhi-Wen Jiang
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China
| | - Hui-Ji Chen
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China
| | - Zhong-Jun Zhou
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xin-Guang Liu
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China; Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
47
|
Zhao F, Du Y, Bai P, Liu J, Lu W, Yuan Y. Enhancing Saccharomyces cerevisiae reactive oxygen species and ethanol stress tolerance for high-level production of protopanoxadiol. BIORESOURCE TECHNOLOGY 2017; 227:308-316. [PMID: 28040652 DOI: 10.1016/j.biortech.2016.12.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 05/17/2023]
Abstract
Protopanaxadiol (PPD) is an active compound in Panax ginseng. Recently, an optimized PPD synthesis pathway contained a ROS releasing step (a P450-type PPD synthase, PPDS) was introduced into Saccharomyces cerevisiae. Here reported a synergistic effect of PPDS-CPR (CPR, cytochrome P450 reductase) uncoupling and ethanol stress on ROS releasing, which reduced cells viability. To build a robust strain, a cell wall integrity associated gene SSD1 was high-expressed to improve ethanol tolerance, and ROS level decreased for 24.7%. Then, regulating the expression of an oxidative stress regulation gene YBP1 decreased 75.2% of ROS releasing, and improved cells viability from 71.3±1.3% to 88.3±1.4% at 84h. Increased cells viability enables yeast to produce more PPD through feeding additional ethanol. In 5L fermenter, PPD production of W3a-ssPy reached to 4.25±0.18g/L (19.48±0.28mg/L/OD600), which is the highest yield reported so far. This work makes the industrial production of PPD possible by microbial fermentation.
Collapse
Affiliation(s)
- Fanglong Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yanhui Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Peng Bai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin 300350, PR China
| | - Jingjing Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, PR China.
| | - Yingjin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, PR China
| |
Collapse
|
48
|
Wible RS, Sutter TR. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification. Chem Res Toxicol 2017; 30:729-762. [DOI: 10.1021/acs.chemrestox.6b00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan S. Wible
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| | - Thomas R. Sutter
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| |
Collapse
|
49
|
M. Fetherolf M, Boyd SD, Winkler DD, Winge DR. Oxygen-dependent activation of Cu,Zn-superoxide dismutase-1. Metallomics 2017; 9:1047-1059. [DOI: 10.1039/c6mt00298f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper zinc superoxide dismutase (Sod1) is a critical enzyme in limiting reactive oxygen species in both the cytosol and the mitochondrial intermembrane space.
Collapse
Affiliation(s)
| | - Stefanie D. Boyd
- Department of Biological Sciences
- University of Texas at Dallas
- Richardson
- USA
| | - Duane D. Winkler
- Department of Biological Sciences
- University of Texas at Dallas
- Richardson
- USA
| | | |
Collapse
|
50
|
Altıntaş A, Davidsen K, Garde C, Mortensen UH, Brasen JC, Sams T, Workman CT. High-resolution kinetics and modeling of hydrogen peroxide degradation in live cells. Free Radic Biol Med 2016; 101:143-153. [PMID: 27742413 DOI: 10.1016/j.freeradbiomed.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/25/2016] [Accepted: 10/10/2016] [Indexed: 11/20/2022]
Abstract
Although the role of oxidative stress factors and their regulation is well studied, the temporal dynamics of stress recovery is still poorly understood. In particular, measuring the kinetics of stress recovery in the first minutes after acute exposure provides a powerful technique for assessing the role of regulatory proteins or enzymes through the use of mutant backgrounds. This project endeavors to screen the temporal dynamics of intracellular oxidant levels in live cells as a function of gene deletion in the budding yeast, Saccharomyces cerevisiae. Using the detailed time dynamics of extra- and intra-cellular peroxide we have developed a mathematical model that describes two distinct kinetic processes, an initial rapid degradation in the first 10-20min followed by a slower process. Using this model, a qualitative comparison allowed us to assign the dependence of temporal events to genetic factors. Surprisingly, we found that the deletion of transcription factors Yap1p or Skn7p was sufficient to disrupt the establishment of the second degradation phase but not the initial phase. A better fundamental understanding of the role protective factors play in the recovery from oxidative stress may lead to strategies for protecting or sensitizing cell to this stress.
Collapse
Affiliation(s)
- Ali Altıntaş
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Kristian Davidsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Christian Garde
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Uffe H Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - J Christian Brasen
- Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Thomas Sams
- Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| |
Collapse
|