1
|
Truong VL, Bae YJ, Rarison RHG, Bang JH, Park SY, Jeong WS. Anti-Inflammatory and Antioxidant Activities of Lipophilic Fraction from Liriope platyphylla Seeds Using Network Pharmacology, Molecular Docking, and In Vitro Experiments. Int J Mol Sci 2023; 24:14958. [PMID: 37834406 PMCID: PMC10573744 DOI: 10.3390/ijms241914958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Antioxidant and anti-inflammatory mechanisms counteract the pathogenesis of chronic diseases, such as diabetes, aging, and cancer. Therefore, enhancing antioxidant and anti-inflammatory functions may help manage these pathological conditions. This study aimed to assess the antioxidant and anti-inflammatory potentials of lipophilic fraction of Liriope platyphylla seeds (LLPS) using network pharmacology, molecular docking, and in vitro experiments. Here GC-MS analysis tentatively identified forty-three lipophilic compounds in LLPS. LLPS exhibited powerful antioxidant activity, according to the results from chemical-based antioxidant assays on DPPH, ABTS+, superoxide anion, hydrogen peroxide, nitric oxide, and hydroxyl radicals scavenging, lipid peroxidation, reducing antioxidant powers, and total antioxidant capacity. Additionally, LLPS enhanced cellular antioxidant capacity by inhibiting reactive oxygen species formation and elevating antioxidant enzyme levels, including catalase and heme oxygenase-1. Moreover, LLPS attenuated inflammatory response by reducing nitric oxide secretion and downregulating the expression of inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β in lipopolysaccharide-treated macrophages. Network pharmacology and molecular docking analyses showed that key compounds in LPPS, particularly phytosterols and fatty acid esters, exerted antioxidant and anti-inflammatory properties through regulating NFKB1, PTGS1, PTGS2, TLR4, PRKCA, PRKCD, KEAP1, NFE2L2, and NR1l2. Overall, these data suggest that LLPS may be a potential antioxidant and anti-inflammatory agent for developing functional foods.
Collapse
Affiliation(s)
- Van-Long Truong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeon-Ji Bae
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
| | - Razanamanana H. G. Rarison
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
| | - Ji-Hong Bang
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
| | - So-Yoon Park
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
| | - Woo-Sik Jeong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Singh RK, Kumar S, Kumar S, Shukla A, Kumar N, Patel AK, Yadav LK, Kaushalendra, Antiwal M, Acharya A. Potential implications of protein kinase Cα in pathophysiological conditions and therapeutic interventions. Life Sci 2023; 330:121999. [PMID: 37536614 DOI: 10.1016/j.lfs.2023.121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PKCα is a molecule with many functions that play an important role in cell survival and death to maintain cellular homeostasis. Alteration in the normal functioning of PKCα is responsible for the complicated etiology of many pathologies, including cancer, cardiovascular diseases, kidney complications, neurodegenerative diseases, diabetics, and many others. Several studies have been carried out over the years on this kinase's function, and regulation in normal physiology and pathological conditions. A lot of data with antithetical results have therefore accumulated over time to create a complex framework of physiological implications connected to the PKCα function that needs comprehensive elucidation. In light of this information, we critically analyze the multiple roles played by PKCα in basic cellular processes and their molecular mechanism during various pathological conditions. This review further discusses the current approaches to manipulating PKCα signaling amplitude in the patient's favour and proposed PKCα as a therapeutic target to reverse pathological states.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Lab of Hematopoiesis and Leukemia, KSBS, Indian Institute of Technology, Delhi, New Delhi 110016, India; Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sanjay Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Alok Shukla
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Naveen Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Patel
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Lokesh Kumar Yadav
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Kaushalendra
- Department of Zoology, Pachhunga University College Campus, Mizoram University, Aizawl 796001, India
| | - Meera Antiwal
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arbind Acharya
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Wilkinson ML, Gow AJ. Effects of fatty acid nitroalkanes on signal transduction pathways and airway macrophage activation. Innate Immun 2021; 27:353-364. [PMID: 34375151 PMCID: PMC8419298 DOI: 10.1177/17534259211015330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Fatty acid nitroalkenes are reversibly-reactive electrophiles that are endogenously detectable at nM concentrations and display anti-inflammatory, pro-survival actions. These actions are elicited through the alteration of signal transduction proteins via a Michael addition on nucleophilic cysteine thiols. Nitrated fatty acids (NO2-FAs), like 9- or 10-nitro-octadec-9-enolic acid, will act on signal transduction proteins directly or on key regulatory proteins to cause an up-regulation or down-regulation of the protein's expression, yielding an anti-inflammatory response. These responses have been characterized in many organ systems, such as the cardiovascular system, with the pulmonary system less well defined. Macrophages are one of the most abundant immune cells in the lung and are essential in maintaining lung homeostasis. Despite this, macrophages can play a role in both acute and chronic lung injury due to up-regulation of anti-inflammatory signal transduction pathways and down-regulation of pro-inflammatory pathways. Through their propensity to alter signal transduction pathways, NO2-FAs may be able to reduce macrophage activation during pulmonary injury. This review will focus on the implications of NO2-FAs on macrophage activation in the lung and the signal transduction pathways that may be altered, leading to reduced pulmonary injury.
Collapse
Affiliation(s)
- Melissa L Wilkinson
- Department of Pharmacology and Toxicology, The State University of New Jersey, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, The State University of New Jersey, USA
| |
Collapse
|
4
|
Assessing the Anti-inflammatory Mechanism of Reduning Injection by Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6134098. [PMID: 33381562 PMCID: PMC7758122 DOI: 10.1155/2020/6134098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/30/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
Reduning Injection (RDNI) is a traditional Chinese medicine formula indicated for the treatment of inflammatory diseases. However, the molecular mechanism of RDNI is unclear. The information of RDNI ingredients was collected from previous studies. Targets of them were obtained by data mining and molecular docking. The information of targets and related pathways was collected in UniProt and KEGG. Networks were constructed and analyzed by Cytoscape to identify key compounds, targets, and pathways. Data mining and molecular docking identified 11 compounds, 84 targets, and 201 pathways that are related to the anti-inflammatory activity of RDNI. Network analysis identified two key compounds (caffeic acid and ferulic acid), five key targets (Bcl-2, eNOS, PTGS2, PPARA, and MMPs), and four key pathways (estrogen signaling pathway, PI3K-AKT signaling pathway, cGMP-PKG signaling pathway, and calcium signaling pathway) which would play critical roles in the treatment of inflammatory diseases by RDNI. The cross-talks among pathways provided a deeper understanding of anti-inflammatory effect of RDNI. RDNI is capable of regulating multiple biological processes and treating inflammation at a systems level. Network pharmacology is a practical approach to explore the therapeutic mechanism of TCM for complex disease.
Collapse
|
5
|
Ayotte Y, Bilodeau F, Descoteaux A, LaPlante SR. Fragment-Based Phenotypic Lead Discovery: Cell-Based Assay to Target Leishmaniasis. ChemMedChem 2018; 13:1377-1386. [PMID: 29722149 DOI: 10.1002/cmdc.201800161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/20/2018] [Indexed: 12/24/2022]
Abstract
A rapid and practical approach for the discovery of new chemical matter for targeting pathogens and diseases is described. Fragment-based phenotypic lead discovery (FPLD) combines aspects of traditional fragment-based lead discovery (FBLD), which involves the screening of small-molecule fragment libraries to target specific proteins, with phenotypic lead discovery (PLD), which typically involves the screening of drug-like compounds in cell-based assays. To enable FPLD, a diverse library of fragments was first designed, assembled, and curated. This library of soluble, low-molecular-weight compounds was then pooled to expedite screening. Axenic cultures of Leishmania promastigotes were screened, and single hits were then tested for leishmanicidal activity against intracellular amastigote forms in infected murine bone-marrow-derived macrophages without evidence of toxicity toward mammalian cells. These studies demonstrate that FPLD can be a rapid and effective means to discover hits that can serve as leads for further medicinal chemistry purposes or as tool compounds for identifying known or novel targets.
Collapse
Affiliation(s)
- Yann Ayotte
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - François Bilodeau
- NMX Research and Solutions Inc., 500 boulevard Cartier, Laval, Québec, H7V 5B7, Canada
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Steven R LaPlante
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
6
|
Gordon R, Singh N, Lawana V, Ghosh A, Harischandra DS, Jin H, Hogan C, Sarkar S, Rokad D, Panicker N, Anantharam V, Kanthasamy AG, Kanthasamy A. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease. Neurobiol Dis 2016; 93:96-114. [PMID: 27151770 DOI: 10.1016/j.nbd.2016.04.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic microglial activation has been linked to the progressive degeneration of the nigrostriatal dopaminergic neurons evidenced in Parkinson's disease (PD) pathogenesis. The exact etiology of PD remains poorly understood. Although both oxidative stress and neuroinflammation are identified as co-contributors in PD pathogenesis, signaling mechanisms underlying neurodegenerative processes have yet to be defined. Indeed, we recently identified that protein kinase C delta (PKCδ) activation is critical for induction of dopaminergic neuronal loss in response to neurotoxic stressors. However, it remains to be defined whether PKCδ activation contributes to immune signaling events driving microglial neurotoxicity. In the present study, we systematically investigated whether PKCδ contributes to the heightened microglial activation response following exposure to major proinflammatory stressors, including α-synuclein, tumor necrosis factor α (TNFα), and lipopolysaccharide (LPS). We report that exposure to the aforementioned inflammatory stressors dramatically upregulated PKCδ with a concomitant increase in its kinase activity and nuclear translocation in both BV-2 microglial cells and primary microglia. Importantly, we also observed a marked upregulation of PKCδ in the microglia of the ventral midbrain region of PD patients when compared to age-matched controls, suggesting a role for microglial PKCδ in neurodegenerative processes. Further, shRNA-mediated knockdown and genetic ablation of PKCδ in primary microglia blunted the microglial proinflammatory response elicited by the inflammogens, including ROS generation, nitric oxide production, and proinflammatory cytokine and chemokine release. Importantly, we found that PKCδ activated NFκB, a key mediator of inflammatory signaling events, after challenge with inflammatory stressors, and that transactivation of NFκB led to translocation of the p65 subunit to the nucleus, IκBα degradation and phosphorylation of p65 at Ser536. Furthermore, both genetic ablation and siRNA-mediated knockdown of PKCδ attenuated NFκB activation, suggesting that PKCδ regulates NFκB activation subsequent to microglial exposure to inflammatory stimuli. To further investigate the pivotal role of PKCδ in microglial activation in vivo, we utilized pre-clinical models of PD. We found that PKCδ deficiency attenuated the proinflammatory response in the mouse substantia nigra, reduced locomotor deficits and recovered mice from sickness behavior in an LPS-induced neuroinflammation model of PD. Likewise, we found that PKCδ knockout mice treated with MPTP displayed a dampened microglial inflammatory response. Moreover, PKCδ knockout mice exhibited reduced susceptibility to the neurotoxin-induced dopaminergic neurodegeneration and associated motor impairments. Taken together, our studies propose a pivotal role for PKCδ in PD pathology, whereby sustained PKCδ activation drives sustained microglial inflammatory responses and concomitant dopaminergic neurotoxicity consequently leading to neurobehavioral deficits. We conclude that inhibiting PKCδ activation may represent a novel therapeutic strategy in PD treatment.
