1
|
Stassen RHMJ, van den Akker GGH, Surtel DAM, Housmans BAC, Cremers A, Caron MMJ, Smagul A, Peffers MJ, van Rhijn LW, Welting TJM. Unravelling the Basic Calcium Phosphate crystal-dependent chondrocyte protein secretome; a role for TGF-β signaling. Osteoarthritis Cartilage 2023; 31:1035-1046. [PMID: 37075856 DOI: 10.1016/j.joca.2023.02.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE Basic Calcium Phosphate (BCP) crystals play an active role in the progression of osteoarthritis (OA). However, the cellular consequences remain largely unknown. Therefore, we characterized for the first time the changes in the protein secretome of human OA articular chondrocytes as a result of BCP stimulation using two unbiased proteomic analysis methods. METHOD Isolated human OA articular chondrocytes were stimulated with BCP crystals and examined by Quantitative Reverse Transcription PCR (RT-qPCR) and enzyme-linked immune sorbent assay (ELISA) after twenty-four and forty-eight hours. Forty-eight hours conditioned media were analyzed by label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) and an antibody array. The activity of BCP dependent Transforming Growth Factor Beta (TGF-β) signaling was analyzed by RT-qPCR and luciferase reporter assays. The molecular consequences regarding BCP-dependent TGF-β signaling on BCP-dependent Interleukin 6 (IL-6) were investigated using specific pathway inhibitors. RESULTS Synthesized BCP crystals induced IL-6 expression and secretion upon stimulation of human articular chondrocytes. Concomitant induction of catabolic gene expression was observed. Analysis of conditioned media revealed a complex and diverse response with a large number of proteins involved in TGF-β signaling, both in activation of latent TGF-β and TGF-β superfamily members, which were increased compared to non-stimulated OA chondrocytes. Activity of this BCP driven TGF-β signaling was confirmed by increased activity of expression of TGF-β target genes and luciferase reporters. Inhibition of BCP driven TGF-β signaling resulted in decreased IL-6 expression and secretion with a moderate effect on catabolic gene expression. CONCLUSION BCP crystal stimulation resulted in a complex and diverse chondrocyte protein secretome response. An important role for BCP-dependent TGF-β signaling was identified in development of a pro-inflammatory environment.
Collapse
Affiliation(s)
- R H M J Stassen
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - G G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - D A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - B A C Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - A Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - M M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - A Smagul
- Department of Musculoskeletal Biology, Life Course and Medical Sciences, University of Liverpool, UK
| | - M J Peffers
- Department of Musculoskeletal Biology, Life Course and Medical Sciences, University of Liverpool, UK
| | - L W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center +, Maastricht, The Netherlands
| | - T J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands; Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center +, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Bernabei I, So A, Busso N, Nasi S. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol 2023; 19:10-27. [PMID: 36509917 DOI: 10.1038/s41584-022-00875-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Pathological calcification of cartilage is a hallmark of osteoarthritis (OA). Calcification can be observed both at the cartilage surface and in its deeper layers. The formation of calcium-containing crystals, typically basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is an active, highly regulated and complex biological process that is initiated by chondrocytes and modified by genetic factors, dysregulated mitophagy or apoptosis, inflammation and the activation of specific cellular-signalling pathways. The links between OA and BCP deposition are stronger than those observed between OA and CPP deposition. Here, we review the molecular processes involved in cartilage calcification in OA and summarize the effects of calcium crystals on chondrocytes, synovial fibroblasts, macrophages and bone cells. Finally, we highlight therapeutic pathways leading to decreased joint calcification and potential new drugs that could treat not only OA but also other diseases associated with pathological calcification.
