1
|
Suga T, Kitani T, Kogure M, Oishi M, Ito F, Hoshino A, Ogata T, Ikeda K, Matoba S. Thousand and one amino acid protein kinase 1 suppression improves doxorubicin-induced cardiomyopathy by preventing cardiomyocyte death and dysfunction. Cardiovasc Res 2025; 121:601-613. [PMID: 39964965 DOI: 10.1093/cvr/cvaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/20/2024] [Accepted: 12/05/2024] [Indexed: 02/20/2025] Open
Abstract
AIMS Doxorubicin (DOX) is one of the most effective chemotherapeutic agents for various types of cancers. However, DOX often causes cardiotoxicity, which is referred to as DOX-induced cardiomyopathy (DIC). Despite extensive research, only a limited number of effective treatments are currently available. In this study, we aimed to identify a potential therapeutic target for DIC by preventing DOX-induced cell injury in cardiomyocytes. METHODS AND RESULTS We performed a kinome-wide CRISPR gene knockout screen in human cardiomyocytes derived from pluripotent stem cells (hPSC-CMs) and identified a member of the STE20 kinase family, thousand and one amino acid protein kinase 1 (TAOK1) as a potential regulator of DOX-induced cardiomyocyte death. Using CRISPR-mediated gene knockout and small interfering RNA-mediated gene knockdown, we demonstrated that TAOK1 suppression improved DOX-induced cardiomyocyte death and dysfunction, including sarcomere disarray, contractile dysfunction, DNA damage, and mitochondrial dysfunction in hPSC-CMs. Transcriptome analysis using RNA-seq also showed that DOX-induced mitochondrial dysfunction was attenuated by TAOK1 suppression. In contrast to the protective role of TAOK1 against DOX toxicity in cardiomyocytes, TAOK1 suppression did not induce DOX resistance in human cancer cell lines. DOX-induced activation of p38 mitogen-activated protein kinase (MAPK) was markedly attenuated in TAOK1-knockout hPSC-CMs. Furthermore, DOX-induced cardiomyocyte death and disruption of mitochondrial membrane potential were augmented by TAOK1 overexpression, which was partially attenuated by an inhibitor or knockdown of p38 MAPK or an apoptosis inhibitor. Finally, we demonstrated that TAOK1 suppression using adeno-associated virus (AAV)-mediated gene silencing attenuated DOX-induced myocardial damage, including myocardial fibrosis, apoptosis, and cardiomyocyte atrophy, resulting in improved cardiac function in a mouse model of DIC. CONCLUSION Our results indicate that TAOK1 suppression is a promising therapeutic approach for treating DIC in patients with cancer and highlight the advantages of hPSC-CMs as a platform to study drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Takaomi Suga
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomoya Kitani
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masaya Kogure
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masatsugu Oishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Fumiaki Ito
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Koji Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Epidemiology for Longevity and Regional Health, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Elkhateeb N, Crookes R, Spiller M, Pavinato L, Palermo F, Brusco A, Parker M, Park SM, Mendes AC, Saraiva JM, Hammer TB, Nazaryan-Petersen L, Barakat TS, Wilke M, Bhoj E, Ahrens-Nicklas RC, Li D, Nomakuchi T, Brilstra EH, Hunt D, Johnson D, Mansour S, Oprych K, Mehta SG, Platzer K, Schnabel F, Kiep H, Faust H, Prinzing G, Wiltrout K, Radley JA, Serrano Russi AH, Atallah I, Campos-Xavier B, Amor DJ, Morgan AT, Fagerberg C, Andersen UA, Andersen CB, Bijlsma EK, Bird LM, Mullegama SV, Green A, Isidor B, Cogné B, Kenny J, Lynch SA, Quin S, Low K, Herget T, Kortüm F, Levy RJ, Morrison JL, Wheeler PG, Narumanch T, Peron K, Matthews N, Uhlman J, Bell L, Pang L, Scurr I, Belles RS, Salbert BA, Schaefer GB, Green S, Ros A, Rodríguez-Palmero A, Višnjar T, Writzl K, Vasudevan PC, Balasubramanian M. Expanding the phenotype and genotype spectrum of TAOK1 neurodevelopmental disorder and delineating TAOK2 neurodevelopmental disorder. Genet Med 2025; 27:101348. [PMID: 39737487 DOI: 10.1016/j.gim.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025] Open
Abstract
PURPOSE The thousand and one kinase (TAOK) proteins are a group of serine/threonine-protein kinases involved in signaling pathways, cytoskeleton regulation, and neuronal development. TAOK1 variants are associated with a neurodevelopmental disorder (NDD) characterized by distinctive facial features, hypotonia, and feeding difficulties. TAOK2 variants have been reported to be associated with autism and early-onset obesity. However, a distinct TAOK2-NDD has not yet been delineated. METHODS We retrospectively studied the clinical and genetic data of individuals recruited from several centers with TAOK1 and TAOK2 variants that were detected through exome and genome sequencing. RESULTS We report 50 individuals with TAOK1 variants with associated phenotypes, including neurodevelopmental abnormalities (100%), macrocephaly (83%), and hypotonia (58%). We report male genital anomalies and hypoglycemia as novel phenotypes. Thirty-seven unique TAOK1 variants were identified. Most of the missense variants clustered in the protein kinase domain at residues that are intolerant to missense variation. We report 10 individuals with TAOK2 variants with associated phenotypes, including neurodevelopmental abnormalities (100%), macrocephaly (75%), autism (75%), and obesity (70%). CONCLUSION We describe the largest cohort of TAOK1-NDD to date, to our knowledge, expanding its phenotype and genotype spectrum with 30 novel variants. We delineated the phenotype of a novel TAOK2-NDD associated with neurodevelopmental abnormalities, autism, macrocephaly, and obesity.
Collapse
Affiliation(s)
- Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.
| | - Renarta Crookes
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, United Kingdom
| | - Michael Spiller
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, United Kingdom
| | - Lisa Pavinato
- Department of Medical Sciences, University of Turin, Turin, Italy; Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS(+)), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Flavia Palermo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Michael Parker
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ariana Costa Mendes
- Medical Genetics Department, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Jorge M Saraiva
- Medical Genetics Department, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal; University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Portugal; Clinical Academic Center of Coimbra, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Department of Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Lusine Nazaryan-Petersen
- Department of Genetics, Rigshospitalet, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Dong Li
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eva H Brilstra
- Department of Genetics and Brain Center, University Medical Center Utrecht, The Netherlands
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, United Kingdom
| | - Diana Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Sahar Mansour
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom; School of Biological and Molecular Sciences, St George's University of London, London, United Kingdom
| | - Kathryn Oprych
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Sarju G Mehta
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Franziska Schnabel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Henriette Kiep
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Helene Faust
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | | | | | - Jessica A Radley
- North West Thames Regional Genomics Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, United Kingdom
| | - Alvaro H Serrano Russi
- Division of Genetics, Department of Pediatrics, East Tennessee State University (ETSU), Quillen College of Medicine, TN
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - David J Amor
- Speech and Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Genetics, Lillebaelt Hospital, location Vejle Hospital, Vejle, Denmark
| | - Ulla A Andersen
- Department of Mental Health, Odense University Hospital, Odense, Denmark
| | | | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lynne M Bird
- Division of Genetics and Dysmorphology, Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, CA
| | | | - Andrew Green
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland; University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Bertrand Isidor
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France; CHU Nantes, Service de Génétique Médicale, Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Benjamin Cogné
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Janna Kenny
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Sally A Lynch
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Shauna Quin
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Karen Low
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom; Bristol Medical School, University of Bristol, United Kingdom
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rebecca J Levy
- Neurology and Neurological Sciences, Division of Child Neurology, Stanford University and Lucile Packard Children's Hospital, Palo Alto, CA
| | | | | | - TaraChandra Narumanch
- Division of Genetics, Department of Pediatrics, West Virginia University, Morgantown, WV
| | - Kristina Peron
- Division of Genetics, Department of Pediatrics, West Virginia University, Morgantown, WV
| | - Nicole Matthews
- Division of Genetics, Department of Pediatrics, West Virginia University, Morgantown, WV
| | | | - Lauren Bell
- University of Illinois College of Medicine, Peoria, IL
| | - Lewis Pang
- Exeter Genomics Laboratory, RILD Building, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Ingrid Scurr
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | | | | | | | - Sarah Green
- University of Arkansas for Medical Sciences, Little Rock, AR
| | - Andrea Ros
- Department of Genetics, Hospital Universitari Germans Trias i Pujol, Catalonia, Spain
| | - Agustí Rodríguez-Palmero
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Catalonia, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Tanja Višnjar
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Pradeep C Vasudevan
- Department of Clinical Genetics, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom; Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
3
|
Liu Y, Zhu Y, Wang X, Li Y, Yang S, Li H, Dong B, Wang Z, Song Y, Xu J, Xue C. Mechanisms by which Ganglioside GM1, a specific type of glycosphingolipid, ameliorates BMAA-induced neurotoxicity in early-life stage of zebrafish embryos. Food Res Int 2025; 200:115502. [PMID: 39779142 DOI: 10.1016/j.foodres.2024.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
The neurotoxin β-methylamino-L-alanine (BMAA) produced by cyanobacteria is widely present in foods and dietary supplements, posing a significant threat to human health. Ganglioside GM1 (GM1) has demonstrated potential for treating neurodegenerative diseases; however, its ability to prevent BMAA-induced neurotoxicity remains uncertain. In this study, zebrafish embryos were treated with Ganglioside GM1 to investigate its neuroprotective effects against BMAA exposure and the underlying mechanisms. Exposure to BMAA (400 μM) resulted in increased malformation rate and heart rates in zebrafish embryos at 72 h post-fertilization, along with the decreased survival rates. Conversely, GM1 intervention rescued BMAA-induced movement disorders and brain cell apoptosis, and oxidative stress was alleviated. In addition, GM1 inhibited the neurotoxic effects of BMAA in zebrafish embryos, as indicated by the up-regulation of genes related to neuron development (gpx1a, bdnf, ngfb, and islet-1) and the down-regulations of neurodegeneration-related genes (cdk5, gfap, and nptxr). GM1 treatment restored 261 differentially expressed genes (DEGs) identified through RNA sequencing, with the most enriched DEGs related to the mitogen-activated protein kinase (MAPK) signaling pathway (P < 0.05, 47 genes). GM1 modulated MAPK-targeted gene expression at the mRNA level. These findings suggest that GM1 alleviates BMAA-induced neurotoxicity in the early-life stage of zebrafish embryos. The neuroprotective mechanism may involve the MAPK pathway, offering new insights into lipid signaling for the prevention of neurotoxic hazards to biological health.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yuhe Zhu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yiyang Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Shuaiqi Yang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Hongyan Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Bo Dong
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Zhigao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China
| |
Collapse
|
4
|
Li J, Wei X, Dong Z, Fu Y, Ma Y, HailongWu. Research progress on anti-tumor mechanism of TAOK kinases. Cell Signal 2024; 124:111385. [PMID: 39265727 DOI: 10.1016/j.cellsig.2024.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Thousand and one amino-acid protein kinases(TAOKs), as a key member of the mitogen-activated protein kinase (MAPK) cascade, has recently attracted widespread attention in the field of anti-cancer research. There are three members of this subfamily: TAOK1, TAOK2, and TAOK3. Studies have shown that members of the TAOK family participate in regulating cell proliferation, apoptosis, migration, and invasion through various pathways, thereby playing an important role in tumorigenesis and progression. This review summarizes the functions of TAOK kinases in tumor cell signal transduction, cell cycle regulation, and the tumor microenvironment, with a particular emphasis on its potential as a target for anti-cancer drugs. Future research will further elucidate the specific mechanisms of action of TAOK kinase in different types of tumors and explore its clinical application prospects.
