1
|
Shen Y, Zhang G, Wei C, Zhao P, Wang Y, Li M, Sun L. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:613-631. [PMID: 38886929 PMCID: PMC11433915 DOI: 10.4103/nrr.nrr-d-23-01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
3
|
Xu J, Wang XL, Zeng HF, Han ZY. Methionine alleviates heat stress-induced ferroptosis in bovine mammary epithelial cells through the Nrf2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114889. [PMID: 37079940 DOI: 10.1016/j.ecoenv.2023.114889] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Heat stress (HS) triggers mammary gland degradation, accompanied by apoptosis and autophagy in bovine mammary epithelial cells, negatively affecting milk performance and mammary gland health. Ferroptosis is iron-mediated regulated cell death caused by over production of lipid peroxides, however, the relationship between ferroptosis and HS in bovine mammary epithelial cells has not been clarified. Methionine (Met) plays a notable role in alleviating HS affecting the mammary glands in dairy cows, but the underlying mechanisms require further exploration. Therefore, we evaluated the regulatory effect and mechanism of Met in alleviating HS-induced ferroptosis by using bovine mammary epithelial cell line (MAC-T) as an in vitro model. The results showed that Met improved cell vitality, restored mitochondrial function; reduced the content of various reactive oxygen species (ROS), especially hydrogen peroxide (H2O2) and superoxide anion (O2·-); had positive effects on antioxidant enzyme activity, namely glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). More importantly, Met reduced labile iron protein (LIP) levels; increased iron storage and simultaneously decreased the levels of lipid reactive oxygen species (lipid ROS) and malondialdehyde (MDA), which all caused by HS in MAC-T. Mechanistically, Met increased the protein expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7, member 11 (SLC7A11) and ferritin heavy chain 1 (FTH1) by activating nuclear factor E2-related factor 2 (Nrf2) expression. Additionally, the protection effect of Met was cut off in MAC-T cells after interference with Nrf2, manifesting in decresing the protein expression levels of GPX4, SLC7A11 and FTH1,and increasing the levels of LIP and lipid ROS. Our findings indicate that Met eases HS-induced ferroptosis in MAC-T through the Nrf2 pathway, revealing that Met produces a marked effect on easing HS-induced bovine mammary gland injury in dairy cows.
Collapse
Affiliation(s)
- Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ling Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Han-Fang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao-Yu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Golin A, Tinkov AA, Aschner M, Farina M, da Rocha JBT. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol 2023; 75:127099. [PMID: 36372013 PMCID: PMC9630303 DOI: 10.1016/j.jtemb.2022.127099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.
Collapse
Affiliation(s)
- Anieli Golin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Institute of Bioelementology, Orenburg, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
5
|
Ursini F, Bosello Travain V, Cozza G, Miotto G, Roveri A, Toppo S, Maiorino M. A white paper on Phospholipid Hydroperoxide Glutathione Peroxidase (GPx4) forty years later. Free Radic Biol Med 2022; 188:117-133. [PMID: 35718302 DOI: 10.1016/j.freeradbiomed.2022.06.227] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022]
Abstract
The purification of a protein inhibiting lipid peroxidation led to the discovery of the selenoperoxidase GPx4 forty years ago. Thus, the evidence of the enzymatic activity was reached after identifying the biological effect and unambiguously defined the relationship between the biological function and the enzymatic activity. In the syllogism where GPx4 inhibits lipid peroxidation and its inhibition is lethal, cell death is operated by lipid peroxidation. Based on this rationale, this form of cell death emerged as regulated iron-enforced oxygen toxicity and was named ferroptosis in 2012. In the last decades, we learned that reduction of lipid hydroperoxides is indispensable and, in cooperation with prooxidant systems, controls the critical steady state of lipid peroxidation. This concept defined the GPx4 reaction as both the target for possible anti-cancer therapy and if insufficient, as cause of degenerative diseases. We know the reaction mechanism, but the details of the interaction at the membrane cytosol interface are still poorly defined. We know the gene structure, but the knowledge about expression control is still limited. The same holds true for post-transcriptional modifications. Reverse genetics indicate that GPx4 has a role in inflammation, immunity, and differentiation, but the observations emerging from these studies need a more specifically addressed biochemical evidence. Finally, the role of GPx4 in spermatogenesis disclosed an area unconnected to lipid peroxidation. In its mitochondrial and nuclear form, the peroxidase catalyzes the oxidation of protein thiols in two specific aspects of sperm maturation: stabilization of the mid-piece and chromatin compaction. Thus, although available evidence converges to the notion that GPx4 activity is vital due to the inhibition of lipid peroxidation, it is reasonable to foresee other unknown aspects of the GPx4 reaction to be disclosed.
Collapse
Affiliation(s)
- Fulvio Ursini
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | | | - Giorgio Cozza
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Giovanni Miotto
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Antonella Roveri
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
6
|
Li JY, Yao YM, Tian YP. Ferroptosis: A Trigger of Proinflammatory State Progression to Immunogenicity in Necroinflammatory Disease. Front Immunol 2021; 12:701163. [PMID: 34489948 PMCID: PMC8418153 DOI: 10.3389/fimmu.2021.701163] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
Until recently, necrosis is generally regarded as traumatic cell death due to mechanical shear stress or other physicochemical factors, while apoptosis is commonly thought to be programmed cell death, which is silent to immunological response. Actually, multiple modalities of cell death are programmed to maintain systematic immunity. Programmed necrosis, such as necrosis, pyroptosis, and ferroptosis, are inherently more immunogenic than apoptosis. Programmed necrosis leads to the release of inflammatory cytokines, defined as danger-associated molecular patterns (DAMPs), resulting in a necroinflammatory response, which can drive the proinflammatory state under certain biological circumstances. Ferroptosis as a newly discovered non-apoptotic form of cell death, is characterized by excessive lipid peroxidation and overload iron, which occurs in cancer, neurodegeneration, immune and inflammatory diseases, as well as ischemia/reperfusion (I/R) injury. It is triggered by a surplus of reactive oxygen species (ROS) induced in an imbalanced redox reaction due to the decrease in glutathione synthesis and inaction of enzyme glutathione peroxidase 4 (GPX4). Ferroptosis is considered as a potential therapeutic and molecular target for the treatment of necroinflammatory disease, and further investigation into the underlying pathophysiological characteristics and molecular mechanisms implicated may lay the foundations for an interventional therapeutic strategy. This review aims to demonstrate the key roles of ferroptosis in the development of necroinflammatory diseases, the major regulatory mechanisms involved, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jing-yan Li
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong-ming Yao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ying-ping Tian
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Xia J, Xia X, Wang W, Xia J, Li M. Protective Effect of Se-Methylselenocysteine on Elaidic Acid-Induced Inflammation in Human Arterial Endothelial Cells. J Nutr Sci Vitaminol (Tokyo) 2021; 66:577-582. [PMID: 33390400 DOI: 10.3177/jnsv.66.577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was designed to investigate the anti-inflammatory effect of Se-methylselenocysteine (MSC) on elaidic acid (9t18:1, EA) induced human arterial endothelial cells (HAECs). MTT and flow cytometry were used to determine cell viability and cell apoptosis respectively. Western blotting was used to assess protein expression of intercellular adhesion molecular 1 (ICAM-1), E-selectin, interleukin-8 (IL-8), endothelial nitric oxide synthase (e-NOS) and phospholipases A2 (PLA2), while enzyme-linked immunosorbent assay (ELISA) was performed to examine the secretion level of nitric oxide (NO). In the cell viability assay, EA significantly decreased cell viability when compared with negative control (NC) group, and MSC effectively reversed this adverse effect, especially at the concentration of 200 μmol/L with 24 h incubation. Also, the same concentration of MSC prevented HAECs cell apoptosis induced by EA. In addition, we found that the expression of ICAM-1, E-selectin, IL-8 and PLA2 were significantly increased and e-NOS decreased in EA group compared with NC group. Inhibition of PLA2 promoted ICAM-1, E-slectin and IL-8 expression in HAECs induced by EA. And MSC down-regulated the secretion of NO level in EA-induced HAECs. Based on these results, we concluded that MSC activated PLA2 which regulated the expression of ICAM-1, E-selectin and IL-8 to protect inflammation induced by EA in HEACs.
