1
|
Banks CM, Trott JF, Hovey RC. The prolactin receptor: A cross-species comparison of gene structure, transcriptional regulation, tissue-specificity, and genetic variation. J Neuroendocrinol 2024; 36:e13385. [PMID: 38586906 DOI: 10.1111/jne.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/25/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
The conserved and multifaceted functions of prolactin (PRL) are coordinated through varied distribution and expression of its cell-surface receptor (PRLR) across a range of tissues and physiological states. The resultant heterogeneous expression of PRLR mRNA and protein across different organs and cell types supports a wide range of PRL-regulated processes including reproduction, lactation, development, and homeostasis. Genetic variation within the PRLR gene also accounts for several phenotypes impacting agricultural production and human pathology. The goal of this review is to highlight the many elements that control differential expression of the PRLR across tissues, and the various phenotypes that exist across species due to variation in the PRLR gene.
Collapse
Affiliation(s)
- Carmen M Banks
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Josephine F Trott
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, Davis, California, USA
| |
Collapse
|
2
|
Hussein MK, Papež M, Dhiman H, Baumann M, Galosy S, Borth N. In silico design of CMV promoter binding oligonucleotides and their impact on inhibition of gene expression in Chinese hamster ovary cells. J Biotechnol 2022; 359:185-193. [DOI: 10.1016/j.jbiotec.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 10/31/2022]
|
3
|
Kavarthapu R, Dufau ML. Essential role of endogenous prolactin and CDK7 in estrogen-induced upregulation of the prolactin receptor in breast cancer cells. Oncotarget 2018; 8:27353-27363. [PMID: 28423697 PMCID: PMC5432340 DOI: 10.18632/oncotarget.16040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/18/2017] [Indexed: 01/28/2023] Open
Abstract
Our early studies have shown that Estradiol (E2)/Estrogen Receptor α (ER) in a non-DNA dependent manner through complex formation with C/EBPβ/SP1 induced transcriptional activation of the generic hPIII promoter and expression of the Prolactin Receptor (PRLR) receptor in MCF-7 cells. Subsequent studies demonstrated effects of unliganded ERα with requisite participation of endogenous PRL on the activation of PRLR transcription. Also, EGF/ERBB1 in the absence of PRL and E2 effectively induced upregulation of the PRLR. In this study we have delineated the transcriptional mechanism of upregulation of PRLR receptor induced by E2 incorporating knowledge of the various transcriptional upregulation modalities from our previous studies. Here, we demonstrate an essential requirement of STAT5a induced by PRL via PRLR receptor which associates at the promoter and its interaction with phoshoERα S118. Knock-down of PRL by siRNA significantly reduced E2-induced PRLR promoter activity, mRNA and protein expression, recruitment of ERα to the complex at promoter, C/EBPβ association to its DNA site and productive complex formation at hPIII promoter. The specific CDK7 inhibitor (THZ1) that attenuates E2-induced ERα phosphorylation at S118 abrogated E2-induced PRLR promoter activation. Further studies demonstrated that E2 induced cell migration was inhibited by PRL siRNA and THZ1 indicating its dependence on PRL/PRLR and CDK7, respectively. Our studies have demonstrated the essential role of endogenous PRL and CDK7 in the upregulation of PRLR by E2 and provide insights for therapeutic approaches that will mitigate the transcription/expression of PRLR and its participation in breast cancer progression fueled by E2 and PRL via their cognate receptors.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | - Maria L Dufau
- Section on Molecular Endocrinology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| |
Collapse
|
4
|
Zhang Y, Yang J, Lv S, Zhao DQ, Chen ZJ, Li WP, Zhang C. Downregulation of decidual SP1 and P300 is associated with severe preeclampsia. J Mol Endocrinol 2018; 60:133-143. [PMID: 29273682 DOI: 10.1530/jme-17-0180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) is a pregnancy-induced disorder characterized by hypertension and proteinuria after 20 weeks of gestation, affecting 5-7% of pregnancies worldwide. So far, the etiology of PE remains poorly understood. Abnormal decidualization is thought to contribute to the development of PE. SP1 belongs to the Sp/KLF superfamily and can recruit P300 to regulate the transcription of several genes. SP1 is also very important for decidualization as it enhances the expression of tissue factor. In this study, we investigated the expression of SP1 and P300 in deciduae and their relationship with PE. A total of 42 decidua samples were collected, of which 21 were from normal pregnant (NP) and 21 from severe PE. SP1 and P300 expression in deciduae and the levels of SP1 and P300 in cultured human endometrial stromal cells (hESCs) and primary hESCs during decidualization were determined. To further investigate the role of SP1 and P300 in human decidualization, RNA interference was used to silence SP1 and P300 in hESCs and primary hESCs. The following results were obtained. We found that the expressions of SP1 and P300 were reduced in decidual tissues with PE compared to those from NP. In the in vitro model of induction of decidualization, we found an increase in both SP1 and P300 levels. Silencing of SP1 and P300 resulted in abnormal decidualization and a significant reduction of decidualization markers such as insulin-like growth factor-binding protein1 and prolactin. Furthermore, the expression of vascular endothelial growth factor was also decreased upon SP1 and P300 silencing. Similar results were observed in primary hESCs. Our results suggest that SP1 and P300 play an important role during decidualization. Dysfunction of SP1 and P300 leads to impaired decidualization and might contribute to PE.
Collapse
Affiliation(s)
- Yachao Zhang
- Center for Reproductive MedicineRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai, China
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceCollege of Life Science, Shandong Normal University, Ji'nan, Shandong, China
| | - Jieqiong Yang
- Center for Reproductive MedicineRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai, China
| | - Shijian Lv
- Center for Reproductive MedicineRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai, China
| | - Dong-Qin Zhao
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceCollege of Life Science, Shandong Normal University, Ji'nan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive MedicineRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai, China
| | - Wei-Ping Li
- Center for Reproductive MedicineRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai, China
| | - Cong Zhang
- Center for Reproductive MedicineRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai, China
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceCollege of Life Science, Shandong Normal University, Ji'nan, Shandong, China
| |
Collapse
|
5
|
Zhu JJ, Luo J, Xu HF, Wang H, Loor JJ. Short communication: Altered expression of specificity protein 1 impairs milk fat synthesis in goat mammary epithelial cells. J Dairy Sci 2016; 99:4893-4898. [PMID: 26995134 DOI: 10.3168/jds.2015-10733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/05/2016] [Indexed: 11/19/2022]
Abstract
Specificity protein 1 (encoded by SP1) is a novel transcription factor important for the regulation of lipid metabolism and the normal function of various hormones in model organisms. Its potential role, if any, on ruminant milk fat is unknown. Despite the lower expression of the lipolysis-related gene ATGL (by 44 and 37% respectively), both the adenoviral overexpression and the silencing of SP1 [via short interfering (si)RNA] markedly reduced cellular triacylglycerol (TAG) content (by 28 and 25%, respectively), at least in part by decreasing the expression of DGAT1 (-36% in adenovirus treatment) and DGAT2 (-81 and -87%, respectively) that are involved in TAG synthesis. Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47 by 19 and 32%, and ADFP by 25 and 25%, respectively), cellular lipid droplet content was also decreased sharply, by 9 and 8.5%, respectively, after adenoviral overexpression of SP1 or its silencing via siRNA. Overall, the results underscored a potentially important role of SP1 in maintaining milk-fat droplet synthesis in goat mammary epithelial cells.
Collapse
Affiliation(s)
- J J Zhu
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation, Southwest University for Nationalities, Chengdu, Sichuan, 610041, P. R. China; Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - J Luo
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation, Southwest University for Nationalities, Chengdu, Sichuan, 610041, P. R. China.
| | - H F Xu
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation, Southwest University for Nationalities, Chengdu, Sichuan, 610041, P. R. China
| | - H Wang
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation, Southwest University for Nationalities, Chengdu, Sichuan, 610041, P. R. China
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
6
|
Bu G, Liang X, Li J, Wang Y. Extra-pituitary prolactin (PRL) and prolactin-like protein (PRL-L) in chickens and zebrafish. Gen Comp Endocrinol 2015; 220:143-53. [PMID: 25683198 DOI: 10.1016/j.ygcen.2015.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 01/25/2023]
Abstract
It is generally believed that in vertebrates, prolactin (PRL) is predominantly synthesized and released by pituitary lactotrophs and plays important roles in many physiological processes via activation of PRL receptor (PRLR), including water and electrolyte balance, reproduction, growth and development, metabolism, immuno-modulation, and behavior. However, there is increasing evidence showing that PRL and the newly identified 'prolactin-like protein (PRL-L)', a novel ligand of PRL receptor, are also expressed in a variety of extra-pituitary tissues, such as the brain, skin, ovary, and testes in non-mammalian vertebrates. In this brief review, we summarize the recent research progress on the structure, biological activities, and extra-pituitary expression of PRL and PRL-L in chickens (Gallus gallus) and zebrafish (Danio rerio) from our and other laboratories and briefly discuss their potential paracrine/autocrine roles in non-mammalian vertebrates, which may promote us to rethink the broad spectrum of PRL actions previously attributed to pituitary PRL only.