Collapse
Affiliation(s)
- Richard Gordon
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Neeraj Singh
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Vivek Lawana
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anamitra Ghosh
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Dilshan S Harischandra
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Colleen Hogan
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Souvarish Sarkar
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Dharmin Rokad
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Nikhil Panicker
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Arthi Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
7
|
Chu H, Tang Q, Huang H, Hao W, Wei X. Grape-seed proanthocyanidins inhibit the lipopolysaccharide-induced inflammatory mediator expression in RAW264.7 macrophages by suppressing MAPK and NF-κb signal pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:159-166. [PMID: 26708200 DOI: 10.1016/j.etap.2015.11.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
Grape-seed proanthocyanidins (GSPs) have been shown to function as an anti-oxidant and anti-inflammatory agent with little toxicity in vivo and in vitro. However, little is known about their anti-inflammatory properties and mechanisms of action. The specific focus being its effects on the MAP kinases and nuclear factor-kappaB (NF-κB) signal transduction pathways in lipopolysaccharide (LPS) -stimulated RAW264.7 cells. GSPs extract has been found to suppress the mRNA expression of pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inflammatory molecule of cyclooxygenase-2 (COX-2) while mRNA level of IL-10 was greatly promoted. Furthermore, GSPs extract inhibited the expression of phosphorylated ERK, JNK and P38, as well as phosphorylated IKKα/β and NF-κB p65 subunit. In conclusion, our results show that GSPs extract showed its anti-inflammatory and immunomodulatory properties by suppressing the activation of MAP kinases and NF-κB signal transduction pathways.
Collapse
Affiliation(s)
- Hongqian Chu
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qiuqiong Tang
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Hongpeng Huang
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
8
|
Bueno-Silva B, Kawamoto D, Ando-Suguimoto ES, Alencar SM, Rosalen PL, Mayer MPA. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages. PLoS One 2015; 10:e0144954. [PMID: 26660901 PMCID: PMC4684384 DOI: 10.1371/journal.pone.0144954] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/27/2015] [Indexed: 12/16/2022] Open
Abstract
Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ellen S. Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Severino M. Alencar
- College of Agriculture “Luiz de Queiroz” (ESALQ/USP), Piracicaba, SP, Brazil
| | - Pedro L. Rosalen
- Piracicaba Dental School, University of Campinas–UNICAMP, Department of Physiologic Sciences, Piracicaba, SP, Brazil
| | - Marcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
9
|
Ma Y, Usuwanthim K, Munawara U, Quach A, Gorgani NN, Abbott CA, Hii CS, Ferrante A. Protein kinase cα regulates the expression of complement receptor Ig in human monocyte-derived macrophages. THE JOURNAL OF IMMUNOLOGY 2015; 194:2855-61. [PMID: 25687755 DOI: 10.4049/jimmunol.1303477] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The complement receptor Ig (CRIg) is selectively expressed by macrophages. This receptor not only promotes the rapid phagocytosis of bacteria by macrophages but also has anti-inflammatory and immunosuppressive functions. Previous findings have suggested that protein kinase C (PKC) may be involved in the regulation of CRIg expression in human macrophages. We have now examined the role of PKCα in CRIg expression in human monocyte-derived macrophages (MDM). Macrophages nucleofected with plasmid containing short hairpin RNA against PKCα showed markedly reduced expression of PKCα, but normal PKCζ expression, by Western blotting analysis, and vice versa. PKCα-deficient MDM showed increased expression of CRIg mRNA and protein (both the long and short form), an increase in phagocytosis of complement-opsonized Candida albicans, and decreased production of TNF-α and IL-6. TNF-α caused a marked decrease in CRIg expression, and addition of anti-TNF mAb to the TNF-α-producing MDMs increased CRIg expression. PKCα-deficient macrophages also showed significantly less bacterial LPS-induced downregulation of CRIg. In contrast, cells deficient in PKCα showed decreased expression of CR type 3 (CR3) and decreased production of TNF-α and IL-6 in response to LPS. MDM developed under conditions that increased expression of CRIg over CR3 showed significantly reduced production of TNF-α in response to opsonized C. albicans. The findings indicate that PKCα promotes the downregulation of CRIg and upregulation of CR3 expression and TNF-α and IL-6 production, a mechanism that may promote inflammation.
Collapse
Affiliation(s)
- Yuefang Ma
- Department of Immunopathology, SA Pathology, Women's and Children's Hospital, North Adelaide, Adelaide, South Australia 5006, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kanchana Usuwanthim
- Department of Immunopathology, SA Pathology, Women's and Children's Hospital, North Adelaide, Adelaide, South Australia 5006, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Usma Munawara
- Department of Immunopathology, SA Pathology, Women's and Children's Hospital, North Adelaide, Adelaide, South Australia 5006, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia; School of Biological Science, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Alex Quach
- Department of Immunopathology, SA Pathology, Women's and Children's Hospital, North Adelaide, Adelaide, South Australia 5006, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Nick N Gorgani
- Department of Immunopathology, SA Pathology, Women's and Children's Hospital, North Adelaide, Adelaide, South Australia 5006, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia; Children's Medical Research Institute, University of Sydney, Westmead, New South Wales 2145, Australia
| | - Catherine A Abbott
- School of Biological Science, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Charles S Hii
- Department of Immunopathology, SA Pathology, Women's and Children's Hospital, North Adelaide, Adelaide, South Australia 5006, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology, Women's and Children's Hospital, North Adelaide, Adelaide, South Australia 5006, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia; School of Molecular Biosciences, University of Adelaide, Adelaide, South Australia 5005, Australia; and School of Pharmaceutical and Medical Science, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
10
|
Naqvi AR, Fordham JB, Nares S. miR-24, miR-30b, and miR-142-3p regulate phagocytosis in myeloid inflammatory cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:1916-27. [PMID: 25601927 DOI: 10.4049/jimmunol.1401893] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Micro-RNAs (miRNAs) are small noncoding RNAs that regulate various biological pathways. As their role in phagocytosis remains poorly understood, we investigated their impact on phagocytosis in myeloid inflammatory cells. Seven miRNAs (miR-24, -30b, -101, 142-3p, -652-3p, -652-5p, and -1275) that were differentially expressed during monocyte to macrophage (Mφ) and monocyte to dendritic cell (DC) differentiation were screened for their potential role in phagocytosis. Among these, overexpression of miR-24, miR-30b, and miR-142-3p in human monocyte-derived Mφ, DC, monocytes, and PBMCs significantly attenuate phagocytosis of Escherichia coli and Staphylococcus aureus, as well as the secretion of inflammatory mediators, including TNF-α, IL-6, and IL-12p40. miRNA-mediated changes in cytokine profiles were observed at transcriptional and/or posttranscriptional levels and importantly exhibit miRNA-specific impact. To examine the underlying mechanism, we monitored the expression of phagocytosis pathway-associated genes and identified several genes that were altered in Mφ and DC transfected with miR-24, miR-30b, and miR-142-3p mimics. Some of these genes with altered expression also harbor putative miRNA binding sites. We show that miR-142-3p directly regulates protein kinase Cα (PKCα), a key gene involved in phagocytosis. Interestingly, miR-142-3p and PKCα exhibit antagonistic expression during Mφ and DC differentiation. Short interfering RNA-mediated knockdown of PKCα in Mφ leads to reduced bacterial uptake, further highlighting the role of the gene in phagocytosis. Overall, these results demonstrate that miR-24, miR-30b, and miR-142-3p regulate phagocytosis and associated cytokine production in myeloid inflammatory cells through modulation of various genes involved in the pathway.
Collapse
Affiliation(s)
- Afsar Raza Naqvi
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL 60612
| | - Jezrom B Fordham
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL 60612
| | - Salvador Nares
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
11
|
Sun Y, Chauhan A, Sukumaran P, Sharma J, Singh BB, Mishra BB. Inhibition of store-operated calcium entry in microglia by helminth factors: implications for immune suppression in neurocysticercosis. J Neuroinflammation 2014; 11:210. [PMID: 25539735 PMCID: PMC4302716 DOI: 10.1186/s12974-014-0210-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/29/2014] [Indexed: 12/13/2022] Open
Abstract
Background Neurocysticercosis (NCC) is a disease of the central nervous system (CNS) caused by the cestode Taenia solium. The infection exhibits a long asymptomatic phase, typically lasting 3 to 5 years, before the onset of the symptomatic phase. The severity of the symptoms is thought to be associated with the intensity of the inflammatory response elicited by the degenerating parasite. In contrast, the asymptomatic phase shows an absence of brain inflammation, which is presumably due to immunosuppressive effects of the live parasites. However, the host factors and/or pathways involved in inhibiting inflammation remain largely unknown. Recently, using an animal model of NCC in which mice were intracranially inoculated with a related helminth parasite, Mesocestoides corti, we reported that Toll-like receptor (TLR)-associated signaling contributes to the development of the inflammatory response. As microglia shape the initial innate immune response in the CNS, we hypothesized that the negative regulation of a TLR-induced inflammatory pathway in microglia may be a novel helminth-associated immunosuppressive mechanism in NCC. Methods and results Here we report that helminth soluble factors (HSFs) from Mesocestoides corti inhibited TLR ligation-induced production of inflammatory cytokines in primary microglia. This was correlated with an inhibition of TLR-initiated upregulation of both phosphorylation and acetylation of the nuclear factor κB (NF-κB) p65 subunit, as well as phosphorylation of JNK and ERK1/2. As Ca2+ influx due to store-operated Ca2+ entry (SOCE) has been implicated in induction of downstream signaling, we tested the inhibitory effect of HSFs on agonist-induced Ca2+ influx and specific Ca2+ channel activation. We discovered that HSFs abolished the lipopolysaccharide (LPS)- or thapsigargin (Tg)-induced increase in intracellular Ca2+ accumulation by blocking the ER store release and SOCE. Moreover, electrophysiological recordings demonstrated HSF-mediated inhibition of LPS- or Tg-induced SOCE currents through both TRPC1 and ORAI1 Ca2+ channels on plasma membrane. This was correlated with a decrease in the TRPC1-STIM1 and ORAI1-STIM1 clustering at the plasma membrane that is essential for sustained Ca2+ entry through these channels. Conclusion Inhibition of TRPC1 and ORAI1 Ca2+ channel-mediated activation of NF-κB and MAPK pathways in microglia is likely a novel helminth-induced immunosuppressive mechanism that controls initiation of inflammatory response in the CNS.
Collapse
|
12
|
Musumeci G, Coleman R, Imbesi R, Magro G, Parenti R, Szychlinska MA, Scuderi R, Cinà CS, Castorina S, Castrogiovanni P. ADAM-10 could mediate cleavage of N-cadherin promoting apoptosis in human atherosclerotic lesions leading to vulnerable plaque: a morphological and immunohistochemical study. Acta Histochem 2014; 116:1148-58. [PMID: 24985126 DOI: 10.1016/j.acthis.2014.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 01/03/2023]
Abstract
Atherosclerosis remains a major cause of mortality. Whereas the histopathological progression of atherosclerotic lesions is well documented, much less is known about the development of unstable or vulnerable plaque, which can rupture leading to thrombus, luminal occlusion and infarct. Apoptosis in the fibrous cap, which is rich in vascular smooth muscle cells (VSMCs) and macrophages, and its subsequent weakening or erosion seems to be an important regulator of plaque stability. The aim of our study was to improve our knowledge on the biological mechanisms that cause plaque instability in order to develop new therapies to maintain atherosclerotic plaque stability and avoid its rupture. In our study, we collected surgical specimens from atherosclerotic plaques in the right or left internal carotid artery of 62 patients with evident clinical symptoms. Histopathology and histochemistry were performed on wax-embedded sections. Immunohistochemical localization of caspase-3, N-cadherin and ADAM-10 was undertaken in order to highlight links between apoptosis, as expressed by caspase-3 immunostaining, and possible roles of N-cadherin, a cell-cell junction protein in VSMCs and macrophages that provides a pro-survival signal reducing apoptosis, and ADAM-10, a "disintegrin and metalloproteases" that is able to cleave N-cadherin in glioblastomas. Our results showed that when apoptosis, expressed by caspase-3 immunostaining, increased in the fibrous cap, rich in VSMCs and macrophages, the expression of N-cadherin decreased. The decreased N-cadherin expression, in turn, was linked to increased ADAM-10 expression. This study shows that apoptotic events are probably involved in the vulnerability of atherosclerotic plaque.