Collapse
Affiliation(s)
- Jizhu Xia
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University
| | - Xiaorong Xia
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University
| | - Wenyuan Wang
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University
| | | | - Mingxing Li
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University
| |
Collapse
|
8
|
Abstract
Significance: The selenium-containing Glutathione peroxidases (GPxs)1-4 protect against oxidative challenge, inhibit inflammation and oxidant-induced regulated cell death. Recent Advances: GPx1 and GPx4 dampen phosphorylation cascades predominantly via prevention of inactivation of phosphatases by H2O2 or lipid hydroperoxides. GPx2 regulates the balance between regeneration and apoptotic cell shedding in the intestine. It inhibits inflammation-induced carcinogenesis in the gut but promotes growth of established cancers. GPx3 deficiency facilitates platelet aggregation likely via disinhibition of thromboxane biosynthesis. It is also considered a tumor suppressor. GPx4 is expressed in three different forms. The cytosolic form proved to inhibit interleukin-1-driven nuclear factor κB activation and leukotriene biosynthesis. Moreover, it is a key regulator of ferroptosis, because it reduces hydroperoxy groups of complex lipids and silences lipoxygenases. By alternate substrate use, the nuclear form contributes to chromatin compaction. Mitochondrial GPx4 forms the mitochondrial sheath of spermatozoa and, thus, guarantees male fertility. Out of the less characterized GPxs, the cysteine-containing GPx7 and GPx8 are unique in contributing to oxidative protein folding in the endoplasmic reticulum by reacting with protein isomerase as an alternate substrate. A yeast 2-Cysteine glutathione peroxidase equipped with CP and CR was reported to sense H2O2 for inducing an adaptive response. Critical Issues: Most of the findings compiled are derived from tissue culture and/or animal studies only. Their impact on human physiology is sometimes questionable. Future Directions: The expression of individual GPxs and GPx-dependent regulatory phenomena are to be further investigated, in particular in respect to human health.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition-Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Leopold Flohé
- Depatamento de Biochímica, Universidad de la República, Montevideo, Uruguay.,Dipartimento di Medicina Moleculare, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
9
|
Kanda N, Hoashi T, Saeki H. Nutrition and Psoriasis. Int J Mol Sci 2020; 21:ijms21155405. [PMID: 32751360 PMCID: PMC7432353 DOI: 10.3390/ijms21155405] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by accelerated tumor necrosis factor-α/interleukin-23/interleukin-17 axis, hyperproliferation and abnormal differentiation of epidermal keratinocytes. Psoriasis patients are frequently associated with obesity, diabetes, dyslipidemia, cardiovascular diseases, or inflammatory bowel diseases. Psoriasis patients often show unbalanced dietary habits such as higher intake of fat and lower intake of fish or dietary fibers, compared to controls. Such dietary habits might be related to the incidence and severity of psoriasis. Nutrition influences the development and progress of psoriasis and its comorbidities. Saturated fatty acids, simple sugars, red meat, or alcohol exacerbate psoriasis via the activation of nucleotide-binding domain, leucine-rich repeats containing family, pyrin domain-containing-3 inflammasome, tumor necrosis factor-α/interleukin-23/interleukin-17 pathway, reactive oxygen species, prostanoids/leukotrienes, gut dysbiosis or suppression of regulatory T cells, while n-3 polyunsaturated fatty acids, vitamin D, vitamin B12, short chain fatty acids, selenium, genistein, dietary fibers or probiotics ameliorate psoriasis via the suppression of inflammatory pathways above or induction of regulatory T cells. Psoriasis patients are associated with dysbiosis of gut microbiota and the deficiency of vitamin D or selenium. We herein present the update information regarding the stimulatory or regulatory effects of nutrients or food on psoriasis and the possible alleviation of psoriasis by nutritional strategies.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Nippon Medical School, Chiba Hokusoh Hospital, Inzai, Chiba 270-1694, Japan
- Correspondence: ; Tel.: +81-476-991-111; Fax: +81-476-991-909
| | - Toshihiko Hoashi
- Department of Dermatology, Nippon Medical School, Bunkyo-Ku, Tokyo 113-8602, Japan; (T.H.); (H.S.)
| | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Bunkyo-Ku, Tokyo 113-8602, Japan; (T.H.); (H.S.)
| |
Collapse
|
10
|
Huang YY, Wu CH, Liu CH, Yang SF, Wang PH, Lin LY, Lee TH, Lee MS. Association between the Genetic Variants of Glutathione Peroxidase 4 and Severity of Endometriosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145089. [PMID: 32679649 PMCID: PMC7400372 DOI: 10.3390/ijerph17145089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 01/10/2023]
Abstract
It has been reported that oxidative and nitrative stress might be the pathogenesis of endometriosis. This prospective case-control study attempted to check the connection between single nucleotide polymorphism (SNP) of three antioxidant enzymes (glutathione peroxidase 4 (GPX4), thioredoxin 2 (TXN2), thioredoxin reductase 1 (TXNRD1)) and endometriosis. We recruited 90 patients with histology-approved endometriosis as the case group and 130 age-matched women for an annual pap smear examination as the control group. The stage of endometriosis was evaluated with revised ASRM score. Both groups were genotyped in the peripheral leukocytes for the SNP of GPX4 (rs713041), TXN2 (rs4821494) and TXNRD1 (rs1128446) by PCR-based methods. An X2 test was used to analysis of the difference of allele frequency and SNP distribution between two groups. The results revealed GPX4 (rs713041) has a significantly different distribution between two groups (C:T = 116 (44.6%):144 (55.4%) in control and C:T = 104 (57.8%): 76 (42.2%) in endometriosis groups, p = 0.007). The SNP in TXN2 (rs4821494) also showed a difference in allele frequency (G:T = 180 (69.2%):80 (30.8%) in control and G:T = 141 (78.3%):39 (21.6%) in endometriosis group, p = 0.030). In addition, the SNP GPX4 (rs713041) was associated with the severity of the endometriosis. Women who have advanced stage endometriosis were different from mild endometriosis in genetic variants of GPX4 gene (p = 0.001). In conclusion, the relationship between endometriosis and SNP of antioxidant enzymes, GPX4 and TXN2, was confirmed by the present study. According to the result, we suggested that the GPX4 might contribute to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Yun-Yao Huang
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan; (Y.-Y.H.); (C.-H.L.); (P.-H.W.); (L.-Y.L.); (M.-S.L.)
| | - Cheng-Hsuan Wu
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan
| | - Chung-Hsien Liu
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan; (Y.-Y.H.); (C.-H.L.); (P.-H.W.); (L.-Y.L.); (M.-S.L.)
- School of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
| | - Po-Hui Wang
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan; (Y.-Y.H.); (C.-H.L.); (P.-H.W.); (L.-Y.L.); (M.-S.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan;
| | - Long-Yao Lin
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan; (Y.-Y.H.); (C.-H.L.); (P.-H.W.); (L.-Y.L.); (M.-S.L.)
- School of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan
| | - Tsung-Hsien Lee
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan; (Y.-Y.H.); (C.-H.L.); (P.-H.W.); (L.-Y.L.); (M.-S.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan;
- Division of Infertility, Lee Women’s Hospital, Taichung 40602, Taiwan
- Correspondence:
| | - Maw-Sheng Lee
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan; (Y.-Y.H.); (C.-H.L.); (P.-H.W.); (L.-Y.L.); (M.-S.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan;
- Division of Infertility, Lee Women’s Hospital, Taichung 40602, Taiwan
| |
Collapse
|
11
|
Alhasan R, Kharma A, Leroy P, Jacob C, Gaucher C. Selenium Donors at the Junction of Inflammatory Diseases. Curr Pharm Des 2020; 25:1707-1716. [PMID: 31267853 DOI: 10.2174/1381612825666190701153903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022]
Abstract
Selenium is an essential non-metal trace element, and the imbalance in the bioavailability of selenium is associated with many diseases ranking from acute respiratory distress syndrome, myocardial infarction and renal failure (Se overloading) to diseases associated with chronic inflammation like inflammatory bowel diseases, rheumatoid arthritis, and atherosclerosis (Se unload). The only source of selenium is the diet (animal and cereal sources) and its intestinal absorption is limiting for selenocysteine and selenomethionine synthesis and incorporation in selenoproteins. In this review, after establishing the link between selenium and inflammatory diseases, we envisaged the potential of selenium nanoparticles and organic selenocompounds to compensate the deficit of selenium intake from the diet. With high selenium loading, nanoparticles offer a low dosage to restore selenium bioavailability whereas organic selenocompounds can play a role in the modulation of their antioxidant or antiinflammatory activities.
Collapse
Affiliation(s)
- Rama Alhasan
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrucken, Germany
| | - Ammar Kharma
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrucken, Germany
| | - Pierre Leroy
- Universite de Lorraine, CITHEFOR, F-54000 Nancy, France
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrucken, Germany
| | | |
Collapse
|
12
|
Khosravi M, Poursaleh A, Ghasempour G, Farhad S, Najafi M. The effects of oxidative stress on the development of atherosclerosis. Biol Chem 2020; 400:711-732. [PMID: 30864421 DOI: 10.1515/hsz-2018-0397] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a cardiovascular disease (CVD) known widely world wide. Several hypothesizes are suggested to be involved in the narrowing of arteries during process of atherogenesis. The oxidative modification hypothesis is related to oxidative and anti-oxidative imbalance and is the most investigated. The aim of this study was to review the role of oxidative stress in atherosclerosis. Furthermore, it describes the roles of oxidative/anti-oxidative enzymes and compounds in the macromolecular and lipoprotein modifications and in triggering inflammatory events. The reactive oxygen (ROS) and reactive nitrogen species (RNS) are the most important endogenous sources produced by non-enzymatic and enzymatic [myeloperoxidase (MPO), nicotinamide adenine dinucleotide phosphate (NADH) oxidase and lipoxygenase (LO)] reactions that may be balanced with anti-oxidative compounds [glutathione (GSH), polyphenols and vitamins] and enzymes [glutathione peroxidase (Gpx), peroxiredoxins (Prdx), superoxide dismutase (SOD) and paraoxonase (PON)]. However, the oxidative and anti-oxidative imbalance causes the involvement of cellular proliferation and migration signaling pathways and macrophage polarization leads to the formation of atherogenic plaques. On the other hand, the immune occurrences and the changes in extra cellular matrix remodeling can develop atherosclerosis process.