Collapse
Affiliation(s)
- Guixian Bu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Xiaomeng Liang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
7
|
Schennink A, Trott JF, Manjarin R, Lemay DG, Freking BA, Hovey RC. Comparative genomics reveals tissue-specific regulation of prolactin receptor gene expression. J Mol Endocrinol 2015; 54:1-15. [PMID: 25358647 DOI: 10.1530/jme-14-0212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prolactin (PRL), acting via the PRL receptor (PRLR), controls hundreds of biological processes across a range of species. Endocrine PRL elicits well-documented effects on target tissues such as the mammary glands and reproductive organs in addition to coordinating whole-body homeostasis during states such as lactation or adaptive responses to the environment. While changes in PRLR expression likely facilitates these tissue-specific responses to circulating PRL, the mechanisms regulating this regulation in non-rodent species has received limited attention. We performed a wide-scale analysis of PRLR 5' transcriptional regulation in pig tissues. Apart from the abundantly expressed and widely conserved exon 1, we identified alternative splicing of transcripts from an additional nine first exons of the porcine PRLR (pPRLR) gene. Notably, exon 1.5 transcripts were expressed most abundantly in the heart, while expression of exon 1.3-containing transcripts was greatest in the kidneys and small intestine. Expression of exon 1.3 mRNAs within the kidneys was most abundant in the renal cortex, and increased during gestation. A comparative analysis revealed a human homologue to exon 1.3, hE1N2, which was also principally transcribed in the kidneys and small intestines, and an exon hE1N3 was only expressed in the kidneys of humans. Promoter alignment revealed conserved motifs within the proximal promoter upstream of exon 1.3, including putative binding sites for hepatocyte nuclear factor-1 and Sp1. Together, these results highlight the diverse, conserved and tissue-specific regulation of PRLR expression in the targets for PRL, which may function to coordinate complex physiological states such as lactation and osmoregulation.
Collapse
Affiliation(s)
- Anke Schennink
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Josephine F Trott
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Rodrigo Manjarin
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Danielle G Lemay
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Bradley A Freking
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Russell C Hovey
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| |
Collapse
|
8
|
Yu J, Xiao F, Zhang Q, Liu B, Guo Y, Lv Z, Xia T, Chen S, Li K, Du Y, Guo F. PRLR regulates hepatic insulin sensitivity in mice via STAT5. Diabetes 2013; 62:3103-13. [PMID: 23775766 PMCID: PMC3749345 DOI: 10.2337/db13-0182] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insulin resistance is one of the major contributing factors in the development of metabolic diseases. The mechanisms responsible for insulin resistance, however, remain poorly understood. Although numerous functions of the prolactin receptor (PRLR) have been identified, a direct effect on insulin sensitivity has not been previously described. The aim of our current study is to investigate this possibility and elucidate underlying mechanisms. Here we show that insulin sensitivity is improved or impaired in mice injected with adenovirus that overexpress or knock down PRLR expression, respectively. Similar observations were obtained in in vitro studies. In addition, we discovered that the signal transducer and activator of transcription-5 pathway are required for regulating insulin sensitivity by PRLR. Moreover, we observed that PRLR expression is decreased or increased under insulin-resistant (db/db mice) or insulin-sensitive (leucine deprivation) conditions, respectively, and found that altering PRLR expression significantly reverses insulin sensitivity under both conditions. Finally, we found that PRLR expression levels are increased under leucine deprivation via a general control nonderepressible 2/mammalian target of rapamycin/ribosomal protein S6 kinase-1-dependent pathway. These results demonstrate a novel function for hepatic PRLR in the regulation of insulin sensitivity and provide important insights concerning the nutritional regulation of PRLR expression.
Collapse
|
9
|
Bu G, Ying Wang C, Cai G, Leung FC, Xu M, Wang H, Huang G, Li J, Wang Y. Molecular characterization of prolactin receptor (cPRLR) gene in chickens: gene structure, tissue expression, promoter analysis, and its interaction with chicken prolactin (cPRL) and prolactin-like protein (cPRL-L). Mol Cell Endocrinol 2013; 370:149-62. [PMID: 23499864 DOI: 10.1016/j.mce.2013.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 11/21/2022]
Abstract
In this study, gene structure, tissue expression, and promoter usage of prolactin receptor (PRLR) and its interaction with prolactin (PRL) and the newly identified prolactin-like protein (PRL-L) were investigated in chickens. The results showed that (1) PRLR gene was found to consist of at least 25 exons by 5'-RACE and RT-PCR assays; (2) multiple PRLR 5'-UTR sequences different in exon composition were isolated from chicken liver or intestine by 5'-RACE and could be subdivided into type I and type II transcripts according to the first exon used (exon 1G or exon 1A); (3) PRLR Type I transcripts with exon 1G were detected to be predominantly expressed in adult kidney and small intestine by RT-PCR, implying their expression is likely controlled by a tissue-specific promoter (P1). By contrast, PRLR type II transcripts containing exon 1A are widely expressed in adult and embryonic tissues examined and their expression is controlled by a generic promoter (P2) near exon 1A, which was demonstrated to display promoter activities in cultured DF-1, HEK293 and LoVo cells by the dual-luciferase reporter assay; (4) Using a 5×STAT5-luciferase reporter system, cPRLR expressed in HepG2 cells was shown to be activated by recombinant cPRL and cPRL-L via interaction with PRLR membrane-proximal ligand-binding domain, suggesting that like cPRL, cPRL-L is also a functional ligand of cPRLR. Collectively, characterization of cPRLR gene helps to elucidate the roles of PRLR and its ligands in birds and provides insights into the regulatory mechanisms of PRLR expression conserved in birds and mammals.
Collapse
Affiliation(s)
- Guixian Bu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
HIRAI J, NISHITA M, NAKAO N, SAITO TR, TANAKA M. Regulation of Prolactin Receptor Gene Expression in the Rat Choroid Plexus via Transcriptional Activation of Multiple First Exons during Postnatal Development and Lactation. Exp Anim 2013; 62:49-56. [DOI: 10.1538/expanim.62.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Junko HIRAI
- Laboratory of Animal Physiology, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Masahiro NISHITA
- Laboratory of Animal Physiology, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Nobuhiro NAKAO
- Laboratory of Animal Physiology, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Toru R. SAITO
- Laboratory of Behavioral Neuroscience, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Animal Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Minoru TANAKA
- Laboratory of Animal Physiology, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
11
|
Schennink A, Trott JF, Freking BA, Hovey RC. A novel first exon directs hormone-sensitive transcription of the pig prolactin receptor. J Mol Endocrinol 2013; 51:1-13. [PMID: 23576686 DOI: 10.1530/jme-12-0234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endocrine, paracrine, and autocrine prolactin (PRL) acts through its receptor (PRLR) to confer a wide range of biological functions, including its established role during lactation. We have identified a novel first exon of the porcine PRLR that gives rise to three different mRNA transcripts. Transcription of this first exon is tissue specific, where it increases during gestation in the adrenal glands and uterus. Within the mammary glands, its transcription is induced by estrogen and PRL, while in the uterus, its expression is downregulated by progestin. The promoter region has an enhancer element located between -453 and -424 bp and a putative repressor element between -648 and -596 bp. Estrogen, acting through the estrogen receptor, activates transcription from this promoter through both E-box and transcription factor AP-2 α binding sites. These findings support the concept that the multilevel hormonal regulation of PRLR transcription contributes to the various biological functions of PRL.
Collapse
Affiliation(s)
- Anke Schennink
- Department of Animal Science, University of California Davis, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
12
|
Jacobsen BM, Horwitz KB. Progesterone receptors, their isoforms and progesterone regulated transcription. Mol Cell Endocrinol 2012; 357:18-29. [PMID: 21952082 PMCID: PMC3272316 DOI: 10.1016/j.mce.2011.09.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/11/2011] [Accepted: 09/11/2011] [Indexed: 01/16/2023]
Abstract
This review discusses mechanisms by which progesterone receptors (PR) regulate transcription. We examine available data in different species and tissues regarding: (1) regulation of PR levels; and (2) expression profiling of progestin-regulated genes by total PRs, or their PRA and PRB isoforms. (3) We address current views about the composition of progesterone response elements, and postulate that PR monomers acting through "half-site" elements are common, entailing cooperativity with neighboring DNA-bound transcription factors. (4) We summarize transcription data for multiple progestin-regulated promoters as directed by total PR, or PRA vs. PRB. We conclude that current models and methods used to study PR function are problematical, and recommend that future work employ cells and receptors appropriate to the species, focusing on analyses of the effects of endogenous receptors targeting endogenous genes in native chromatin.
Collapse
Affiliation(s)
- Britta M Jacobsen
- Department of Medicine/Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| | | |
Collapse
|
13
|
Tabata H, Kobayashi M, Ikeda JH, Nakao N, Saito TR, Tanaka M. Characterization of multiple first exons in murine prolactin receptor gene and the effect of prolactin on their expression in the choroid plexus. J Mol Endocrinol 2012; 48:169-76. [PMID: 22294444 DOI: 10.1530/jme-11-0122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prolactin (Prl) receptor (Prlr) gene is expressed in various brain regions, with the highest level present in the choroid plexus, a site for receptor-mediated PRL transport from the blood to cerebrospinal fluid. We investigated the regulatory mechanism of Prlr gene expression by PRL in the murine choroid plexus. We first examined the organization of the alternative first exons in murine Prlr gene. In addition to the three known first exons, mE1(1), mE1(2), and mE1(3), two first exons, mE1(4) and mE1(5), were newly identified by cDNA cloning. Each first exon variant of Prlr mRNA exhibited tissue-specific or generic expression. In the choroid plexus of mice, the expression levels of mE1(3)-, mE1(4)-, and mE1(5)-Prlr mRNAs were increased in the lactating mice compared with those in the diestrus mice. Furthermore, the expression level of mE1(4)-Prlr mRNA was decreased in the PRL-deficient (Prl(-/-)) mice compared with the PRL-normal (Prl(+/+) and Prl(+/-)) mice. In the ovariectomized Prl(-/-) mice, the expression level of mE1(4)-Prlr mRNA was significantly increased by PRL administration but not by 17β-estradiol administration. The expression levels of the two last exon variants of Prlr mRNAs, encoding the long and short cytoplasmic regions of PRLR, were also increased in the lactating mice and decreased in the Prl(-/-) mice. These findings suggest that PRL stimulates the Prlr gene expression through the transcriptional activation of mE1(4) first exon, leading to increases in the long- and short-form variants of Prlr mRNA in the murine choroid plexus.