Collapse
Affiliation(s)
- Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Tsai HT, Huang CS, Tu CC, Liu CY, Huang CJ, Ho YS, Tu SH, Tseng LM, Huang CC. Multi-gene signature of microcalcification and risk prediction among Taiwanese breast cancer. Sci Rep 2020; 10:18276. [PMID: 33106505 PMCID: PMC7588423 DOI: 10.1038/s41598-020-74982-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022] Open
Abstract
Microcalcification is one of the most common radiological and pathological features of breast ductal carcinoma in situ (DCIS), and to a lesser extent, invasive ductal carcinoma. We evaluated messenger RNA (mRNA) transcriptional profiles associated with ectopic mammary mineralization. A total of 109 breast cancers were assayed with oligonucleotide microarrays. The associations of mRNA abundance with microcalcifications and relevant clinical features were evaluated. Microcalcifications were present in 86 (79%) patients by pathological examination, and 81 (94%) were with coexistent DCIS, while only 13 (57%) of 23 patients without microcalcification, the invasive diseases were accompanied with DCIS (χ2-test, P < 0.001). There were 69 genes with differential mRNA abundance between breast cancers with and without microcalcifications, and 11 were associated with high-grade (comedo) type DCIS. Enriched Gene Ontology categories included glycosaminoglycan and aminoglycan metabolic processes and protein ubiquitination, indicating an active secretory process. The intersection (18 genes) of microcalcificaion-associated and DCIS-associated genes provided the best predictive accuracy of 82% with Bayesian compound covariate predictor. Ten genes were further selected for prognostic index score construction, and five-year relapse free survival was 91% for low-risk and 83% for high-risk group (log-rank test, P = 0.10). Our study suggested that microcalcification is not only the earliest detectable radiological sign for mammography screening but the phenomenon itself may reflect the underling events during mammary carcinogenesis. Future studies to evaluate the prognostic significance of microcalcifications are warranted.
Collapse
Affiliation(s)
- Hsin-Tien Tsai
- Division of General Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Ching-Shui Huang
- Division of General Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Chiang Tu
- Department of Surgery, Fu-Jen Catholic University Hospital, New Taipei, Taiwan.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Chih-Yi Liu
- Division of Pathology, Cathay General Hospital Sijhih, New Taipei, Taiwan
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei, Taiwan.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Department of Medical Laboratory, Taipei Medical University Hospital, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shih-Hsin Tu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan, ROC. .,School of Medicine, College of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan, ROC.
| |
Collapse
|
4
|
Carvalho AMS, Heimfarth L, Santos KA, Guimarães AG, Picot L, Almeida JRGS, Quintans JSS, Quintans-Júnior LJ. Terpenes as possible drugs for the mitigation of arthritic symptoms - A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:137-147. [PMID: 30668316 DOI: 10.1016/j.phymed.2018.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Arthritis is a syndrome associated with exacerbated inflammation, joint destruction and chronic pain and disability. Chronic treatment of arthritis is associated with several side effects and high abandonment. Therefore, there has been an ongoing search for alternative treatments to overcome these problems. PURPOSE Natural products, which are already widely used for their biological, cosmetic and pharmacotechnic properties, are a possible source for new drugs. Terpenes, a large class of organic compounds produced mainly by plants and trees, are a promising natural product and have already been shown to be effective in treating chronic pain, particularly of an inflammatory origin. STUDY DESIGN AND METHODS This review identifies the main terpenes with anti-arthritic activity reported in the last 10 years. A survey was conducted between December 2017 and June 2018 in the PUBMED, SCOPUS and Science Direct databases using combinations of the descriptors terpenes, arthritis and inflammation. RESULTS The results showed that terpenes have promising biological effects in relation to the treatment of arthritis, with the 24 terpenes identified in our survey being effective in the modulation of inflammatory mediators important to the physiopathology of arthritis, such as IL-6, IL-17, TNF-α, NFκB, and COX-2, among others. It is important to note that most of the studies used animal models, which limits, at least in part, the direct translation to humans of the experimental evidence produced by the studies. CONCLUSION Together, our finds suggest that terpenes can modulate the immuno-regulatory and destructive tissue events that underlie the clinical presentation and the progression of arthritis and are worthy of further clinical investigation.
Collapse
Affiliation(s)
- Alexandra M S Carvalho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Klécia A Santos
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Adriana G Guimarães
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042 La Rochelle, France.
| | | | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil.