Collapse
Affiliation(s)
- Mohsen Khosravi
- Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Adeleh Poursaleh
- Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikhnia Farhad
- Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Microbial Biotechnology Research Center, Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
BID and the α-bisabolol-triggered cell death program: converging on mitochondria and lysosomes. Cell Death Dis 2019; 10:889. [PMID: 31767857 PMCID: PMC6877650 DOI: 10.1038/s41419-019-2126-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023]
Abstract
α-Bisabolol (BSB) is a plant-derived sesquiterpene alcohol able to trigger regulated cell death in transformed cells, while deprived of the general toxicity in several mouse models. Here, we investigated the involvement of lysosomal and mitochondrial compartments in the cytotoxic effects of BSB, with a specific focus on the BH3-only activator protein BID. We found that BSB particularly accumulated in cancer cell lines, displaying a higher amount of lipid rafts as compared to normal blood cells. By means of western blotting and microscopy techniques, we documented rapid BSB-induced BID translocation to lysosomes and mitochondria, both of them becoming dysfunctional. Lysosomal membranes were permeabilized, thus blocking the cytoprotective autophagic flux and provoking cathepsin B leakage into the cytosol. Multiple flow cytometry-based experiments demonstrated the loss of mitochondrial membrane potential due to pore formation across the lipid bilayer. These parallel events converged on neoplastic cell death, an outcome significantly prevented by BID knockdown. Therefore, BSB promoted BID redistribution to the cell death executioner organelles, which in turn activated anti-autophagic and proapoptotic mechanisms. This is an example of how xenohormesis can be exploited to modulate basic cellular programs in cancer.
Collapse
|
14
|
Abstract
Ferroptosis is a form of iron-dependent, non-apoptotic regulated cell death, which is characterized by the accumulation of lipid hydroperoxides to lethal levels. Ferroptosis recently has been shown to have implications in diverse kidney diseases, such as acute kidney injury, polycystic kidney disease and renal cell carcinoma. This review summarizes current research on ferroptosis, its underlying mechanisms and its role in the progression of different kidney diseases to provide more information regarding treatment and prevention of these destructive diseases.
Collapse
|
15
|
Distinct and overlapping functions of glutathione peroxidases 1 and 2 in limiting NF-κB-driven inflammation through redox-active mechanisms. Redox Biol 2019; 28:101388. [PMID: 31765890 PMCID: PMC6883322 DOI: 10.1016/j.redox.2019.101388] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023] Open
Abstract
Glutathione peroxidase 2 (GPx2) is one of the five selenoprotein GPxs having a selenocysteine in the active center. GPx2 is strongly expressed in the gastrointestinal epithelium, as is another isoform, GPx1, though with a different localization pattern. Both GPxs are redox-active enzymes that are important for the reduction of hydroperoxides. Studies on GPx2-deficient mice and human HT-29 cells with a stable knockdown (kd) of GPx2 revealed higher basal and IL-1β-induced expression of NF-κB target genes in vivo and in vitro. The activation of the IKK–IκBα–NF-κB pathway was increased in cultured GPx2 kd cells. Basal signaling was only restored by re-expressing active GPx2 in GPx2 kd cells but not by redox-inactive GPx2. As it is still not clear if the two isoforms GPx1 and GPx2 have different functions, kd cell lines for either GPx1 or GPx2 were studied in parallel. The inhibitory effect of GPx2 on NF-κB signaling and its target gene expression was stronger than that of GPx1, whereas cyclooxygenase (COX)- and lipoxygenase (LOX)-derived lipid mediator levels increased more strongly in GPx1 kd than in GPx2 kd cells. Under unstimulated conditions, the levels of the COX-derived prostaglandins PGE2 and PGD2 were enhanced in GPx2 as well as in GPx1 kd compared to control cells. Specifically, in GPx1 kd cells IL-1β stimulation led to a dramatic shift of the PGE2/PGD2 ratio towards pro-inflammatory PGE2. Taken together, GPx2 and GPx1 have overlapping functions in controlling inflammatory lipid mediator synthesis and, most probably, exert their anti-inflammatory effects by preventing excessive PGE2 production. In view of the high activity of COX and LOX pathways during inflammatory bowel disease our data therefore provide new insights into the mechanisms of the protective function of GPx1 and GPx2 during colitis as well as inflammation-driven carcinogenesis. Loss of GPx2 results in higher basal and IL-1β-induced NF-κB activation. Suppressive effects of GPx2 on NF-κB are mediated in a redox-dependent manner. Both GPx isoforms modulate the lipid mediator profile in response to IL-1β. COX-derived prostaglandins increase more strongly in GPx1 than in GPx2 kd cells.
Collapse
|
16
|
Azat Aziz M, Shehab Diab A, Abdulrazak Mohammed A. Antioxidant Categories and Mode of Action. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.83544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
17
|
Proneth B, Conrad M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ 2019; 26:14-24. [PMID: 30082768 PMCID: PMC6294786 DOI: 10.1038/s41418-018-0173-9] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a non-apoptotic form of cell death characterized by overwhelming iron-dependent lipid peroxidation, which contributes to a number of pathologies, most notably tissue ischemia/reperfusion injury, neurodegeneration and cancer. Cysteine availability, glutathione biosynthesis, polyunsaturated fatty acid metabolism and modulation of the phospholipidome are the key events of this necrotic cell death pathway. Non-enzymatic and enzymatic lipoxygenase (LOX)-mediated lipid peroxidation of lipid bilayers is efficiently counteracted by the glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis. Preliminary studies suggest that bursting ferroptotic cells release pro-inflammatory damage-associated molecular patterns (DAMPs) that trigger the innate immune system as exemplified by diseased kidney and brain tissues where ferroptosis contributes to organ demise in a predominant manner. The GSH/GPX4 node is known to control the activities of LOX and prostaglandin-endoperoxide synthase (PTGS) via the so-called peroxide tone. Since LOX and PTGS products do have pro- and anti-inflammatory effects, one may speculate that these enzymes contribute to the ferroptotic process on several levels in cell-autonomous and non-autonomous ways. Hence, this review provides the reader with an outline on what is currently known about the link between ferroptosis and necroinflammation and discusses critical events that may alert the innate immune system in early phases when cells become sensitized towards ferroptosis.
Collapse
Affiliation(s)
- Bettina Proneth
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
18
|
Dobrian AD, Morris MA, Taylor-Fishwick DA, Holman TR, Imai Y, Mirmira RG, Nadler JL. Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications. Pharmacol Ther 2018; 195:100-110. [PMID: 30347209 DOI: 10.1016/j.pharmthera.2018.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
12-lipoxygenase (12-LOX) is one of several enzyme isoforms responsible for the metabolism of arachidonic acid and other poly-unsaturated fatty acids to both pro- and anti-inflammatory lipid mediators. Mounting evidence has shown that 12-LOX plays a critical role in the modulation of inflammation at multiple checkpoints during diabetes development. Due to this, interventions to limit pro-inflammatory 12-LOX metabolites either by isoform-specific 12-LOX inhibition, or by providing specific fatty acid substrates via dietary intervention, has the potential to significantly and positively impact health outcomes of patients living with both type 1 and type 2 diabetes. To date, the development of truly specific and efficacious inhibitors has been hampered by homology of LOX family members; however, improvements in high throughput screening have improved the inhibitor landscape. Here, we describe the function and role of human 12-LOX, and mouse 12-LOX and 12/15-LOX, in the development of diabetes and diabetes-related complications, and describe promise in the development of strategies to limit pro-inflammatory metabolites, primarily via new small molecule 12-LOX inhibitors.
Collapse
Affiliation(s)
- A D Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - M A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - D A Taylor-Fishwick
- Department of Microbiology, Cell and Molecular Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - T R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Y Imai
- University of Iowa Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, city, IA, United States
| | - R G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
19
|
Li C, Deng X, Xie X, Liu Y, Friedmann Angeli JP, Lai L. Activation of Glutathione Peroxidase 4 as a Novel Anti-inflammatory Strategy. Front Pharmacol 2018; 9:1120. [PMID: 30337875 PMCID: PMC6178849 DOI: 10.3389/fphar.2018.01120] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/13/2018] [Indexed: 01/09/2023] Open
Abstract
The anti-oxidative enzyme, glutathione peroxidase 4 (GPX4), helps to promote inflammation resolution by eliminating oxidative species produced by the arachidonic acid (AA) metabolic network. Up-regulating its activity has been proposed as a promising strategy for inflammation intervention. In the present study, we aimed to study the effect of GPX4 activator on the AA metabolic network and inflammation related pathways. Using combined computational and experimental screen, we identified a novel compound that can activate the enzyme activity of GPX4 by more than two folds. We further assessed its potential in a series of cellular assays where GPX4 was demonstrated to play a regulatory role. We are able to show that GPX4 activation suppressed inflammatory conditions such as oxidation of AA and NF-κB pathway activation. We further demonstrated that this GPX4 activator can decrease the intracellular ROS level and suppress ferroptosis. Our study suggests that GPX4 activators can be developed as anti-inflammatory or cyto-protective agent in lipid-peroxidation-mediated diseases.