Collapse
Affiliation(s)
- Jilei Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Yangpu, 200093 Shanghai, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China
| | - Xindong Wei
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China; Shanghai University of Chinese Traditional Medicine, 201203 Shanghai, China
| | - Zhixin Dong
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China; Shanghai University of Chinese Traditional Medicine, 201203 Shanghai, China
| | - Yi Fu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China
| | - Yujie Ma
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China
| | - HailongWu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Yangpu, 200093 Shanghai, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China.
| |
Collapse
|
5
|
Cavalli A, Caraffi SG, Rizzi S, Trimarchi G, Napoli M, Frattini D, Spagnoli C, Garavelli L, Fusco C. Heterozygous truncating variant of TAOK1 in a boy with periventricular nodular heterotopia: a case report and literature review of TAOK1-related neurodevelopmental disorders. BMC Med Genomics 2024; 17:68. [PMID: 38443934 PMCID: PMC10916022 DOI: 10.1186/s12920-024-01840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Thousand and one amino-acid kinase 1 (TAOK1) encodes the MAP3K protein kinase TAO1, which has recently been displayed to be essential for neuronal maturation and cortical differentiation during early brain development. Heterozygous variants in TAOK1 have been reported in children with neurodevelopmental disorders, with or without macrocephaly, hypotonia and mild dysmorphic traits. Literature reports lack evidence of neuronal migration disorders in TAOK1 patients, although studies in animal models suggest this possibility. CASE PRESENTATION We provide a clinical description of a child with a neurodevelopmental disorder due to a novel TAOK1 truncating variant, whose brain magnetic resonance imaging displays periventricular nodular heterotopia. CONCLUSIONS To our knowledge, this is the first report of a neuronal migration disorder in a patient with a TAOK1-related neurodevelopmental disorder, thus supporting the hypothesized pathogenic mechanisms of TAOK1 defects.
Collapse
Affiliation(s)
- Anna Cavalli
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy.
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Susanna Rizzi
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Gabriele Trimarchi
- Medical Genetics Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Arcispedale santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| |
Collapse
|
6
|
Alasiri G, Alrfaei B, Alaseem AM, AlKhamees OA, Aldali JA, Aljehani AM, Alfahed A, Aziz MA, Almuhaini G, Alshehri MM. The role of TAOK3 in cancer progression and development as a prognostic marker: A pan-cancer analysis study. Saudi Pharm J 2024; 32:101942. [PMID: 38318319 PMCID: PMC10840358 DOI: 10.1016/j.jsps.2023.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
The protein kinase TAOK3, belongs to the MAP kinase family, is one of three closely related members, namely TAOK1, TAOK2, and TAOK3. We performed a pan-cancer investigation of TAOK3 across different cancer types, including uterine carcinosarcoma, adenocarcinoma of the stomach and pancreas, and endometrial carcinoma of the uterus, to better understand TAOK3's role in cancer. In at least 16 types of cancer, our findings indicate that TAOK3 expression levels differ considerably between normal and tumor tissues. In addition, our study is the first to identify the oncogenic role of TAOK3 locus S331 and S471 in renal clear cell carcinoma, Glioblastoma Multiforme, hepatocellular carcinoma, Lung adenocarcinoma, and Pancreatic adenocarcinoma, indicating their involvement in cancer progression. In addition, our data analysis indicates that copy number variation is the most prevalent form of mutation in the TAOK3 gene, and that there is a negative correlation between TAOK3 mRNA and DNA promoter methylation. Moreover, our analysis suggests that TAOK3 may serve as a prognostic marker for several kinds of cancer, including Colon adenocarcinoma, renal clear cell carcinoma, Lower Grade Glioma, Lung adenocarcinoma, Mesothelioma, and hepatocellular carcinoma. In addition, our research on signature cancer genes has uncovered a positive association between TAOK3 and SMAD2, SMAD4, and RNF168 in most of the malignancies we have examined. TAOK3 is also correlated with the frequency of mutations and microsatellite instability in four types of cancer. Numerous immune-related genes are closely associated with TAOK3 levels in numerous malignancies. TAOK3 expression is positively correlated with immune infiltrates, which include activated CD4 T cells, CD8 T cells, and type 2T helper cells. Our pan-cancer analysis of TAOK3 provides vital insight into its potential role across a variety of cancer types.
Collapse
Affiliation(s)
- Glowi Alasiri
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Bahauddeen Alrfaei
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard - Health Affairs (MNGHA), Saudi Arabia
- King Abullah International Medical Research Center, MNGHA, Saudi Arabia
| | - Ali M. Alaseem
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Osama A. AlKhamees
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Jehad A. Aldali
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Ala M. Aljehani
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Abdulaziz Alfahed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohammad Azhar Aziz
- Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh 202002, India
| | - Ghadir Almuhaini
- King Saud bin Abdulaziz University for Health Sciences, Saudi Arabia
| | - Mana M. Alshehri
- King Abullah International Medical Research Center, MNGHA, Saudi Arabia
- Connell and O'Reilly Families-Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
7
|
Byeon S, Yadav S. Pleiotropic functions of TAO kinases and their dysregulation in neurological disorders. Sci Signal 2024; 17:eadg0876. [PMID: 38166033 PMCID: PMC11810052 DOI: 10.1126/scisignal.adg0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024]
Abstract
Thousand and one amino acid kinases (TAOKs) are relatively understudied and functionally pleiotropic protein kinases that have emerged as important regulators of neurodevelopment. Through their conserved amino-terminal catalytic domain, TAOKs mediate phosphorylation at serine/threonine residues in their substrates, but it is their divergent regulatory carboxyl-terminal domains that confer both exquisite functional specification and cellular localization. In this Review, we discuss the physiological roles of TAOKs and the intricate signaling pathways, molecular interactions, and cellular behaviors they modulate-from cell stress responses, division, and motility to tissue homeostasis, immunity, and neurodevelopment. These insights are then integrated into an analysis of the known and potential impacts of disease-associated variants of TAOKs, with a focus on neurodevelopmental disorders, pain and addiction, and neurodegenerative diseases. Translating this foundation into clinical benefits for patients will require greater structural and functional differentiation of the TAOKs afforded by their individually specialized domains.
Collapse
Affiliation(s)
- Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Wang J, Li W, Li Z, Xue Z, Zhang Y, Yuan Y, Shi Y, Shan S, Han W, Li F, Qiu Z. Taok1 haploinsufficiency leads to autistic-like behaviors in mice via the dorsal raphe nucleus. Cell Rep 2023; 42:113078. [PMID: 37656623 DOI: 10.1016/j.celrep.2023.113078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/11/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Strong evidence from human genetic studies associates the thousand and one amino acid kinase 1 (TAOK1) gene with autism spectrum disorder (ASD). In this work, we discovered a de novo frameshifting mutation in TAOK1 within a Chinese ASD cohort. We found that Taok1 haploinsufficiency induces autistic-like behaviors in mice. Importantly, we observed a significant enrichment of Taok1 in the dorsal raphe nucleus (DRN). The haploinsufficiency of Taok1 considerably restrained the activation of DRN neurons during social interactions, leading to the aberrant phosphorylation of numerous proteins. Intriguingly, the genetic deletion of Taok1 in VGlut3-positive neurons of DRN resulted in mice exhibiting autistic-like behaviors. Ultimately, reintroducing wild-type Taok1, but not its kinase-dead variant, into the DRN of adult mice effectively mitigated the autistic-like behaviors associated with Taok1 haploinsufficiency. This work suggests that Taok1, through its influence in the DRN, regulates social interaction behaviors, providing critical insights into the etiology of ASD.
Collapse
Affiliation(s)
- Jincheng Wang
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weike Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zimeng Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuefang Zhang
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Yuan
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Shi
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shifang Shan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenjian Han
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinic Neuroscience Center, Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Yoder MD, Van Osten S, Weber GF. Gene expression analysis of the Tao kinase family of Ste20p-like map kinase kinase kinases during early embryonic development in Xenopus laevis. Gene Expr Patterns 2023; 48:119318. [PMID: 37011704 PMCID: PMC10453956 DOI: 10.1016/j.gep.2023.119318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Development of the vertebrate embryo requires strict coordination of a highly complex series of signaling cascades, that drive cell proliferation, differentiation, migration, and the general morphogenetic program. Members of the Map kinase signaling pathway are repeatedly required throughout development to activate the downstream effectors, ERK, p38, and JNK. Regulation of these pathways occurs at many levels in the signaling cascade, with the Map3Ks playing an essential role in target selection. The thousand and one amino acid kinases (Taoks) are Map3Ks that have been shown to activate both p38 and JNK and are linked to neurodevelopment in both invertebrate and vertebrate organisms. In vertebrates, there are three Taok paralogs (Taok1, Taok2, and Taok3) which have not yet been ascribed a role in early development. Here we describe the spatiotemporal expression of Taok1, Taok2, and Taok3 in the model organism Xenopus laevis. The X. laevis Tao kinases share roughly 80% identity to each other, with the bulk of the conservation in the kinase domain. Taok1 and Taok3 are highly expressed in pre-gastrula and gastrula stage embryos, with initial expression localized to the animal pole and later expression in the ectoderm and mesoderm. All three Taoks are expressed in the neural and tailbud stages, with overlapping expression in the neural tube, notochord, and many anterior structures (including branchial arches, brain, otic vesicles, and eye). The expression patterns described here provide evidence that the Tao kinases may play a central role in early development, in addition to their function during neural development, and establish a framework to better understand the developmental roles of Tao kinase signaling.
Collapse
Affiliation(s)
- Michael D Yoder
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA.
| | - Steven Van Osten
- Sciences Division, Brandywine Campus, The Pennsylvania State University, Media, PA, 19063, USA.
| | - Gregory F Weber
- Department of Biology, University of Indianapolis, Indianapolis, IN, 46227, USA.
| |
Collapse
|
10
|
Xia Y, Andersson E, Anand SK, Cansby E, Caputo M, Kumari S, Porosk R, Kilk K, Nair S, Marschall HU, Blüher M, Mahlapuu M. Silencing of STE20-type kinase TAOK1 confers protection against hepatocellular lipotoxicity through metabolic rewiring. Hepatol Commun 2023; 7:02009842-202304010-00004. [PMID: 36930872 PMCID: PMC10027040 DOI: 10.1097/hc9.0000000000000037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/19/2022] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND NAFLD has become the leading cause of chronic liver disease worldwide afflicting about one quarter of the adult population. NASH is a severe subtype of NAFLD, which in addition to hepatic steatosis connotes liver inflammation and hepatocyte ballooning. In light of the exponentially increasing prevalence of NAFLD, it is imperative to gain a better understanding of its molecular pathogenesis. The aim of this study was to examine the potential role of STE20-type kinase TAOK1 -a hepatocellular lipid droplet-associated protein-in the regulation of liver lipotoxicity and NAFLD etiology. METHODS The correlation between TAOK1 mRNA expression in liver biopsies and the severity of NAFLD was evaluated in a cohort of 62 participants. Immunofluorescence microscopy was applied to describe the subcellular localization of TAOK1 in human and mouse hepatocytes. Metabolic reprogramming and oxidative/endoplasmic reticulum stress were investigated in immortalized human hepatocytes, where TAOK1 was overexpressed or silenced by small interfering RNA, using functional assays, immunofluorescence microscopy, and colorimetric analysis. Migration, invasion, and epithelial-mesenchymal transition were examined in TAOK1-deficient human hepatoma-derived cells. Alterations in hepatocellular metabolic and pro-oncogenic signaling pathways were assessed by immunoblotting. RESULTS We observed a positive correlation between the TAOK1 mRNA abundance in human liver biopsies and key hallmarks of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Furthermore, we found that TAOK1 protein fully colocalized with intracellular lipid droplets in human and mouse hepatocytes. The silencing of TAOK1 alleviated lipotoxicity in cultured human hepatocytes by accelerating lipid catabolism (mitochondrial β-oxidation and triacylglycerol secretion), suppressing lipid anabolism (fatty acid influx and lipogenesis), and mitigating oxidative/endoplasmic reticulum stress, and the opposite changes were detected in TAOK1-overexpressing cells. We also found decreased proliferative, migratory, and invasive capacity, as well as lower epithelial-mesenchymal transition in TAOK1-deficient human hepatoma-derived cells. Mechanistic studies revealed that TAOK1 knockdown inhibited ERK and JNK activation and repressed acetyl-CoA carboxylase (ACC) protein abundance in human hepatocytes. CONCLUSIONS Together, we provide the first experimental evidence supporting the role of hepatic lipid droplet-decorating kinase TAOK1 in NAFLD development through mediating fatty acid partitioning between anabolic and catabolic pathways, regulating oxidative/endoplasmic reticulum stress, and modulating metabolic and pro-oncogenic signaling.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Sumit K Anand
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Syam Nair
- Institute of Neuroscience and Physiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Zhuo Y, Robleto VL, Marchese A. Proximity Labeling to Identify β-Arrestin1 Binding Partners Downstream of Ligand-Activated G Protein-Coupled Receptors. Int J Mol Sci 2023; 24:3285. [PMID: 36834700 PMCID: PMC9967311 DOI: 10.3390/ijms24043285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
β-arrestins are multifaceted adaptor proteins that regulate various aspects of G protein-coupled receptor (GPCR) signaling. β-arrestins are recruited to agonist-activated and phosphorylated GPCRs at the plasma membrane, thereby preventing G protein coupling, while also targeting GPCRs for internalization via clathrin-coated pits. In addition, β-arrestins can activate various effector molecules to prosecute their role in GPCR signaling; however, the full extent of their interacting partners remains unknown. To discover potentially novel β-arrestin interacting partners, we used APEX-based proximity labeling coupled with affinity purification and quantitative mass spectrometry. We appended APEX in-frame to the C-terminus of β-arrestin1 (βarr1-APEX), which we show does not impact its ability to support agonist-stimulated internalization of GPCRs. By using coimmunoprecipitation, we show that βarr1-APEX interacts with known interacting proteins. Furthermore, following agonist stimulation βarr1-APEX labeled known βarr1-interacting partners as assessed by streptavidin affinity purification and immunoblotting. Aliquots were prepared in a similar manner and analyzed by tandem mass tag labeling and high-content quantitative mass spectrometry. Several proteins were found to be increased in abundance following GPCR stimulation. Biochemical experiments confirmed two novel proteins that interact with β-arrestin1, which we predict are novel ligand-stimulated βarr1 interacting partners. Our study highlights that βarr1-APEX-based proximity labeling represents a valuable approach to identifying novel players involved in GPCR signaling.