Collapse
Affiliation(s)
- Hidemi Tabata
- Department of Animal Science, Graduate School of Veterinary Medicine, Nippon Veterinary and Animal Science University, Musashino, Tokyo 180-8602, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Du JY, Chen MC, Hsu TC, Wang JH, Brackenbury L, Lin TH, Wu YY, Yang Z, Streuli CH, Lee YJ. The RhoA-Rok-myosin II pathway is involved in extracellular matrix-mediated regulation of prolactin signaling in mammary epithelial cells. J Cell Physiol 2012; 227:1553-60. [PMID: 21678418 PMCID: PMC3675639 DOI: 10.1002/jcp.22886] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In mammary epithelial cells (MECs), prolactin-induced signaling and gene expression requires integrin-mediated cell adhesion to basement membrane (BM). In the absence of proper cell-BM interactions, for example, culturing cells on collagen-coated plastic dishes, signal propagation is substantially impaired. Here we demonstrate that the RhoA-Rok-myosin II pathway accounts for the ineffectiveness of prolactin signaling in MECs cultured on collagen I. Under these culture conditions, the RhoA pathway is activated, leading to downregulation of prolactin receptor expression and reduced prolactin signaling. Enforced activation of RhoA in MECs cultured on BM suppresses prolactin receptor levels, and prevents prolactin-induced Stat5 tyrosine phosphorylation and β-casein expression. Overexpression of dominant negative RhoA in MECs cultured on collagen I, or inhibiting Rok activity, increases prolactin receptor expression, and enhances prolactin signaling. In addition, inhibition of myosin II ATPase activity by blebbistatin also exerts a beneficial effect on prolactin receptor expression and prolactin signaling, suggesting that tension exerted by the collagen substratum, in collaboration with the RhoA-Rok-myosin II pathway, contributes to the failure of prolactin signaling. Furthermore, MECs cultured on laminin-coated plastic have similar morphology and response to prolactin as those cultured on collagen I. They display high levels of RhoA activity and are inefficient in prolactin signaling, stressing the importance of matrix stiffness in signal transduction. Our results reveal that RhoA has a central role in determining the fate decisions of MECs in response to cell-matrix interactions.
Collapse
Affiliation(s)
- Jyun-Yi Du
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kowalewski MP, Michel E, Gram A, Boos A, Guscetti F, Hoffmann B, Aslan S, Reichler I. Luteal and placental function in the bitch: spatio-temporal changes in prolactin receptor (PRLr) expression at dioestrus, pregnancy and normal and induced parturition. Reprod Biol Endocrinol 2011; 9:109. [PMID: 21812980 PMCID: PMC3171325 DOI: 10.1186/1477-7827-9-109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endocrine mechanisms governing canine reproductive function remain still obscure. Progesterone (P4) of luteal origin is required for maintenance of pregnancy. Corpora lutea (CL) are gonadotrop-independent during the first third of dioestrus; afterwards prolactin (PRL) is the primary luteotropic factor. Interestingly, the increasing PRL levels are accompanied by decreasing P4 concentrations, thus luteal regression/luteolysis occurs in spite of an increased availability of gonadotropic support. PRL acts through its receptor (PRLr), the expression of which has not yet been thoroughly investigated at the molecular and cellular level in the dog. METHODS The expression of PRLr was assessed in CL of non-pregnant dogs during the course of dioestrus (days 5, 15, 25, 35, 45, 65 post ovulation; p.o.) as well as in CL, the utero/placental compartments (Ut/Pl) and interplacental free polar zones (interplacental sites) from pregnant dogs during the pre-implantation, post-implantation and mid-gestation period of pregnancy and during the normal and antigestagen-induced luteolysis. Expression of PRLr was tested by Real Time PCR, immunohistochemistry and in situ hybridization. RESULTS In non-pregnant CL the PRLr expression was significantly upregulated at day 15 p.o. and decreased significantly afterwards, towards the end of dioestrus. CL of pregnancy showed elevated PRLr expression until mid gestation while prepartal downregulation was observed. Interestingly, placental but not interplacental expression of PRLr was strongly time-related; a significant upregulation was observed towards mid-gestation. Within the CL PRLr was localized to the luteal cells; in the Ut/Pl it was localized to the fetal trophoblast and epithelial cells of glandular chambers. Moreover, in mid-pregnant animals treated with an antigestagen, both the luteal and placental, but not the uterine PRLr were significantly downregulated. CONCLUSIONS The data presented suggest that the luteal provision of P4 in both pregnant and non-pregnant dogs may be regulated at the PRLr level. Furthermore, a role of PRL not only in maintaining the canine CL function but also in regulating the placental function is strongly suggested. A possible functional interrelationship between luteal P4 and placental and luteal PRLr expression also with respect to the prepartal luteolysis is implied.
Collapse
Affiliation(s)
- Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Erika Michel
- Section of Small Animal Reproduction, Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Franco Guscetti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Bernd Hoffmann
- Clinic for Obstetrics, Gynecology and Andrology of Large- and Small Animals, Justus-Liebig University, Giessen, Germany
| | - Selim Aslan
- Clinic for Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Ankara, Ankara, Turkey
| | - Iris Reichler
- Section of Small Animal Reproduction, Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Complex formation and interactions between transcription factors essential for human prolactin receptor gene transcription. Mol Cell Biol 2011; 31:3208-22. [PMID: 21670145 DOI: 10.1128/mcb.05337-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein association of estrogen receptor α ERα with DNA-bound SP1 and C/EBPβ is essential for the 17β-estradiol (E2)-induced activation of human prolactin receptor (hPRLR) gene transcription. Protein-protein interaction and complex formation at the hPIII promoter of hPRLR was investigated. The basic region and leucine zipper (bZIP) of C/EBPβ, zinc finger (ZF) motifs of SP1, and the DNA binding domain of ERα were identified as regions responsible for the interactions between transfactors. The E2-induced interaction was confirmed by bioluminescence resonance energy transfer (BRET) assays of live cells. The combination of BRET/bimolecular luminescence complementation assay revealed that ERα exists as a constitutive homodimer, and E2 induced a change(s) in ERα homodimer conformation favorable for its association with C/EBPβ and SP1. Chromatin immunoprecipitation and small interfering RNA knockdown of members of the complex in breast cancer cells demonstrated the endogenous recruitment of components of the complex onto the hPIII promoter of the hPRLR gene. SP1 is the preferred transfactor for the recruitment of ERα to the complex that facilitates the C/EBPβ association. The E2/ERα-induced hPRLR transcription was demonstrated in ERα-negative breast cancer cells. This study indicates that the enhanced complex formation of ERα dimer with SP1 and C/EBPβ by E2 has an essential role in the transcriptional activation of the hPRLR gene.
Collapse
|
17
|
Goldhar AS, Duan R, Ginsburg E, Vonderhaar BK. Progesterone induces expression of the prolactin receptor gene through cooperative action of Sp1 and C/EBP. Mol Cell Endocrinol 2011; 335:148-57. [PMID: 21238538 PMCID: PMC3045478 DOI: 10.1016/j.mce.2011.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/22/2010] [Accepted: 01/07/2011] [Indexed: 01/01/2023]
Abstract
Prolactin (Prl) and progesterone (P) cooperate synergistically during mammary gland development and tumorigenesis. We hypothesized that one mechanism for these effects may be through mutual induction of receptors (R). EpH4 mouse mammary epithelial cells stably transfected with PR-A express elevated levels of PrlR mRNA and protein compared to control EpH4 cells that lack the PR. Likewise, T47D human breast cancer cells treated with P overexpress the PrlR and activate PrlR promoter III. PrlR promoter III does not contain a classical P response element but contains several binding sites for transcription proteins, including C/EBP, Sp1 and AP1, which may also interact with the PR. Using promoter deletion and site directed mutagenesis analyses as well as gel shift assays, cooperative activation of the C/EBP and adjacent Sp1A, but not the Sp1B or AP1, sites by P is shown to confer P responsiveness leading to increased PrlR transcription.
Collapse
Affiliation(s)
- Anita S Goldhar
- Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, NCI, Bethesda, MD 20892-4254, USA
| | | | | | | |
Collapse
|
18
|
Liao M, Zhang Y, Kang JH, Dufau ML. Coactivator function of positive cofactor 4 (PC4) in Sp1-directed luteinizing hormone receptor (LHR) gene transcription. J Biol Chem 2010; 286:7681-91. [PMID: 21193408 DOI: 10.1074/jbc.m110.188532] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The LHR has an essential role in sexual development and reproductive function, and its transcription is subjected to several modes of regulation. In this study, we investigated PC4 coactivator function in the control of LHR transcription. Knockdown of PC4 by siRNA inhibited the LHR basal promoter activity and trichostatin A (TSA)-induced gene transcriptional activation and expression in MCF-7 cells. While overexpression of PC4 alone had no effect on the LHR gene, it significantly enhanced Sp1- but not Sp3-mediated LHR transcriptional activity. PC4 directly interacts with Sp1 at the LHR promoter, and this interaction is negatively regulated by PC4 phosphorylation. The coactivator domain (22-91 aa) of PC4 and DNA binding domain of Sp1 are essential for PC4/Sp1 interaction. ChIP assay revealed significant occupancy of PC4 at the LHR promoter that increased upon TSA treatment. Disruption of PC4 expression significantly reduced TSA-induced recruitment of TFIIB and RNAP II, at the promoter. PC4 functions are beyond TSA-induced phosphatase release, PI3K-mediated Sp1 phosphorylation, and HDAC1/2/mSin3A co-repressor release indicating its role as linker coactivator of Sp1 and the transcriptional machinery. These findings demonstrated a critical aspect of LHR modulation whereby PC4 acts as a coactivator of Sp1 to contribute to the human of LHR transcription.