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil.
| |
Collapse
|
5
|
Mahon OR, Dunne A. Disease-Associated Particulates and Joint Inflammation; Mechanistic Insights and Potential Therapeutic Targets. Front Immunol 2018; 9:1145. [PMID: 29892292 PMCID: PMC5985611 DOI: 10.3389/fimmu.2018.01145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
It is now well established that intra-articular deposition of endogenous particulates, such as osteoarthritis-associated basic calcium phosphate crystals, gout-associated monosodium urate crystals, and calcium deposition disease-associated calcium pyrophosphate crystals, contributes to joint destruction through the production of cartilage-degrading enzymes and pro-inflammatory cytokines. Furthermore, exogenous wear-debris particles, generated from prosthetic implants, drive periprosthetic osteolysis which impacts on the longevity of total joint replacements. Over the last few years, significant insight has been gained into the mechanisms through which these particulates exert their effects. Not only has this increased our understanding of the pathological processes associated with crystal deposition but it has also led to the identification of a number of therapeutic targets to treat particulate-associated disease. In this review, we discuss recent developments regarding the cellular events triggered by joint-associated particulates, as well as future directions in therapy for particulate-related arthropathies.
Collapse
Affiliation(s)
- Olwyn R Mahon
- School of Biochemistry and Immunology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, The University of Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, The University of Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Corr EM, Cunningham CC, Helbert L, McCarthy GM, Dunne A. Osteoarthritis-associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells. Arthritis Res Ther 2017; 19:23. [PMID: 28173838 PMCID: PMC5296949 DOI: 10.1186/s13075-017-1225-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022] Open
Abstract
Background Osteoarthritis (OA) is a chronic debilitating joint disorder of particularly high prevalence in the elderly population. Intra-articular basic calcium phosphate (BCP) crystals are present in the majority of OA joints and are associated with severe degeneration. They are known to activate macrophages, synovial fibroblasts, and articular chondrocytes, resulting in increased cell proliferation and the production of pro-inflammatory cytokines and matrix metalloproteases (MMPs). This suggests a pathogenic role in OA by causing extracellular matrix degradation and subchondral bone remodelling. There are currently no disease-modifying drugs available for crystal-associated OA; hence, the aim of this study was to explore the inflammatory pathways activated by BCP crystals in order to identify potential therapeutic targets to limit crystal-induced inflammation. Methods Primary human macrophages and dendritic cells were stimulated with BCP crystals, and activation of spleen tyrosine kinase (Syk), phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinases (MAPKs) was detected by immunoblotting. Lipopolysaccharide (LPS)-primed macrophages were pre-treated with inhibitors of Syk, PI3K, and MAPKs prior to BCP stimulation, and cytokine production was quantified by enzyme-linked immunosorbent assay (ELISA). Aa an alternative, cells were treated with synovial fluid derived from osteoarthritic knees in the presence or absence of BCP crystals, and gene induction was assessed by real-time polymerase chain reaction (PCR). Results We demonstrate that exposure of primary human macrophages and dendritic cells to BCP crystals leads to activation of the membrane-proximal tyrosine kinases Syk and PI3K. Furthermore, we show that production of the pro-inflammatory cytokines interleukin (IL)-1α and IL-1β and phosphorylation of downstream MEK and ERK MAPKs is suppressed following treatment with inhibitors of Syk or PI3K. Finally, we demonstrate that treatment of macrophages with BCP crystals induces the production of the damage-associated molecule S100A8 and MMP1 in a Syk-dependent manner and that synovial fluid from OA patients together with BCP crystals exacerbates these effects. Conclusions We identify Syk and PI3K as key signalling molecules activated by BCP crystals prior to inflammatory cytokine and DAMP expression and therefore propose that Syk and PI3K represent potential targets for the treatment of BCP-related pathologies.