Collapse
Affiliation(s)
- Cong Li
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaobing Deng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaowen Xie
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Ying Liu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Center for Quantitative Biology, Peking University, Beijing, China
| | | | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Center for Quantitative Biology, Peking University, Beijing, China
| |
Collapse
|
20
|
Saudrais E, Strazielle N, Ghersi-Egea JF. Choroid plexus glutathione peroxidases are instrumental in protecting the brain fluid environment from hydroperoxides during postnatal development. Am J Physiol Cell Physiol 2018; 315:C445-C456. [DOI: 10.1152/ajpcell.00094.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogen peroxide, released at low physiological concentration, is involved in different cell signaling pathways during brain development. When released at supraphysiological concentrations in brain fluids following an inflammatory, hypoxic, or toxic stress, it can initiate lipid peroxidation, protein, and nucleic acid damage and contribute to long-term neurological impairment associated with perinatal diseases. We found high glutathione peroxidase and glutathione reductase enzymatic activities in both lateral and fourth ventricle choroid plexus tissue isolated from developing rats, in comparison to the cerebral cortex and liver. Consistent with these, a high protein expression of glutathione peroxidases 1 and 4 was observed in choroid plexus epithelial cells, which form the blood-cerebrospinal fluid barrier. Live choroid plexuses isolated from newborn rats were highly efficient in detoxifying H2O2 from mock cerebrospinal fluid, illustrating the capacity of the choroid plexuses to control H2O2 concentration in the ventricular system of the brain. We used a differentiated cellular model of the blood-cerebrospinal fluid barrier coupled to kinetic and inhibition analyses to show that glutathione peroxidases are more potent than catalase to detoxify extracellular H2O2 at concentrations up to 250 µM. The choroidal cells also formed an enzymatic barrier preventing blood-borne hydroperoxides to reach the cerebrospinal fluid. These data point out the choroid plexuses as key structures in the control of hydroperoxide levels in the cerebral fluid environment during development, at a time when the protective glial cell network is still immature. Glutathione peroxidases are the main effectors of this choroidal hydroperoxide inactivation.
Collapse
Affiliation(s)
- Elodie Saudrais
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028 CRNS UMR 5292, Université Claude Bernard Lyon-1, Lyon, France
- Blood-Brain Interfaces Exploratory Platform BIP, Lyon Neurosciences Research Center, Lyon, France
| | - Nathalie Strazielle
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028 CRNS UMR 5292, Université Claude Bernard Lyon-1, Lyon, France
- Blood-Brain Interfaces Exploratory Platform BIP, Lyon Neurosciences Research Center, Lyon, France
- Brain-i, Lyon, France
| | - Jean-François Ghersi-Egea
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028 CRNS UMR 5292, Université Claude Bernard Lyon-1, Lyon, France
- Blood-Brain Interfaces Exploratory Platform BIP, Lyon Neurosciences Research Center, Lyon, France
| |
Collapse
|
21
|
Fructose 1, 6-diphosphate prevents alcohol-induced liver injury through inhibiting oxidative stress and promoting alcohol metabolism in mice. Eur J Pharmacol 2017; 815:274-281. [DOI: 10.1016/j.ejphar.2017.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022]
|
22
|
Ma X, Liu F, Li M, Li Z, Lin Y, Li R, Li C, Chang Y, Zhao C, Han Q, Zhou Q, Zhao Y, Wang D, Liu J. Expression of glutathione S-transferase A1, a phase II drug-metabolizing enzyme in acute hepatic injury on mice. Exp Ther Med 2017; 14:3798-3804. [PMID: 29042982 DOI: 10.3892/etm.2017.4957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/10/2017] [Indexed: 01/12/2023] Open
Abstract
In the present study, three models of acute liver injury in mice were induced via the administration of CCl4 (35 mg/kg, 24 h), acetyl-para-aminophenol (APAP; 200 mg/kg, 12 h) and ethanol (14 ml/kg, 8 h) to study the effect of glutathione S-transferase A1 (GSTA1) on acute liver injury. The serum levels of alanine transaminase, aspartate transaminase and liver homogenate indicators (superoxide dismutase, glutathione and glutathione peroxidase) were significantly lower in model groups compared with the control group (P<0.01), whereas the liver homogenate indicator malondialdehyde was significantly increased (P<0.01). The expression of GSTA1 in liver was significantly decreased in the model groups compared with the control group (P<0.01). GSTA1 protein content was 3.8, 1.3 and 2.6 times lower in the CCl4, APAP and ethanol model groups, respectively. Furthermore, GSTA1 mRNA expression levels decreased by 4.9, 2.1 and 3.7 times in the CCl4, APAP and ethanol model groups, respectively. Among the three models, the injury induced by CCl4 was the most marked, followed by ethanol and finally APAP. These results suggest that GSTA1 may be released by the liver and serve as an antioxidant in the prevention of liver damage.
Collapse
Affiliation(s)
- Xin Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Fangping Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Minmin Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Zhi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Yuexia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Changwen Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, P.R. China
| | - Yicong Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Changwei Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Qing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Qiong Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Yulin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Dening Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Jingli Liu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, P.R. China
| |
Collapse
|
23
|
Altay A, Bozoğlu F. Salvia fruticosa Modulates mRNA Expressions and Activity Levels of Xenobiotic Metabolizing CYP1A2, CYP2E1, NQO1, GPx, and GST Enzymes in Human Colorectal Adenocarcinoma HT-29 Cells. Nutr Cancer 2017; 69:892-903. [PMID: 28718679 DOI: 10.1080/01635581.2017.1339817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Natural products have gained considerable interests because of their use in some industrial areas including nutrition, cosmetic, pharmacy, and medicine. Salvia fruticosa M. (Lamiaceae) is known for its antioxidant, antimicrobial, and antiproliferative activities. Phase I xenobiotic metabolizing enzymes, CYP1A2 and CYP2E1, produce reactive metabolites which are eliminated by the action of phase II enzymes, NQO1, GPx, and glutathione S-transferases (GSTs). In this study, in vitro modulatory effects of S. fruticosa and its major phenolic compound rosmarinic acid (RA) on CYP1A2, CYP2E1, NQO1, GPx, and GSTm1 mRNA expressions and enzyme activities of GPx and GSTs were investigated in HT-29 cells. An mRNA expression analysis revealed that CYP1A2 and CYP2E1 levels were decreased while those of NQO1, GPx, and GSTm1 increased after S. fruticosa and RA treatments. In parallel to gene expressions, enzyme activities of GPx and GSTs by S. fruticosa increased 1.68- and 1.48-fold, respectively. Moreover, RA increased GPx and GSTs activities 1.67- and 1.94-fold, respectively. The results of this preliminary study show that metabolism of xenobiotics may be altered due to changes in the expression and activity of the investigated enzymes by S. fruticosa.
Collapse
Affiliation(s)
- Ahmet Altay
- a Faculty of Science, Department of Chemistry , Erzincan University , Erzincan , Turkey.,b Department of Food Engineering , Middle East Technical University , Ankara , Turkey
| | - Faruk Bozoğlu
- b Department of Food Engineering , Middle East Technical University , Ankara , Turkey
| |
Collapse
|
24
|
Lipid Peroxidation-Dependent Cell Death Regulated by GPx4 and Ferroptosis. Curr Top Microbiol Immunol 2017; 403:143-170. [PMID: 28204974 DOI: 10.1007/82_2016_508] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutathione peroxidase 4 (Phospholipid hydroperoxide glutathione peroxidase, PHGPx) can directly reduce phospholipid hydroperoxide. Depletion of GPx4 induces lipid peroxidation-dependent cell death in embryo, testis, brain, liver, heart, and photoreceptor cells of mice. Administration of vitamin E in tissue specific GPx4 KO mice restored tissue damage in testis, liver, and heart. These results indicate that suppression of phospholipid peroxidation is essential for cell survival in normal tissues in mice. Ferroptosis is an iron-dependent non-apoptotic cell death that can elicited by pharmacological inhibiting the cystine/glutamate antiporter, system Xc- (type I) or directly binding and loss of activity of GPx4 (Type II) in cancer cells with high level RAS-RAF-MEK pathway activity or p53 expression, but not in normal cells. Ferroptosis by Erastin (Type I) and RSL3 (RAS-selective lethal 3, Type II) treatment was suppressed by an iron chelator, vitamin E and Ferrostatin-1, antioxidant compound. GPx4 can regulate ferroptosis by suppression of phospholipid peroxidation in erastin and RSL3-induced ferroptosis. Recent works have identified several regulatory factors of erastin and RSL3-induced ferroptosis. In our established GPx4-deficient MEF cells, depletion of GPx4 induce iron and 15LOX-independent lipid peroxidation at 26 h and caspase-independent cell death at 72 h, whereas erastin and RSL3 treatment resulted in iron-dependent ferroptosis by 12 h. These results indicated the possibility that the mechanism of GPx4-depleted cell death might be different from that of ferroptosis induced by erastin and RSL3.