Collapse
|
13
|
Abstract
Objective To investigate the expression and roles of p38 mitogen-activated protein kinase (p38 MAPK) in LPS-induced acute lung injury (ALI) in mice. Methods The ALI mice models were set up by intraperineal injection of lipopolysaccharide (LPS). The expressions of p38 MAPK in lung tissues were detected by immunohistochemistry and Western-blot. Results The positive expressions of p38 MAPK distribute mainly in infiltrative inflammatory cells, epithelial cells and endothelial cells. And the level of expression of phosphated p38 MAPK in ALI group were higher obviously than that in the control group, and it reached a peak after two hours. Conclusion p38 MAPK signaling pathway was triggered by ALI induced by endotoxin.
Collapse
|
14
|
Leppänen T, Tuominen RK, Moilanen E. Protein kinase C and its inhibitors in the regulation of inflammation: inducible nitric oxide synthase as an example. Basic Clin Pharmacol Toxicol 2013; 114:37-43. [PMID: 24107256 DOI: 10.1111/bcpt.12139] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/13/2013] [Indexed: 01/19/2023]
Abstract
Protein kinase C (PKC) is a family of ten isoenzymes that play a crucial role in cellular signal transduction. Studies with PKC knockout animals have revealed that many of the isoenzymes are involved in cell growth, proliferation and differentiation. Several PKC isoenzymes have also been shown to be important mediators in inflammation and immunity, particularly in lymphocyte responses. However, less is known about the role of PKC in the regulation of the expression of inflammatory genes. In inflammatory processes, nitric oxide is primarily produced by inducible nitric oxide synthase (iNOS) in inflammatory cells, such as macrophages. In innate immunity, nitric oxide functions as an effector molecule towards the infectious organisms. Increased levels of nitric oxide are also produced by inflammatory and tissue cells in inflammatory diseases, such as asthma and arthritis. In this MiniReview, the role of PKC isoenzymes in the pathogenesis and as a potential drug target in inflammation will be discussed presenting iNOS as an example of an inflammatory gene regulated by the pleiotropic PKC signalling pathway.
Collapse
Affiliation(s)
- Tiina Leppänen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | | | | |
Collapse
|
15
|
Ma AZS, Zhang Q, Song ZY. TNFa alter cholesterol metabolism in human macrophages via PKC-θ-dependent pathway. BMC BIOCHEMISTRY 2013; 14:20. [PMID: 23914732 PMCID: PMC3751201 DOI: 10.1186/1471-2091-14-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/27/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Studies have shown that inflammation promoted atherosclerotic progression; however, it remains unclear whether inflammation promoted atherosclerotic progression properties by altering cholesterol metabolism in human macrophages. In the present study, we evaluated a potential mechanism of inflammation on atherogenic effects. We evaluated the ability of TNFa to affect Reverse cholesterol transport (RCT) and cholesterol uptake and its mechanism(s) of action in human macrophages. RESULTS We initially determined the potential effects of TNFa on cholesterol efflux in the human macrophages. We also determined alterations in mRNA and protein levels of ABCA1, ABCG1, LXRa, CD-36, SR-A in human macrophages using quantitative real-time polymerase chain reaction (PCR) and Western immunoblot analyses. The cholesterol efflux rate and protein expression of ABCA1, ABCG1, LXRa, CD-36, SR-A were quantified in human macrophages under PKC-θ inhibition using PKC-θ siRNA. Our results showed that TNFa inhibited the rate of cholesterol efflux and down-regulation the expression levels of ABCA1, ABCG1 and LXRa and up-regulation the expression levels of CD-36, SR-A in human macrophages; PKC-θ inhibition by PKC-θ siRNA attenuated the effect of TNFa on ABCA1, ABCG1, LXRa, SR-A, CD-36 expression. CONCLUSIONS Our results suggest TNFa alter cholesterol metabolism in human macrophages through the inhibition of Reverse cholesterol transport and enhancing cholesterol uptake via PKC-θ-dependent pathway, implicating a potential mechanism of inflammation on atherogenic effects.
Collapse
Affiliation(s)
- A Zhi Sha Ma
- Department of Cardiology, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
16
|
Boncoeur É, Bouvet GF, Migneault F, Tardif V, Ferraro P, Radzioch D, de Sanctis JB, Eidelman D, Govindaraju K, Dagenais A, Berthiaume Y. Induction of nitric oxide synthase expression by lipopolysaccharide is mediated by calcium-dependent PKCα-β1 in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2013; 305:L175-84. [PMID: 23686852 DOI: 10.1152/ajplung.00295.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) plays an important role in innate host defense and inflammation. In response to infection, NO is generated by inducible nitric oxide synthase (iNOS), a gene product whose expression is highly modulated by different stimuli, including lipopolysaccharide (LPS) from gram-negative bacteria. We reported recently that LPS from Pseudomonas aeruginosa altered Na⁺ transport in alveolar epithelial cells via a suramin-dependent process, indicating that LPS activated a purinergic response in these cells. To further study this question, in the present work, we tested whether iNOS mRNA and protein expression were modulated in response to LPS in alveolar epithelial cells. We found that LPS induced a 12-fold increase in iNOS mRNA expression via a transcription-dependent process in these cells. iNOS protein, NO, and nitrotyrosine were also significantly elevated in LPS-treated cells. Ca²⁺ chelation and protein kinase C (PKCα-β1) inhibition suppressed iNOS mRNA induction by LPS, implicating Ca²⁺-dependent PKC signaling in this process. LPS evoked a significant increase of extracellular ATP. Because PKC activation is one of the signaling pathways known to mediate purinergic signaling, we evaluated the hypothesis that iNOS induction was ATP dependent. Although high suramin concentration inhibited iNOS mRNA induction, the process was not ATP dependent, since specific purinergic receptor antagonists could not inhibit the process. Altogether, these findings demonstrate that iNOS expression is highly modulated in alveolar epithelial cells by LPS via a Ca²⁺/PKCα-β1 pathway independent of ATP signaling.
Collapse
Affiliation(s)
- Émilie Boncoeur
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CR-CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Mo X, Piper MG, Wang H, Parinandi NL, Guttridge D, Marsh CB. M-CSF induces monocyte survival by activating NF-κB p65 phosphorylation at Ser276 via protein kinase C. PLoS One 2011; 6:e28081. [PMID: 22216091 PMCID: PMC3245220 DOI: 10.1371/journal.pone.0028081] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 10/31/2011] [Indexed: 01/05/2023] Open
Abstract
Macrophage colony-stimulating factor (M-CSF) promotes mononuclear phagocyte survival and proliferation. The transcription factor Nuclear Factor-kappaB (NF-κB) is a key regulator of genes involved in M-CSF-induced mononuclear phagocyte survival and this study focused at identifying the mechanism of NF-κB transcriptional activation. Here, we demonstrate that M-CSF stimulated NF-κB transcriptional activity in human monocyte-derived macrophages (MDMs) and the murine macrophage cell line RAW 264.7. The general protein kinase C (PKC) inhibitor Ro-31-8220, the conventional PKCα/β inhibitor Gö-6976, overexpression of dominant negative PKCα constructs and PKCα siRNA reduced NF-κB activity in response to M-CSF. Interestingly, Ro-31-8220 reduced Ser276 phosphorylation of NF-κBp65 leading to decreased M-CSF-induced monocyte survival. In this report, we identify conventional PKCs, including PKCα as important upstream kinases for M-CSF-induced NF-κB transcriptional activation, NF-κB-regulated gene expression, NF-κB p65 Ser276 phosphorylation, and macrophage survival. Lastly, we find that NF-κB p65 Ser276 plays an important role in basal and M-CSF-stimulated NF-κB activation in human mononuclear phagocytes.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Xiaokui Mo
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Melissa G. Piper
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Hongmei Wang
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Narasimham L. Parinandi
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Denis Guttridge
- Department of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Clay B. Marsh
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
18
|
Loegering DJ, Lennartz MR. Protein kinase C and toll-like receptor signaling. Enzyme Res 2011; 2011:537821. [PMID: 21876792 PMCID: PMC3162977 DOI: 10.4061/2011/537821] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/31/2011] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C (PKC) is a family of kinases that are implicated in a plethora of diseases, including cancer and cardiovascular disease. PKC isoforms can have different, and sometimes opposing, effects in these disease states. Toll-like receptors (TLRs) are a family of pattern recognition receptors that bind pathogens and stimulate the secretion of cytokines. It has long been known that PKC inhibitors reduce LPS-stimulated cytokine secretion by macrophages, linking PKC activation to TLR signaling. Recent studies have shown that PKC-α, -δ, -ε, and -ζ are directly involved in multiple steps in TLR pathways. They associate with the TLR or proximal components of the receptor complex. These isoforms are also involved in the downstream activation of MAPK, RhoA, TAK1, and NF-κB. Thus, PKC activation is intimately involved in TLR signaling and the innate immune response.
Collapse
Affiliation(s)
- Daniel J Loegering
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | |
Collapse
|
19
|
Furuya A, Asano K, Shoji N, Hirano K, Hamasaki T, Suzaki H. Suppression of nitric oxide production from nasal fibroblasts by metabolized clarithromycin in vitro. JOURNAL OF INFLAMMATION-LONDON 2010; 7:56. [PMID: 21092318 PMCID: PMC3003651 DOI: 10.1186/1476-9255-7-56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/23/2010] [Indexed: 11/29/2022]
Abstract
Background Low-dose and long-term administration of 14-membered macrolide antibiotics, so called macrolide therapy, has been reported to favorably modify the clinical conditions of chronic airway diseases. Since there is growing evidence that macrolide antibiotic-resistant bacteria's spreaders in the populations received macrolide therapy, it is strongly desired to develop macrolide antibiotics, which showed only anti-inflammatory action. The present study was designed to examine the influence of clarithromycin (CAM) and its metabolized materials, M-1, M-4 and M-5, on free radical generation from nasal polyp fibroblasts (NPFs) through the choice of nitric oxide (NO), which is one of important effector molecule in the development of airway inflammatory disease in vitro. Methods NPFs (5 × 105 cells/ml) were stimulated with 1.0 μg/ml lipopolysaccharide (LPS) in the presence of agents for 24 hours. NO levels in culture supernatants were examined by the Griess method. We also examined the influence of agents on the phosphorylation of MAPKs, NF-κB activation, iNOS mRNA expression and iNOS production in NPFs cultured for 2, 4, 8, and 12 hours, respectively. Results The addition of CAM (> 0.4 μg/ml) and M-4 (> 0.04 μg/ml) could suppress NO production from NPFs after LPS stimulation through the suppression of iNOS mRNA expression and NF-κB activation. CAM and M-4 also suppressed phosphorylation of MAPKs, ERK and p38 MAPK, but not JNK, which are increased LPS stimulation. On the other hand, M-1 and M-5 could not inhibit the NO generation, even when 0.1 μg/ml of the agent was added to cell cultures. Conclusion The present results may suggest that M-4 will be a good candidate for the agent in the treatment of chronic airway inflammatory diseases, since M-4 did not have antimicribiological effects on gram positive and negative bacteria.