Collapse
Affiliation(s)
- Emma M Corr
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Clare C Cunningham
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Laura Helbert
- Mater Misericordiae University Hospital, Dublin, Ireland
| | | | - Aisling Dunne
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
7
|
Nasi S, Ea HK, Lioté F, So A, Busso N. Sodium Thiosulfate Prevents Chondrocyte Mineralization and Reduces the Severity of Murine Osteoarthritis. PLoS One 2016; 11:e0158196. [PMID: 27391970 PMCID: PMC4938519 DOI: 10.1371/journal.pone.0158196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/13/2016] [Indexed: 12/02/2022] Open
Abstract
Objectives Calcium-containing crystals participate in the pathogenesis of OA. Sodium thiosulfate (STS) has been shown to be an effective treatment in calcification disorders such as calciphylaxis and vascular calcification. This study investigated the effects and mechanisms of action of STS in a murine model of OA and in chondrocyte calcification. Methods Hydroxyapatite (HA) crystals-stimulated murine chondrocytes and macrophages were treated with STS. Mineralization and cellular production of IL-6, MCP-1 and reactive oxygen species (ROS) were assayed. STS's effects on genes involved in calcification, inflammation and cartilage matrix degradation were studied by RT-PCR. STS was administered in the menisectomy model of murine OA, and the effect on periarticular calcific deposits and cartilage degeneration was investigated by micro-CT-scan and histology. Results In vitro, STS prevented in a dose-dependent manner calcium crystal deposition in chondrocytes and inhibited Annexin V gene expression. In addition, there was a reduction in crystal-induced IL-6 and MCP-1 production. STS also had an antioxidant effect, diminished HA-induced ROS generation and abrogated HA-induced catabolic responses in chondrocytes. In vivo, administration of STS reduced the histological severity of OA, by limiting the size of new periarticular calcific deposits and reducing the severity of cartilage damage. Conclusions STS reduces the severity of periarticular calcification and cartilage damage in an animal model of OA via its effects on chondrocyte mineralization and its attenuation of crystal-induced inflammation as well as catabolic enzymes and ROS generation. Our study suggests that STS may be a disease-modifying drug in crystal-associated OA.
Collapse
Affiliation(s)
- Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Hang-Korng Ea
- Hospital Lariboisière, Service of Rheumatology, University School of Medicine, Paris VII, Paris, France
| | - Frédéric Lioté
- Hospital Lariboisière, Service of Rheumatology, University School of Medicine, Paris VII, Paris, France
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Nasi S, So A, Combes C, Daudon M, Busso N. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Ann Rheum Dis 2016; 75:1372-9. [PMID: 26253096 DOI: 10.1136/annrheumdis-2015-207487] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/14/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Basic calcium phosphate (BCP) crystal and interleukin 6 (IL-6) have been implicated in osteoarthritis (OA). We hypothesise that these two factors may be linked in a reciprocal amplification loop which leads to OA. METHODS Primary murine chondrocytes and human cartilage explants were incubated with hydroxyapatite (HA) crystals, a form of BCP, and the modulation of cytokines and matrix-degrading enzymes assayed. The ability of IL-6 to stimulate chondrocyte calcification was assessed in vitro. The mechanisms underlying the effects of HA on chondrocytes were investigated using chemical inhibitors, and the pathways mediating IL-6-induced calcification characterised by quantifying the expression of genes involved in chondrocyte mineralisation. The role of calcification in vivo was studied in the meniscectomy model of murine OA (MNX), and the link between IL-6 and cartilage degradation investigated by histology. RESULTS In chondrocytes, BCP crystals stimulated IL-6 secretion, further amplified in an autocrine loop, through signalling pathways involving Syk and PI3 kinases, Jak2 and Stat3 molecules. Exogenous IL-6 promoted calcium-containing crystal formation and upregulation of genes involved in calcification: the pyrophosphate channel Ank, the calcium channel Annexin5 and the sodium/phosphate cotransporter Pit-1. Treatment of chondrocytes with IL-6 inhibitors significantly inhibited IL-6-induced crystal formation. In meniscectomised mice, increasing deposits of BCP crystals were observed around the joint and correlated with cartilage degradation and IL-6 expression. Finally, BCP crystals induced proteoglycan loss and IL-6 expression in human cartilage explants, which were reduced by an IL-6 inhibitor. CONCLUSIONS BCP crystals and IL-6 form a positive feedback loop leading to OA. Targeting calcium-containing crystal formation and/or IL-6 are promising therapeutic strategies in OA.