Collapse
|
25
|
Brigelius-Flohé R, Flohé L. Selenium and redox signaling. Arch Biochem Biophys 2016; 617:48-59. [PMID: 27495740 DOI: 10.1016/j.abb.2016.08.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/01/2016] [Indexed: 01/06/2023]
Abstract
Selenium compounds that contain selenol functions or can be metabolized to selenols are toxic via superoxide and H2O2 generation, when ingested at dosages beyond requirement. At supra-nutritional dosages various forms of programmed cell death are observed. At physiological intakes, selenium exerts its function as constituent of selenoproteins, which overwhelmingly are oxidoreductases. Out of those, the glutathione peroxidases counteract hydroperoxide-stimulated signaling cascades comprising inflammation triggered by cytokines or lipid mediators, insulin signaling and different forms of programmed cell death. Similar events are exerted by peroxiredoxins, which functionally depend on the selenoproteins of the thioredoxin reductase family. The thiol peroxidases of both families can, however, also act as sensors for hydroperoxides, thereby initiating signaling cascades. Although the interaction of selenoproteins with signaling events has been established by genetic techniques, the in vivo relevance of these findings is still hard to delineate for several reasons: The biosynthesis of individual selenoproteins responds differently to variations of selenium intakes; selenium is preferentially delivered to privileged tissues via inter-organ trafficking and receptor-mediated uptake, and only half of the selenoproteins known by sequence have been functionally characterized. The fragmentary insights do not allow any uncritical use of selenium for optimizing human health.
Collapse
Affiliation(s)
| | - Leopold Flohé
- Departamento de Bioquímica, Universidad de la República, 11800 Montevideo, Uruguay; Department of Molecular Medicine, University of Padova, I-35121 Padova, Italy
| |
Collapse
|
26
|
Jung KY, Yon JM, Lin C, Jung AY, Lee JG, Baek IJ, Lee BJ, Yun YW, Nam SY. Phospholipid hydroperoxide glutathione peroxidase is involved in the maintenance of male fertility under cryptorchidism in mice. Reprod Toxicol 2015; 57:73-80. [DOI: 10.1016/j.reprotox.2015.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
27
|
|
28
|
Porro B, Songia P, Squellerio I, Tremoli E, Cavalca V. Analysis, physiological and clinical significance of 12-HETE: a neglected platelet-derived 12-lipoxygenase product. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:26-40. [PMID: 24685839 DOI: 10.1016/j.jchromb.2014.03.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 11/25/2022]
Abstract
While the importance of cyclooxygenase (COX) in platelet function has been amply elucidated, the identification of the role of 12-lipoxygenase (12-LOX) and of its stable metabolite, 12-hydroxyeicosatretraenoic acid (12-HETE), has not been clarified as yet. Many studies have analysed the implications of 12-LOX products in different pathological disorders but the information obtained from these works is controversial. Several analytical methods have been developed over the years to simultaneously detect eicosanoids, and specifically 12-HETE, in different biological matrices, essentially enzyme-linked immunosorbent assays (ELISA), radioimmunoassays (RIA), high performance liquid chromatography (HPLC) and mass spectrometry coupled with both gas and liquid chromatography methods (GC- and LC-MS). This review is aimed at summarizing the up to now known physiological and clinical features of 12-HETE together with the analytical methods used for its determination, focusing on the critical issues regarding its measurement.
Collapse
Affiliation(s)
| | | | | | - Elena Tremoli
- Centro Cardiologico Monzino-IRCCS, Milan, Italy; Università degli Studi di Milano, Dipartimento di Scienze Farmacologiche e Biomolecolari, Milan, Italy
| | - Viviana Cavalca
- Centro Cardiologico Monzino-IRCCS, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Milan, Italy.
| |
Collapse
|
29
|
Integrated systems toxicology approaches identified the possible involvement of ABC transporters pathway in erythromycin estolate-induced liver injury in rat. Food Chem Toxicol 2014; 65:343-55. [DOI: 10.1016/j.fct.2013.12.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 02/08/2023]
|
30
|
Parillo F, Sylla L, Palombi C, Monaci M, Stradaioli G. Immunocytochemical Localisation of Phospholipid Hydroperoxide Glutathione Peroxidase in Bull’s Spermatogenic Cells. ITALIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4081/ijas.2014.3483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Lin HJ, Lee SH, Wu JL, Duann YF, Chen JY. Development of Cre-loxP technology in zebrafish to study the regulation of fish reproduction. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1525-1539. [PMID: 23670400 DOI: 10.1007/s10695-013-9806-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
One cannot seek permission to market transgenic fish mainly because there is no field test or any basic research on technological developments for evaluating their biosafety. Infertility is a necessary adjunct to exploiting transgenic fish unless completely secure land-locked facilities are available. In this study, we report the generation of a Cre transgenic zebrafish line using a cytomegalovirus promoter. We also produced fish carrying the Bax1 and Bax2 plasmids; these genes were separated by two loxP sites under a zona pellucida C promoter or were driven by an anti-Müllerian hormone promoter. We inserted a red fluorescent protein gene between the two loxP sites. After obtaining transgenic lines with the two transgenic fish crossed with each other (Cre transgenic zebrafish x loxP transgenic zebrafish), the floxed DNA was found to be specifically eliminated from the female or male zebrafish, and apoptosis gene expressions caused ovarian and testicular growth cessation and degeneration. Overexpression of the Bax1 and Bax2 genes caused various expression levels of apoptosis-related genes. Accordingly, this transgenic zebrafish model system provides a method to produce infertile fish and may be useful for application to genetically modified fish.
Collapse
Affiliation(s)
- Heng-Ju Lin
- Graduate Institute of Engineering Technology-Doctoral, National Taipei University of Technology, 1 Chung-Hsiao E. Rd., Sec. 3, Taipei, 10608, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Wang G, Wu Y, Zhou T, Guo Y, Zheng B, Wang J, Bi Y, Liu F, Zhou Z, Guo X, Sha J. Mapping of the N-Linked Glycoproteome of Human Spermatozoa. J Proteome Res 2013; 12:5750-9. [DOI: 10.1021/pr400753f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gaigai Wang
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Yibo Wu
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Tao Zhou
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Bo Zheng
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jing Wang
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Ye Bi
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Fangjuan Liu
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
33
|
Zhai CZ, Zhao L, Yin LJ, Chen M, Wang QY, Li LC, Xu ZS, Ma YZ. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. PLoS One 2013; 8:e73989. [PMID: 24098330 PMCID: PMC3788784 DOI: 10.1371/journal.pone.0073989] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/26/2013] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress caused by accumulation of reactive oxygen species (ROS) is capable of damaging effects on numerous cellular components. Glutathione peroxidases (GPXs, EC 1.11.1.9) are key enzymes of the antioxidant network in plants. In this study, W69 and W106, two putative GPX genes, were obtained by de novo transcriptome sequencing of salt-treated wheat (Triticum aestivum) seedlings. The purified His-tag fusion proteins of W69 and W106 reduced H2O2 and t-butyl hydroperoxide (t-BHP) using glutathione (GSH) or thioredoxin (Trx) as an electron donor in vitro, showing their peroxidase activity toward H2O2 and toxic organic hydroperoxide. GFP fluorescence assays revealed that W69 and W106 are localized in chloroplasts. Quantitative real-time PCR (Q-RT-PCR) analysis showed that two GPXs were differentially responsive to salt, drought, H2O2, or ABA. Isolation of the W69 and W106 promoters revealed some cis-acting elements responding to abiotic stresses. Overexpression of W69 and W106 conferred strong tolerance to salt, H2O2, and ABA treatment in Arabidopsis. Moreover, the expression levels of key regulator genes (SOS1, RbohD and ABI1/ABI2) involved in salt, H2O2 and ABA signaling were altered in the transgenic plants. These findings suggest that W69 and W106 not only act as scavengers of H2O2 in controlling abiotic stress responses, but also play important roles in salt and ABA signaling.
Collapse
Affiliation(s)
- Chao-Zeng Zhai
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Lei Zhao
- College of Plant Science, Jilin University, Changchun, China
| | - Li-Juan Yin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Qing-Yu Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Lian-Cheng Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- * E-mail: (Z-SX); (Y-ZM)
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- * E-mail: (Z-SX); (Y-ZM)
| |
Collapse
|
34
|
Mattmiller SA, Carlson BA, Sordillo LM. Regulation of inflammation by selenium and selenoproteins: impact on eicosanoid biosynthesis. J Nutr Sci 2013; 2:e28. [PMID: 25191577 PMCID: PMC4153324 DOI: 10.1017/jns.2013.17] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 11/07/2022] Open
Abstract
Uncontrolled inflammation is a contributing factor to many leading causes of human morbidity and mortality including atherosclerosis, cancer and diabetes. Se is an essential nutrient in the mammalian diet that has some anti-inflammatory properties and, at sufficient amounts in the diet, has been shown to be protective in various inflammatory-based disease models. More recently, Se has been shown to alter the expression of eicosanoids that orchestrate the initiation, magnitude and resolution of inflammation. Many of the health benefits of Se are thought to be due to antioxidant and redox-regulating properties of certain selenoproteins. The present review will discuss the existing evidence that supports the concept that optimal Se intake can mitigate dysfunctional inflammatory responses, in part, through the regulation of eicosanoid metabolism. The ability of selenoproteins to alter the biosynthesis of eicosanoids by reducing oxidative stress and/or by modifying redox-regulated signalling pathways also will be discussed. Based on the current literature, however, it is clear that more research is necessary to uncover the specific beneficial mechanisms behind the anti-inflammatory properties of selenoproteins and other Se metabolites, especially as related to eicosanoid biosynthesis. A better understanding of the mechanisms involved in Se-mediated regulation of host inflammatory responses may lead to the development of dietary intervention strategies that take optimal advantage of its biological potency.