Collapse
Affiliation(s)
- Ayako Furuya
- Division of Physiology, School of Nursing and Rehabilitation Sciences, Showa University, Yokohama, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Delgado-Domínguez J, González-Aguilar H, Aguirre-García M, Gutiérrez-Kobeh L, Berzunza-Cruz M, Ruiz-Remigio A, Robles-Flores M, Becker I. Leishmania mexicana lipophosphoglycan differentially regulates PKCalpha-induced oxidative burst in macrophages of BALB/c and C57BL/6 mice. Parasite Immunol 2010; 32:440-9. [PMID: 20500675 DOI: 10.1111/j.1365-3024.2010.01205.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Leishmania are protozoan parasites that infect macrophages and their survival is partially achieved through inhibition of the cellular oxidative burst by parasite lipophosphoglycan (LPG). PKCalpha is the predominant PKC isoenzyme required for macrophage oxidative burst, yet it is not known if different susceptibility of BALB/c and C57BL/6 mice to Leishmania mexicana could be related to PKCalpha. We analysed the effect of L. mexicana promastigotes and parasite LPG on expression of PKCalpha and on its activity in macrophages of both mouse strains. Our data show that expression of the isoenzyme was not altered either by LPG or by L. mexicana promastigotes. Yet LPG exerted opposing effects on PKCalpha activity of macrophages between both strains: in susceptible BALB/c cells, it inhibited PKCalpha activity, whereas in the more resistant strain it augmented enzymatic activity 2.8 times. In addition, LPG inhibited oxidative burst only in susceptible BALB/c macrophages and the degree of inhibition correlated with parasite survival. Promastigotes also inhibited PKCalpha activity and oxidative burst in macrophages of BALB/c mice, whereas in C57BL/6, they enhanced PKCalpha activity and oxidative burst inhibition was less severe. Our data indicate that control of PKCalpha-induced oxidative burst by L. mexicana LPG relates with its success to infect murine macrophages.
Collapse
Affiliation(s)
- J Delgado-Domínguez
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Colonia Doctores, México D.F., México
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Leishmania donovani amastigotes impair gamma interferon-induced STAT1alpha nuclear translocation by blocking the interaction between STAT1alpha and importin-alpha5. Infect Immun 2010; 78:3736-43. [PMID: 20566692 DOI: 10.1128/iai.00046-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The protozoan parasite Leishmania donovani, the etiological agent of visceral leishmaniasis, is renowned for its capacity to sabotage macrophage functions and signaling pathways stimulated by activators such as gamma interferon (IFN-gamma). Our knowledge of the strategies utilized by L. donovani to impair macrophage responsiveness to IFN-gamma remains fragmentary. In the present study, we investigated the impact of an infection by the amastigote stage of L. donovani on IFN-gamma responses and signaling via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in mouse bone marrow-derived macrophages. The levels of IFN-gamma-induced expression of major histocompatibility complex class II and inducible nitric oxide synthase (iNOS) were strongly reduced in L. donovani amastigote-infected macrophages. As the expression of those genes is mediated by the transcription factors STAT1alpha and IFN regulatory factor 1 (IRF-1), we investigated their activation in amastigote-infected macrophages treated with IFN-gamma. We found that whereas STAT1alpha protein levels and the levels of phosphorylation on Tyr701 and Ser727 were normal, IRF-1 expression was inhibited in infected macrophages. This inhibition of IRF-1 expression correlated with a defective nuclear translocation of STAT1alpha, and further analyses revealed that the IFN-gamma-induced STAT1alpha association with the nuclear transport adaptor importin-alpha5 was compromised in L. donovani amastigote-infected macrophages. Taken together, our results provide evidence for a novel mechanism used by L. donovani amastigotes to interfere with IFN-gamma-activated macrophage functions and provide a better understanding of the strategies deployed by this parasite to ensure its intracellular survival.
Collapse
|
22
|
Devadas K, Hewlett IK, Dhawan S. Lipopolysaccharide suppresses HIV-1 replication in human monocytes by protein kinase C-dependent heme oxygenase-1 induction. J Leukoc Biol 2010; 87:915-24. [PMID: 20061555 DOI: 10.1189/jlb.0307172] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
LPS is an important component of the Gram-negative bacteria cell wall. It activates monocytes and induces multiple host immune and inflammatory responses. Interestingly, in spite of inducing host-inflammatory responses, LPS also protects monocyte-derived macrophages from infection by HIV-1. In this report, we have shown that LPS treatment of human monocyte-derived macrophages markedly suppressed HIV-1 replication, even on addition to infected cells 24 h after infection. Inhibition of HIV-1 replication was associated with PKC-dependent induction of HO-1, a cytoprotective enzyme known to catabolize heme. Pretreatment with the PKC inhibitor Go 6976 not only substantially inhibited LPS-mediated induction of HO-1 but also attenuated LPS-induced suppression of HIV replication. Significant reduction of HIV replication by inhibitors of JNK, NF-kappaB, and PI3K was independent of a LPS-mediated anti-HIV effect. Specificity of HO-1 was confirmed by substantial reversal of LPS-induced viral replication by pretreatment of cells with SnPP IX, an inhibitor of HO-1 enzyme activity. These results demonstrate a previously undefined function of HO-1 as a host defense mechanism in LPS-mediated inhibition of HIV-1 replication.
Collapse
Affiliation(s)
- Krishnakumar Devadas
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike (HFM-315), Rockville, MD 20852-1448, USA
| | | | | |
Collapse
|
23
|
Lin CX, Rhaleb NE, Yang XP, Liao TD, D'Ambrosio MA, Carretero OA. Prevention of aortic fibrosis by N-acetyl-seryl-aspartyl-lysyl-proline in angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol 2008; 295:H1253-H1261. [PMID: 18641275 DOI: 10.1152/ajpheart.00481.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fibrosis is an important component of large conduit artery disease in hypertension. The endogenous tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory and antifibrotic effects in the heart and kidney. However, it is not known whether Ac-SDKP has an anti-inflammatory and antifibrotic effect on conduit arteries such as the aorta. We hypothesize that in ANG II-induced hypertension Ac-SDKP prevents aortic fibrosis and that this effect is associated with decreased protein kinase C (PKC) activation, leading to reduced oxidative stress and inflammation and a decrease in the profibrotic cytokine transforming growth factor-beta1 (TGF-beta1) and phosphorylation of its second messenger Smad2. To test this hypothesis we used rats with ANG II-induced hypertension and treated them with either vehicle or Ac-SDKP. In this hypertensive model we found an increased collagen deposition and collagen type I and III mRNA expression in the aorta. These changes were associated with increased PKC activation, oxidative stress, intercellular adhesion molecule (ICAM)-1 mRNA expression, and macrophage infiltration. TGF-beta1 expression and Smad2 phosphorylation also increased. Ac-SDKP prevented these effects without decreasing blood pressure or aortic hypertrophy. Ac-SDKP also enhanced expression of inhibitory Smad7. These data indicate that in ANG II-induced hypertension Ac-SDKP has an aortic antifibrotic effect. This effect may be due in part to inhibition of PKC activation, which in turn could reduce oxidative stress, ICAM-1 expression, and macrophage infiltration. Part of the effect of Ac-SDKP could also be due to reduced expression of the profibrotic cytokine TGF-beta1 and inhibition of Smad2 phosphorylation.
Collapse
Affiliation(s)
- Chun-Xia Lin
- Hypertension and Vascular Research Div., Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202-2689, USA
| | | | | | | | | | | |
Collapse
|
24
|
Nkhata KJ, Ray A, Dogan S, Grande JP, Cleary MP. Mammary tumor development from T47-D human breast cancer cells in obese ovariectomized mice with and without estradiol supplements. Breast Cancer Res Treat 2008; 114:71-83. [PMID: 18392696 DOI: 10.1007/s10549-008-9991-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 03/24/2008] [Indexed: 11/29/2022]
Abstract
Obesity is a risk factor for postmenopausal breast cancer, particularly for development of estrogen-receptor (ER)-positive tumors. Additionally, obesity is implicated in breast cancer progression. However, few studies address mechanisms of action of how obesity mediates these responses. Our goal was to address how obesity and/or elevated serum leptin affects tumor formation from ER-positive T47-D cells. In Study 1 ovariectomized CD-1 nude female mice were injected with goldthioglucose (GTG) at 0.5 mg/g body weight in saline or the vehicle at 6 weeks of age. At 10 weeks of age mice were inoculated with T47-D cells and implanted with estrogen pellets. In Study 2 mice were injected with 0.3 mg/g GTG or the vehicle. At 10 weeks of age cells were inoculated and mice were implanted with estrogen or placebo pellets. Mice were followed until 30 weeks of age. Some GTG mice became obese and others were non-responders. In Study 1 no mice developed tumors. In Study 2 mice with placebo pellets developed more tumors than mice with estrogen pellets, 50% vs. 13%. GTG-obese mice with placebo pellets had a 100% tumor incidence compared to 50% and 20% for GTG-lean and controls without estrogen. Serum leptin was higher in obese compared to lean mice and adiponectin was not affected by body weight. Adiponectin:leptin ratio was significantly reduced in obese compared to lean mice. Leptin, leptin receptor and signaling protein expression were determined in mammary and tumor tissue. Leptin and STAT3 were most abundant in tumors. These findings suggest that in vivo estrogen suppressed proliferation of T47-D cells but without supplemental estrogen obesity enhanced tumor development. The exact reason for this is not presently clear.
Collapse
Affiliation(s)
- Katai J Nkhata
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | | | | | | | | |
Collapse
|
25
|
Chen HS, Lei J, He X, Qu F, Wang Y, Wen WW, You HJ, Arendt-Nielsen L. Peripheral involvement of PKA and PKC in subcutaneous bee venom-induced persistent nociception, mechanical hyperalgesia, and inflammation in rats. Pain 2008; 135:31-6. [PMID: 17544210 DOI: 10.1016/j.pain.2007.04.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 04/23/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
The roles of central protein kinases A and C (PKA and PKC) in various pain states have intensively been investigated during the past decade. The aim of the present study was to investigate the peripheral involvement of PKA and PKC in persistent nociceptive response, evoked pain behaviors, and inflammation induced by subcutaneous (s.c.) injection of bee venom (BV, 0.2mg/50 microl) in rats. The effects of intraplantar injection of H-89 (a PKA inhibitor, 5-100 microg/50 microl) and chelerythrine chloride (a PKC inhibitor, 5-100 microg/50 microl) on BV-elicited persistent nociception (nociceptive flinching reflex), mechanical hyperalgesia, and inflammation were systematically investigated. Pre-treatment with H-89 dose-dependently inhibited only BV-induced mechanical hyperalgesia, but not the persistent nociception and inflammation. In contrast, pre-treatment with chelerythrine chloride dose-dependently inhibited BV-induced sustained nociception and inflammation, but not the mechanical hyperalgesia. Topical pre-treatment of the sciatic nerve with 1% capsaicin significantly blocked the inhibitory effects of the PKC inhibitor on BV-induced inflammation, but not the persistent flinching response. These results indicate that peripheral PKA and PKC involvements in BV-induced pain behaviors differ, and capsaicin-sensitive afferents appear to participate in the pro-inflammatory role of PKC in the BV pain model. Findings from the present study also suggest that targeting specific peripheral protein kinases might prove effective in the treatment of persistent pain and inflammation.