Collapse
Affiliation(s)
- Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Christèle Combes
- CIRIMAT, UMR 5085 INPT-UPS-CNRS, Université de Toulouse, ENSIACET, Toulouse, France
| | - Michel Daudon
- AP-HP, service d'Explorations Fonctionnelles, hôpital Tenon, Paris, France
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, CHUV and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Abstract
A hallmark of aging, and major contributor to the increased prevalence of cardiovascular disease in patients with chronic kidney disease (CKD), is the progressive structural and functional deterioration of the arteries and concomitant accrual of mineral. Vascular calcification (VC) was long viewed as a degenerative age-related pathology that resulted from the passive deposition of mineral in the extracellular matrix; however, since the discovery of "bone-related" protein expression in calcified atherosclerotic plaques over 20 years ago, a plethora of studies have evoked the now widely accepted view that VC is a highly regulated and principally cell-mediated phenomenon that recapitulates many features of physiologic ossification. Central to this theory are changes in vascular smooth muscle cell (VSMC) phenotype and viability, thought to be driven by chronic exposure to a number of dystrophic stimuli characteristics of the uremic state. Here, dedifferentiated synthetic VSMCs are seen to spawn calcifying matrix vesicles that actively seed mineralization of the arterial matrix. This review provides an overview of the major epidemiological, histological, and molecular aspects of VC in the context of CKD, and a counterpoint to the prevailing paradigm that emphasizes the primacy of VSMC-mediated mechanisms. Particular focus is given to the import of protein and small molecule inhibitors in regulating physiologic and pathological mineralization and the emerging role of mineral nanoparticles and their interplay with proinflammatory processes.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.
| |
Collapse
|
10
|
Chang CC, Tsai YH, Liu Y, Lin SY, Liang YC. Calcium-containing crystals enhance receptor activator of nuclear factor κB ligand/macrophage colony-stimulating factor–mediated osteoclastogenesis via extracellular-signal-regulated kinase and p38 pathways. Rheumatology (Oxford) 2015; 54:1913-22. [DOI: 10.1093/rheumatology/kev107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 12/22/2022] Open
|
11
|
Kim JJ, Bae WJ, Kim JM, Kim JJ, Lee EJ, Kim HW, Kim EC. Mineralized polycaprolactone nanofibrous matrix for odontogenesis of human dental pulp cells. J Biomater Appl 2013; 28:1069-78. [PMID: 23839784 DOI: 10.1177/0885328213495903] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to fabricate mineralized polycaprolactone nanofibrous scaffold and investigate its ability to elicit odontogenic differentiation of human dental pulp cells, compared to the pure polycaprolactone scaffold. Polycaprolactone nanofibrous scaffold was produced by electrospinning, and the surface was mineralized with apatite. Cellular behaviors on the mineralized polycaprolactone scaffold were assessed in terms of cell adhesion, growth, and odontoblastic differentiation. To evaluate the signal transduction of human dental pulp cells, mRNA expression was analyzed and Western blotting was performed. Mineralized polycaprolactone showed improved cell proliferation, mineralized nodule formation, and expression of odontoblastic marker genes including alkaline phosphatase, osteopontin, osteocalcin, dentin sialophosphoprotein (DSPP), and dentin matrix protein-1, as compared with pure polycaprolactone. Although the cell adhesion on the mineralized polycaprolactone was similar to that of the polycaprolactone, the expression level of proteins including collagen type I and the key adhesion receptor (integrin components α1, α2, and β1) was upregulated in mineralized polycaprolactone compared to polycaprolactone. Especially, cells seeded onto mineralized polycaprolactone scaffolds showed significantly increased levels of phosphorylated focal adhesion kinase, a marker of integrin activation, and downstream pathways, such as phosphor (p)-Akt, p-extracellular signal regulated kinase, p-c Jun N-terminal kinase, nuclear factor-kappa B, c-fos, and c-jun, compared with pure polycaprolactone. The mineralized polycaprolactone scaffold is attractive for dentin tissue engineering by promoting growth and odontogenic differentiation of human dental pulp cells through the integrin-mediated signaling pathway.