Collapse
Key Words
- 15-HETE, 15(S)-hydroxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid
- 15-HPETE, 15-hydroperoxyeicosatetraenoic acid
- 15d-PGJ2, 15-deoxy-Δ12,14PGJ2
- AA, arachidonic acid
- ASK-1, apoptosis signal-regulating kinase 1
- COX, cyclo-oxygenase
- Eicosanoid biosynthesis
- FAHP, fatty acid hydroperoxide
- GPx, glutathione peroxidase
- GPx4, glutathione peroxidase-4
- H-PGDS, haematopoietic PGD2 synthase
- HO-1, haeme oxygenase-1
- HPETE, hydroperoxyeicosatetraenoic acid
- HPODE, hydroperoxyoctadecadienoic acid
- Inflammation
- LA, linoleic acid
- LOX, lipoxygenase
- LPS, lipopolysaccharide
- LT, leukotriene
- LTA4H, leukotriene A4 hydrolase
- MAPK, itogen-activated protein kinase
- ROS, reactive oxygen species
- Selenium
- Selenoproteins
- Sepp1, selenoprotein P plasma 1
- TX, thromboxane
- TXB2, thromboxane B2
- Trx, thioredoxin
- TrxR, thioredoxin reductase
- ppm, parts per million
Collapse
Affiliation(s)
- S. A. Mattmiller
- College of Veterinary Medicine, Michigan State
University, East Lansing, MI 48824,
USA
| | - Bradley A. Carlson
- Section on the Molecular Biology of Selenium,
Laboratory of Cancer Prevention, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892,
USA
| | - L. M. Sordillo
- College of Veterinary Medicine, Michigan State
University, East Lansing, MI 48824,
USA
| |
Collapse
|
35
|
Karakurt S, Semiz A, Celik G, Gencler-Ozkan AM, Sen A, Adali O. Epilobium hirsutum alters xenobiotic metabolizing CYP1A1, CYP2E1, NQO1 and GPx activities, mRNA and protein levels in rats. PHARMACEUTICAL BIOLOGY 2013; 51:650-658. [PMID: 23527956 DOI: 10.3109/13880209.2012.762404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CONTEXT Natural products have attracted increasing interests due to their use in flavoring, nutrition, cosmetics, pharmacy and medicine. Epilobium hirsutum L. (Onagraceae) is known for its analgesic, antimicrobial, and antiproliferative activity. CYP1A1 and CYP2E1, xenobiotic metabolizing enzymes, serve as a metabolic activation route yielding reactive metabolites that are eliminated by the action of NQO1 and glutathione peroxidase (GPx) enzymes. OBJECTIVE This study investigated in vivo effects of Epilobium hirsutum (EH) on CYP2E1, CYP1A1, NQO1 and GPx activities, protein and mRNA expressions in liver. MATERIALS AND METHODS Male Wistar Albino rats were injected with EH at a dose of 37.5 mg/kg i.p. daily for 9 d. CYP2E1, CYP1A1, NQO1 and GPx activities, protein and mRNA levels were determined by enzyme assays, Western blotting and qPCR, respectively. RESULTS CYP1A1 associated ethoxyresorufin-O-deethylase activity of control and EH-treated animals were found as 6.54 ± 1.21 and 4.48 ± 1.67 nmol/min/mg, respectively. CYP2E1 associated aniline 4-hydroxylase of control and EH group were 0.537 ± 0.011 and 0.109 ± 0.01 nmol/min/mg, respectively. However, EH treatment increased the GPx and NQO1 activities from 0.069 ± 0.015 to 0.107 ± 0.026 nmol/min/mg and from 163.34 ± 92 to 588.3 ± 14 nmol/min/mg, respectively. Furthermore, protein and mRNA expression analysis revealed that CYP1A1 and CYP2E1 levels were decreased while those of NQO1 and GPx increased after EH treatment. DISCUSSION AND CONCLUSION Our current data suggest that the metabolism of xenobiotics, including drugs, may be altered due to changes in the expression and activity of these proteins by EH.
Collapse
Affiliation(s)
- Serdar Karakurt
- Department of Biological Sciences and Joint Graduate Program in Biochemistry, Middle East Technical University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
36
|
Thankam Finosh G, Jayabalan M. Reactive oxygen species—Control and management using amphiphilic biosynthetic hydrogels for cardiac applications. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.412150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Bonifacio M, Rigo A, Guardalben E, Bergamini C, Cavalieri E, Fato R, Pizzolo G, Suzuki H, Vinante F. α-bisabolol is an effective proapoptotic agent against BCR-ABL(+) cells in synergism with Imatinib and Nilotinib. PLoS One 2012; 7:e46674. [PMID: 23056396 PMCID: PMC3463553 DOI: 10.1371/journal.pone.0046674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/04/2012] [Indexed: 01/04/2023] Open
Abstract
We showed that α-bisabolol is active against primary acute leukemia cells, including BCR-ABL+ acute lymphoblastic leukemias (ALL). Here we studied the activity of α-bisabolol against BCR-ABL+ cells using 3 cell lines (K562, LAMA-84, CML-T1) and 10 primary BCR-ABL+ ALL samples. We found that: (a) α-bisabolol was effective in reducing BCR-ABL+ cell viabilty at concentrations ranging from 53 to 73 µM; (b) α-bisabolol concentrations in BCR-ABL+ cellular compartments were 4- to 12-fold higher than in normal cells, thus indicating a preferential intake in neoplastic cells; (c) α-bisabolol displayed a slight to strong synergism with the Tyrosine Kinase Inhibitors (TKI) imatinib and nilotinib: the combination of α-bisabolol+imatinib allowed a dose reduction of each compound up to 7.2 and 9.4-fold respectively, while the combination of α-bisabolol+nilotinib up to 6.7 and 5-fold respectively; (d) α-bisabolol-induced apoptosis was associated with loss of plasma membrane integrity, irreversible opening of mitochondrial transition pore, disruption of mitochondrial potential, inhibition of oxygen consumption and increase of intracellular reactive oxygen species. These data indicate α-bisabolol as a candidate for treatment of BCR-ABL+ leukemias to overcome resistance to TKI alone and to target leukemic cells through BCR-ABL-independent pathways.
Collapse
Affiliation(s)
| | - Antonella Rigo
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Emanuele Guardalben
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Christian Bergamini
- Department of Biochemistry “G. Moruzzi”, University of Bologna, Bologna, Italy
| | - Elisabetta Cavalieri
- Department of Life and Reproduction Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Romana Fato
- Department of Biochemistry “G. Moruzzi”, University of Bologna, Bologna, Italy
| | - Giovanni Pizzolo
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Hisanori Suzuki
- Department of Life and Reproduction Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Fabrizio Vinante
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
- * E-mail:
| |
Collapse
|
38
|
Wang L, Harris SM, Espinoza HM, McClain V, Gallagher EP. Characterization of phospholipid hydroperoxide glutathione metabolizing peroxidase (gpx4) isoforms in Coho salmon olfactory and liver tissues and their modulation by cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:134-41. [PMID: 22446825 PMCID: PMC3660139 DOI: 10.1016/j.aquatox.2012.02.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 05/11/2023]
Abstract
Exposure to environmental contaminants, including various pesticides and trace metals, can disrupt critical olfactory-driven behaviors of fish such as homing to natal streams, mate selection, and an ability to detect predators and prey. These neurobehavioral injuries have been linked to reduced survival and population declines. Despite the importance of maintaining proper olfactory signaling processes in the presence of chemical exposures, little is known regarding chemical detoxification in the salmon olfactory system, and in particular, the antioxidant defenses that maintain olfactory function. An understudied, yet critical component of cellular antioxidant defense is phospholipid hydroperoxide glutathione peroxidase (PHGPx/GPx4), an isoform within the family of selenium-dependent glutathione peroxidase (GPx) enzymes that can directly reduce lipid peroxides and other membrane-bound complex hydroperoxides. In this study, we cloned two gpx4 isoforms (gpx4a and gpx4b) from Coho salmon olfactory tissues and compared their modulation in olfactory and liver tissues by cadmium, an environmental pollutant and olfactory toxicant that cause oxidative damage as a mechanism of toxicity. Amino acid sequence comparisons of the two gpx4 isoforms shared 71% identity, and also relatively high sequence identities when compared with other fish GPx4 isoforms. Sequence comparisons with human GPx4 indicated conservation of three important active sites at selenocysteine (U46), glutamine (Q81), and tryptophan (W136), suggesting similar catalytic activity between fish and mammalian GPx4 isoforms. Tissue profiling confirmed the expression of gpx4a and gpx4b in all ten Coho tissues examined. The expression of gpx4 mRNAs in the Coho olfactory system was accompanied by comparably high initial rates of GPx4 enzymatic activity in mitochondrial and cytosolic fractions. Exposure to low (3.7 ppb) and high (347 ppb) environmental Cd concentrations for 24-48 h significantly decreased gpx4a expression in Coho olfactory rosettes, whereas olfactory gpx4b mRNA expression was not modulated by exposures at these concentrations. In summary, Coho salmon express two paralogs of gpx4, a key enzyme in the maintenance of signal transduction processes that protect against cellular oxidative damage. The Cd-associated downregulation of salmon olfactory gpx4a expression in particular, may be associated with the loss of olfactory signal transduction that accompanies metal-associated loss of olfaction in salmonids.