Collapse
Affiliation(s)
- Hui-Sheng Chen
- Department of Neurology, General Hospital of Shen-Yang Military Region, Shen Yang 110016, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Asano K, Kanai KI, Furuta A, Furuya A, Suzaki H, Hisamitsu T. Suppressive activity of fexofenadine hydrochloride on nitric oxide production in-vitro and in-vivo. J Pharm Pharmacol 2007; 59:1389-95. [PMID: 17910814 DOI: 10.1211/jpp.59.10.0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The aim of this study was to examine the effect of fexofenadine hydrochloride (FEX), a histamine H1-receptor antagonist, on nitric oxide (NO) production in-vitro and in-vivo. Nasal fibroblasts (5 x 10(5) cells per mL) were stimulated with 25 ng mL(-1) tumour necrosis factor-alpha in the presence of various concentrations of FEX. NO levels in 24-h-culture supernatants were measured by the Griess method and levels of inducible nitric oxide synthase (iNOS) mRNA levels in 12-h-cultured cells were measured by ELISA. FEX at more than 0.5 microg mL(-1) suppressed NO production from fibroblasts by inhibiting expression of iNOS mRNA. We also examined whether FEX could suppress NO production induced by lipopolysaccharide (LPS) stimulation in-vivo. BALB/c mice were treated with 5.0 mg kg(-1) LPS i.p. after daily oral doses of FEX, 1.0 mg kg(-1), for 1-3 weeks. Plasma was obtained 6 h later and NO levels measured by the Griess method. Expression of iNOS mRNA in lung tissues was measured by ELISA 6 h after LPS injection. Oral administration of FEX for 2 and 3 weeks, but not 1 week, significantly suppressed NO levels in plasma through the inhibition of iNOS mRNA expression, which were enhanced by LPS stimulation. These results suggest that the attenuating effect of FEX on NO production may be of therapeutic benefit in allergic diseases.
Collapse
Affiliation(s)
- Kazuhito Asano
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Deem TL, Abdala-Valencia H, Cook-Mills JM. VCAM-1 activation of endothelial cell protein tyrosine phosphatase 1B. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3865-73. [PMID: 17339486 PMCID: PMC2710028 DOI: 10.4049/jimmunol.178.6.3865] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocytes migrate from the blood into tissue by binding to and migrating across endothelial cells. One of the endothelial cell adhesion molecules that mediate lymphocyte binding is VCAM-1. We have reported that binding to VCAM-1 activates endothelial cell NADPH oxidase for the generation of reactive oxygen species (ROS). The ROS oxidize and stimulate an increase in protein kinase C (PKC)alpha activity. Furthermore, these signals are required for VCAM-1-dependent lymphocyte migration. In this report, we identify a role for protein tyrosine phosphatase 1B (PTP1B) in the VCAM-1 signaling pathway. In primary cultures of endothelial cells and endothelial cell lines, Ab cross-linking of VCAM-1 stimulated an increase in serine phosphorylation of PTP1B, the active form of PTP1B. Ab cross-linking of VCAM-1 also increased activity of PTP1B. This activation of PTP1B was downstream of NADPH oxidase and PKCalpha in the VCAM-1 signaling pathway as determined with pharmacological inhibitors and antisense approaches. In addition, during VCAM-1 signaling, ROS did not oxidize endothelial cell PTP1B. Instead PTP1B was activated by serine phosphorylation. Importantly, inhibition of PTP1B activity blocked VCAM-1-dependent lymphocyte migration across endothelial cells. In summary, VCAM-1 activates endothelial cell NADPH oxidase to generate ROS, resulting in oxidative activation of PKCalpha and then serine phosphorylation of PTP1B. This PTP1B activity is necessary for VCAM-1-dependent transendothelial lymphocyte migration. These data show, for the first time, a function for PTP1B in VCAM-1-dependent lymphocyte migration.
Collapse
Affiliation(s)
- Tracy L. Deem
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Hiam Abdala-Valencia
- Allergy-Immunology Division, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267
| | - Joan M. Cook-Mills
- Allergy-Immunology Division, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
28
|
Oh PS, Lee SJ, Lim KT. Glycoprotein isolated from Rhus verniciflua Stokes inhibits inflammation-related protein and nitric oxide production in LPS-stimulated RAW 264.7 cells. Biol Pharm Bull 2007; 30:111-6. [PMID: 17202669 DOI: 10.1248/bpb.30.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rhus verniciflua Stokes (RVS) has traditionally been used for medical purpose, such as healing of inflammatory diseases in South Korea. Glycoprotein (36 kDa) was isolated from RVS fruit, purified and used to evaluate the inhibitory effect on inflammatory-related proteins and nitric oxide (NO) production in lipopolysaccharide (LPS, 200 ng/ml)-stimulated RAW 264.7 (murine macrophage cell line). Our results were showed that RVS glycoprotein has a strong antioxidative activity against lipid peroxyl radicals in cell-free system, and inhibits NO production in LPS-stimulated RAW 264.7 cells. To elucidate the inhibitory effect of RVS glycoprotein on activities of inflammatory-related proteins, we firstly evaluated the amount of intracellular reactive oxygen species (ROS), and expression of intracellular protein kinase C (PKC), nuclear factor (NF)-kappaB, and activator protein-1 (AP-1). The results in the present study showed that RVS glycoprotein (200 microg/ml) inhibits ROS production and PKCalpha translocation, and down-regulates the expression of NF-kappaB and AP-1. Such upstream signals consequently inhibited the levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 expression. Therefore, we speculate that RVS glycoprotein inhibits the inflammatory-related protein and can act as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Phil-Sun Oh
- Molecular Biochemistry Laboratory, Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotecnology (BK21), Chonnam National University, Kwangju City, South Korea
| | | | | |
Collapse
|
29
|
Masek KS, Fiore J, Leitges M, Yan SF, Freedman BD, Hunter CA. Host cell Ca2+ and protein kinase C regulate innate recognition of Toxoplasma gondii. J Cell Sci 2007; 119:4565-73. [PMID: 17074836 DOI: 10.1242/jcs.03206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In healthy hosts, acute infection with the opportunistic pathogen Toxoplasma gondii is controlled by innate production of IL-12, a key cytokine crucial for the development of protective immunity. Previous work has established that the mitogen-activated protein kinases (MAPK), particularly p38 and ERK1/2, are important regulators of T. gondii-induced IL-12 synthesis. Here we report that host cell Ca(2+) is required for activation of MAPK by T. gondii, as well as LPS and CpG, and for parasite-induced synthesis of IL-12. In addition, pharmacological mobilization of Ca(2+) stores in macrophages treated with parasites or LPS enhanced MAPK phosphorylation initiated by these stimuli. Investigation of the upstream mechanism by which Ca(2+) regulates MAPK activation revealed that T. gondii induced acute activation of conventional, Ca(2+)-dependent PKCalpha and PKCbeta, which are required for infection-induced MAPK activation and production of IL-12. Despite these findings, neither acute parasite infection nor LPS initiated a measurable Ca(2+) response in macrophages, suggesting that low levels of Ca(2+) are permissive for initiation of pro-inflammatory signaling. Together these data identify host cell Ca(2+) and PKC as crucial regulators of the innate immune response to microbial stimuli, including T. gondii.
Collapse
Affiliation(s)
- Katherine S Masek
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
30
|
Lodge R, Descoteaux A. Phagocytosis of Leishmania donovani amastigotes is Rac1 dependent and occurs in the absence of NADPH oxidase activation. Eur J Immunol 2006; 36:2735-44. [PMID: 16955522 DOI: 10.1002/eji.200636089] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Macrophages produce little superoxide during phagocytosis of Leishmania donovani amastigotes. In this study, we characterized molecular events associated with L. donovani amastigotes uptake by mouse macrophages, to further define the mechanisms by which they are internalized without triggering superoxide production. Using transient transfections, we first showed that internalization of L. donovani amastigotes is mediated by the GTPases Rac1 and Arf6, of which Rac1 is recruited and retained on parasite-containing phagosomes. Next, we showed that, whereas internalization of amastigotes induced no superoxide release, co-internalization of serum-opsonized zymozan and amastigotes resulted in superoxide production. Furthermore, in co-internalization experiments, we detected superoxide production in over 95% of phagosomes containing IgG-opsonized SRBC compared to 5% of amastigote-harboring phagosomes. These results suggest that amastigotes evade the ability of macrophages to produce superoxide during phagocytosis. Consistently, we observed that amastigotes induced barely detectable phosphorylation of the NADPH oxidase component p47phox, leading to a defective phagosomal recruitment of p67phox and p47phox. Finally, we showed that amastigotes disrupt phagosomal lipid raft integrity, potentially interfering with NADPH oxidase assembly. Collectively, our results indicate that internalization of L. donovani amastigotes is a Rac1- and Arf6-dependent process that occurs in the absence of significant NADPH oxidase activation.
Collapse
Affiliation(s)
- Robert Lodge
- INRS-Institut Armand Frappier and Centre for host-parasite interactions, Laval, QC, Canada
| | | |
Collapse
|
31
|
Abdala-Valencia H, Cook-Mills JM. VCAM-1 signals activate endothelial cell protein kinase Calpha via oxidation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:6379-87. [PMID: 17056569 PMCID: PMC2711556 DOI: 10.4049/jimmunol.177.9.6379] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocyte binding to VCAM-1 activates endothelial cell NADPH oxidase, resulting in the generation of 1 muM H(2)O(2). This is required for VCAM-1-dependent lymphocyte migration. In this study, we identified a role for protein kinase Calpha (PKCalpha) in VCAM-1 signal transduction in human and mouse endothelial cells. VCAM-1-dependent spleen cell migration under 2 dynes/cm(2) laminar flow was blocked by pretreatment of endothelial cells with dominant-negative PKCalpha or the PKCalpha inhibitors, Rö-32-0432 or Gö-6976. Phosphorylation of PKCalpha(Thr638), an autophosphorylation site indicating enzyme activity, was increased by Ab cross-linking of VCAM-1 on endothelial cells or by the exogenous addition of 1 muM H(2)O(2). The anti-VCAM-1-stimulated phosphorylation of PKCalpha(Thr638) was blocked by scavenging of H(2)O(2) and by inhibition of NADPH oxidase. Furthermore, anti-VCAM-1 signaling induced the oxidation of endothelial cell PKCalpha. Oxidized PKCalpha is a transiently active form of PKCalpha that is diacylglycerol independent. This oxidation was blocked by inhibition of NADPH oxidase. In summary, VCAM-1 activation of endothelial cell NADPH oxidase induces transient PKCalpha activation that is necessary for VCAM-1-dependent transendothelial cell migration.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Allergy-Immunology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Joan M. Cook-Mills
- Allergy-Immunology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
32
|
Szelenyi J, Selmeczy Z, Brozik A, Medgyesi D, Magocsi M. Dual β-adrenergic modulation in the immune system: Stimulus-dependent effect of isoproterenol on MAPK activation and inflammatory mediator production in macrophages. Neurochem Int 2006; 49:94-103. [PMID: 16515823 DOI: 10.1016/j.neuint.2006.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 01/11/2006] [Indexed: 12/18/2022]
Abstract
This is the first study to demonstrate that the interaction between beta-adrenoceptor activation, and the production of inflammatory mediators can be modulated in opposite ways by two inflammatory stimuli, namely, protein kinase C (PKC)-activating phorbol myristyl acetate (PMA) and lipopolysaccharide (LPS). We provided evidence that isoproterenol treatment, when combined with phorbol ester increased the production of tumor necrosis factor-alpha, interleukin-12, and nitric oxide in murine macrophages, as well as in human monocytes and differentiated PLB-985 cells, while in agreement with earlier findings, it decreased inflammatory mediator production in combination with LPS stimulation. The contrasting effect on inflammatory mediator production, shown for the PMA and LPS activated cells was accompanied by parallel changes in activation of ERK1/2 and p38 MAPKs. Thus, isoproterenol significantly increased MAPK activation (phosphorylation) in PMA-treated cells and, conversely, it decreased the activation of extracellular signal regulated kinase 1/2 (ERK1/2) and p38 in LPS-stimulated cells. The opposing effects of isoproterenol on LPS-induced versus PMA-induced mediator production and the concurrent changes in MAPK activation highlight the role of this kinase pathway in macrophage activation and provide new insights regarding the flexible ways through which beta-adrenoceptor stimulation can modulate the inflammatory response in macrophages. Our results challenge the dogma that beta-adrenoceptor signaling is only immunosuppressive, and offer potential opportunities for new therapeutic approaches in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Judith Szelenyi
- Institute of Experimental Medicine of the Hungarian Academy of Sciences, P.O. Box 67, Budapest H-1450, Hungary.