Collapse
Affiliation(s)
- Jong-Jin Kim
- 1Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage. PLoS One 2013; 8:e60904. [PMID: 23577176 PMCID: PMC3620111 DOI: 10.1371/journal.pone.0060904] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/05/2013] [Indexed: 12/14/2022] Open
Abstract
The formation of fetuin-A-containing calciprotein particles (CPP) may facilitate the clearance of calcium phosphate nanocrystals from the extracellular fluid. These crystals may otherwise seed extra-osseous mineralization. Fetuin-A is a partially phosphorylated glycoprotein that plays a critical role in stabilizing these particles, inhibiting crystal growth and aggregation. CPP removal is thought to be predominantly mediated by cells of the reticuloendothelial system via type I and type II class A scavenger receptor (SR-AI/II). Naked calcium phosphate crystals are known to stimulate macrophages and other cell types in vitro, but little is known of the effect of CPP on these cells. We report here, for the first time, that CPP induce expression and secretion of tumour necrosis factor (TNF)-α, interleukin (IL)-1β in murine RAW 264.7 macrophages. Importantly, however, CPP induced significantly lower cytokine secretion than hydroxyapatite (HAP) crystals of equivalent size and calcium content. Furthermore, CPP only had a modest effect on macrophage viability and apoptosis, even at very high levels, compared to HAP crystals, which were strongly pro-apoptotic at much lower levels. Fetuin-A phosphorylation was found to modulate the effect of CPP on cytokine secretion and apoptosis, but not uptake via SR-AI/II. Prolonged exposure of macrophages to CPP was found to result in up-regulated expression of SR-AI/II. CPP formation may help protect against some of the pro-inflammatory and harmful effects of calcium phosphate nanocrystals, perhaps representing a natural defense system for calcium mineral stress. However, in pathological states where production exceeds clearance capacity, these particles may still stimulate pro-inflammatory and pro-apoptotic cascades in macrophages, which may be important in the pathogenesis of vascular calcification.
Collapse
|
13
|
Lee HP, Huang SY, Lin YY, Wang HM, Jean YH, Wu SF, Duh CY, Wen ZH. Soft coral-derived lemnalol alleviates monosodium urate-induced gouty arthritis in rats by inhibiting leukocyte infiltration and iNOS, COX-2 and c-Fos protein expression. Mar Drugs 2013; 11:99-113. [PMID: 23306170 PMCID: PMC3564160 DOI: 10.3390/md11010099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 12/20/2022] Open
Abstract
An acute gout attack manifests in the joint as dramatic inflammation. To date, the clinical use of medicinal agents has typically led to undesirable side effects. Numerous efforts have failed to create an effective and safe agent for the treatment of gout. Lemnalol—an extract from Formosan soft coral—has documented anti-inflammatory and anti-nociceptive properties. In the present study, we attempt to examine the therapeutic effects of lemnalol on intra-articular monosodium urate (MSU)-induced gouty arthritis in rats. In the present study, we found that treatment with lemnalol (intramuscular [im]), but not colchicine (oral [po]), significantly attenuated MUS-induced mechanical allodynia, paw edema and knee swelling. Histomorphometric and immunohistochemistry analysis revealed that MSU-induced inflammatory cell infiltration, as well as the elevated expression of c-Fos and pro-inflammatory proteins (inducible nitric oxide synthase and cyclooxygenase-2) observed in synovial tissue, were significantly inhibited by treatment with lemnalol. We conclude that lemnalol may be a promising candidate for the development of a new treatment for gout and other acute neutrophil-driven inflammatory diseases.
Collapse
Affiliation(s)
- Hsin-Pai Lee
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; E-Mails: (H.-P.L.); (S.-Y.H.); (Y.-Y.L.); (C.-Y.D.)