Collapse
Affiliation(s)
| | | | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Amici DR, Ansel DJ, Metz KA, Smith RS, Phoumyvong CM, Gayatri S, Chamera T, Edwards SL, O’Hara BP, Srivastava S, Brockway S, Takagishi SR, Cho BK, Goo YA, Kelleher NL, Ben-Sahra I, Foltz DR, Li J, Mendillo ML. C16orf72/HAPSTR1 is a molecular rheostat in an integrated network of stress response pathways. Proc Natl Acad Sci U S A 2022; 119:e2111262119. [PMID: 35776542 PMCID: PMC9271168 DOI: 10.1073/pnas.2111262119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
All cells contain specialized signaling pathways that enable adaptation to specific molecular stressors. Yet, whether these pathways are centrally regulated in complex physiological stress states remains unclear. Using genome-scale fitness screening data, we quantified the stress phenotype of 739 cancer cell lines, each representing a unique combination of intrinsic tumor stresses. Integrating dependency and stress perturbation transcriptomic data, we illuminated a network of genes with vital functions spanning diverse stress contexts. Analyses for central regulators of this network nominated C16orf72/HAPSTR1, an evolutionarily ancient gene critical for the fitness of cells reliant on multiple stress response pathways. We found that HAPSTR1 plays a pleiotropic role in cellular stress signaling, functioning to titrate various specialized cell-autonomous and paracrine stress response programs. This function, while dispensable to unstressed cells and nematodes, is essential for resilience in the presence of stressors ranging from DNA damage to starvation and proteotoxicity. Mechanistically, diverse stresses induce HAPSTR1, which encodes a protein expressed as two equally abundant isoforms. Perfectly conserved residues in a domain shared between HAPSTR1 isoforms mediate oligomerization and binding to the ubiquitin ligase HUWE1. We show that HUWE1 is a required cofactor for HAPSTR1 to control stress signaling and that, in turn, HUWE1 feeds back to ubiquitinate and destabilize HAPSTR1. Altogether, we propose that HAPSTR1 is a central rheostat in a network of pathways responsible for cellular adaptability, the modulation of which may have broad utility in human disease.
Collapse
Affiliation(s)
- David R. Amici
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Daniel J. Ansel
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Kyle A. Metz
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Roger S. Smith
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Claire M. Phoumyvong
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Sitaram Gayatri
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Tomasz Chamera
- Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Stacey L. Edwards
- Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Brendan P. O’Hara
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Shashank Srivastava
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Sonia Brockway
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Seesha R. Takagishi
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Byoung-Kyu Cho
- Northwestern Proteomics Center of Excellence Core Facility, Northwestern University, Evanston, IL 60208
| | - Young Ah Goo
- Northwestern Proteomics Center of Excellence Core Facility, Northwestern University, Evanston, IL 60208
| | - Neil L. Kelleher
- Northwestern Proteomics Center of Excellence Core Facility, Northwestern University, Evanston, IL 60208
| | - Issam Ben-Sahra
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Daniel R. Foltz
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Jian Li
- Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Marc L. Mendillo
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| |
Collapse
|
13
|
Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022; 11:cells11010160. [PMID: 35011721 PMCID: PMC8750433 DOI: 10.3390/cells11010160] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity and ageing place a tremendous strain on the global healthcare system. Age-related sarcopenia is characterized by decreased muscular strength, decreased muscle quantity, quality, and decreased functional performance. Sarcopenic obesity (SO) is a condition that combines sarcopenia and obesity and has a substantial influence on the older adults’ health. Because of the complicated pathophysiology, there are disagreements and challenges in identifying and diagnosing SO. Recently, it has become clear that dysbiosis may play a role in the onset and progression of sarcopenia and SO. Skeletal muscle secretes myokines during contraction, which play an important role in controlling muscle growth, function, and metabolic balance. Myokine dysfunction can cause and aggravate obesity, sarcopenia, and SO. The only ways to prevent and slow the progression of sarcopenia, particularly sarcopenic obesity, are physical activity and correct nutritional support. While exercise cannot completely prevent sarcopenia and age-related loss in muscular function, it can certainly delay development and slow down the rate of sarcopenia. The purpose of this review was to discuss potential pathways to muscle deterioration in obese individuals. We also want to present the current understanding of the role of various factors, including microbiota and myokines, in the process of sarcopenia and SO.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-008 Krakow, Poland
- Correspondence: ; Tel.: +48-12-421-93-51
| | - Piotr Pierzchalski
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Marian Szczepanik
- Department of Medical Biology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| |
Collapse
|
14
|
Nosratpour S, Ndiaye K. Ankyrin-repeat and SOCS box-containing protein 9 (ASB9) regulates ovarian granulosa cells function and MAPK signaling. Mol Reprod Dev 2021; 88:830-843. [PMID: 34476862 DOI: 10.1002/mrd.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/03/2021] [Accepted: 08/24/2021] [Indexed: 11/05/2022]
Abstract
Ankyrin-repeat and SOCS box-containing proteins (ASB) interact with the elongin B-C adapter via their SOCS box domain and with the cullin and ring box proteins to form E3 ubiquitin ligase complexes within the protein ubiquitination pathway. ASB9 in particular is a differentially expressed gene in ovulatory follicles (OFs) induced by the luteinizing hormone (LH) surge or hCG injection in ovarian granulosa cells (GC) while downregulated in growing dominant follicles. Although ASB9 has been involved in biological processes such as protein modification, the signaling network associated with ASB9 in GC is yet to be fully defined. We previously identified and reported ASB9 interactions and binding partners in GC including PAR1, TAOK1, and TNFAIP6/TSG6. Here, we further investigate ASB9 effects on target binding partners regulation and signaling in GC. CRISPR/Cas9-induced inhibition of ASB9 revealed that ASB9 regulates PAR1, TAOK1, TNFAIP6 as well as genes associated with proliferation and cell cycle progression such as PCNA, CCND2, and CCNE2 while CCNA2 was not affected. Inhibition of ASB9 was also associated with increased GC number and decreased caspase3/7 activity, CASP3 expression, and BAX/BCL2 ratio. Furthermore, ASB9 induction in OF in vivo 24 h post-hCG is concomitant with a significant decrease in phosphorylation levels of MAPK3/1 while pMAPK3/1 levels increased following ASB9 inhibition in GC in vitro. Together, these results provide strong evidence for ASB9 as a regulator of GC activity and function by modulating MAPK signaling likely through specific binding partners such as PAR1, therefore controlling GC proliferation and contributing to GC differentiation into luteal cells.
Collapse
Affiliation(s)
- Soma Nosratpour
- Centre de Recherche en Reproduction et Fertilité (CRRF), Veterinary Biomedicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Kalidou Ndiaye
- Centre de Recherche en Reproduction et Fertilité (CRRF), Veterinary Biomedicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
15
|
Leso V, Fontana L, Finiello F, De Cicco L, Luigia Ercolano M, Iavicoli I. Noise induced epigenetic effects: A systematic review. Noise Health 2021; 22:77-89. [PMID: 33402608 PMCID: PMC8000140 DOI: 10.4103/nah.nah_17_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Noise-induced hearing loss (NIHL) is one of the leading causes of acquired sensorineural hearing loss. However, molecular mechanisms responsible for its pathogenesis remain to be elucidated. Epigenetic changes, i.e. DNA methylation, histone and microRNA expression modifications may function as a link between noise exposure and hearing loss. Therefore, the aim of the present review was to assess whether epigenetic alterations may serve as biomarkers of noise exposure or early effect. Materials and Methods: A systematic review of studies available in Pubmed, Scopus, and ISI Web of Science databases was performed. Results: Noise exposure was able to induce alterations in DNA methylation levels in workers and animal models, resulting in expression changes of genes related to hearing loss and also to extra-auditory effects. Differently expressed microRNAs were determined in NIHL workers compared to noise-exposed subjects with normal hearing, supporting their possible role as biomarkers of effect. Acoustic trauma affected histon acethylation and methylation levels in animals, suggesting their influence in the pathogenesis of acute noise-induced damage and their role as targets for potential therapeutic treatments. Conclusions: Although preliminary data suggest a relationship between noise and epigenetic effects, the limited number of studies, their different methodologies and the lack of adequate characterization of acoustic insults prevent definite conclusions. In this context, further research aimed to define the epigenetic impact of workplace noise exposure and the role of such alterations in predicting hearing loss may be important for the adoption of correct risk assessment and management strategies in occupational settings.
Collapse
Affiliation(s)
- Veruscka Leso
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luca Fontana
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ferdinando Finiello
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luigi De Cicco
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Maria Luigia Ercolano
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ivo Iavicoli
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Hu C, Feng P, Yang Q, Xiao L. Clinical and Neurobiological Aspects of TAO Kinase Family in Neurodevelopmental Disorders. Front Mol Neurosci 2021; 14:655037. [PMID: 33867937 PMCID: PMC8044823 DOI: 10.3389/fnmol.2021.655037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the complexity of neurodevelopmental disorders (NDDs), from their genotype to phenotype, in the last few decades substantial progress has been made in understanding their pathophysiology. Recent accumulating evidence shows the relevance of genetic variants in thousand and one (TAO) kinases as major contributors to several NDDs. Although it is well-known that TAO kinases are a highly conserved family of STE20 kinase and play important roles in multiple biological processes, the emerging roles of TAO kinases in neurodevelopment and NDDs have yet to be intensively discussed. In this review article, we summarize the potential roles of the TAO kinases based on structural and biochemical analyses, present the genetic data from clinical investigations, and assess the mechanistic link between the mutations of TAO kinases, neuropathology, and behavioral impairment in NDDs. We then offer potential perspectives from basic research to clinical therapies, which may contribute to fully understanding how TAO kinases are involved in NDDs.