| | | | | | | | | |
Collapse
|
33
|
Salonen T, Sareila O, Jalonen U, Kankaanranta H, Tuominen R, Moilanen E. Inhibition of classical PKC isoenzymes downregulates STAT1 activation and iNOS expression in LPS-treated murine J774 macrophages. Br J Pharmacol 2006; 147:790-9. [PMID: 16432499 PMCID: PMC1751509 DOI: 10.1038/sj.bjp.0706672] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Proinflammatory cytokines and bacterial products trigger inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in inflammatory and tissue cells. In inflammation, NO acts as an important mediator having both proinflammatory and destructive effects. Protein kinase C (PKC) is a family of serine-threonine protein kinase isoenzymes involved in signal transduction pathways related to inflammatory responses. The aim of the present study was to investigate the role of classical PKC (cPKC) isoenzymes in the regulation of iNOS expression and NO production in murine J774 macrophages and the mechanisms involved. RO318220 (inhibits PKCbeta, PKCgamma and PKCvarepsilon), GO6976 (inhibits cPKC isoenzymes PKCalpha and PKCbeta) and LY333531 (inhibits PKCbeta) reduced lipopolysaccharide (LPS)-induced NO production and iNOS expression in a dose-dependent manner as did 6 h pretreatment with 1 microM phorbol 12-myristate 13-acetate (PMA) (which was shown to downregulate PKC expression). PKC inhibitors also reduced LPS-induced iNOS mRNA levels, but they did not affect the half-life of iNOS mRNA. PKC inhibitors did not alter LPS-induced activation of NF-kappaB as measured by electrophoretic mobility shift assay. All PKC inhibitors used and pretreatment with 1 microM PMA inhibited signal transducer and activator of transcription 1 (STAT1) activation as measured by the translocation of STAT1alpha from the cytosol to the nucleus by Western blot. In addition, inhibition of STAT1 activation by AG-490, an inhibitor of JAK-2, also reduced NO production. These results suggest that cPKC isoenzymes, especially PKCbeta, mediate the upregulation of iNOS expression and NO production in activated macrophages in an NF-kappaB-independent manner, possibly through the activation of transcription factor STAT1.
Collapse
Affiliation(s)
- Tiina Salonen
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | - Outi Sareila
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | - Ulla Jalonen
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | - Hannu Kankaanranta
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | - Raimo Tuominen
- The Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
- Author for correspondence:
| |
Collapse
|
34
|
Su SC, Hua KF, Lee H, Chao LK, Tan SK, Lee H, Yang SF, Hsu HY. LTA and LPS mediated activation of protein kinases in the regulation of inflammatory cytokines expression in macrophages. Clin Chim Acta 2006; 374:106-15. [PMID: 16899235 DOI: 10.1016/j.cca.2006.05.045] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 05/27/2006] [Accepted: 05/31/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lipoteichoic acid (LTA) and lipopolysaccharide (LPS), the toxicants from bacteria, are potent inducers of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF) and interleukin-1beta (IL-1). Although LTA is much less reported than that on LPS, LTA is regarded as the gram-positive equivalent to LPS in some aspects. We investigated the LTA-induced signal transduction and biological effects, as well as to compare the effect of LTA with that of LPS. METHODS Kinase assay, ELISA and RT-PCR were performed to delineate LTA and LPS signaling as well as to determine the secretion and RNA expression of TNF and IL-1. RESULTS Src, Lyn and MAPKs are involved in LTA and LPS signaling in murine macrophages. Additionally, blockades of PKC, PI3K and p38, respectively, caused significant inhibition of both LTA- and LPS-induced proIL-1/IL-1 and TNF expression. ERK inactivation moderately reduced LTA- and LPS-induced proIL-1/IL-1, but considerably reduced TNF expression. Inhibition of JNK engendered super-induction of IL-1 secretion, but diminished TNF secretion. Strikingly, both IL-1 and TNF protein induction were declined by overexpression of dominant negative form of JNK. CONCLUSIONS The results clarify the similarity and difference between LTA- and LPS-mediated signal transduction and induction of inflammatory cytokines in macrophages.
Collapse
Affiliation(s)
- Shih-Chi Su
- Biotechnology and Laboratory Science in Medicine, Institute of Biotechnology in Medicine, National Yang-Ming University, 155 Li-Nong Street, Shih-Pai, Taipei 112, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lahn M, Sundell K, Köhler G. The role of protein kinase C-alpha in hematologic malignancies. Acta Haematol 2006; 115:1-8. [PMID: 16424642 DOI: 10.1159/000089458] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 07/13/2005] [Indexed: 01/23/2023]
Abstract
In recent years advances in histopathological and molecular understanding of hematologic malignancies have led to the development of drugs which selectively target proteins associated with hematologic tumorigenesis. One such targeted agent is the antisense oligonucleotide aprinocarsen, which specifically inhibits the signaling protein, protein kinase C-alpha (PKC-alpha). Although PKC-alpha has been associated with tumorigenesis, its role and expression levels in patients with hematologic malignancies are not well understood. We here review studies investigating the expression and role of PKC-alpha in hematologic malignancies. Such a review may offer new insights on how to develop strategies in identifying patients that might best benefit from PKC-alpha inhibition.
Collapse
Affiliation(s)
- Michael Lahn
- Division of Oncology Product Development, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | |
Collapse
|
36
|
Flandin JF, Chano F, Descoteaux A. RNA interference reveals a role for TLR2 and TLR3 in the recognition ofLeishmania donovani promastigotes by interferon–γ-primed macrophages. Eur J Immunol 2006; 36:411-20. [PMID: 16369915 DOI: 10.1002/eji.200535079] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Leishmania donovani promastigotes evade the induction of a proinflammatory response during their invasion of naive macrophages. However, their entry into IFN-gamma-primed macrophages is accompanied by the secretion of nitric oxide (NO) and proinflammatory cytokines. In the present study, we addressed the hypothesis that priming with IFN-gamma induces the expression of a receptor that enables mouse macrophages to recognize L. donovani promastigotes. We observed that in IFN-gamma-primed macrophages, L. donovani promastigotes stimulated Interleukin-1 receptor-associated kinase-1 (IRAK-1) activity. We next showed that Toll-like receptor (TLR)3 is barely detectable in naive macrophages but is expressed in IFN-gamma-treated macrophages. Silencing of TLR3, TLR2, IRAK-1 and myeloid differentiation factor 88 (MyD88) expression by RNA interference revealed that both TLR are involved in the secretion of NO and TNF-alpha induced by L. donovani promastigotes. Using L. donovani mutants, we showed that TLR2-mediated responses are dependent on Galbeta1,4Manalpha-PO(4)-containing phosphoglycans, whereas TLR3-mediated responses are independent of these glycoconjugates. Furthermore, our data indicate a participation of TLR2 and TLR3 in the phagocytosis of L. donovani promastigotes and a role for TLR3 in the leishmanicidal activity of the IFN-gamma-primed macrophages. Collectively, our data are consistent with a model where recognition of L. donovani promastigotes depends on the macrophage activation status and requires the expression of TLR3.
Collapse
Affiliation(s)
- Jean-Frédéric Flandin
- INRS- Institut Armand-Frappier and Centre for host-parasite interactions, Laval QC, Canada H7V 1B7
| | | | | |
Collapse
|
37
|
Stoffels K, Overbergh L, Giulietti A, Verlinden L, Bouillon R, Mathieu C. Immune regulation of 25-hydroxyvitamin-D3-1alpha-hydroxylase in human monocytes. J Bone Miner Res 2006; 21:37-47. [PMID: 16355272 DOI: 10.1359/jbmr.050908] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 08/31/2005] [Accepted: 09/13/2005] [Indexed: 01/09/2023]
Abstract
UNLABELLED Monocytes express 1alpha-hydroxylase, the enzyme responsible for final hydroxylation of vitamin D3, in response to IFNgamma and CD14/TLR4 activation. Cross-talk between the JAK-STAT, the NF-kappaB, and the p38 MAPK pathways is necessary, and direct binding of C/EBPbeta to its recognition sites in the promoter of the 1alpha-hydroxylase gene is a prerequisite. INTRODUCTION The activated form of vitamin D3, 1,25(OH)2D3, known for its action in bone and mineral homeostasis, has important immunomodulatory effects. 1,25(OH)2D3 modulates the immune system through specific nuclear receptors, whereas macrophages produce 1,25(OH)2D3. In monocytes, the expression of 1alpha-hydroxylase, the enzyme responsible for final hydroxylation of vitamin D3, is regulated by immune stimuli. The aim of this study was to elucidate the intracellular pathways through which interferon (IFN)gamma and Toll-like receptor (TLR) modulation regulate expression of 1alpha-hydroxylase in monocytes/macrophages. MATERIALS AND METHODS Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) and stimulated with IFNgamma (12.5 U/ml) and/or lipopolysaccharide (LPS; 100 ng/ml) for 48 h. The following inhibitors were used: janus kinase (JAK) inhibitor AG490 (50 microM), NF-kappaB inhibitor sulfasalazine (0.25 mM), p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 (5 microM). 1alpha-hydroxylase mRNA expression was monitored by qRT-PCR. Phosphorylation of transcription factors was studied by Western blotting. Transfection of mutated or deletion promoter constructs, cloned in the pGL3-luciferase reporter plasmid, were performed in the RAW264.7 cell line. Cells were stimulated with IFNgamma (100 U/ml) and LPS (100 microg/ml), and promoter activity was studied. Binding of signal transducer and activator of transcription (STAT)1alpha, NF-kappaB, and C/EBPbeta to their respective binding sites in the promoter was analyzed by gel shift assays. RESULTS 1alpha-hydroxylase mRNA expression in monocytes is synergistically induced by IFNgamma and CD14/TLR4 ligation and paralleled by 1,25(OH)2D3 production. This induction requires the JAK-STAT, NF-kappaB, and p38 MAPK pathways. Each of them is essential, because blocking individual pathways is sufficient to block 1alpha-hydroxylase expression (JAK inhibitor, 60% inhibition, p < 0.01; NF-kappaB inhibitor, 70% inhibition, p < 0.05; p38 MAPK inhibitor, 95% inhibition, p < 0.005). In addition, we show the involvement of the p38 MAPK pathway in phosphorylation of C/EBPbeta. Direct binding of C/EBPbeta to its recognition sites in the 1alpha-hydroxylase promoter is necessary to enable its immune-stimulated upregulation. CONCLUSION IFNgamma and CD14/TLR4 binding regulate expression of 1alpha-hydroxylase in monocytes in a synergistic way. Combined activation of the JAK-STAT, p38 MAPK, and NF-kappaB pathways is necessary, with C/EBPbeta most probably being the essential transcription factor controlling immune-mediated transcription.