- Department of Orthopaedic Surgery, Ping-Tung Christian Hospital, 60, Ta-Lian Road, Ping-Tung 90059, Taiwan; E-Mail:
| | - Shi-Ying Huang
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; E-Mails: (H.-P.L.); (S.-Y.H.); (Y.-Y.L.); (C.-Y.D.)
| | - Yen-You Lin
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; E-Mails: (H.-P.L.); (S.-Y.H.); (Y.-Y.L.); (C.-Y.D.)
| | - Hui-Min Wang
- Department of Fragrance and Cosmetic Science, Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; E-Mail:
| | - Yen-Hsuan Jean
- Department of Orthopaedic Surgery, Ping-Tung Christian Hospital, 60, Ta-Lian Road, Ping-Tung 90059, Taiwan; E-Mail:
| | - Shu-Fen Wu
- Department of Life Science, Institute of Molecular Biology, National Chung-Cheng University, Chia-Yi 62102, Taiwan; E-Mail:
| | - Chang-Yih Duh
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; E-Mails: (H.-P.L.); (S.-Y.H.); (Y.-Y.L.); (C.-Y.D.)
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; E-Mails: (H.-P.L.); (S.-Y.H.); (Y.-Y.L.); (C.-Y.D.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-7-5252000 (ext. 5038); Fax: +886-7-5252021
| |
Collapse
|
14
|
Cunningham CC, Mills E, Mielke LA, O'Farrell LK, Lavelle E, Mori A, McCarthy GM, Mills KH, Dunne A. Osteoarthritis-associated basic calcium phosphate crystals induce pro-inflammatory cytokines and damage-associated molecules via activation of Syk and PI3 kinase. Clin Immunol 2012; 144:228-36. [DOI: 10.1016/j.clim.2012.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/14/2012] [Accepted: 06/26/2012] [Indexed: 12/20/2022]
|
15
|
Skandalis SS, Labropoulou VT, Ravazoula P, Likaki-Karatza E, Dobra K, Kalofonos HP, Karamanos NK, Theocharis AD. Versican but not decorin accumulation is related to malignancy in mammographically detected high density and malignant-appearing microcalcifications in non-palpable breast carcinomas. BMC Cancer 2011; 11:314. [PMID: 21791066 PMCID: PMC3199864 DOI: 10.1186/1471-2407-11-314] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 07/26/2011] [Indexed: 12/15/2022] Open
Abstract
Background Mammographic density (MD) and malignant-appearing microcalcifications (MAMCs) represent the earliest mammographic findings of non-palpable breast carcinomas. Matrix proteoglycans versican and decorin are frequently over-expressed in various malignancies and are differently involved in the progression of cancer. In the present study, we have evaluated the expression of versican and decorin in non-palpable breast carcinomas and their association with high risk mammographic findings and tumor characteristics. Methods Three hundred and ten patients with non-palpable suspicious breast lesions, detected during screening mammography, were studied. Histological examination was carried out and the expression of decorin, versican, estrogen receptor α (ERα), progesterone receptor (PR) and c-erbB2 (HER-2/neu) was assessed by immunohistochemistry. Results Histological examination showed 83 out of 310 (26.8%) carcinomas of various subtypes. Immunohistochemistry was carried out in 62/83 carcinomas. Decorin was accumulated in breast tissues with MD and MAMCs independently of the presence of malignancy. In contrast, versican was significantly increased only in carcinomas with MAMCs (median ± SE: 42.0 ± 9.1) and MD (22.5 ± 10.1) as compared to normal breast tissue with MAMCs (14.0 ± 5.8), MD (11.0 ± 4.4) and normal breast tissue without mammographic findings (10.0 ± 2.0). Elevated levels of versican were correlated with higher tumor grade and invasiveness in carcinomas with MD and MAMCs, whereas increased amounts of decorin were associated with in situ carcinomas in MAMCs. Stromal deposition of both proteoglycans was related to higher expression of ERα and PR in tumor cells only in MAMCs. Conclusions The specific accumulation of versican in breast tissue with high MD and MAMCs only in the presence of malignant transformation and its association with the aggressiveness of the tumor suggests its possible use as molecular marker in non-palpable breast carcinomas.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Rio 26504, Greece
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Uric acid crystals [monosodium urate (MSU)] have emerged as an important factor for both gouty arthritis and immune regulation. This simple crystalline structure appears to activate innate host defense mechanisms in multiple ways and triggers robust inflammation and immune activation. The recognition mechanisms of MSU following its phase change from soluble uric acid are diverse, involving both protein receptors and non-specific plasma membrane attachment. Upon contact with host cells, MSU induces a set of membrane events that trigger Syk and PI3K activation, phagocytosis, and cytokine production. Having entered the cell, MSU further triggers NALP3 inflammasome activation and induces the production of IL-1 beta, likely inducing a full spectrum of inflammation. This review describes the recognition mechanisms and activation pathways involved in MSU-mediated inflammation and adjuvanticity and hypothesizes that direct membrane binding by solid surfaces, such as MSU, may function as a generic mechanism in tissue responses to particulate and crystalline structures.