Collapse
Affiliation(s)
| | | | | | | | - Evan P. Gallagher
- To whom correspondence should be addressed: Department of Environmental and Occupational Health Sciences, School of Public Health, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98105 – 6099, United States, Telephone: 1-206-616-4739, Fax: 1-206-685-4696,
| |
Collapse
|
39
|
Thomson CD, Wickens K, Miller J, Ingham T, Lampshire P, Epton MJ, Town GI, Pattemore P, Crane J. Selenium status and allergic disease in a cohort of New Zealand children. Clin Exp Allergy 2012. [DOI: 10.1111/j.1365-2222.2011.03924.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. D. Thomson
- Department of Human Nutrition; University of Otago; Dunedin
| | - K. Wickens
- Department of Medicine; University of Otago Wellington School of Medicine and Health Sciences; Wellington
| | - J. Miller
- Department of Human Nutrition; University of Otago; Dunedin
| | - T. Ingham
- Department of Medicine; University of Otago Wellington School of Medicine and Health Sciences; Wellington
| | - P. Lampshire
- Department of Medicine; University of Otago Wellington School of Medicine and Health Sciences; Wellington
| | - M. J. Epton
- Department of Medicine; Christchurch School of Medicine and Health Sciences; Christchurch
| | - G. I. Town
- Vice-Chancellor's Office; University of Canterbury; Christchurch
| | - P. Pattemore
- Department of Paediatrics; Christchurch School of Medicine and Health Sciences; Christchurch New Zealand
| | - J. Crane
- Department of Medicine; University of Otago Wellington School of Medicine and Health Sciences; Wellington
| | | |
Collapse
|
40
|
Ufer C, Wang CC. The Roles of Glutathione Peroxidases during Embryo Development. Front Mol Neurosci 2011; 4:12. [PMID: 21847368 PMCID: PMC3148772 DOI: 10.3389/fnmol.2011.00012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/13/2011] [Indexed: 01/31/2023] Open
Abstract
Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency - in contrast to all other GPx family members - leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on GPx4.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, Charité - University Medicine Berlin Berlin, Germany
| | | |
Collapse
|
41
|
Curti MLR, Jacob P, Borges MC, Rogero MM, Ferreira SRG. Studies of gene variants related to inflammation, oxidative stress, dyslipidemia, and obesity: implications for a nutrigenetic approach. J Obes 2011; 2011:497401. [PMID: 21773006 PMCID: PMC3136190 DOI: 10.1155/2011/497401] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/15/2011] [Accepted: 03/14/2011] [Indexed: 01/05/2023] Open
Abstract
Obesity is currently considered a serious public health issue due to its strong impact on health, economy, and quality of life. It is considered a chronic low-grade inflammation state and is directly involved in the genesis of metabolic disturbances, such as insulin resistance and dyslipidemia, which are well-known risk factors for cardiovascular disease. Furthermore, there is evidence that genetic variation that predisposes to inflammation and metabolic disturbances could interact with environmental factors, such as diet, modulating individual susceptibility to developing these conditions. This paper aims to review the possible interactions between diet and single-nucleotide polymorphisms (SNPs) in genes implicated on the inflammatory response, lipoprotein metabolism, and oxidative status. Therefore, the impact of genetic variants of the peroxisome proliferator-activated receptor-(PPAR-)gamma, tumor necrosis factor-(TNF-)alpha, interleukin (IL)-1, IL-6, apolipoprotein (Apo) A1, Apo A2, Apo A5, Apo E, glutathione peroxidases 1, 2, and 4, and selenoprotein P exposed to variations on diet composition is described.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Roberta G. Ferreira
- Department of Nutrition, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo, 715, 01246-904, São Paulo, SP, Brazil
| |
Collapse
|
42
|
Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R. Selenium in human health and disease. Antioxid Redox Signal 2011; 14:1337-83. [PMID: 20812787 DOI: 10.1089/ars.2010.3275] [Citation(s) in RCA: 816] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review covers current knowledge of selenium in the environment, dietary intakes, metabolism and status, functions in the body, thyroid hormone metabolism, antioxidant defense systems and oxidative metabolism, and the immune system. Selenium toxicity and links between deficiency and Keshan disease and Kashin-Beck disease are described. The relationships between selenium intake/status and various health outcomes, in particular gastrointestinal and prostate cancer, cardiovascular disease, diabetes, and male fertility, are reviewed, and recent developments in genetics of selenoproteins are outlined. The rationale behind current dietary reference intakes of selenium is explained, and examples of differences between countries and/or expert bodies are given. Throughout the review, gaps in knowledge and research requirements are identified. More research is needed to improve our understanding of selenium metabolism and requirements for optimal health. Functions of the majority of the selenoproteins await characterization, the mechanism of absorption has yet to be identified, measures of status need to be developed, and effects of genotype on metabolism require further investigation. The relationships between selenium intake/status and health, or risk of disease, are complex but require elucidation to inform clinical practice, to refine dietary recommendations, and to develop effective public health policies.
Collapse
Affiliation(s)
- Susan J Fairweather-Tait
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, Norfolk, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
43
|
Kuiper HC, Bruno RS, Traber MG, Stevens JF. Vitamin C supplementation lowers urinary levels of 4-hydroperoxy-2-nonenal metabolites in humans. Free Radic Biol Med 2011; 50:848-53. [PMID: 21236333 PMCID: PMC3046321 DOI: 10.1016/j.freeradbiomed.2011.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/23/2010] [Accepted: 01/03/2011] [Indexed: 01/01/2023]
Abstract
The lack of suitable biomarkers of oxidative stress is a common problem for antioxidant intervention studies in humans. We evaluated the efficacy of vitamin C supplementation in decreasing biomarkers of lipid peroxidation in nonsmokers and in cigarette smokers, a commonly studied, free-living human model of chronic oxidative stress. Participants received ascorbic acid (500mg twice per day) or placebo for 17 days in a double-blind, placebo-controlled, randomized crossover design study. The urinary biomarkers assessed and reported herein are derived from 4-hydroperoxy-2-nonenal (HPNE) and include the mercapturic acid (MA) conjugates of 4-hydroxy-2(E)-nonenal (HNE), 1,4-dihydroxy-2(E)-nonene (DHN), and 4-oxo-2(E)-nonenol(ONO). Vitamin C supplementation decreased the urinary concentrations of both ONO-MA (p=0.0013) and HNE-MA (p=0.0213) by ~30%; however, neither cigarette smoking nor sex affected these biomarkers. In contrast, vitamin C supplementation decreased urinary concentrations of DHN-MA (three-way interaction p=0.0304) in nonsmoking men compared with nonsmoking women (p<0.05), as well as in nonsmoking men compared with smoking men (p<0.05). Vitamin C supplementation also decreased (p=0.0092) urinary total of metabolites by ~20%. Thus, HPNE metabolites can be reduced favorably in response to improved plasma ascorbic acid concentrations, an effect due to ascorbic acid antioxidant function.
Collapse
Affiliation(s)
- Heather C. Kuiper
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University
| | - Richard S. Bruno
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Maret G. Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Nutrition and Exercise Sciences, Oregon State University
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University
| |
Collapse
|
44
|
12/15-lipoxygenase-derived lipid peroxides control receptor tyrosine kinase signaling through oxidation of protein tyrosine phosphatases. Proc Natl Acad Sci U S A 2010; 107:15774-9. [PMID: 20798033 DOI: 10.1073/pnas.1007909107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) are regulated through reversible oxidation of the active-site cysteine. Previous studies have implied soluble reactive oxygen species (ROS), like H(2)O(2), as the mediators of PTP oxidation. The potential role(s) of peroxidized lipids in PTP oxidation have not been described. This study demonstrates that increases in cellular lipid peroxides, induced by disruption of glutathione peroxidase 4, induce cellular PTP oxidation and reduce the activity of PDGF receptor targeting PTPs. These effects were accompanied by site-selective increased PDGF beta-receptor phosphorylation, sensitive to 12/15-lipoxygenase (12/15-LOX) inhibitors, and increased PDGF-induced cytoskeletal rearrangements. Importantly, the 12/15-LOX-derived 15-OOH-eicosatetraenoic acid lipid peroxide was much more effective than H(2)O(2) in induction of in vitro PTP oxidation. Our study thus establishes that lipid peroxides are previously unrecognized inducers of oxidation of PTPs. This identifies a pathway for control of receptor tyrosine kinase signaling, which might also be involved in the etiology of diseases associated with increased lipid peroxidation.