Collapse
Affiliation(s)
- Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Pan Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qian Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
van Woerden GM, Bos M, de Konink C, Distel B, Avagliano Trezza R, Shur NE, Barañano K, Mahida S, Chassevent A, Schreiber A, Erwin AL, Gripp KW, Rehman F, Brulleman S, McCormack R, de Geus G, Kalsner L, Sorlin A, Bruel AL, Koolen DA, Gabriel MK, Rossi M, Fitzpatrick DR, Wilkie AOM, Calpena E, Johnson D, Brooks A, van Slegtenhorst M, Fleischer J, Groepper D, Lindstrom K, Innes AM, Goodwin A, Humberson J, Noyes A, Langley KG, Telegrafi A, Blevins A, Hoffman J, Guillen Sacoto MJ, Juusola J, Monaghan KG, Punj S, Simon M, Pfundt R, Elgersma Y, Kleefstra T. TAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development. Hum Mutat 2021; 42:445-459. [PMID: 33565190 PMCID: PMC8248425 DOI: 10.1002/humu.24176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/29/2020] [Accepted: 02/05/2021] [Indexed: 01/05/2023]
Abstract
Thousand and one amino-acid kinase 1 (TAOK1) is a MAP3K protein kinase, regulating different mitogen-activated protein kinase pathways, thereby modulating a multitude of processes in the cell. Given the recent finding of TAOK1 involvement in neurodevelopmental disorders (NDDs), we investigated the role of TAOK1 in neuronal function and collected a cohort of 23 individuals with mostly de novo variants in TAOK1 to further define the associated NDD. Here, we provide evidence for an important role for TAOK1 in neuronal function, showing that altered TAOK1 expression levels in the embryonic mouse brain affect neural migration in vivo, as well as neuronal maturation in vitro. The molecular spectrum of the identified TAOK1 variants comprises largely truncating and nonsense variants, but also missense variants, for which we provide evidence that they can have a loss of function or dominant-negative effect on TAOK1, expanding the potential underlying causative mechanisms resulting in NDD. Taken together, our data indicate that TAOK1 activity needs to be properly controlled for normal neuronal function and that TAOK1 dysregulation leads to a neurodevelopmental disorder mainly comprising similar facial features, developmental delay/intellectual disability and/or variable learning or behavioral problems, muscular hypotonia, infant feeding difficulties, and growth problems.
Collapse
Affiliation(s)
- Geeske M van Woerden
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Melanie Bos
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Ben Distel
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands.,Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Natasha E Shur
- Division of Genetics and Metabolism, Rare Disease Institute, Children's National Medical Center, Washington, District of Columbia, USA
| | - Kristin Barañano
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Sonal Mahida
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | - Angelika L Erwin
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karen W Gripp
- Division of Medical Genetics, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Fatima Rehman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Saskia Brulleman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Róisín McCormack
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Gwynna de Geus
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Louisa Kalsner
- Departments of Neurology and Pediatrics, Connecticut Children's Medical Center and University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Arthur Sorlin
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares «Anomalies du Développement et syndromes malformatifs», Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Ange-Line Bruel
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares «Anomalies du Développement et syndromes malformatifs», Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - David A Koolen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Melissa K Gabriel
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, California, USA
| | - Mari Rossi
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, California, USA
| | | | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Oxford Craniofacial Unit, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Johnson
- Oxford Craniofacial Unit, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | - Julie Fleischer
- Department of Pediatrics, SIU School of Medicine, Springfield, Illinois, USA
| | - Daniel Groepper
- Department of Pediatrics, SIU School of Medicine, Springfield, Illinois, USA
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Allison Goodwin
- VCU Medical Center, Clinical Genetics Services, Richmond, Virginia, USA
| | - Jennifer Humberson
- Division of Pediatric Genetics, Department of Pediatrics, University of Virginia Medical Center, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Ye J, Shi M, Chen W, Zhu F, Duan Q. Research Advances in the Molecular Functions and Relevant Diseases of TAOKs, Novel STE20 Kinase Family Members. Curr Pharm Des 2021; 26:3122-3133. [PMID: 32013821 DOI: 10.2174/1381612826666200203115458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
As serine/threonine-protein kinases, Thousand and One Kinases(TAOKs) are members of the GCKlike superfamily, one of two well-known branches of the Ste20 kinase family. Within the last two decades, three functionally similar kinases, namely TAOK1-3, were identified. TAOKs are involved in many molecular and cellular events. Scholars widely believe that TAOKs act as kinases upstream of the MAPK cascade and as factors that interact with MST family kinases, the cytoskeleton, and apoptosis-associated proteins. Therefore, TAOKs are thought to function in tumorigenesis. Additionally, TAOKs participate in signal transduction induced by Notch, TCR, and IL-17. Recent studies found that TAOKs play roles in a series of diseases and conditions, such as the central nervous system dysfunction, herpes viral infection, immune system imbalance, urogenital system malformation during development, cardiovascular events, and childhood obesity. Therefore, inhibitory chemicals targeting TAOKs may be of great significance as potential drugs for these diseases.
Collapse
Affiliation(s)
- Junjie Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingjun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
19
|
Lai TC, Fang CY, Jan YH, Hsieh HL, Yang YF, Liu CY, Chang PMH, Hsiao M. Kinase shRNA screening reveals that TAOK3 enhances microtubule-targeted drug resistance of breast cancer cells via the NF-κB signaling pathway. Cell Commun Signal 2020; 18:164. [PMID: 33087151 PMCID: PMC7579951 DOI: 10.1186/s12964-020-00600-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chemotherapy is currently one of the most effective treatments for advanced breast cancer. Anti-microtubule agents, including taxanes, eribulin and vinca-alkaloids are one of the primary major anti-breast cancer chemotherapies; however, chemoresistance remains a problem that is difficult to solve. We aimed to discover novel candidate protein targets to combat chemoresistance in breast cancer. METHODS A lentiviral shRNA-based high-throughput screening platform was designed and developed to screen the global kinome to find new therapeutic targets in paclitaxel-resistant breast cancer cells. The phenotypes were confirmed with alternative expression in vitro and in vivo. Molecular mechanisms were investigated using global phosphoprotein arrays and expression microarrays. Global microarray analysis was performed to determine TAOK3 and genes that induced paclitaxel resistance. RESULTS A serine/threonine kinase gene, TAOK3, was identified from 724 screened kinase genes. TAOK3 shRNA exhibited the most significant reduction in IC50 values in response to paclitaxel treatment. Ectopic downregulation of TAOK3 resulted in paclitaxel-resistant breast cancer cells sensitize to paclitaxel treatment in vitro and in vivo. The expression of TAOK3 also was correlated to sensitivity to two other anti-microtubule drugs, eribulin and vinorelbine. Our TAOK3-modulated microarray analysis indicated that NF-κB signaling played a major upstream regulation role. TAOK3 inhibitor, CP43, and shRNA of NF-κB both reduced the paclitaxel resistance in TAOK3 overexpressed cells. In clinical microarray databases, high TAOK3 expressed breast cancer patients had poorer prognoses after adjuvant chemotherapy. CONCLUSIONS Here we identified TAOK3 overexpression increased anti-microtubule drug resistance through upregulation of NF-κB signaling, which reduced cell death in breast cancer. Therefore, inhibition of the interaction between TAOK3 and NF-κB signaling may have therapeutic implications for breast cancer patients treated with anti-microtubule drugs. Video abstract.
Collapse
Affiliation(s)
- Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chih-Yeu Fang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | | | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Chun-Yu Liu
- Department of Oncology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.
- Faculty of Medicine, National Yang Ming University, Taipei, 112, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Faculty of Medicine, National Yang Ming University, Taipei, 112, Taiwan.
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- The Ph.D.Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
20
|
Fang CY, Lai TC, Hsiao M, Chang YC. The Diverse Roles of TAO Kinases in Health and Diseases. Int J Mol Sci 2020; 21:E7463. [PMID: 33050415 PMCID: PMC7589832 DOI: 10.3390/ijms21207463] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Thousand and one kinases (TAOKs) are members of the MAP kinase kinase kinase (MAP3K) family. Three members of this subfamily, TAOK1, 2, and 3, have been identified in mammals. It has been shown that TAOK1, 2 and 3 regulate the p38 MAPK and Hippo signaling pathways, while TAOK 1 and 2 modulate the SAPK/JNK cascade. Furthermore, TAOKs are involved in additional interactions with other cellular proteins and all of these pathways modulate vital physiological and pathophysiological responses in cells and tissues. Dysregulation of TAOK-related pathways is implicated in the development of diseases including inflammatory and immune disorders, cancer and drug resistance, and autism and Alzheimer's diseases. This review collates current knowledge concerning the roles of TAOKs in protein-protein interaction, signal transduction, physiological regulation, and pathogenesis and summarizes the recent development of TAOK-specific inhibitors that have the potential to ameliorate TAOKs' effects in pathological situations.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Science, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
21
|
Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep 2020; 39:220733. [PMID: 31652447 PMCID: PMC6822489 DOI: 10.1042/bsr20190749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Birth hypoxia causes neonatal mortality and morbidity. Hypoxia/ischemia can facilitate brain damage, causing various kinds of diseases, such as ischemic stroke. It is necessary to understand the potential underlying mechanisms of ischemic stroke. Previous studies revealed the involvement of thousand and one kinase 1 (TAOK1) in many cellular processes. Methods: Herein, middle cerebral artery (MCA) occlusion (MCAO) was performed in rats to establish ischemic stroke in the animal model, and cortical neural stem cells from rats were treated with oxygen-glucose deprivation (OGD) to induce ischemic stroke cell model. The animal model of ischemic stroke was validated by Bederson and Zea-Longa neurological deficit scores and rotarod test. TAOK1 expression was examined by quantitative real-time PCR (qRT-PCR), Western blot, and immunofluorescent staining both in vivo and in vitro. Result: Compared with sham animals, the MCAO rats showed a significant increase in the neurological scores, and obvious motor behavioral deficits. Meanwhile, there was increased apoptosis and inflammatory response in the model group. TAOK1 overexpression reversed the OGD-induced cell injury, while TAOK1 knockdown exhibited the opposing effects. On the mechanism, the OGD-induced suppression of PI3K/AKT, and activation of mitogen-activated protein kinase (MAPK) signaling pathways were abolished by TAOK1 overexpression, and aggravated by TAOK1 knockdown in vitro. Moreover, we proved that the inhibitory effect of TAOK1 on OGD-induced apoptosis was dependent on the intracellular kinase activity. Conclusion: TAOK1 protected MCAO-induced cerebral ischemic stroke by decreasing the pro-inflammatory factors and apoptosis via PI3K/AKT and MAPK signaling pathways.
Collapse
|
22
|
Zhu L, Yu Q, Gao P, Liu Q, Luo X, Jiang G, Ji R, Yang R, Ma X, Xu J, Yuan H, Zhou J, An H. TAOK1 positively regulates TLR4-induced inflammatory responses by promoting ERK1/2 activation in macrophages. Mol Immunol 2020; 122:124-131. [PMID: 32344244 DOI: 10.1016/j.molimm.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/19/2022]
Abstract
Thousand and one amino acid kinase 1 (TAOK1) is a member of Ste20-like kinases, but its function in regulating inflammatory responses remains largely unknown. In this study, we identify TAOK1 as a positive regulator of TLR4-triggered inflammatory responses in macrophages. TAOK1 increases LPS-induced production of pro-inflammatory cytokine such as IL-6, TNF-α and IL12p40 in macrophages. TAOK1 deficient mice showed decreased susceptibility to endotoxin shock, with less pro-inflammatory cytokine production than control mice. TAOK1 promotes LPS-induced activation of ERK1/2 by constitutively interacting with TRAF6 and TPL2. These finding unravel the important role of TAOK1 as a positive regulator of TLR4-induced inflammatory responses.