Collapse
Affiliation(s)
- Mingjuan Liao
- Molecular Endocrinology Section, Program of Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
19
|
Fang F, Zheng J, Galbaugh TL, Fiorillo AA, Hjort EE, Zeng X, Clevenger CV. Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells. J Mol Endocrinol 2010; 44:319-29. [PMID: 20237142 PMCID: PMC2965652 DOI: 10.1677/jme-09-0140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB knockdown with two independent siRNAs was shown to impair PRL-induced reporter expression in breast cancer cell line. cDNA microarray analysis was performed on these cells to assess the effect of CypB reduction, and revealed a significant decrease in PRL-induced endogenous gene expression in two breast cancer cell lines. Parallel functional assays revealed corresponding alterations of both anchorage-independent cell growth and cell motility of breast cancer cells. Our results demonstrate that CypB expression levels significantly modulate PRL-induced function in breast cancer cells ultimately resulting in enhanced levels of PRL-responsive gene expression, cell growth, and migration. Given the increasingly appreciated role of PRL in the pathogenesis of breast cancer, the actions of CypB detailed here are of biological significance.
Collapse
Affiliation(s)
- Feng Fang
- Department of Pathology Division of Rheumatology Division of Hematology/Oncology, Robert H Lurie Comprehensive Cancer Center, Northwestern University, Lurie 4-107, 303 East Superior Street, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Koslowski M, Türeci O, Biesterfeld S, Seitz G, Huber C, Sahin U. Selective activation of trophoblast-specific PLAC1 in breast cancer by CCAAT/enhancer-binding protein beta (C/EBPbeta) isoform 2. J Biol Chem 2009; 284:28607-15. [PMID: 19652226 DOI: 10.1074/jbc.m109.031120] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The trophoblast-specific gene PLAC1 (placenta-specific 1) is ectopically expressed in a wide range of human malignancies, most frequently in breast cancer, and is essentially involved in cancer cell proliferation, migration, and invasion. Here we show that basal activity of the PLAC1 promoter is selectively controlled by ubiquitous transcription factor SP1 and isoform 2 of CCAAT/enhancer-binding protein beta that we found to be selectively expressed in placental tissue and cancer cells. Binding of both factors to their respective elements within the PLAC1 promoter was essential to attain full promoter activity. Estrogen receptor alpha (ERalpha) signaling further augmented transcription and translation of PLAC1 and most likely accounts for the positive correlation between PLAC1 expression levels and the ERalpha status we observed in primary breast cancer specimens. DNA affinity precipitation and chromatin immunoprecipitation assays revealed that transactivation of the PLAC1 promoter by ligand-activated ERalpha is based on a nonclassical pathway independent of estrogen-response elements, by tethering of ERalpha to DNA-bound CCAAT/enhancer-binding protein beta-2, and SP1. Our findings provide first insight into a novel and hitherto unknown regulatory mechanism governing selective activation of trophoblast-specific gene expression in breast cancer.
Collapse
Affiliation(s)
- Michael Koslowski
- Department of Internal Medicine III, Experimental and Translational Oncology, Johannes Gutenberg University, 55131 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Wei Y, Puzhko S, Wabitsch M, Goodyer CG. Structure and activity of the human growth hormone receptor (hGHR) gene V2 promoter. Mol Endocrinol 2008; 23:360-72. [PMID: 19116246 DOI: 10.1210/me.2008-0188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human GH (hGH) has important effects on growth as well as carbohydrate, fat, and protein metabolism. These actions require the presence of normal levels of a functional hGH receptor (hGHR) on the surface of target cells. hGHR gene expression is characterized by the use of several 5'-noncoding exons and alternative splicing, resulting in the generation of multiple mRNA isoforms. The hGHR V2 transcript is predominant in most tissues, including human fat. However, factors regulating its ubiquitous expression have remained unidentified. The present study was aimed at characterizing the mechanisms regulating hGHR V2 transcription. Two major V2 transcriptional start sites were identified by primer extension assays. The V2 proximal promoter is TATA-less, with several characteristics of a housekeeping gene promoter. Transient transfection analyses of 2.6 kb of the 5'-flanking region of V2 confirmed its promoter activity in multiple primate cell lines. Similar promoter activity patterns were observed in human SGBS preadipocytes and mature adipocytes but with much higher V2 promoter activity in mature adipocytes, suggesting that changes in the availability of specific factors during adipocyte differentiation play a role in V2 promoter regulation. Serial deletion and mutation analyses revealed that transcription of hGHR V2 in different cell types, including adipocytes, is determined by a core promoter and distinct inhibitory and activation domains in the 5'-promoter region as well as within the V2 exon. Our data suggest that V2 transcription is the result of a complex interplay involving multiple factors, to ensure appropriate expression of hGHR in different hGH target cells.
Collapse
Affiliation(s)
- Yuhong Wei
- McGill University Health Centre, Montreal Children's Hospital Research Institute, 4060 St. Catherine West, Room 415-1, Montreal, Quebec, Canada H3Z 2Z3
| | | | | | | |
Collapse
|
22
|
Nguyen N, Stellwag EJ, Zhu Y. Prolactin-dependent modulation of organogenesis in the vertebrate: Recent discoveries in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:370-80. [PMID: 18593647 DOI: 10.1016/j.cbpc.2008.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 11/28/2022]
Abstract
The scientific literature is replete with evidence of the multifarious functions of the prolactin (PRL)/growth hormone (GH) superfamily in adult vertebrates. However, little information is available on the roles of PRL and related hormones prior to the adult stage of development. A limited number of studies suggest that GH functions to stimulate glucose transport and protein synthesis in mouse blastocytes and may be involved during mammalian embryogenesis. In contrast, the evidence for a role of PRL during vertebrate embryogenesis is limited and controversial. Genes encoding GH/PRL hormones and their respective receptors are actively transcribed and translated in various animal models at different time points, particularly during tissue remodeling. We have addressed the potential function of GH/PRL hormones during embryonic development in zebrafish by the temporary inhibition of in vivo PRL translation. This treatment caused multiple morphological defects consistent with a role of PRL in embryonic-stage organogenesis. The affected organs and tissues are known targets of PRL activity in fish and homologous structures in mammalian species. Traditionally, the GH/PRL hormones are viewed as classical endocrine hormones, mediating functions through the circulatory system. More recent evidence points to cytokine-like actions of these hormones through either an autocrine or a paracrine mechanism. In some situations they could mimic actions of developmentally regulated genes as suggested by experiments in multiple organisms. In this review, we present similarities and disparities between zebrafish and mammalian models in relation to PRL and PRLR activity. We conclude that the zebrafish could serve as a suitable alternative to the rodent model to study PRL functions in development, especially in relation to organogenesis.
Collapse
Affiliation(s)
- Nhu Nguyen
- Department of Biology, Howell Science Complex, East Carolina University, 1000 E. 5th Street, Greenville, NC 27858, USA
| | | | | |
Collapse
|
23
|
Nogami H, Hoshino R, Ogasawara K, Miyamoto S, Hisano S. Region-specific expression and hormonal regulation of the first exon variants of rat prolactin receptor mRNA in rat brain and anterior pituitary gland. J Neuroendocrinol 2007; 19:583-93. [PMID: 17620100 DOI: 10.1111/j.1365-2826.2007.01565.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies have revealed the occurrence of five first exon variants of the rat prolactin receptor mRNA, suggesting that multiple promoters direct prolactin receptor transcription in response to different regulatory factors. In the present study, regional expression of these first exon variants, as well as two prolactin receptor subtypes generated by alternative splicing, was examined in the brains and anterior pituitary glands of female rats. Expression of the long-form was detected in the choroid plexus, hypothalamus, hippocampus, cerebral cortex and anterior pituitary gland, whereas the short form was detected only in the choroid plexus. E1-3 mRNA, a first exon variant, was detected in the choroid plexus, hypothalamus, and anterior pituitary gland, whereas E1-4 was detected only in the choroid plexus. Other variants were not detectable by the polymerase chain reaction protocol employed in this study. Ovariectomy increased the short form in the choroid plexus and the E1-3 expression in the choroid plexus and pituitary gland, but changes in the long-form and E1-4 expression were minimal. Replacement of oestrogens and prolactin suggest that oestrogens down-regulate E1-3 expression in the choroid plexus and pituitary gland, and that the negative effect of oestrogen is mediated by prolactin in the pituitary gland. The present results revealed the region-specific promoter usage in prolactin receptor mRNA transcription, as well as the involvement of oestrogens in the regulation of E1-3 mRNA expression in the brain and pituitary gland.
Collapse
Affiliation(s)
- H Nogami
- Department of Neuroendocrinology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
24
|
Brandebourg TD, Bown JL, Ben-Jonathan N. Prolactin upregulates its receptors and inhibits lipolysis and leptin release in male rat adipose tissue. Biochem Biophys Res Commun 2007; 357:408-13. [PMID: 17433256 PMCID: PMC1885988 DOI: 10.1016/j.bbrc.2007.03.168] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/22/2007] [Indexed: 10/23/2022]
Abstract
Prolactin (PRL) is recognized as a metabolic regulator during lactation, but little information exists on its actions in male adipose tissue. We examined whether PRL affects the expression of its receptors (PRLR), lipolysis, and adipokine secretion in male rats. Both long and short PRLR isoforms were induced 40-50-fold during differentiation of epididymal preadipocytes, with a 10-fold higher expression of the long isoform. PRL upregulated both isoforms before and after differentiation. PRL suppressed lipolysis in epididymal explants and mature adipocytes in a dose- and time-dependent manner, which was reversed by a Jak2 inhibitor. PRL also inhibited leptin, but not adiponectin, release. We conclude that PRL inhibits lipolysis and leptin release by acting directly on adipocytes via interaction with either of its receptors and activation of a Jak2-dependent signaling pathway(s). This is the first demonstration of substantial effects of PRL on male adipocytes.