Collapse
Affiliation(s)
- Katinka Stoffels
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
38
|
St-Pierre Y, Couillard J, Van Themsche C. Regulation of MMP-9 gene expression for the development of novel molecular targets against cancer and inflammatory diseases. Expert Opin Ther Targets 2005; 8:473-89. [PMID: 15469396 DOI: 10.1517/14728222.8.5.473] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The need to pharmacologically control the proteolytic activity of matrix metalloproteinases (MMPs) has been commonly acknowledged, despite its limited efficacy in clinical trials. Among the reasons that explain this failure is our limited understanding of the signals that control the expression of MMPs in different cell types during different pathological conditions. Thus, future therapies must rely on more selective approaches. With the continually increasing body of proof implicating MMPs in a large number of diseases, it has become a priority to establish the pertinence of molecules involved in the signalling pathways leading to the expression of these enzymes. MMP-9 is a case in point: its dramatic overexpression in cancer and various inflammatory conditions clearly points to the molecular mechanisms controlling its expression as a potential target for eventual rational therapeutic intervention. In this article, recent progress in the signalling pathways that regulate MMP-9 expression is reviewed, and the latest strategies to be considered in the search for a specific inhibitor of its expression are presented.
Collapse
Affiliation(s)
- Yves St-Pierre
- INRS-Institut Armand-Frappier, University of Quebec, 531 Boulevard des Prairies, Laval, Quebec, H7V 1B7, Canada.
| | | | | |
Collapse
|
39
|
Narang H, Krishna M. Inhibition of radiation induced nitration by curcumin and nicotinamide in mouse macrophages. Mol Cell Biochem 2005; 276:7-13. [PMID: 16132679 DOI: 10.1007/s11010-005-2241-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 02/14/2005] [Indexed: 12/01/2022]
Abstract
Nitric oxide plays an important role in inflammation and carcinogenesis and has now been implicated as an important signaling molecule under normal physiological conditions also. Increased nitric oxide (NO) results in increased nitration of proteins at tyrosine, which can cause protein dysfunction or alterations in signal transduction pathways. Irradiation of Lipopolysaccharide (LPS) activated mouse peritoneal macrophages was found to increase NO production, inducible nitric oxide synthase (iNOS) expression and nitration of proteins. The increase in iNOS expression was very less when compared to increase in NO production, indicating the possibility of post-translational activation of iNOS by LPS and ionising radiation. The addition of curcumin, nicotinamide and Jun N-terminal kinase (JNK) inhibitor, SP 600125, reduced the levels of NO, iNOS expression and nitration of proteins in macrophages. Closer scrutiny of the inhibition pattern of these modulators revealed that although the JNK inhibitor did not result in significant decrease in iNOS expression it led to a significant decrease in NO production, implying the possible involvement of JNK in the regulation of iNOS activity. Curcumin and JNK inhibitor directly inhibited the nitration of proteins and JNK inhibitor and curcumin, when added together, did not show synergistic effect.
Collapse
Affiliation(s)
- Himanshi Narang
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | | |
Collapse
|
40
|
Chen YJ, Hsu KW, Tsai JN, Hung CH, Kuo TC, Chen YL. Involvement of protein kinase C in the inhibition of lipopolysaccharide-induced nitric oxide production by thapsigargin in RAW 264.7 macrophages. Int J Biochem Cell Biol 2005; 37:2574-85. [PMID: 16098784 DOI: 10.1016/j.biocel.2005.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 06/07/2005] [Accepted: 07/07/2005] [Indexed: 11/23/2022]
Abstract
This study explored the effects of inhibition of endoplasmic reticulum (ER) Ca(2+)-ATPase on lipopolysaccharide (LPS)-induced protein kinase C (PKC) activation, nuclear factor-kappaB (NF-kappaB) translocation, inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in RAW 264.7 macrophages. Thapsigargin (TG) irreversibly inhibits ER Ca(2+)-ATPase and LPS-induced NO production is reduced even after washout. TG also attenuated LPS-stimulated iNOS expression by using immunoblot analysis. However, another distinct fully reversible ER Ca(2+)-ATPase inhibitor, 2,5-di-tert-butylhydroquinone (DBHQ), ionophore A23187 and ionomycin could exert a similar effect to TG in increasing intracellular calcium concentration; however, these agents could not mimic TG in reducing iNOS expression and NO production. LPS increased PKC-alpha and -beta activation, and TG pretreatment attenuated LPS-stimulated PKC activation. Not did pretreatment with DBHQ, A23187 and ionomycin reduce LPS-stimulated PKC activation. Furthermore, NF-kappaB-specific DNA-protein-binding activity in the nuclear extracts was enhanced by treatment with LPS, and TG pretreatment attenuated LPS-stimulated NF-kappaB activation. None of DBHQ, A23187 and ionomycin pretreatment reduced LPS-stimulated NF-kappaB activation. These data suggest that persistent inhibition of ER Ca(2+)-ATPase by TG would influence calcium release from ER Ca2+ pools that was stimulated by the LPS activated signal processes, and might be the main mechanism for attenuating PKC and NF-kappaB activation that induces iNOS expression and NO production.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Department of Medical Technology, Institute of Biotechnology, Yuanpei University of Science and Technology, 306 Yuanpei St., Hsinchu 30015, Taiwan.
| | | | | | | | | | | |
Collapse
|
41
|
Zhao D, Zhan Y, Zeng H, Koon HW, Moyer MP, Pothoulakis C. Neurotensin stimulates interleukin-8 expression through modulation of I kappa B alpha phosphorylation and p65 transcriptional activity: involvement of protein kinase C alpha. Mol Pharmacol 2005; 67:2025-31. [PMID: 15755906 DOI: 10.1124/mol.104.010801] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurotensin (NT) is released in the gastrointestinal tract and participates in the pathophysiology of colonic inflammation. We have shown that NT mediates acute intestinal inflammation in vivo and stimulates nuclear factor-kappaB-dependent interleukin (IL)-8 expression in nontransformed human colonocytes in vitro. However, the exact mechanisms by which NT induces IL-8 expression have not been elucidated. In this study, we first show that NT stimulates IkappaBalpha phosphorylation and degradation and p65 phosphorylation and transcriptional activity. Inhibition of protein kinase C (PKC) activation significantly attenuates NT-induced IL-8 expression. This effect seems to be mediated through inhibition of IkappaBalpha phosphorylation and degradation and by p65 phosphorylation and transcriptional activity. We also show that intracellular calcium mobilization is necessary for NT-induced phosphorylation of IkappaBalpha and p65, suggesting that a conventional PKC is involved. Furthermore, transfection of a dominant-negative form of PKCalpha significantly reduces NT-induced IL-8 promoter activity. These results indicate that the conventional PKCalpha is an important mediator in the proinflammatory signaling pathway elicited by NT at the colonocyte level.
Collapse
Affiliation(s)
- Dezheng Zhao
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Dana 601, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
42
|
Pham TNQ, Brown BL, Dobson PRM, Richardson VJ. Protein kinase C-eta (PKC-eta) is required for the development of inducible nitric oxide synthase (iNOS) positive phenotype in human monocytic cells. Nitric Oxide 2004; 9:123-34. [PMID: 14732335 DOI: 10.1016/j.niox.2003.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several murine and human monocytic cell lines and monocyte-derived macrophages (MDM) from healthy volunteers were studied to compare their production of nitric oxide (NO) and induction of iNOS following endotoxin treatment. Although the human cells were sensitive to endotoxin and responded well by producing TNF-alpha and matrix metalloproteases (MMP), there was no induction of iNOS expression or NO production by any of these cells. Murine cells, however, produced large amounts of NO and expressed iNOS following similar endotoxin stimulation. We investigated the expression of PKC isotypes in all human and murine cell lines as well as in MDM, and found that the human cells lacked PKC-eta while the murine counterparts lacked PKC-beta1. Subsequently, human cells that were transfected with PKC-eta were found to make large quantities of NO following endotoxin exposure, an observation not seen in untransfected cells. We propose that PKC-eta is essential for the development of the iNOS positive phenotype in human monocytic cells, and may be responsible for the development of a number of inflammatory related conditions. As such it may be a suitable target for therapeutic intervention.
Collapse
Affiliation(s)
- Tram N Q Pham
- Basic Medical Sciences, Faculty of Medicine, Memorial University, St. John's NL, Canada A1B 3V6
| | | | | | | |
Collapse
|
43
|
Ng Yan Hing JD, Desjardins M, Descoteaux A. Proteomic analysis reveals a role for protein kinase C-alpha in phagosome maturation. Biochem Biophys Res Commun 2004; 319:810-6. [PMID: 15184055 DOI: 10.1016/j.bbrc.2004.05.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Indexed: 11/17/2022]
Abstract
Acquisition of microbicidal properties by phagosomes requires the action of molecules which regulate the interactions between phagosomes and endocytic organelles. Members of the protein kinase C (PKC) superfamily of serine/threonine kinases are recruited to phagosomes with various kinetics during phagolysosome biogenesis. To study the role of PKC-alpha in this process, we compared the composition of latex bead-containing phagosomes isolated from control and dominant-negative (DN) PKC-alpha-overexpressing RAW 264.7 macrophages. Western blot analysis indicated that the levels of both lysosomal-associated membrane protein-1 and flotillin-1, which are acquired through interactions with late endosomes and lysosomes, are reduced in phagosomes from DN PKC-alpha-overexpressing macrophages. Proteomic characterization of latex bead-containing phagosomes revealed that recruitment of the small GTPase Rab7, cathepsin D, and cathepsin S is inhibited by DN PKC-alpha. Collectively, these data provide evidence that PKC-alpha plays a role in phagolysosome biogenesis, a critical process of the innate immune response against infections.
Collapse
|
44
|
Roman J, Ritzenthaler JD, Boles B, Lois M, Roser-Page S. Lipopolysaccharide induces expression of fibronectin α5β1-integrin receptors in human monocytic cells in a protein kinase C-dependent fashion. Am J Physiol Lung Cell Mol Physiol 2004; 287:L239-49. [PMID: 15064224 DOI: 10.1152/ajplung.00244.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
LPS is an outer-membrane glycolipid component of gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. In addition, LPS triggers the release of cytokines and chemokines as well as cell-cell adhesion molecules. We postulate that LPS may also affect the expression of matrix-binding integrin receptors, thereby modulating cell-adhesive functions in monocytic cells. To test this hypothesis, we investigated the effects of LPS on the expression of the integrin α5β1, a fibronectin receptor, in a human monocytic cell line (U937) as well as in isolated human peripheral blood mononuclear cells (PBMCs). We found that LPS increased the expression of α5β1receptors and enhanced the adherence of U937 cells and PBMCs to fibronectin-coated surfaces; this was blocked by anti-α5β1antibodies. LPS increased α5-subunit mRNA accumulation in a dose- and time-dependent manner. The induction by LPS occurred, at least in part, at the level of gene transcription as indicated by experiments using α5intact and deletion promoter constructs. LPS-induced α5gene transcription was associated with rapid induction of conventional PKC-α protein and activity, was blocked by PKC inhibitors, and was mimicked by lipid A. Finally, we found that an anti-CD14 antibody was able to inhibit the LPS response. Overall, the data suggest that LPS stimulates α5gene transcription via CD14 and PKC-dependent signals to enhance the expression of functional α5β1receptors in monocytic cells. This process may help stimulate monocytic cell activation and facilitate their migration into fibronectin-containing tissues during infection.