Collapse
Affiliation(s)
- Lingxi Zhu
- Clinical Cancer Institute, Translational Medicine Center, Second Military Medical University, Shanghai 200433, China
| | - Qingzhuo Yu
- Clinical Cancer Institute, Translational Medicine Center, Second Military Medical University, Shanghai 200433, China
| | - Peng Gao
- Clinical Cancer Institute, Translational Medicine Center, Second Military Medical University, Shanghai 200433, China
| | - Qianru Liu
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaogang Luo
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guixian Jiang
- Clinical Cancer Institute, Translational Medicine Center, Second Military Medical University, Shanghai 200433, China
| | - Ruihua Ji
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xianwei Ma
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jing Xu
- Clinical Cancer Institute, Translational Medicine Center, Second Military Medical University, Shanghai 200433, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jun Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Huazhang An
- Clinical Cancer Institute, Translational Medicine Center, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
23
|
Garg R, Koo CY, Infante E, Giacomini C, Ridley AJ, Morris JDH. Rnd3 interacts with TAO kinases and contributes to mitotic cell rounding and spindle positioning. J Cell Sci 2020; 133:jcs235895. [PMID: 32041905 DOI: 10.1242/jcs.235895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 01/22/2023] Open
Abstract
Rnd3 is an atypical Rho family protein that is constitutively GTP bound, and acts on membranes to induce loss of actin stress fibers and cell rounding. Phosphorylation of Rnd3 promotes 14-3-3 binding and its relocation to the cytosol. Here, we show that Rnd3 binds to the thousand-and-one amino acid kinases TAOK1 and TAOK2 in vitro and in cells. TAOK1 and TAOK2 can phosphorylate serine residues 210, 218 and 240 near the C-terminus of Rnd3, and induce Rnd3 translocation from the plasma membrane to the cytosol. TAOKs are activated catalytically during mitosis and Rnd3 phosphorylation on serine 210 increases in dividing cells. Rnd3 depletion by RNAi inhibits mitotic cell rounding and spindle centralization, and delays breakdown of the intercellular bridge between two daughter cells. Our results show that TAOKs bind, phosphorylate and relocate Rnd3 to the cytosol and that Rnd3 contributes to mitotic cell rounding, spindle positioning and cytokinesis. Rnd3 can therefore participate in the regulation of early and late mitosis and may also act downstream of TAOKs to affect the cytoskeleton.
Collapse
Affiliation(s)
- Ritu Garg
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Chuay-Yeng Koo
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Elvira Infante
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Caterina Giacomini
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jonathan D H Morris
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
24
|
Scholz H. Unraveling the Mechanisms of Behaviors Associated With AUDs Using Flies and Worms. Alcohol Clin Exp Res 2019; 43:2274-2284. [PMID: 31529787 DOI: 10.1111/acer.14199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
Alcohol use disorders (AUDs) are very common worldwide and negatively affect both individuals and societies. To understand how normal behavior turns into uncontrollable use of alcohol, several approaches have been utilized in the last decades. However, we still do not completely understand how AUDs evolve or how they are maintained in the brains of affected individuals. In addition, efficient and effective treatment is still in need of development. This review focuses on alternative approaches developed over the last 20 years using Drosophila melanogaster (Drosophila) and Caenorhabditis elegans (C. elegans) as genetic model systems to determine the mechanisms underlying the action of ethanol (EtOH) and behaviors associated with AUDs. All the results and insights of studies over the last 20 years cannot be comprehensively summarized. Thus, a few prominent examples are provided highlighting the principles of the genes and mechanisms that have been uncovered and are involved in the action of EtOH at the cellular level. In addition, examples are provided of the genes and mechanisms that regulate behaviors relevant to acquiring and maintaining excessive alcohol intake, such as decision making, reward and withdrawal, and/or relapse regulation. How the insight gained from the results of Drosophila and C. elegans models can be translated to higher organisms, such as rodents and/or humans, is discussed, as well as whether these insights have any relevance or impact on our understanding of the mechanisms underlying AUDs in humans. Finally, future directions are presented that might facilitate the identification of drugs to treat AUDs.
Collapse
Affiliation(s)
- Henrike Scholz
- From the, Department of Biology, Institute for Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Dulovic-Mahlow M, Trinh J, Kandaswamy KK, Braathen GJ, Di Donato N, Rahikkala E, Beblo S, Werber M, Krajka V, Busk ØL, Baumann H, Al-Sannaa NA, Hinrichs F, Affan R, Navot N, Al Balwi MA, Oprea G, Holla ØL, Weiss ME, Jamra RA, Kahlert AK, Kishore S, Tveten K, Vos M, Rolfs A, Lohmann K. De Novo Variants in TAOK1 Cause Neurodevelopmental Disorders. Am J Hum Genet 2019; 105:213-220. [PMID: 31230721 DOI: 10.1016/j.ajhg.2019.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023] Open
Abstract
De novo variants represent a significant cause of neurodevelopmental delay and intellectual disability. A genetic basis can be identified in only half of individuals who have neurodevelopmental disorders (NDDs); this indicates that additional causes need to be elucidated. We compared the frequency of de novo variants in patient-parent trios with (n = 2,030) versus without (n = 2,755) NDDs. We identified de novo variants in TAOK1 (thousand and one [TAO] amino acid kinase 1), which encodes the serine/threonine-protein kinase TAO1, in three individuals with NDDs but not in persons who did not have NDDs. Through further screening and the use of GeneMatcher, five additional individuals with NDDs were found to have de novo variants. All eight variants were absent from gnomAD (Genome Aggregation Database). The variant carriers shared a non-specific phenotype of developmental delay, and six individuals had additional muscular hypotonia. We established a fibroblast line of one mutation carrier, and we demonstrated that reduced mRNA levels of TAOK1 could be increased upon cycloheximide treatment. These results indicate nonsense-mediated mRNA decay. Further, there was neither detectable phosphorylated TAO1 kinase nor phosphorylated tau in these cells, and mitochondrial morphology was altered. Knockdown of the ortholog gene Tao1 (Tao, CG14217) in Drosophila resulted in delayed early development. The majority of the Tao1-knockdown flies did not survive beyond the third instar larval stage. When compared to control flies, Tao1 knockdown flies revealed changed morphology of the ventral nerve cord and the neuromuscular junctions as well as a decreased number of endings (boutons). Furthermore, mitochondria in mutant flies showed altered distribution and decreased size in axons of motor neurons. Thus, we provide compelling evidence that de novo variants in TAOK1 cause NDDs.
Collapse
|
26
|
Miller CJ, Lou HJ, Simpson C, van de Kooij B, Ha BH, Fisher OS, Pirman NL, Boggon TJ, Rinehart J, Yaffe MB, Linding R, Turk BE. Comprehensive profiling of the STE20 kinase family defines features essential for selective substrate targeting and signaling output. PLoS Biol 2019; 17:e2006540. [PMID: 30897078 PMCID: PMC6445471 DOI: 10.1371/journal.pbio.2006540] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/02/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Specificity within protein kinase signaling cascades is determined by direct and indirect interactions between kinases and their substrates. While the impact of localization and recruitment on kinase-substrate targeting can be readily assessed, evaluating the relative importance of direct phosphorylation site interactions remains challenging. In this study, we examine the STE20 family of protein serine-threonine kinases to investigate basic mechanisms of substrate targeting. We used peptide arrays to define the phosphorylation site specificity for the majority of STE20 kinases and categorized them into four distinct groups. Using structure-guided mutagenesis, we identified key specificity-determining residues within the kinase catalytic cleft, including an unappreciated role for the kinase β3-αC loop region in controlling specificity. Exchanging key residues between the STE20 kinases p21-activated kinase 4 (PAK4) and Mammalian sterile 20 kinase 4 (MST4) largely interconverted their phosphorylation site preferences. In cells, a reprogrammed PAK4 mutant, engineered to recognize MST substrates, failed to phosphorylate PAK4 substrates or to mediate remodeling of the actin cytoskeleton. In contrast, this mutant could rescue signaling through the Hippo pathway in cells lacking multiple MST kinases. These observations formally demonstrate the importance of catalytic site specificity for directing protein kinase signal transduction pathways. Our findings further suggest that phosphorylation site specificity is both necessary and sufficient to mediate distinct signaling outputs of STE20 kinases and imply broad applicability to other kinase signaling systems.
Collapse
Affiliation(s)
- Chad J. Miller
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig Simpson
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bert van de Kooij
- Departments of Biological Engineering and Biology, MIT Center for Precision Cancer Medicine and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Byung Hak Ha
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Oriana S. Fisher
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Natasha L. Pirman
- Department of Cellular and Molecular Physiology and Systems Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Titus J. Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology and Systems Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Michael B. Yaffe
- Departments of Biological Engineering and Biology, MIT Center for Precision Cancer Medicine and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rune Linding
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
27
|
Ormonde JVS, Li Z, Stegen C, Madrenas J. TAOK3 Regulates Canonical TCR Signaling by Preventing Early SHP-1-Mediated Inactivation of LCK. THE JOURNAL OF IMMUNOLOGY 2018; 201:3431-3442. [PMID: 30373850 DOI: 10.4049/jimmunol.1800284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
Abstract
Activation of LCK is required for canonical TCR signaling leading to T cell responses. LCK activation also initiates a negative feedback loop mediated by the phosphatase SHP-1 that turns off TCR signaling. In this article, we report that the thousand-and-one amino acid kinase 3 (TAOK3) is a key regulator of this feedback. TAOK3 is a serine/threonine kinase expressed in many different cell types including T cells. TAOK3-deficient human T cells had impaired LCK-dependent TCR signaling resulting in a defect in IL-2 response to canonical TCR signaling but not to bacterial superantigens, which use an LCK-independent pathway. This impairment was associated with enhanced interaction of LCK with SHP-1 after TCR engagement and rapid termination of TCR signals, a defect corrected by TAOK3 reconstitution. Thus, TAOK3 is a positive regulator of TCR signaling by preventing premature SHP-1-mediated inactivation of LCK. This mechanism may also regulate signaling by other Src family kinase-dependent receptors.
Collapse
Affiliation(s)
- João V S Ormonde
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; and
| | - Zhigang Li
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; and
| | - Camille Stegen
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; and
| | - Joaquín Madrenas
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; and .,Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90277
| |
Collapse
|
28
|
Kumar VJ, Grissom NM, McKee SE, Schoch H, Bowman N, Havekes R, Kumar M, Pickup S, Poptani H, Reyes TM, Hawrylycz M, Abel T, Nickl-Jockschat T. Linking spatial gene expression patterns to sex-specific brain structural changes on a mouse model of 16p11.2 hemideletion. Transl Psychiatry 2018; 8:109. [PMID: 29844452 PMCID: PMC5974415 DOI: 10.1038/s41398-018-0157-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 02/02/2023] Open
Abstract
Neurodevelopmental disorders, such as ASD and ADHD, affect males about three to four times more often than females. 16p11.2 hemideletion is a copy number variation that is highly associated with neurodevelopmental disorders. Previous work from our lab has shown that a mouse model of 16p11.2 hemideletion (del/+) exhibits male-specific behavioral phenotypes. We, therefore, aimed to investigate with magnetic resonance imaging (MRI), whether del/+ animals also exhibited a sex-specific neuroanatomical endophenotype. Using the Allen Mouse Brain Atlas, we analyzed the expression patterns of the 27 genes within the 16p11.2 region to identify which gene expression patterns spatially overlapped with brain structural changes. MRI was performed ex vivo and the resulting images were analyzed using Voxel-based morphometry for T1-weighted sequences and tract-based spatial statistics for diffusion-weighted images. In a subsequent step, all available in situ hybridization (ISH) maps of the genes involved in the 16p11.2 hemideletion were aligned to Waxholm space and clusters obtained by sex-specific group comparisons were analyzed to determine which gene(s) showed the highest expression in these regions. We found pronounced sex-specific changes in male animals with increased fractional anisotropy in medial fiber tracts, especially in those proximate to the striatum. Moreover, we were able to identify gene expression patterns spatially overlapping with male-specific structural changes that were associated with neurite outgrowth and the MAPK pathway. Of note, previous molecular studies have found convergent changes that point to a sex-specific dysregulation of MAPK signaling. This convergent evidence supports the idea that ISH maps can be used to meaningfully analyze imaging data sets.
Collapse
Affiliation(s)
- Vinod Jangir Kumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Juelich-Aachen Research Alliance Brain, Juelich/Aachen, Germany
- Max Planck Institute for Biological Cybernetics, Tubingen, Germany
| | - Nicola M Grissom
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Sarah E McKee
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah Schoch
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Bowman
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Manoj Kumar
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Teresa M Reyes
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati, Cincinnati, OH, USA
| | | | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa, IA, USA
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- Juelich-Aachen Research Alliance Brain, Juelich/Aachen, Germany.
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa, IA, USA.