Collapse
Affiliation(s)
- Terry D Brandebourg
- Department of Cell and Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA
| | | | | |
Collapse
|
25
|
Kobayashi M, Suzuki M, Saito TR, Tanaka M. Developmental changes in the expression levels of alternative first exons of prolactin receptor gene in rat brain. Endocr Res 2007; 32:143-51. [PMID: 18092198 DOI: 10.1080/07435800701764022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
One of the alternative first exons, E1(4), of the rat prolactin receptor (PRLR) gene was identified 5.4 kb downstream of exon 2 by sequence analysis of a rat genomic clone. In female and male rat brains, expression levels of E1(4)-containing PRLR mRNA increased remarkably between 2 and 4 weeks of age during postnatal development, whereas the levels of PRLR mRNAs containing other first exons, E1(3) and E1(5), did not change throughout the development. The levels of E1(4)-containing PRLR mRNA in the female rats at 8 weeks of age decreased by ovariectomy, and recovered by the administration of 17beta-estradiol, whereas castration and following testosterone treatment showed no effect on the levels of E1(4)-containing PRLR mRNA in the male rats. The levels of E1(3)- and E1(5)-containing PRLR mRNAs were not affected by gonadectomy and following sex steroid hormone treatments in both sexes. These results indicate that expression of PRLR gene in the female and male rat brains increases during postnatal development due to the transcriptional activation of the E1(4) first exon.
Collapse
Affiliation(s)
- Momoko Kobayashi
- Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | | | | | | |
Collapse
|
26
|
Zhang Y, Liao M, Dufau ML. Phosphatidylinositol 3-kinase/protein kinase Czeta-induced phosphorylation of Sp1 and p107 repressor release have a critical role in histone deacetylase inhibitor-mediated derepression [corrected] of transcription of the luteinizing hormone receptor gene. Mol Cell Biol 2006; 26:6748-61. [PMID: 16943418 PMCID: PMC1592868 DOI: 10.1128/mcb.00560-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have demonstrated that silencing of luteinizing hormone receptor (LHR) gene transcription is mediated via a proximal Sp1 site at its promoter. Trichostatin A (TSA) induced histone acetylation and gene activation in JAR cells that prevailed in the absence of changes in Sp1/Sp3 expression, their binding activity, disassociation of the histone deacetylase/mSin3A complex from the Sp1 site, or demethylation of the promoter. This indicated a different mechanism involved in TSA-induced derepression. The present studies have revealed that phosphatidylinositol 3-kinase/protein kinase Czeta (PI3K/PKCzeta)-mediated Sp1 phosphorylation accounts for Sp1 site-dependent LHR gene activation. TSA caused marked phosphorylation of Sp1 at serine 641 in JAR and MCF-7 cells. Blockade of PI3K or PKCzeta activity by specific inhibitors, kinase-deficient mutants, or small interfering RNA abolished the effect of TSA on the LHR gene and Sp1 phosphorylation. PKCzeta was shown to associate with Sp1, and this association was enhanced by TSA. Sp1 phosphorylation at serine 641 was required for the release of the pRb homologue p107 from the LHR gene promoter, while p107 acted as a repressor of the LHR gene. Inhibition of PKCzeta activity blocked the dissociation of p107 from the LHR gene promoter and markedly reduced Sp1 phosphorylation and transcription. These results have demonstrated that phosphorylation of Sp1 by PI3K/PKCzeta is critical for TSA-activated LHR gene expression. These studies have revealed a novel mechanism of TSA action through derecruitment of a repressor from the LHR gene promoter in a PI3K/PKCzeta-induced Sp1 phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Ying Zhang
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development/NIH, 49 Convent Drive/ MSC 4510, Bethesda, MD 20892-4510, USA
| | | | | |
Collapse
|
27
|
Cheng YH, Imir A, Suzuki T, Fenkci V, Yilmaz B, Sasano H, Bulun SE. SP1 and SP3 mediate progesterone-dependent induction of the 17beta hydroxysteroid dehydrogenase type 2 gene in human endometrium. Biol Reprod 2006; 75:605-14. [PMID: 16807381 DOI: 10.1095/biolreprod.106.051912] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The opposing actions of estrogen and progesterone during the menstrual cycle regulate the cyclical and predictable endometrial proliferation and differentiation that is required for implantation. Progesterone indirectly stimulates the expression of 17beta hydroxysteroid dehydrogenase type 2 (HSD17B2), which catalyzes the conversion of biologically potent estradiol to weakly estrogenic estrone in the endometrial epithelium. We previously demonstrated upregulation of the HSD17B2 gene in human endometrial epithelial cells by factors secreted from endometrial stromal cells in response to progesterone. We investigated the underlying mechanism by which these stroma-derived, progesterone-induced paracrine factors stimulate HSD17B2 expression. Here, we show that transcription factors SP1 and SP3 interact with specific motifs in HSD17B2 promoter to upregulate enzyme expression in human endometrial epithelial cell lines. Conditioned medium (CM) from progestin-treated stromal cells increased levels of SP1 and SP3 in endometrial epithelial cells and induced HSD17B2 mRNA expression. Mithramycin A, an inhibitor of SP1-DNA interaction, reduced epithelial HSD17B2 promoter activity in a dose-dependent manner. Serial deletion and site-directed mutants of the HSD17B2 promoter demonstrated that two overlapping SP1 motifs (nt -82/-65) are essential for induction of promoter activity by CM or overexpression of SP1/SP3. CM markedly enhanced, whereas anti-SP1/SP3 antibodies inhibited, binding of nuclear proteins to this region of the HSD17B2 promoter. In vivo, we demonstrated a significant spatiotemporal association between epithelial SP1/SP3 and HSD17B2 levels in human endometrial biopsies. Taken together, these data suggest that HSD17B2 expression in endometrial epithelial cells, and, therefore, estrogen inactivation, is regulated by SP1 and SP3, which are downstream targets of progesterone-dependent paracrine signals originating from endometrial stromal cells.
Collapse
Affiliation(s)
- You-Hong Cheng
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611-3095, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Dong J, Tsai-Morris CH, Dufau ML. A novel estradiol/estrogen receptor alpha-dependent transcriptional mechanism controls expression of the human prolactin receptor. J Biol Chem 2006; 281:18825-36. [PMID: 16651265 DOI: 10.1074/jbc.m512826200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Prolactin exerts diverse functions in target tissues through its membrane receptors, and is a potent mitogen in normal and neoplastic breast cells. Estradiol (E(2)) induces human prolactin receptor (hPRLR) gene expression through stimulation of its generic promoter (PIII). This study identifies a novel E(2)-regulated non-estrogen responsive element-dependent transcriptional mechanism that mediates E(2)-induced hPRLR expression. E(2) stimulated transcriptional activity in MCF7A(2) cells transfected with PIII lacking an estrogen responsive element, and increased hPRLR mRNA and protein. The abolition of the E(2) effect by mutation of Sp1 or C/EBP elements that bind Sp1/Sp3 and C/EBPbeta within PIII indicated the cooperation of these transfactors in E(2)-induced transcription of the hPRLR. DNA affinity protein assay showed that E(2) induced estrogen receptor alpha (ERalpha) binding to Sp1/Sp3 and C/EBPbeta DNA-protein complexes. The ligand-binding domain of ERalpha was essential for its physical interaction with C/EBPbeta, and E(2) promoted this association, and its DNA binding domain was required for transactivation of PIII. Co-immunoprecipitation studies revealed tethering of C/EBPbeta to Sp1 by E(2)-activated ERalpha. Chromatin immunoprecipitation analysis showed that E(2) induced recruitment of C/EBPbeta, ERalpha, SRC1, p300, pCAF, TFIIB, and Pol II, with no change in Sp1/Sp3. E(2) also induced promoter-associated acetylation of H3 and H4. These findings demonstrate that an E(2)/ERalpha, Sp1, and C/EBPbeta complex with recruitment of coactivators and TFIIB and Pol II are required for E(2)-activated transcriptional expression of the hPRLR through PIII. Estradiol produced in breast stroma and adipose tissue, which are major sources of estrogen in post-menopausal women, could up-regulate hPRLR gene expression and stimulate breast tumor growth.
Collapse
Affiliation(s)
- Juying Dong
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
29
|
Fedorov AV, Lukyanov DV, Podgornaya OI. Identification of the proteins specifically binding to the rat LINE1 promoter. Biochem Biophys Res Commun 2005; 340:553-9. [PMID: 16378599 DOI: 10.1016/j.bbrc.2005.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 12/07/2005] [Indexed: 11/25/2022]
Abstract
The initial step of LINE1 retrotransposons dissemination requires transcription from species-specific promoter located within 5'-untranslated region of LINE1. Although the 5'-untranslated region of the rat LINE1 element shows promoter activity, no promoter-binding proteins have been discovered so far. Using an EMSA and Southwestern blotting methods, we identified Sp1 and Sp3 proteins, which specifically bind to the rat LINE1 promoter in vitro. The Sp1/Sp3-binding motif within rat LINE1 promoter is located downstream of the major predicted transcription initiation site.