Collapse
Affiliation(s)
- Jesse Roman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, and The Atlanta Veterans Affairs Medical Center, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
45
|
Sakwe AM, Larsson M, Rask L. Involvement of protein kinase C-alpha and -epsilon in extracellular Ca2+ signalling mediated by the calcium sensing receptor. Exp Cell Res 2004; 297:560-73. [PMID: 15212956 DOI: 10.1016/j.yexcr.2004.03.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 03/01/2004] [Indexed: 11/30/2022]
Abstract
The sensing of extracellular Ca(2+) concentration ([Ca(2+)](o)) and modulation of cellular processes associated with acute or sustained changes in [Ca(2+)](o) are cell-type specific and mediated by the calcium sensing receptor (CaR). [Ca(2+)](o) signalling requires protein kinase C (PKC), but the identity and role of PKC isoforms in CaR-mediated responses remain unclear. Here we show that high [Ca(2+)](o) activated PKC-alpha and PKC- in parathyroid cells and in human embryonic kidney (HEK293) cells overexpressing the CaR (HEK-CaR) and that this response correlated with the CaR-dependent activation of mitogen-activated protein kinases ERK1/2. Activation of ERK1/2 by acute high [Ca(2+)](o) required influx of Ca(2+)through Ni(2+)-sensitive Ca(2+)channels and phosphatidylinositol-dependent phospholipase C-beta activity. Inhibition of PKC by co-expression of dominant-negative (DN) mutants of PKC-alpha or - with the CaR attenuated sustained ERK1/2 activation. Overexpression of a PKC phosphorylation site (T888A) mutant CaR in HEK293 cells showed that this site was important for ERK1/2 activation at high [Ca(2+)](o). Activation of ERK1/2 by high [Ca(2+)](o) was not necessary for the [Ca(2+)](o)-regulated secretion of parathyroid hormone (PTH) in dispersed bovine parathyroid cells. These data suggest that the CaR-mediated [Ca(2+)](o) signal leading to regulated PTH secretion that requires diacylglycerol-responsive PKC isoforms is not mediated via the ERK pathway.
Collapse
Affiliation(s)
- Amos M Sakwe
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
46
|
Foey AD, Brennan FM. Conventional protein kinase C and atypical protein kinase Czeta differentially regulate macrophage production of tumour necrosis factor-alpha and interleukin-10. Immunology 2004; 112:44-53. [PMID: 15096183 PMCID: PMC1782472 DOI: 10.1111/j.1365-2567.2004.01852.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In chronic inflammatory diseases such as rheumatoid arthritis, joint macrophages/monocytes are the major source of pro- and anti-inflammatory cytokines. Little is understood regarding the signalling pathways which determine the production of the pro-inflammatory cytokine, tumour necrosis factor-alpha (TNF-alpha) and the anti-inflammatory cytokine, interleukin-10 (IL-10). Two pathways integral to macrophage function are the protein kinase C (PKC)- and the cAMP-dependent pathways. In this report, we have investigated the involvement of PKC and cAMP in the production of TNF-alpha and IL-10 by peripheral blood monocyte-derived macrophages. The utilization of the PKC inhibitors Go6983, Go6976 and RO-32-0432 demonstrated a role for conventional PKCs (alpha and beta) in the production of TNF-alpha in response to stimulation by lipopolysaccharide and phorbol 12-myristate 13-acetate (PMA)/ionomycin. PKC stimulation resulted in the downstream activation of the p42/44 mitogen-activated protein kinase (MAPK) pathway which differentially regulates TNF-alpha and IL-10. The addition of cAMP however, suppressed activation of this MAPK and TNF-alpha production. Cyclic-AMP augmented IL-10 production and cAMP response element binding protein activation upon stimulation by PMA/ionomycin. In addition, cAMP activated PKCzeta; inhibition of which, by a dominant negative adenovirus construct, selectively suppressed IL-10 production. These observations suggest that pro-inflammatory and anti-inflammatory cytokines are differentially regulated by PKC isoforms; TNF-alpha being dependent on conventional PKCs (alpha and beta) whereas IL-10 is regulated by the cAMP-regulated atypical PKCzeta.
Collapse
Affiliation(s)
- Andrew D Foey
- Kennedy Institute of Rheumatology Division, Imperial College School of Medicine, London, UK.
| | | |
Collapse
|
47
|
Nakajima K, Tohyama Y, Kohsaka S, Kurihara T. Protein kinase Cα requirement in the activation of p38 mitogen-activated protein kinase, which is linked to the induction of tumor necrosis factor α in lipopolysaccharide-stimulated microglia. Neurochem Int 2004; 44:205-14. [PMID: 14602083 DOI: 10.1016/s0197-0186(03)00163-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activated microglia have been suggested to produce a cytotoxic cytokine, tumor necrosis factor alpha (TNF alpha), in many pathological brains. Thus, determining the molecular mechanism of this induction and suppression has been the focus of a great deal of research. Using lipopolysaccharide (LPS) as an experimental inducer of TNF alpha, we investigated the regulatory mechanism by which TNFalpha is induced or suppressed in microglia. We found that LPS-induced TNF alpha is suppressed by pretreatment with the p38 mitogen-activated protein kinase (p38MAPK) inhibitor SB203580. Similar suppression was achieved by pretreatment with specific protein kinase C (PKC) inhibitors, Gö6976, myristoylated pseudosubstrate (20-28), and bisindolylmaleimide. These results suggest that PKC alpha activity as well as p38MAPK activity is associated with TNF alpha induction in LPS-stimulated microglia. The requirement of PKC alpha in LPS-dependent TNFalpha induction was verified in PKC alpha-downregulated microglia which could be induced by phorbol-12-myristate-13-acetate pretreatment. Simultaneously, PKC alpha was found to be requisite for the activation of p38MAPK in LPS-stimulated microglia. In addition, the PKC alpha levels in the LPS-stimulated microglia were observed to decrease in response to the p38MAPK inhibitor, indicating that the PKC alpha levels are regulated by the p38MAPK activity. We therefore concluded that PKC alpha and p38MAPK are interactively linked to the signaling cascade inducing TNFalpha in LPS-stimulated microglia, and that in this cascade, PKC alpha is requisite for the activation of p38MAPK, leading to the induction of TNF alpha.
Collapse
Affiliation(s)
- Kazuyuki Nakajima
- Neurobiology Lab, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| | | | | | | |
Collapse
|
48
|
Giroux M, Schmidt M, Descoteaux A. IFN-gamma-induced MHC class II expression: transactivation of class II transactivator promoter IV by IFN regulatory factor-1 is regulated by protein kinase C-alpha. THE JOURNAL OF IMMUNOLOGY 2004; 171:4187-94. [PMID: 14530341 DOI: 10.4049/jimmunol.171.8.4187] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies based on pharmacological evidence suggested a requirement for protein kinase C (PKC) activity in the regulation of IFN-gamma-induced MHC class II (MHC-II) expression. In the present study, we investigated the molecular mechanisms by which PKC-alpha modulates IFN-gamma-induced MHC-II expression in the mouse macrophage cell line RAW 264.7. Overexpression of a dominant-negative (DN) mutant of PKC-alpha inhibited the expression of IFN-gamma-induced MHC-II but had no effect on IFN-gamma-induced STAT1 nuclear translocation and DNA binding activity, as well as on the expression of inducible NO synthase, IFN consensus sequence binding protein, MHC class I, IFN regulatory factor (IRF)-1, and IFN-gamma-inducible protein-10. Further analysis showed that IFN-gamma-induced expression of the MHC class II transactivator (CIITA), a transcriptional coactivator essential for MHC-II expression, was inhibited in DN PKC-alpha-overexpressing cells. Studies with reporter constructs containing the promoter IV region of CIITA revealed that overexpression of a constitutively active mutant of PKC-alpha enhanced IRF-1, but not IRF-2, transcriptional activity. Furthermore, characterization of IRF-1 from both normal and DN PKC-alpha-overexpressing cells revealed differences in IRF-1 posttranslational modifications. Collectively, our data suggest a novel regulatory mechanism for IFN-gamma-induced MHC-II expression, whereby PKC regulates CIITA expression by selectively modulating the transcriptional activity of IRF-1.
Collapse
Affiliation(s)
- Mélanie Giroux
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | | | | |
Collapse
|
49
|
Abstract
The acute respiratory distress syndrome (ARDS) is a process of acute inflammatory lung injury that affects a diverse array of surgical and medical patients. The syndrome is mediated by a complex and interacting system of chemical mediators produced by several types of pulmonary cells. Regardless of the predisposing causes, activation of the nuclear factor kappa B seems to be, at the molecular level, a signature event of ARDS, leading to the rapid activation of intracellular signaling pathways, which coordinate the induction of multiple genes encoding inflammatory mediators. There are at least two compelling reasons for promoting an understanding of these interactions and their molecular mediators and second messengers: new therapies intended to modulate these factors continue to be developed, and the levels of some of these molecules, most notably cytokines, may serve as early indicators of the onset of ARDS.
Collapse
Affiliation(s)
- Jose L Balibrea
- Department of Surgery, Hospital Clinico San Carlos, Universidad Complutense, 28040, Madrid, Spain
| | | |
Collapse
|
50
|
Blouin CC, Pagé EL, Soucy GM, Richard DE. Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1alpha. Blood 2003; 103:1124-30. [PMID: 14525767 DOI: 10.1182/blood-2003-07-2427] [Citation(s) in RCA: 361] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) regulates many genes induced by low oxygen conditions. The expression of important hypoxic genes such as glucose transporter 1 and vascular endothelial growth factor are increased in macrophages during wound healing and in the presence of the endotoxin, lipopolysaccharide (LPS). Recent studies have demonstrated that nonhypoxic stimuli can also activate HIF-1 in a cell-specific manner. Here, we demonstrate that in macrophages, LPS can control the activation of hypoxia-regulated genes through the HIF-1 pathway. We show that in these cells, protein expression levels of HIF-1alpha are strongly increased to levels comparable to hypoxic induction. HIF-1alpha mRNA levels are markedly increased following LPS stimulation, suggesting a transcriptional induction. In functional studies, the LPS-induced HIF-1 complex could specifically bind to the HIF-1 DNA-binding motif. Additionally, when cells were transfected with an HIF-1-specific reporter construct, LPS could strongly activate the expression of the reporter to levels that surpassed those observed after hypoxic induction. This induction was blocked by the cotransfection of a dominant-negative form of HIF-1alpha. These results indicate that the HIF-1 complex is involved in macrophage gene activation following LPS exposure and identify a novel pathway that could play a determinant role during inflammation and wound healing.
Collapse
Affiliation(s)
- Caroline C Blouin
- Centre de recherche de L'Hôtel-Dieu de Québec, 10 Rue McMahon, Québec QC G1R 2J6, Canada
| | | | | | | |
Collapse
|