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA.
| |
Collapse
|
29
|
Giacomini C, Koo CY, Yankova N, Tavares IA, Wray S, Noble W, Hanger DP, Morris JDH. A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies. Acta Neuropathol Commun 2018; 6:37. [PMID: 29730992 PMCID: PMC5937037 DOI: 10.1186/s40478-018-0539-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/21/2018] [Indexed: 11/18/2022] Open
Abstract
In Alzheimer’s disease (AD) and related tauopathies, the microtubule-associated protein tau is highly phosphorylated and aggregates to form neurofibrillary tangles that are characteristic of these neurodegenerative diseases. Our previous work has demonstrated that the thousand-and-one amino acid kinases (TAOKs) 1 and 2 phosphorylate tau on more than 40 residues in vitro. Here we show that TAOKs are phosphorylated and active in AD brain sections displaying mild (Braak stage II), intermediate (Braak stage IV) and advanced (Braak stage VI) tau pathology and that active TAOKs co-localise with both pre-tangle and tangle structures. TAOK activity is also enriched in pathological tau containing sarkosyl-insoluble extracts prepared from AD brain. Two new phosphorylated tau residues (T123 and T427) were identified in AD brain, which appear to be targeted specifically by TAOKs. A new small molecule TAOK inhibitor (Compound 43) reduced tau phosphorylation on T123 and T427 and also on additional pathological sites (S262/S356 and S202/T205/S208) in vitro and in cell models. The TAOK inhibitor also decreased tau phosphorylation in differentiated primary cortical neurons without affecting markers of synapse and neuron health. Notably, TAOK activity also co-localised with tangles in post-mortem frontotemporal lobar degeneration (FTLD) brain tissue. Furthermore, the TAOK inhibitor decreased tau phosphorylation in induced pluripotent stem cell derived neurons from FTLD patients, as well as cortical neurons from a transgenic mouse model of tauopathy (Tau35 mice). Our results demonstrate that abnormal TAOK activity is present at pre-tangles and tangles in tauopathies and that TAOK inhibition effectively decreases tau phosphorylation on pathological sites. Thus, TAOKs may represent a novel target to reduce or prevent tau-associated neurodegeneration in tauopathies.
Collapse
|
30
|
Carrow JK, Cross LM, Reese RW, Jaiswal MK, Gregory CA, Kaunas R, Singh I, Gaharwar AK. Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates. Proc Natl Acad Sci U S A 2018; 115:E3905-E3913. [PMID: 29643075 PMCID: PMC5924886 DOI: 10.1073/pnas.1716164115] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two-dimensional nanomaterials, an ultrathin class of materials such as graphene, nanoclays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs), have emerged as a new generation of materials due to their unique properties relative to macroscale counterparts. However, little is known about the transcriptome dynamics following exposure to these nanomaterials. Here, we investigate the interactions of 2D nanosilicates, a layered clay, with human mesenchymal stem cells (hMSCs) at the whole-transcriptome level by high-throughput sequencing (RNA-seq). Analysis of cell-nanosilicate interactions by monitoring changes in transcriptome profile uncovered key biophysical and biochemical cellular pathways triggered by nanosilicates. A widespread alteration of genes was observed due to nanosilicate exposure as more than 4,000 genes were differentially expressed. The change in mRNA expression levels revealed clathrin-mediated endocytosis of nanosilicates. Nanosilicate attachment to the cell membrane and subsequent cellular internalization activated stress-responsive pathways such as mitogen-activated protein kinase (MAPK), which subsequently directed hMSC differentiation toward osteogenic and chondrogenic lineages. This study provides transcriptomic insight on the role of surface-mediated cellular signaling triggered by nanomaterials and enables development of nanomaterials-based therapeutics for regenerative medicine. This approach in understanding nanomaterial-cell interactions illustrates how change in transcriptomic profile can predict downstream effects following nanomaterial treatment.
Collapse
Affiliation(s)
- James K Carrow
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843
| | - Lauren M Cross
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843
| | - Robert W Reese
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843
| | - Manish K Jaiswal
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute of Regenerative Medicine, Texas A&M Health Science Center, College Station, TX 77843
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843
| | - Irtisha Singh
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Tri-I Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY 10065
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843;
- Department of Material Sciences, Texas A&M University, College Station, TX 77843
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843
| |
Collapse
|
31
|
TAOK1 negatively regulates IL-17-mediated signaling and inflammation. Cell Mol Immunol 2018; 15:794-802. [PMID: 29400705 DOI: 10.1038/cmi.2017.158] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022] Open
Abstract
Interleukin 17 (IL-17) is an important cytokine that can induce tissue inflammation and is involved in the pathogenesis of numerous autoimmune diseases. However, the regulation of its signaling transduction has not been well described. In this study, we report that thousand and one kinase 1 (TAOK1) functions as a negative regulator of IL-17-mediated signal transduction and inflammation. TAOK1 knockdown promotes IL-17-induced cytokine and chemokine expression and the activation of mitogen-activated protein kinases and nuclear factor-κB. We further demonstrate that TAOK1 interacts with IL-17 receptor A (IL-17RA) independent of its kinase activity, and TAOK1 dose-dependently prevents the formation of the IL-17R-Act1 (nuclear factor activator 1, also known as tumor necrosis factor receptor-associated factor 3 interacting protein 2) complex. Consistent with this, TAOK1 deficiency exacerbates colitis in the 2,4,6-trinitrobenzenesulfonic acid)-induced experimental model of inflammatory bowel disease, likely by its promotion of the IL-17-mediated signaling pathway. TAOK1 expression is decreased in the colons of ulcerative colitis patients. In conclusion, these findings suggest that TAOK1 is involved in the development of IL-17-related autoimmune disorders.
Collapse
|
32
|
Koo CY, Giacomini C, Reyes-Corral M, Olmos Y, Tavares IA, Marson CM, Linardopoulos S, Tutt AN, Morris JDH. Targeting TAO Kinases Using a New Inhibitor Compound Delays Mitosis and Induces Mitotic Cell Death in Centrosome Amplified Breast Cancer Cells. Mol Cancer Ther 2017; 16:2410-2421. [PMID: 28830982 DOI: 10.1158/1535-7163.mct-17-0077] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Thousand-and-one amino acid kinases (TAOK) 1 and 2 are activated catalytically during mitosis and can contribute to mitotic cell rounding and spindle positioning. Here, we characterize a compound that inhibits TAOK1 and TAOK2 activity with IC50 values of 11 to 15 nmol/L, is ATP-competitive, and targets these kinases selectively. TAOK inhibition or depletion in centrosome-amplified SKBR3 or BT549 breast cancer cell models increases the mitotic population, the percentages of mitotic cells displaying amplified centrosomes and multipolar spindles, induces cell death, and inhibits cell growth. In contrast, nontumorigenic and dividing bipolar MCF-10A breast cells appear less dependent on TAOK activity and can complete mitosis and proliferate in the presence of the TAOK inhibitor. We demonstrate that TAOK1 and TAOK2 localize to the cytoplasm and centrosomes respectively during mitosis. Live cell imaging shows that the TAOK inhibitor prolongs the duration of mitosis in SKBR3 cells, increases mitotic cell death, and reduces the percentages of cells exiting mitosis, whereas MCF-10A cells continue to divide and proliferate. Over 80% of breast cancer tissues display supernumerary centrosomes, and tumor cells frequently cluster extra centrosomes to avoid multipolar mitoses and associated cell death. Consequently, drugs that stimulate centrosome declustering and induce multipolarity are likely to target dividing centrosome-amplified cancer cells preferentially, while sparing normal bipolar cells. Our results demonstrate that TAOK inhibition can enhance centrosome declustering and mitotic catastrophe in cancer cells, and these proteins may therefore offer novel therapeutic targets suitable for drug inhibition and the potential treatment of breast cancers, where supernumerary centrosomes occur. Mol Cancer Ther; 16(11); 2410-21. ©2017 AACR.
Collapse
Affiliation(s)
- Chuay-Yeng Koo
- King's College London, School of Cancer Sciences, New Hunt's House, Guy's Campus, Great Maze Pond, London, United Kingdom
| | - Caterina Giacomini
- King's College London, School of Cancer Sciences, New Hunt's House, Guy's Campus, Great Maze Pond, London, United Kingdom
| | - Marta Reyes-Corral
- King's College London, School of Cancer Sciences, New Hunt's House, Guy's Campus, Great Maze Pond, London, United Kingdom
| | - Yolanda Olmos
- King's College London, School of Cancer Sciences, New Hunt's House, Guy's Campus, Great Maze Pond, London, United Kingdom
| | - Ignatius A Tavares
- King's College London, School of Cancer Sciences, New Hunt's House, Guy's Campus, Great Maze Pond, London, United Kingdom
| | - Charles M Marson
- Department of Chemistry, Christopher Ingold Laboratories, University College London, London, United Kingdom
| | - Spiros Linardopoulos
- Breast Cancer Now Toby Robins Research Centre, the Institute of Cancer Research, London, United Kingdom
| | - Andrew N Tutt
- Breast Cancer Now Toby Robins Research Centre, the Institute of Cancer Research, London, United Kingdom
- King's College London, School of Cancer Sciences, Breast Cancer Now Research Unit, Guy's Cancer Centre, Guy's Hospital, London, United Kingdom
| | - Jonathan D H Morris
- King's College London, School of Cancer Sciences, New Hunt's House, Guy's Campus, Great Maze Pond, London, United Kingdom.
| |
Collapse
|
33
|
miR-706 inhibits the oxidative stress-induced activation of PKCα/TAOK1 in liver fibrogenesis. Sci Rep 2016; 6:37509. [PMID: 27876854 PMCID: PMC5120320 DOI: 10.1038/srep37509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress induces the activation of liver fibrogenic cells (myofibroblasts), thus promoting the expression of fibrosis-related genes, leading to hepatic fibrogenesis. MicroRNAs (miRNAs) are a new class of small RNAs ~18–25 nucleotides in length involved in post-transcriptional regulation of gene expression. Wound-healing and remodeling processes in liver fibrosis have been associated with changes in hepatic miRNA expression. However, the role of miR-706 in liver fibrogenesis is currently unknown. In the present study, we show that miR-706 is abundantly expressed in hepatocytes. Moreover, oxidative stress leads to a significant downregulation of miR-706, and the further reintroduction of miR-706 inhibits oxidative stress-induced expression of fibrosis-related markers such as α-SMA. Subsequent studies revealed that miR-706 directly inhibits PKCα and TAOK1 expression via binding to the 3′-untranslated region, preventing epithelial mesenchymal transition. In vivo studies showed that intravenous injection of miR-706 agomir successfully increases hepatic miR-706 and decreases α-SMA, PKCα, and TAOK1 protein levels in livers of carbon tetrachloride (CCl4)-treated mice. In summary, this study reveals a protective role for miR-706 by blocking the oxidative stress-induced activation of PKCα/TAOK1. Our results further identify a major implication for miR-706 in preventing hepatic fibrogenesis and suggest that miR-706 may be a suitable molecular target for anti-fibrosis therapy.
Collapse
|
34
|
Dechtawewat T, Paemanee A, Roytrakul S, Songprakhon P, Limjindaporn T, Yenchitsomanus PT, Saitornuang S, Puttikhunt C, Kasinrerk W, Malasit P, Noisakran S. Mass spectrometric analysis of host cell proteins interacting with dengue virus nonstructural protein 1 in dengue virus-infected HepG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1270-1280. [PMID: 27108190 DOI: 10.1016/j.bbapap.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/26/2016] [Accepted: 04/19/2016] [Indexed: 01/09/2023]
Abstract
Dengue virus (DENV) infection is a leading cause of the mosquito-borne infectious diseases that affect humans worldwide. Virus-host interactions appear to play significant roles in DENV replication and the pathogenesis of DENV infection. Nonstructural protein 1 (NS1) of DENV is likely involved in these processes; however, its associations with host cell proteins in DENV infection remain unclear. In this study, we used a combination of techniques (immunoprecipitation, in-solution trypsin digestion, and LC-MS/MS) to identify the host cell proteins that interact with cell-associated NS1 in an in vitro model of DENV infection in the human hepatocyte HepG2 cell line. Thirty-six novel host cell proteins were identified as potential DENV NS1-interacting partners. A large number of these proteins had characteristic binding or catalytic activities, and were involved in cellular metabolism. Coimmunoprecipitation and colocalization assays confirmed the interactions of DENV NS1 and human NIMA-related kinase 2 (NEK2), thousand and one amino acid protein kinase 1 (TAO1), and component of oligomeric Golgi complex 1 (COG1) proteins in virus-infected cells. This study reports a novel set of DENV NS1-interacting host cell proteins in the HepG2 cell line and proposes possible roles for human NEK2, TAO1, and COG1 in DENV infection.