Collapse
Affiliation(s)
- Anton V Fedorov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, 194064 St-Petersburg, Russia.
| | | | | |
Collapse
|
30
|
Sheng Y, Li J, Dufau ML, Tsai-Morris CH. The gonadotropin-regulated long-chain acyl CoA synthetase gene: A novel downstream Sp1/Sp3 binding element critical for transcriptional promoter activity. Gene 2005; 360:20-6. [PMID: 16125341 DOI: 10.1016/j.gene.2005.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/01/2005] [Accepted: 07/11/2005] [Indexed: 11/30/2022]
Abstract
The 79 kD gonadotropin-regulated testicular long chain acyl-CoA synthetase gene (GR-LACS) is a hormone-regulated member of the acyl-CoA synthetase family that is expressed abundantly in Leydig cells and to a lesser extent in germinal cells of the adult testis. GR-LACS possesses an ATP/AMP binding domain and the fatty acyl-CoA synthetase (FACS) signature motif. To gain insights into the transcriptional regulation of GR-LACS in gonadal cells, we determined the genomic organization of the gene, including the upstream flanking sequences. The mouse GR-LACS gene spans over at least 45 kb and the coding region is encoded by exons 1-14. All exon-intron junction sites correspond to the consensus splice sequence GT-AG. Exon 7 and 11 comprise the conserved ATP/AMP binding domain and the FACS signature motif, respectively. Primer extension and S1 nuclease analyses demonstrated four transcriptional start sites located at -266/-216 bp 5' to the ATG codon. The minimal promoter domain resides within -254/-217 bp 5' to ATG codon, and upstream sequences to -404 bp (-1035/-405 bp) contribute to the inhibition of transcription in the expressing mouse Leydig tumor cells. Removal of -217/-1 bp, containing a 23 nt GC rich sequence (-112/-90) with an Sp1/Sp3 binding element, within the 1st exon of this TATA-less promoter, significantly reduced GR-LACS gene transcription. Transcriptional activity was abolished by a 2 nt mutation of this element. Thus, functional analyses of this promoter domain indicate that transcription of GR-LACS gene requires an Sp1/Sp3 binding element downstream of the transcriptional start sites which is essential for basal promoter activity.
Collapse
Affiliation(s)
- Yi Sheng
- Section on Molecular Endocrinology, ERRB, NICHD, NIH, Bethesda, Maryland 20892, United States
| | | | | | | |
Collapse
|
31
|
Gutzman JH, Miller KK, Schuler LA. Endogenous human prolactin and not exogenous human prolactin induces estrogen receptor alpha and prolactin receptor expression and increases estrogen responsiveness in breast cancer cells. J Steroid Biochem Mol Biol 2004; 88:69-77. [PMID: 15026085 DOI: 10.1016/j.jsbmb.2003.10.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Accepted: 10/27/2003] [Indexed: 01/12/2023]
Abstract
Prolactin (PRL) and estrogen act synergistically to increase mammary gland growth, development, and differentiation. Based on their roles in the normal gland, these hormones have been studied to determine their interactions in the development and progression of breast cancer. However, most studies have evaluated only endocrine PRL and did not take into account the recent discovery that PRL is synthesized by human mammary cells, permitting autocrine/paracrine activity. To examine the effects of this endogenous PRL, we engineered MCF7 cells to inducibly overexpress human prolactin (hPRL). Using this Tet-On MCF7hPRL cell line, we studied effects on cell growth, PRLR, ER alpha, and PgR levels, and estrogen target genes. Induced endogenous hPRL, but not exogenous hPRL, increased ER alpha levels as well as estrogen responsiveness in these cells, suggesting that effects on breast cancer development and progression by estrogen may be amplified by cross-regulation of ER alpha levels by endogenous hPRL. The long PRLR isoform was also upregulated by endogenous, but not exogenous PRL. This model will allow investigation of endogenous hPRL in mammary epithelial cells and will enable further dissection of PRL effects on other hormone signaling pathways to determine the role of PRL in breast cancer.
Collapse
Affiliation(s)
- Jennifer H Gutzman
- Department of Comparative Biosciences, 2015 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
32
|
Zhang Y, Dufau ML. Repression of the luteinizing hormone receptor gene promoter by cross talk among EAR3/COUP-TFI, Sp1/Sp3, and TFIIB. Mol Cell Biol 2003; 23:6958-72. [PMID: 12972613 PMCID: PMC193922 DOI: 10.1128/mcb.23.19.6958-6972.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of luteinizing hormone receptor (LHR) gene is activated by Sp1/Sp3 at two Sp1 sites and is repressed by nuclear orphan receptors EAR2 and EAR3 through a direct-repeat (DR) motif. To elucidate the mechanism of the orphan receptor-mediated gene repression, we explored the functional connection between the orphan receptors and Sp1/Sp3 complex, and its impact on the basal transcription machinery. The Sp1(I) site was identified as critical for the repression since its mutation reduced the inhibition by EAR2 and abolished the inhibition by EAR3. Cotransfection analyses in SL2 cells showed that both Sp1 and Sp3 were required for this process since EAR3 displayed a complete Sp1/Sp3-dependent inhibitory effect. Functional cooperation between Sp1 and DR domains was further supported by mutual recruitment of EAR3 and Sp1/Sp3 bound to their cognate sites. Deletion of EAR3 N-terminal and DNA-binding domains that reduced its interaction with Sp1 impaired its inhibitory effect on human LHR (hLHR) gene transcription. Furthermore, we demonstrate interaction of TFIIB with Sp1/Sp3 at the Sp1(I) site besides its association with EAR3 and the TATA-less core promoter region. Such interaction relied on Sp1 site-bound Sp1/Sp3 complex and adaptor protein(s) present in the JAR nuclear extracts. We further demonstrated that EAR3 specifically decreased association of TFIIB to the Sp1(I) site without interfering on its interaction with the hLHR core promoter. The C-terminal region of EAR3, which did not participate in its interaction with Sp1, was required for its inhibitory function and may affect the association of TFIIB with Sp1. Moreover, perturbation of the association of TFIIB with Sp1 by EAR3 was reflected in the reduced recruitment of RNA polymerase II to the promoter. Overexpression of TFIIB counteracted the inhibitory effect of EAR3 and activated hLHR gene transcription in an Sp1 site-dependent manner. These findings therefore indicate that TFIIB is a key component in the regulatory control of EAR3 and Sp1/Sp3 on the initiation complex. Such cross talk among EAR3, TFIIB, and Sp1/Sp3 reveals repression of hLHR gene transcription by nuclear orphan receptors is achieved via perturbation of communication between Sp1/Sp3 at the Sp1-1 site and the basal transcription initiator complex.
Collapse
Affiliation(s)
- Ying Zhang
- Section on Molecular Endocrinology, Endocrinology, and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
33
|
Zhu WG, Srinivasan K, Dai Z, Duan W, Druhan LJ, Ding H, Yee L, Villalona-Calero MA, Plass C, Otterson GA. Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Mol Cell Biol 2003; 23:4056-65. [PMID: 12773551 PMCID: PMC156121 DOI: 10.1128/mcb.23.12.4056-4065.2003] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DNA methylation in the promoter of certain genes is associated with transcriptional silencing. Methylation affects gene expression directly by interfering with transcription factor binding and/or indirectly by recruiting histone deacetylases through methyl-DNA-binding proteins. In this study, we demonstrate that the human lung cancer cell line H719 lacks p53-dependent and -independent p21(Cip1) expression. p53 response to treatment with gamma irradiation or etoposide is lost due to a mutation at codon 242 of p53 (C-->W). Treatment with depsipeptide, an inhibitor of histone deacetylase, was unable to induce p53-independent p21(Cip1) expression because the promoter of p21(Cip1) in these cells is hypermethylated. By analyzing luciferase activity of transfected p21(Cip1) promoter vectors, we demonstrate that depsipeptide functions on Sp1-binding sites to induce p21(Cip1) expression. We hypothesize that hypermethylation may interfere with Sp1/Sp3 binding. By using an electrophoretic mobility shift assay, we show that, although methylation within the consensus Sp1-binding site did not reduce Sp1/Sp3 binding, methylation outside of the consensus Sp1 element induced a significant decrease in Sp1/Sp3 binding. Depsipeptide induced p21(Cip1) expression was reconstituted when cells were pretreated with 5-aza-2'-deoxycytidine. Our data suggest, for the first time, that hypermethylation around the consensus Sp1-binding sites may directly reduce Sp1/Sp3 binding, therefore leading to a reduced p21(Cip1) expression in response to depsipeptide treatment.
Collapse
Affiliation(s)
- Wei-Guo Zhu
- Department of Internal Medicine. Department of Pathology, The Ohio State University-Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pi X, Zhang B, Li J, Voogt JL. Promoter usage and estrogen regulation of prolactin receptor gene in the brain of the female rat. Neuroendocrinology 2003; 77:187-97. [PMID: 12673052 DOI: 10.1159/000069510] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Accepted: 01/07/2003] [Indexed: 11/19/2022]
Abstract
Mechanisms underlying hormonal regulation of prolactin receptor (PRL-R) gene in the brain are unknown. The 5'-untranslated region of PRL-R mRNA in peripheral tissues contains at least three alternative first exons (1A, B, C) that are expressed as tissue-specific, suggesting the differential usage of PRL-R gene promoters. The present study aimed to investigate: (1). the possible regulation of PRL-R mRNA levels by estrogen in in vitro and in vivo tissues; (2). which exon (1A, or 1B, or 1C)-containing PRL-R mRNA transcript is expressed in the brain, and (3). how the specific exon 1-containing mRNA is affected by estrogen by using RT-PCR, Southern blot and 5'Race PCR techniques. The RT-PCR results showed that PRL-R mRNA was detected in the cerebral cortex and pons medulla in addition to the choroid plexus and hypothalamus in the female rat. The expression of PRL-R mRNA was up-regulated by estrogen treatment in the rat brain tissue and in the GT1-7 cell culture. Both exon 1A- and 1C-containing transcripts were expressed in all four regions, suggesting that promoters 1A and 1C for the PRL-R gene are utilized in the rat brain. Exon 1A-containing transcript was up-regulated by estrogen treatment in all four brain regions, whereas Exon 1C-containing transcript was up-regulated by estrogen treatment in 3 of the 4 brain regions, cerebral cortex being the exception. Exon 1B-containing transcript was neither detectable nor induced by estrogen treatment in any of the brain regions examined. The RT-PCR results were confirmed by partial isolation of 5'-untranslated regions of exon 1A- and 1C-containing PRL-R mRNA transcripts from brain tissue by using 5'Race PCR. The present result confirms the expression of PRL-R mRNA in the cerebral cortex and pons medulla in the female rat. The levels of PRL-R mRNA were up-regulated by estrogen in rat brain tissue and GT1-7 cell cultures. Detection of exon 1A- and 1C-containing transcripts implies that the promoter 1A and 1C are active in the female rat brain. Estrogen differentially regulates expression of the PRL-R mRNA in the different brain regions by increasing the utilization of PRL-R gene promoters 1A and 1C in the female rat.