Collapse
|
45
|
Absence of glutathione peroxidase 4 affects tumor angiogenesis through increased 12/15-lipoxygenase activity. Neoplasia 2010; 12:254-63. [PMID: 20234819 DOI: 10.1593/neo.91782] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/22/2009] [Accepted: 12/29/2009] [Indexed: 01/22/2023] Open
Abstract
The selenoenzyme glutathione peroxidase 4 (GPx4) has been described to control specific cyclooxygenases (COXs) and lipoxygenases (LOXs) that exert substantiated functions in tumor growth and angiogenesis. Therefore, we hypothesized a putative regulatory role of GPx4 during tumor progression and created transformed murine embryonic fibroblasts with inducible disruption of GPx4. GPx4 inactivation caused rapid cell death in vitro, which could be prevented either by lipophilic antioxidants or by 12/15-LOX-specific inhibitors, but not by inhibitors targeting other LOX isoforms or COX. Surprisingly, transformed GPx4(+/-) cells did not die when grown in Matrigel but gave rise to tumor spheroids. Subcutaneous implantation of tumor cells into mice resulted in knockout tumors that were indistinguishable in volume and mass in comparison to wild-type tumors. However, further analysis revealed a strong vascular phenotype. We observed an increase in microvessel density as well as a reduction in the number of large diameter vessels covered by smooth muscle cells. This phenotype could be linked to increased 12/15-LOX activity that was accompanied by an up-regulation of basic fibroblast growth factor and down-regulation of vascular endothelial growth factor A protein expression. Indeed, pharmacological inhibition of 12/15-LOX successfully reversed the tumor phenotype and led to "normalized" vessel morphology. Thus, we conclude that GPx4, through controlling 12/15-LOX activity, is an important regulator of tumor angiogenesis as well as vessel maturation.
Collapse
|
46
|
Fairweather-Tait SJ, Collings R, Hurst R. Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 2010; 91:1484S-1491S. [PMID: 20200264 DOI: 10.3945/ajcn.2010.28674j] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Information on selenium bioavailability is required to derive dietary recommendations and to evaluate and improve the quality of food products. The need for robust data is particularly important in light of recent suggestions of potential health benefits associated with different intakes of selenium. The issue is not straightforward, however, because of large variations in the selenium content of foods (determined by a combination of geologic/environmental factors and selenium supplementation of fertilizers and animal feedstuffs) and the chemical forms of the element, which are absorbed and metabolized differently. Although most dietary selenium is absorbed efficiently, the retention of organic forms is higher than that of inorganic forms. There are also complications in the assessment and quantification of selenium species within foodstuffs. Often, extraction is only partial, and the process can alter the form or forms present in the food. Efforts to improve, standardize, and make more widely available techniques for species quantification are required. Similarly, reliable and sensitive functional biomarkers of selenium status are required, together with improvements in current biomarker methods. This requirement is particularly important for the assessment of bioavailability, because some functional biomarkers respond differently to the various selenium species. The effect of genotype adds a potential further dimension to the process of deriving bioavailability estimates and underlines the need for further research to facilitate the process of deriving dietary recommendations in the future.
Collapse
Affiliation(s)
- Susan J Fairweather-Tait
- School of Medicine, Health Policy & Practice, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| | | | | |
Collapse
|
47
|
Imai H. New Strategy of Functional Analysis of PHGPx Knockout Mice Model Using Transgenic Rescue Method and Cre-LoxP System. J Clin Biochem Nutr 2009; 46:1-13. [PMID: 20104259 PMCID: PMC2803127 DOI: 10.3164/jcbn.09-94r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/05/2009] [Indexed: 01/23/2023] Open
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is an intracellular antioxidant enzyme that directly reduces peroxidized phospholipids. PHGPx is transcribed from one gene into three types of mRNA, mitochondrial, non-mitochondrial and nucleolar PHGPx by alternative transcription. In this review, we focus on our recent experiments on the regulation of promoter activity of the types of PHGPx and on the novel strategy of functional analysis of a PHGPx knockout mice model using the transgenic rescue method and Cre-LoxP system. PHGPx is especially high in testis and spermatozoa. A deficiency is implicated in human infertility. We established spermatocyte-specific PHGPx knockout (KO) mice using a Cre-loxP system. Targeted disruption of all exons of the PHGPx gene in mice by homologous recombination caused embryonic lethality at 7.5 days post coitum. The PHGPx-loxP transgene rescued PHGPx KO mice from embryonic lethality. These rescued floxed PHGPx mice were mated with spermatocyte specific Cre expressing mice. All the spermatocyte-specific PHGPx KO male mice were infertile and displayed a significant decrease in the number of spermatozoa and significant reductions in forward motility by mitochondrial dysfunction of spermatozoa. These results demonstrate that depletion of PHGPx in spermatozoa may be one of the causes of male infertility in mice and humans.
Collapse
Affiliation(s)
- Hirotaka Imai
- School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku Tokyo 108-8641, Japan
| |
Collapse
|
48
|
Conrad M. Transgenic mouse models for the vital selenoenzymes cytosolic thioredoxin reductase, mitochondrial thioredoxin reductase and glutathione peroxidase 4. Biochim Biophys Acta Gen Subj 2009; 1790:1575-85. [DOI: 10.1016/j.bbagen.2009.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 04/23/2009] [Accepted: 05/05/2009] [Indexed: 12/25/2022]
|
49
|
Imai H, Hakkaku N, Iwamoto R, Suzuki J, Suzuki T, Tajima Y, Konishi K, Minami S, Ichinose S, Ishizaka K, Shioda S, Arata S, Nishimura M, Naito S, Nakagawa Y. Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J Biol Chem 2009; 284:32522-32. [PMID: 19783653 DOI: 10.1074/jbc.m109.016139] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phospholipid hydroperoxide glutathione peroxidase (GPx4) is an intracellular antioxidant enzyme that directly reduces peroxidized phospholipids. GPx4 is strongly expressed in the mitochondria of testis and spermatozoa. We previously found a significant decrease in the expression of GPx4 in spermatozoa from 30% of infertile human males diagnosed with oligoasthenozoospermia (Imai, H., Suzuki, K., Ishizaka, K., Ichinose, S., Oshima, H., Okayasu, I., Emoto, K., Umeda, M., and Nakagawa, Y. (2001) Biol. Reprod. 64, 674-683). To clarify whether defective GPx4 in spermatocytes causes male infertility, we established spermatocyte-specific GPx4 knock-out mice using a Cre-loxP system. All the spermatocyte-specific GPx4 knock-out male mice were found to be infertile despite normal plug formation after mating and displayed a significant decrease in the number of spermatozoa. Isolated epididymal GPx4-null spermatozoa could not fertilize oocytes in vitro. These spermatozoa showed significant reductions of forward motility and the mitochondrial membrane potential. These impairments were accompanied by the structural abnormality, such as a hairpin-like flagella bend at the midpiece and swelling of mitochondria in the spermatozoa. These results demonstrate that the depletion of GPx4 in spermatocytes causes severe abnormalities in spermatozoa. This may be one of the causes of male infertility in mice and humans.
Collapse
Affiliation(s)
- Hirotaka Imai
- School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liang H, Yoo SE, Na R, Walter CA, Richardson A, Ran Q. Short form glutathione peroxidase 4 is the essential isoform required for survival and somatic mitochondrial functions. J Biol Chem 2009; 284:30836-44. [PMID: 19744930 DOI: 10.1074/jbc.m109.032839] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glutathione peroxidase 4 (Gpx4) is an essential antioxidant enzyme having multiple functions. A long form Gpx4 protein and a short form Gpx4 protein, which are distinguishable by the presence or lack of a mitochondrial signal peptide at the N terminus, are generated from the Gpx4 gene. In this study, we generated transgenic mice using mutated GPX4 genes encoding either the long form Gpx4 (lGPX4 gene) or the short form Gpx4 (sGPX4 gene). Our results showed that transgenic mice with the sGPX4 gene had increased Gpx4 protein in all tissues and were protected against diquat-induced apoptosis in liver. Moreover, the sGPX4 gene was able to rescue the lethal phenotype of the mouse Gpx4-null mutation. In contrast, transgenic mice with the lGPX4 gene had increased Gpx4 protein only in the testes, and the lGPX4 gene failed to rescue the lethal phenotype of the mouse Gpx4-null mutation. In Gpx4-null mice rescued by the sGPX4 gene, the Gpx4 protein was present in mitochondria isolated from somatic tissues, and the submitochondrial distribution pattern of the Gpx4 protein in these mice was identical to that in wild-type mice. Interestingly, the male Gpx4-null mice rescued by the sGPX4 gene were infertile and exhibited sperm malformation. Together, our results demonstrated for the first time that the short form Gpx4 protein is present in somatic tissue mitochondria and is essential for survival and protection against apoptosis in mice, whereas the long form Gpx4 protein is important for male fertility.
Collapse
Affiliation(s)
- Hanyu Liang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|