Collapse
Affiliation(s)
- Thanyaporn Dechtawewat
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Atchara Paemanee
- Proteomics Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sawanan Saitornuang
- Division of Dengue Hemorrhagic Fever Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Chunya Puttikhunt
- Division of Dengue Hemorrhagic Fever Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Watchara Kasinrerk
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Chiang Mai 50200, Thailand; Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Prida Malasit
- Division of Dengue Hemorrhagic Fever Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- Division of Dengue Hemorrhagic Fever Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand.
| |
Collapse
|
35
|
Yin Y, Donlevy S, Smolikove S. Coordination of Recombination with Meiotic Progression in the Caenorhabditis elegans Germline by KIN-18, a TAO Kinase That Regulates the Timing of MPK-1 Signaling. Genetics 2016; 202:45-59. [PMID: 26510792 PMCID: PMC4701101 DOI: 10.1534/genetics.115.177295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a tightly regulated process requiring coordination of diverse events. A conserved ERK/MAPK-signaling cascade plays an essential role in the regulation of meiotic progression. The Thousand And One kinase (TAO) kinase is a MAPK kinase kinase, the meiotic role of which is unknown. We have analyzed the meiotic functions of KIN-18, the homolog of mammalian TAO kinases, in Caenorhabditis elegans. We found that KIN-18 is essential for normal meiotic progression; mutants exhibit accelerated meiotic recombination as detected both by analysis of recombination intermediates and by crossover outcome. In addition, ectopic germ-cell differentiation and enhanced levels of apoptosis were observed in kin-18 mutants. These defects correlate with ectopic activation of MPK-1 that includes premature, missing, and reoccurring MPK-1 activation. Late progression defects in kin-18 mutants are suppressed by inhibiting an upstream activator of MPK-1 signaling, KSR-2. However, the acceleration of recombination events observed in kin-18 mutants is largely MPK-1-independent. Our data suggest that KIN-18 coordinates meiotic progression by modulating the timing of MPK-1 activation and the progression of recombination events. The regulation of the timing of MPK-1 activation ensures the proper timing of apoptosis and is required for the formation of functional oocytes. Meiosis is a conserved process; thus, revealing that KIN-18 is a novel regulator of meiotic progression in C. elegans would help to elucidate TAO kinase's role in germline development in higher eukaryotes.
Collapse
Affiliation(s)
- Yizhi Yin
- Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Sean Donlevy
- Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
36
|
Codocedo JF, Inestrosa NC. Environmental control of microRNAs in the nervous system: Implications in plasticity and behavior. Neurosci Biobehav Rev 2015; 60:121-38. [PMID: 26593111 DOI: 10.1016/j.neubiorev.2015.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
Abstract
The discovery of microRNAs (miRNAs) a little over 20 years ago was revolutionary given that miRNAs are essential to numerous physiological and physiopathological processes. Currently, several aspects of the biogenic process of miRNAs and of the translational repression mechanism exerted on their targets mRNAs are known in detail. In fact, the development of bioinformatics tools for predicting miRNA targets has established that miRNAs have the potential to regulate almost all known biological processes. Therefore, the identification of the signals and molecular mechanisms that regulate miRNA function is relevant to understanding the role of miRNAs in both pathological and adaptive processes. Recently, a series of studies has focused on miRNA expression in the brain, establishing that their levels are altered in response to various environmental factors (EFs), such as light, sound, odorants, nutrients, drugs and stress. In this review, we discuss how exposure to various EFs modulates the expression and function of several miRNAs in the nervous system and how this control determines adaptation to their environment, behavior and disease state.
Collapse
Affiliation(s)
- Juan F Codocedo
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
37
|
Pflanz R, Voigt A, Yakulov T, Jäckle H. Drosophila gene tao-1 encodes proteins with and without a Ste20 kinase domain that affect cytoskeletal architecture and cell migration differently. Open Biol 2015; 5:140161. [PMID: 25589578 PMCID: PMC4313371 DOI: 10.1098/rsob.140161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tao-1, the single representative of the Sterile 20 kinase subfamily in Drosophila, is best known for destabilizing microtubules at the actin-rich cortex, regulating the cytoskeletal architecture of cells. More recently, Tao-1 was shown to act in the Salvador–Warts–Hippo pathway by phosphorylating Hippo, regulating cell growth as well as cell polarity. Here, we show that tao-1 encodes two proteins, one with the Sterile 20 kinase domain (Tao-L) and one without it (Tao-S), and that they act in an antagonistic manner. Tao-L expression causes lamellipodia-like cell protrusions, whereas Tao-S expression results in filopodia-like structures that make cells stick to the surface they attach to. Ectopic Tao-1 expression in the anterior region of Drosophila embryos results in pole cell formation as normally observed at the posterior end. Tao-S expression causes primordial germ cells (PGCs) to adhere to the inner wall of the gut primordia and prevents proper transepithelial migration to the gonads. Conversely, RNAi knockdowns of Tao-1 cause disordered migration of PGCs out of the gut epithelium, their dispersal within the embryo and cell death. The results reveal a novel function of Tao-1 in cell migration, which is based on antagonistic activities of two proteins encoded by a single gene.
Collapse
Affiliation(s)
- Ralf Pflanz
- Abteilung Molekulare Entwicklungsbiologie, Max Planck Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Aaron Voigt
- Abteilung Molekulare Entwicklungsbiologie, Max Planck Institut für Biophysikalische Chemie, Göttingen, Germany Department of Neurology, University Medical Centre Aachen, Aachen, Germany
| | - Toma Yakulov
- Abteilung Molekulare Entwicklungsbiologie, Max Planck Institut für Biophysikalische Chemie, Göttingen, Germany Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Herbert Jäckle
- Abteilung Molekulare Entwicklungsbiologie, Max Planck Institut für Biophysikalische Chemie, Göttingen, Germany
| |
Collapse
|
38
|
Ultanir SK, Yadav S, Hertz NT, Oses-Prieto JA, Claxton S, Burlingame AL, Shokat KM, Jan LY, Jan YN. MST3 kinase phosphorylates TAO1/2 to enable Myosin Va function in promoting spine synapse development. Neuron 2014; 84:968-82. [PMID: 25456499 PMCID: PMC4407996 DOI: 10.1016/j.neuron.2014.10.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2014] [Indexed: 11/16/2022]
Abstract
Mammalian Sterile 20 (Ste20)-like kinase 3 (MST3) is a ubiquitously expressed kinase capable of enhancing axon outgrowth. Whether and how MST3 kinase signaling might regulate development of dendritic filopodia and spine synapses is unknown. Through shRNA-mediated depletion of MST3 and kinase-dead MST3 expression in developing hippocampal cultures, we found that MST3 is necessary for proper filopodia, dendritic spine, and excitatory synapse development. Knockdown of MST3 in layer 2/3 pyramidal neurons via in utero electroporation also reduced spine density in vivo. Using chemical genetics, we discovered thirteen candidate MST3 substrates and identified the phosphorylation sites. Among the identified MST3 substrates, TAO kinases regulate dendritic filopodia and spine development, similar to MST3. Furthermore, using stable isotope labeling by amino acids in culture (SILAC), we show that phosphorylated TAO1/2 associates with Myosin Va and is necessary for its dendritic localization, thus revealing a mechanism for excitatory synapse development in the mammalian CNS.
Collapse
Affiliation(s)
- Sila K Ultanir
- Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | - Smita Yadav
- Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicholas T Hertz
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Suzanne Claxton
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Y Jan
- Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh-Nung Jan
- Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Humphreys JM, Piala AT, Akella R, He H, Goldsmith EJ. Precisely ordered phosphorylation reactions in the p38 mitogen-activated protein (MAP) kinase cascade. J Biol Chem 2013; 288:23322-30. [PMID: 23744074 PMCID: PMC3743502 DOI: 10.1074/jbc.m113.462101] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/31/2013] [Indexed: 01/04/2023] Open
Abstract
The MAP kinase cascades, composed of a MAP3K, a MAP2K, and a MAPK, control switch responses to extracellular stimuli and stress in eukaryotes. The most important feature of these modules is thought to be the two double phosphorylation reactions catalyzed by MAP3Ks and MAP2Ks. We addressed whether the reactions are sequential or random in the p38 MAP kinase module. Mass spectrometry was used to track the phosphorylation of the MAP2K MEK6 by two MAP3Ks, TAO2 and ASK1, and the subsequent phosphorylation of p38α by MEK6/S*T* (where S (Ser) and T (Thr) are the two phosphorylation sites and * denotes phosphorylation). Both double phosphorylation reactions are precisely ordered. MEK6 is phosphorylated first on Thr-211 and then on Ser-207 by both MAP3Ks. This is the first demonstration of a precise reaction order for a MAP2K. p38α is phosphorylated first on Tyr-182 and then on Thr-180, the same reaction order observed previously in ERK2. Thus, intermediates were MEK6/ST* and p38α/TY*. Similarly, the phosphorylation of the p38α transcription factor substrate ATF2 occurs in a precise sequence. Progress curves for the appearance of intermediates were fit to kinetic models. The models confirmed the reaction order, revealed processivity in the phosphorylation of MEK6 by ASK1, and suggested that the order of phosphorylation is dictated by both binding and catalysis rates.
Collapse
Affiliation(s)
- John M. Humphreys
- From the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Alexander T. Piala
- From the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Radha Akella
- From the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Haixia He
- From the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Elizabeth J. Goldsmith
- From the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
40
|
Predicting protein-protein interactions in the post synaptic density. Mol Cell Neurosci 2013; 56:128-39. [PMID: 23628905 DOI: 10.1016/j.mcn.2013.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/09/2013] [Accepted: 04/19/2013] [Indexed: 12/27/2022] Open
Abstract
The post synaptic density (PSD) is a specialization of the cytoskeleton at the synaptic junction, composed of hundreds of different proteins. Characterizing the protein components of the PSD and their interactions can help elucidate the mechanism of long-term changes in synaptic plasticity, which underlie learning and memory. Unfortunately, our knowledge of the proteome and interactome of the PSD is still partial and noisy. In this study we describe a computational framework to improve the reconstruction of the PSD network. The approach is based on learning the characteristics of PSD protein interactions from a set of trusted interactions, expanding this set with data collected from large scale repositories, and then predicting novel interaction with proteins that are suspected to reside in the PSD. Using this method we obtained thirty predicted interactions, with more than half of which having supporting evidence in the literature. We discuss in details two of these new interactions, Lrrtm1 with PSD-95 and Src with Capg. The first may take part in a mechanism underlying glutamatergic dysfunction in schizophrenia. The second suggests an alternative mechanism to regulate dendritic spines maturation.
Collapse
|
41
|
Tavares IA, Touma D, Lynham S, Troakes C, Schober M, Causevic M, Garg R, Noble W, Killick R, Bodi I, Hanger DP, Morris JDH. Prostate-derived sterile 20-like kinases (PSKs/TAOKs) phosphorylate tau protein and are activated in tangle-bearing neurons in Alzheimer disease. J Biol Chem 2013; 288:15418-29. [PMID: 23585562 DOI: 10.1074/jbc.m112.448183] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer disease (AD), the microtubule-associated protein tau is highly phosphorylated and aggregates into characteristic neurofibrillary tangles. Prostate-derived sterile 20-like kinases (PSKs/TAOKs) 1 and 2, members of the sterile 20 family of kinases, have been shown to regulate microtubule stability and organization. Here we show that tau is a good substrate for PSK1 and PSK2 phosphorylation with mass spectrometric analysis of phosphorylated tau revealing more than 40 tau residues as targets of these kinases. Notably, phosphorylated residues include motifs located within the microtubule-binding repeat domain on tau (Ser-262, Ser-324, and Ser-356), sites that are known to regulate tau-microtubule interactions. PSK catalytic activity is enhanced in the entorhinal cortex and hippocampus, areas of the brain that are most susceptible to Alzheimer pathology, in comparison with the cerebellum, which is relatively spared. Activated PSK is associated with neurofibrillary tangles, dystrophic neurites surrounding neuritic plaques, neuropil threads, and granulovacuolar degeneration bodies in AD brain. By contrast, activated PSKs and phosphorylated tau are rarely detectible in immunostained control human brain. Our results demonstrate that tau is a substrate for PSK and suggest that this family of kinases could contribute to the development of AD pathology and dementia.