Collapse
Affiliation(s)
- Xiujun Pi
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Kansas 66160-7401, USA
| | | | | | | |
Collapse
|
35
|
Leondires MP, Hu ZZ, Dong J, Tsai-Morris CH, Dufau ML. Estradiol stimulates expression of two human prolactin receptor isoforms with alternative exons-1 in T47D breast cancer cells. J Steroid Biochem Mol Biol 2002; 82:263-8. [PMID: 12477494 DOI: 10.1016/s0960-0760(02)00184-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human prolactin receptor (hPRLR) expression is regulated by estradiol-17beta (E(2)) in vivo in animal tissues, and in vitro in normal human endometrial cells and in MCF7 human breast cancer cells. The objective of this study was to determine the effect of E(2) on the expression of two recently described hPRLR isoforms with distinct exons-1, hE1(3) and hE1(N1) that are transcribed from the generic hPIII promoter, also present in the rat and mouse, and the human-specific promoter hP(N1), respectively. Also, to determine the effect of estradiol on the hPIII promoter activity in cancer cells. T47D breast cancer cells were examined using quantitative competitive RT-PCR for the level of expression of two alternative non-coding exon-1 transcripts, hE1(3) and hE1(N1) following incubation with E(2) in presence or absence of the E(2) receptor antagonist ICI 182,780. The effects of estradiol were also evaluated in cells transiently transfected with constructs of hPIII promoter luciferase reporter gene. E(2) significantly increased the expression of both hPRLR mRNA transcripts, hE1(3) and hE1(N1). In transfection studies E(2) activated the hPIII promoter. This effect of estradiol was markedly inhibited by coincubation with the E(2) receptor antagonist. Our results demonstrate a stimulatory effect of estradiol on the expression of hPRLR mRNA species with alternative exons-1, hE1(3) and hE1(N1) possibly through activation of their corresponding promoters. The lack of a formal ERE in these promoters suggested that the effect of estradiol is mediated through association of the activated ER with relevant DNA binding transfactor(s). These findings support the role of E(2) in the regulation of hPRLR expression in human breast cancer cell lines.
Collapse
Affiliation(s)
- Mark P Leondires
- National Institute of Child Health and Human Development, Section Molecular Endocrinology, Endocrinology and Reproduction Research Branch, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
36
|
Jacobsen BM, Richer JK, Schittone SA, Horwitz KB. New human breast cancer cells to study progesterone receptor isoform ratio effects and ligand-independent gene regulation. J Biol Chem 2002; 277:27793-800. [PMID: 12021276 DOI: 10.1074/jbc.m202584200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All known progesterone target cells coexpress two functionally different progesterone receptor (PR) isoforms: 120-kDa B-receptors (PR-B) and N-terminally truncated, 94-kDa A-receptors (PR-A). Their ratio varies in normal and malignant tissues. In human breast cancer cells, homodimers of progesterone-occupied PR-A or PR-B regulate different gene subsets. To study PR homo- and heterodimers, we constructed breast cancer cell lines in which isoform expression is controlled by an inducible system. PR-negative cells or cells that stably express one or the other isoform were used to construct five sets of cells: (i) PR-negative control cells (Y iNull), (ii) inducible PR-A cells (Y iA), (iii) inducible PR-B cells (Y iB), (iv) stable PR-B plus inducible PR-A cells (B iA), and (v) stable PR-A plus inducible PR-B cells (A iB). Expression levels of each isoform and/or the PR-A/PR-B ratios could be tightly controlled by the dose of inducer as demonstrated by immunoblotting and transcription studies. Induced PRs underwent normal progestin-dependent phosphorylation and down-regulation and regulated exogenous promoters as well as endogenous gene expression. Transcription of exogenous promoters was dependent on the PR-A/PR-B ratio, whereas transcription of endogenous genes was more complex. Finally, we have described several genes that are regulated by induced PR-A even in the absence of ligand.
Collapse
Affiliation(s)
- Britta M Jacobsen
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
37
|
Tanaka M, Hayashida Y, Iguchi T, Nakao N, Suzuki M, Nakai N, Nakashima K. Identification of a novel first exon of prolactin receptor gene expressed in the rat brain. Endocrinology 2002; 143:2080-4. [PMID: 12021172 DOI: 10.1210/endo.143.6.8826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel first exon, E1(4), whose sequence was distinct from those of the three known first exons, E1(1), E1(2), and E1(3), of the rat PRL receptor (PRL-R) gene was identified by cDNA cloning for the 5'-end region of PRL-R mRNA expressed in the rat brain. Sequence analysis revealed the presence of two different length E1(4) cDNAs. The longer cDNA contained the 243-bp E1(4) sequence, and the shorter cDNA lacked the 139-bp sequence at the 5'-end of the longer one. Neither E1(4) cDNA has a second exon sequence, indicating that the E1(4) first exon is extensively spliced to the third exon. E1(4)-containing PRL-R mRNAs were detected only in the brain by RT-PCR and ribonuclease protection assay. The longer E1(4) mRNA was expressed as the major PRL-R mRNA species in the brain and was greatly increased in pregnant (d 18) and lactating (d 5) rats. A genomic clone containing the E1(4) first exon together with its 5'- and 3'-flanking regions was isolated from a rat kidney genomic library. Ribonuclease protection assay revealed that the position corresponding to the 5'-end of the shorter E1(4) cDNA is the major transcription start point for the E1(4) exon. The 5'-flanking region of E1(4) contained a TATA box-like element 23 bp upstream of the major transcription start point. Other putative transcription factor-binding sites, such as CCAAT, Sp1, and glucocorticoid-responsive elements, were observed at further upstream regions. These results suggest that PRL-R gene expression in rat brain is controlled by the promoter for the E1(4) first exon.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Biochemistry, Faculty of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
TANAKA M. Brain-Specific Control of Prolactin Receptor Gene Expression Correlated with Induction of Maternal Behavior in the Rat. J Reprod Dev 2002. [DOI: 10.1262/jrd.48.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Minoru TANAKA
- Department of Biochemistry, Faculty of Medicine, Mie University
| |
Collapse
|
39
|
Hu ZZ, Meng J, Dufau ML. Isolation and characterization of two novel forms of the human prolactin receptor generated by alternative splicing of a newly identified exon 11. J Biol Chem 2001; 276:41086-94. [PMID: 11518703 DOI: 10.1074/jbc.m102109200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel exon 11 of the human prolactin receptor (hPRLR) gene that is distinct from its rodent counterparts and have demonstrated the presence of two novel short forms of the hPRLR (S1(a) and S1(b)), which are derived from alternative splicing of exons 10 and 11. S1(a) encodes 376 amino acids (aa) that contain partial exon 10 and a unique 39-aa C-terminal region encoded by exon 11. S1(b) encodes 288 aa that lack the entire exon 10 and contains 3 amino acids at the C terminus derived from exon 11 using a shifted reading frame. These short forms, which were found in several normal tissues and in breast cancer cell lines, were expressed as cell surface receptors and possessed binding affinities comparable with the long form. Unlike the long form, neither short form was able to mediate the activation of the beta-casein gene promoter induced by prolactin. Instead they acted as dominant negative forms when co-expressed with the long form in transfected cells. Due to a marked difference in the cellular levels between the two short forms in transfected cells, S1(b) was more effective in inhibiting the prolactin-induced activation of the beta-casein gene promoter mediated by the long form of the receptor. The low cellular level of S1(a) was due to its more rapid turnover than the S1(b) protein. This is attributable to specific residues within the C-terminal unique 39 amino acids of the S1(a) form and may represent a new mechanism by which the hPRLR is modulated at the post-translational level. Since both short forms contain abbreviated cytoplasmic domains with unique C termini, they may also exhibit distinct signaling pathways in addition to modulating the signaling from the long form of the receptor. These receptors may therefore play important roles in the diversified actions of prolactin in human tissues.
Collapse
Affiliation(s)
- Z Z Hu
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
40
|
Horie S, Ishii H, Matsumoto F, Kusano M, Kizaki K, Matsuda J, Kazama M. Acceleration of thrombomodulin gene transcription by retinoic acid: retinoic acid receptors and Sp1 regulate the promoter activity through interactions with two different sequences in the 5'-flanking region of human gene. J Biol Chem 2001; 276:2440-50. [PMID: 11036068 DOI: 10.1074/jbc.m004942200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions between retinoic acid- (RA)-dependent transcriptional regulatory sequences of the 5'-untranslated region of the thrombomodulin gene and nuclear RA-responsive proteins were studied using human pancreas BxPC-3 cells. Deletion mutants of pTM-CAT plasmid revealed the presence of distal and proximal RA-responsive regions containing direct repeat with 4 spaces (DR4) and three of four Sp1 sites, respectively. Cotransfection of a pTM-CAT plasmid with expression plasmids of RA receptors (RARalpha, RARbeta, and RARgamma) augmented the promoter activity under the condition of lower retinoid X receptor-alpha (RXRalpha) expression, whereas the activity was greatly diminished when RXRalpha was highly expressed. An electrophoretic mobility shift assay with cDNA containing the DR4 indicated that heterodimers of RAR and RXRalpha interacted with the DR4 site, although the interaction gradually disappeared with the increase in the ratio of RXRalpha/RAR. On the other hand, Sp1 protein interacted especially with the tandem Sp1 site corresponding to the first and second Sp1 sequences of the four Sp1 sites in the proximal RA-responsive region. The binding of Sp1 to Sp1 sites was independent of RAR-RXR heterodimer but increased with the increase in Sp1 concentration in the presence of unknown factor(s) of reticulocyte lysate. Upon treatment of the cells with RA, time-dependent increases in the ratio of RARbeta to RXRalpha and the phosphorylated form of Sp1 were observed. We concluded that two genomic DNA regions, the DR4 site (-1531 to -1516) and the first and second Sp1-binding sites (-145 to -121), were involved in the RA-dependent augmentation of thrombomodulin gene expression through increased interactions of the two regions with heterodimer of RAR-RXRalpha and nuclear Sp1, respectively.
Collapse
Affiliation(s)
- S Horie
- Department of Clinical Biochemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui, Kanagawa 199-0195, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80:1523-631. [PMID: 11015620 DOI: 10.1152/physrev.2000.80.4.1523] [Citation(s) in RCA: 1555] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Collapse
Affiliation(s)
- M E Freeman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA.
| | | | | | | |
Collapse
|
42
|
Meng G, Inazawa J, Ishida R, Tokura K, Nakahara K, Aoki K, Kasai M. Structural analysis of the gene encoding RP58, a sequence-specific transrepressor associated with heterochromatin. Gene 2000; 242:59-64. [PMID: 10721697 DOI: 10.1016/s0378-1119(99)00477-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
RP58, a sequence-specific transcriptional repressor sharing homology with the POZ domain of a number of zinc-finger proteins, is highly synthesized in brain and localized in condensed chromatin regions, suggesting a role in transcriptional repression in the central nervous system. In the present study, genomic clones of the human rp58 gene were isolated to determine the complete genomic organization. Sequence analyses indicated that the human rp58 gene encoding the functional protein is uninterrupted over its entire 4.2 kb length. Comparison of the human and mouse rp58 genes revealed that they share not only a high homology in the amino acid sequences of their encoded proteins, but also a high degree of structural similarity at the genomic level. RT-PCR analysis also demonstrated the existence of an alternatively spliced form of rp58 similar to the previously reported zinc-finger cDNA, C2H2-171. Chromosomal mapping by fluorescence in situ hybridization analysis allowed localization of the rp58 gene to human chromosome 1q44 ter, a genetic region associated with a number of human malignancies and neurological disorders.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosome Mapping
- Chromosomes, Human, Pair 1/genetics
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons
- Gene Expression
- Genes/genetics
- Heterochromatin/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Introns
- Male
- Mice
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repressor Proteins/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
- Transcription Factors/genetics
Collapse
Affiliation(s)
- G Meng
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Brewer A, Gove C, Davies A, McNulty C, Barrow D, Koutsourakis M, Farzaneh F, Pizzey J, Bomford A, Patient R. The human and mouse GATA-6 genes utilize two promoters and two initiation codons. J Biol Chem 1999; 274:38004-16. [PMID: 10608869 DOI: 10.1074/jbc.274.53.38004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-6 has been implicated in the regulation of myocardial differentiation during cardiogenesis. To determine how its expression is controlled, we have characterized the human and mouse genes. We have mapped their transcriptional start sites and demonstrate that two alternative promoters and 5' noncoding exons are utilized. Both transcript isoforms are expressed in the same tissue-specific and developmental stage-specific pattern, and their ratio appears similar wherever examined. The more upstream noncoding exon showed a substantial degree of homology between the two mammalian species, suggesting a conserved regulatory function. Moreover, in transfection assays we show that elements within this exon act to promote its transcription. Positive regulatory elements that effect transcription from the more downstream exon were not apparent in this assay, revealing a regulatory distinction between the two promoters. We also demonstrate alternative initiator codon usage in both the human and mouse GATA-6 genes. Both isoforms of the protein are synthesized in vitro regardless of which 5' noncoding exon is present in the RNA, although the larger protein has greater transcriptional activation potential in transfection assays. Thus, GATA-6 function in the cell is controlled by a complex interplay of transcriptional and translational regulation.
Collapse
Affiliation(s)
- A Brewer
- Department of Molecular Medicine, The Rayne Institute, GKT, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Teixeira J, Kehas DJ, Antun R, Donahoe PK. Transcriptional regulation of the rat Müllerian inhibiting substance type II receptor in rodent Leydig cells. Proc Natl Acad Sci U S A 1999; 96:13831-8. [PMID: 10570158 PMCID: PMC24150 DOI: 10.1073/pnas.96.24.13831] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Müllerian inhibiting substance (MIS) causes regression of the fetal Müllerian duct on binding a heteromeric complex of types I and II cell-surface receptors in the fetal urogenital ridge. The MIS type II receptor (MISRII), which provides specificity for MIS, is also expressed in the adult testis, ovary, and uterus. The rat MISRII promoter was cloned to study the molecular mechanisms underlying its temporal and cell-specific expression. The 1.6-kilobase (kb) promoter contained no recognizable TATA or CAAT box, but there was a consensus Sp1 site upstream of the transcription initiation site. Two binding sites for the orphan nuclear receptor steroidogenic factor-1 (SF-1) are occupied in vitro by using nuclear extracts from R2C cells, an MIS-responsive rat Leydig cell line that expresses endogenous MISRII, with differing affinities, indicating that the distal SF-1 site is bound more avidly than is the proximal SF-1 site. R2C cells transfected with MISRII promoter/luciferase reporter constructs show a 12-fold induction with the 1.6-kb fragment and deletion of sequences upstream of -282-bp lowered luciferase expression to one-third. Mutation of both SF-1 sites greatly inhibited luciferase expression, whereas mutation of either site alone resulted in continuing activation by endogenous SF-1, indicating redundancy. In vitro binding and transcriptional analyses suggest that a proximal potential Smad-responsive element and an uncharacterized element also contribute to activation of the MISRII gene. R2C cells and MISRII promoter regulation can now be used to uncover endogenous transcription factors responsible for receptor expression or repression.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites
- Cloning, Molecular
- DNA, Complementary
- DNA-Binding Proteins/metabolism
- Fushi Tarazu Transcription Factors
- Gene Expression Regulation
- Genes, Reporter
- Homeodomain Proteins
- Leydig Cells/cytology
- Leydig Cells/metabolism
- Luciferases/genetics
- Male
- Molecular Sequence Data
- Promoter Regions, Genetic
- Rats
- Receptors, Cytoplasmic and Nuclear
- Receptors, Peptide/genetics
- Receptors, Transforming Growth Factor beta
- Sequence Analysis, DNA
- Steroidogenic Factor 1
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J Teixeira
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
45
|
Galsgaard ED, Nielsen JH, Møldrup A. Regulation of prolactin receptor (PRLR) gene expression in insulin-producing cells. Prolactin and growth hormone activate one of the rat prlr gene promoters via STAT5a and STAT5b. J Biol Chem 1999; 274:18686-92. [PMID: 10373481 DOI: 10.1074/jbc.274.26.18686] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the prolactin receptor (PRLR) gene is increased in pancreatic islets during pregnancy and in vitro in insulin-producing cells by growth hormone (GH) and prolactin (PRL). The 5'-region of the rat PRLR gene contains at least three alternative first exons that are expressed tissue-specifically because of differential promoter usage. We show by reverse transcription-polymerase chain reaction analysis that both exon 1A- and exon 1C-containing PRLR transcripts are expressed in rat islets and that human (h)GH, ovine (o)PRL, and bovine (b)GH increase exon 1A expression 6.5 +/- 0. 8-fold, 6.8 +/- 0.7-fold, and 3.9 +/- 0.7-fold and exon 1C expression 4.8 +/- 0.4-fold, 4.4 +/- 0.6-fold, and 2.5 +/- 0.7-fold, respectively. Expression of exon 1B was not detectable. The transcriptional activities of reporter constructs containing the 1A, 1B, or 1C promoter were found to be 22.8-fold, 2.7-fold, and 8. 0-fold, respectively, above that of a promoterless reporter construct when transfected into the insulin-producing INS-1 cells. The transcriptional activity of the 1A promoter construct was increased 8.9 +/- 1.9-fold by 0.5 microgram/ml hGH. Responsiveness to hGH of the 1A promoter was localized to the region from -225 to +81 with respect to the transcription start site. This region contains the sequence TTCTAGGAA that by gel retardation experiments was shown to bind the transcription factors STAT5a and STAT5b in response to stimulation by hGH, oPRL, or bGH. Mutation of this gamma-activated sequence-like element completely abolished transcriptional induction of the 1A promoter by hGH. Our results suggest that GH and PRL increase the levels of exon 1A- and 1C-containing PRLR mRNA species and furthermore that the transcriptional activity of the 1A promoter is increased via activation of STAT5a and STAT5b.
Collapse
Affiliation(s)
- E D Galsgaard
- Department of Cell Biology, Hagedorn Research Institute, Niels Steensensvej 6, DK-2820 Gentofte, Denmark.
| | | | | |
Collapse
|