Collapse
Affiliation(s)
- Ignatius A Tavares
- Division of Cancer Studies, King's College London, New Hunt's House, Guy's Campus, Great Maze Pond, London SE1 1UL, London
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Patel M, Cai Q, Ding D, Salvi R, Hu Z, Hu BH. The miR-183/Taok1 target pair is implicated in cochlear responses to acoustic trauma. PLoS One 2013; 8:e58471. [PMID: 23472202 PMCID: PMC3589350 DOI: 10.1371/journal.pone.0058471] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/05/2013] [Indexed: 12/31/2022] Open
Abstract
Acoustic trauma, one of the leading causes of sensorineural hearing loss, induces sensory hair cell damage in the cochlea. Identifying the molecular mechanisms involved in regulating sensory hair cell death is critical towards developing effective treatments for preventing hair cell damage. Recently, microRNAs (miRNAs) have been shown to participate in the regulatory mechanisms of inner ear development and homeostasis. However, their involvement in cochlear sensory cell degeneration following acoustic trauma is unknown. Here, we profiled the expression pattern of miRNAs in the cochlear sensory epithelium, defined miRNA responses to acoustic overstimulation, and explored potential mRNA targets of miRNAs that may be responsible for the stress responses of the cochlea. Expression analysis of miRNAs in the cochlear sensory epithelium revealed constitutive expression of 176 miRNAs, many of which have not been previously reported in cochlear tissue. Exposure to intense noise caused significant threshold shift and apoptotic activity in the cochleae. Gene expression analysis of noise-traumatized cochleae revealed time-dependent transcriptional changes in the expression of miRNAs. Target prediction analysis revealed potential target genes of the significantly downregulated miRNAs, many of which had cell death- and apoptosis-related functions. Verification of the predicted targets revealed a significant upregulation of Taok1, a target of miRNA-183. Moreover, inhibition of miR-183 with morpholino antisense oligos in cochlear organotypic cultures revealed a negative correlation between the expression levels of miR-183 and Taok1, suggesting the presence of a miR-183/Taok1 target pair. Together, miRNA profiling as well as the target analysis and validation suggest the involvement of miRNAs in the regulation of the degenerative process of the cochlea following acoustic overstimulation. The miR-183/Taok1 target pair is likely to play a role in this regulatory process.
Collapse
Affiliation(s)
- Minal Patel
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Qunfeng Cai
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Zihua Hu
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, Department of Ophthalmology, Department of Biostatistics, Department of Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Bo Hua Hu
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Gomez JM, Wang Y, Riechmann V. Tao controls epithelial morphogenesis by promoting Fasciclin 2 endocytosis. ACTA ACUST UNITED AC 2013; 199:1131-43. [PMID: 23266957 PMCID: PMC3529531 DOI: 10.1083/jcb.201207150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tao initiates morphogenesis of a squamous epithelium by promoting the endocytosis of the adhesion molecule Fasciclin 2 from the lateral membrane. Regulation of epithelial cell shape, for example, changes in relative sizes of apical, basal, and lateral membranes, is a key mechanism driving morphogenesis. However, it is unclear how epithelial cells control the size of their membranes. In the epithelium of the Drosophila melanogaster ovary, cuboidal precursor cells transform into a squamous epithelium through a process that involves lateral membrane shortening coupled to apical membrane extension. In this paper, we report a mutation in the gene Tao, which resulted in the loss of this cuboidal to squamous transition. We show that the inability of Tao mutant cells to shorten their membranes was caused by the accumulation of the cell adhesion molecule Fasciclin 2, the Drosophila N-CAM (neural cell adhesion molecule) homologue. Fasciclin 2 accumulation at the lateral membrane of Tao mutant cells prevented membrane shrinking and thereby inhibited morphogenesis. In wild-type cells, Tao initiated morphogenesis by promoting Fasciclin 2 endocytosis at the lateral membrane. Thus, we identify here a mechanism controlling the morphogenesis of a squamous epithelium.
Collapse
Affiliation(s)
- Juan Manuel Gomez
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | | | | |
Collapse
|
44
|
Abstract
During oogenesis in Drosophila melanogaster, the cells in the follicular epithelium of the ovary undergo a transition from a cuboidal to a squamous shape. In this issue, Gomez et al. (2012. J. Cell Biol.http://dx.doi.org/10.1083/jcb.201207150) show that the kinase Tao promotes the endocytosis of the cell adhesion molecule Fasciclin 2 from the lateral surface of the cell and is critical for the cuboidal to squamous cell shape transition. Their results indicate that Tao is rising as a regulator of cell height.
Collapse
Affiliation(s)
- Liang Cai
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | |
Collapse
|
45
|
Gagnon KB, Delpire E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 2013; 92:1577-617. [PMID: 23073627 DOI: 10.1152/physrev.00009.2012] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SPAK (Ste20-related proline alanine rich kinase) and OSR1 (oxidative stress responsive kinase) are members of the germinal center kinase VI subfamily of the mammalian Ste20 (Sterile20)-related protein kinase family. Although there are 30 enzymes in this protein kinase family, their conservation across the fungi, plant, and animal kingdom confirms their evolutionary importance. Already, a large volume of work has accumulated on the tissue distribution, binding partners, signaling cascades, and physiological roles of mammalian SPAK and OSR1 in multiple organ systems. After reviewing this basic information, we will examine newer studies that demonstrate the pathophysiological consequences to SPAK and/or OSR1 disruption, discuss the development and analysis of genetically engineered mouse models, and address the possible role these serine/threonine kinases might have in cancer proliferation and migration.
Collapse
Affiliation(s)
- Kenneth B Gagnon
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2520, USA
| | | |
Collapse
|
46
|
Spiga FM, Prouteau M, Gotta M. The TAO kinase KIN-18 regulates contractility and establishment of polarity in the C. elegans embryo. Dev Biol 2013; 373:26-38. [DOI: 10.1016/j.ydbio.2012.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 09/15/2012] [Accepted: 10/01/2012] [Indexed: 01/12/2023]
|
47
|
Kapfhamer D, King I, Zou ME, Lim JP, Heberlein U, Wolf FW. JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity. PLoS One 2012; 7:e50594. [PMID: 23227189 PMCID: PMC3515618 DOI: 10.1371/journal.pone.0050594] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/25/2012] [Indexed: 02/08/2023] Open
Abstract
Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.
Collapse
Affiliation(s)
- David Kapfhamer
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- * E-mail: (DK); (FWW)
| | - Ian King
- Department of Anatomy, Program in Neuroscience, University of California San Francisco, San Francisco, California, United States of America
| | - Mimi E. Zou
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Jana P. Lim
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Ulrike Heberlein
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- Department of Anatomy, Program in Neuroscience, University of California San Francisco, San Francisco, California, United States of America
| | - Fred W. Wolf
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- * E-mail: (DK); (FWW)
| |
Collapse
|
48
|
Kapfhamer D, Taylor S, Zou ME, Lim JP, Kharazia V, Heberlein U. Taok2 controls behavioral response to ethanol in mice. GENES BRAIN AND BEHAVIOR 2012; 12:87-97. [PMID: 22883308 DOI: 10.1111/j.1601-183x.2012.00834.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/30/2012] [Accepted: 08/02/2012] [Indexed: 01/27/2023]
Abstract
Despite recent advances in the understanding of ethanol's biological action, many of the molecular targets of ethanol and mechanisms behind ethanol's effect on behavior remain poorly understood. In an effort to identify novel genes, the products of which regulate behavioral responses to ethanol, we recently identified a mutation in the dtao gene that confers resistance to the locomotor stimulating effect of ethanol in Drosophila. dtao encodes a member of the Ste20 family of serine/threonine kinases implicated in MAP kinase signaling pathways. In this study, we report that conditional ablation of the mouse dtao homolog, Taok2, constitutively and specifically in the nervous system, results in strain-specific and overlapping alterations in ethanol-dependent behaviors. These data suggest a functional conservation of dtao and Taok2 in mediating ethanol's biological action and identify Taok2 as a putative candidate gene for ethanol use disorders in humans.
Collapse
Affiliation(s)
- D Kapfhamer
- The Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA 94608, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 2012; 23:770-84. [PMID: 22898666 DOI: 10.1016/j.semcdb.2012.07.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/31/2012] [Indexed: 01/30/2023]
Abstract
The "Hippo" signaling pathway has emerged as a major regulator of cell proliferation and survival in metazoans. The pathway, as delineated by genetic and biochemical studies in Drosophila, consists of a kinase cascade regulated by cell-cell contact and cell polarity that inhibits the transcriptional coactivator Yorkie and its proliferative, anti-differentiation, antiapoptotic transcriptional program. The core pathway components are the GC kinase Hippo, which phosphorylates the noncatalytic polypeptide Mats/Mob1 and, with the assistance of the scaffold protein Salvador, phosphorylates the ndr-family kinase Lats. In turn phospho-Lats, after binding to phospho-Mats, autoactivates and phosphorylates Yorkie, resulting in its nuclear exit. Hippo also uses the scaffold protein Furry and a different Mob protein to control another ndr-like kinase, the morphogenetic regulator Tricornered. Architecturally homologous kinase cascades consisting of a GC kinase, a Mob protein, a scaffolding polypeptide and an ndr-like kinase are well described in yeast; in Saccharomyces cerevisiae, e.g., the MEN pathway promotes mitotic exit whereas the RAM network, using a different GC kinase, Mob protein, scaffold and ndr-like kinase, regulates cell polarity and morphogenesis. In mammals, the Hippo orthologs Mst1 and Mst2 utilize the Salvador ortholog WW45/Sav1 and other scaffolds to regulate the kinases Lats1/Lats2 and ndr1/ndr2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in the epithelial cells of the liver and gut; loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by reduction or elimination of YAP. Despite this conservation, considerable diversification in pathway composition and regulation is already evident; in skin, e.g., YAP phosphorylation is independent of Mst1Mst2 and Lats1Lats2. Moreover, in lymphoid cells, Mst1/Mst2, under the control of the Rap1 GTPase and independent of YAP, promotes integrin clustering, actin remodeling and motility while restraining the proliferation of naïve T cells. This review will summarize current knowledge of the structure and regulation of the kinases Hippo/Mst1&2, their noncatalytic binding partners, Salvador and the Rassf polypeptides, and their major substrates Warts/Lats1&2, Trc/ndr1&2, Mats/Mob1 and FOXO.
Collapse
|
50
|
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012; 92:689-737. [PMID: 22535895 DOI: 10.1152/physrev.00028.2011] [Citation(s) in RCA: 1060] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mammalian stress-activated families of mitogen-activated protein kinases (MAPKs) were first elucidated in 1994, and by 2001, substantial progress had been made in identifying the architecture of the pathways upstream of these kinases as well as in cataloguing candidate substrates. This information remains largely sound. Nevertheless, an informed understanding of the physiological and pathophysiological roles of these kinases remained to be accomplished. In the past decade, there has been an explosion of new work using RNAi in cells, as well as transgenic, knockout and conditional knockout technology in mice that has provided valuable insight into the functions of stress-activated MAPK pathways. These findings have important implications in our understanding of organ development, innate and acquired immunity, and diseases such as atherosclerosis, tumorigenesis, and type 2 diabetes. These new developments bring us within striking distance of the development and validation of novel treatment strategies. Herein we first summarize the molecular components of the mammalian stress-regulated MAPK pathways and their regulation as described thus far. We then review some of the in vivo functions of these pathways.
Collapse
Affiliation(s)
- John M Kyriakis
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St., Box 8486, Boston, MA 02111, USA.
| | | |
Collapse
|