Collapse
Affiliation(s)
- Yan Shi
- Department of Microbiology and Infectious Diseases, and Immunology Research Group, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.
| | | | | |
Collapse
|
17
|
Jubeck B, Gohr C, Fahey M, Muth E, Matthews M, Mattson E, Hirschmugl C, Rosenthal AK. Promotion of articular cartilage matrix vesicle mineralization by type I collagen. ACTA ACUST UNITED AC 2010; 58:2809-17. [PMID: 18759309 DOI: 10.1002/art.23762] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals occur in up to 60% of osteoarthritic joints and predict an increased severity of arthritis. Articular cartilage vesicles (ACVs) generate CPPD crystals in the presence of ATP and BCP crystals with added beta-glycerophosphate. While ACVs are present in normal articular cartilage, they mineralize primarily in cartilage from osteoarthritic joints. The aim of this study was to explore the hypothesis that ACV mineralization is regulated by components of the surrounding extracellular matrix. METHODS Porcine ACVs were embedded in agarose gels containing type II and/or type I collagen and/or proteoglycans. Mineralization was measured as (45)Ca accumulation stimulated by ATP or beta-glycerophosphate and reflects both nucleation and growth. Synthetic CPPD and BCP crystals were embedded in similar gels to isolate the effect of matrix components on crystal growth. RESULTS After establishing baseline responsiveness of ACVs to ATP and beta-glycerophosphate in agarose gels, we examined the ability of ATP and beta-glycerophosphate to stimulate mineral formation in gels containing various matrix components. Type II collagen suppressed the ability of ATP to stimulate mineralization, while a combination of type II plus type I collagen increased the effect of ATP and beta-glycerophosphate on mineralization. Type I collagen affected ACV mineralization in a dose-responsive manner. Neither type of collagen significantly affected crystal growth or levels of mineralization-regulating enzymes. Proteoglycans suppressed mineral formation by ACVs in gels containing both type I and type II collagen. CONCLUSION Cartilage matrix changes that occur with osteoarthritis, such as increased quantities of type I collagen and reduced proteoglycan levels, may promote ACV mineralization.
Collapse
Affiliation(s)
- Brian Jubeck
- Medical College of Wisconsin, and the Zablocki VAMC, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sun Y, Mauerhan DR, Honeycutt PR, Kneisl JS, Norton HJ, Zinchenko N, Hanley EN, Gruber HE. Calcium deposition in osteoarthritic meniscus and meniscal cell culture. Arthritis Res Ther 2010; 12:R56. [PMID: 20353559 PMCID: PMC2888206 DOI: 10.1186/ar2968] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 02/22/2010] [Accepted: 03/30/2010] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Calcium crystals exist in the knee joint fluid of up to 65% of osteoarthritis (OA) patients and the presence of these calcium crystals correlates with the radiographic evidence of hyaline cartilaginous degeneration. This study sought to examine calcium deposition in OA meniscus and to investigate OA meniscal cell-mediated calcium deposition. The hypothesis was that OA meniscal cells may play a role in pathological meniscal calcification. METHODS Studies were approved by our human subjects Institutional Review Board. Menisci were collected during joint replacement surgeries for OA patients and during limb amputation surgeries for osteosarcoma patients. Calcium deposits in menisci were examined by alizarin red staining. Expression of genes involved in biomineralization in OA meniscal cells was examined by microarray and real-time RT-PCR. Cell-mediated calcium deposition in monolayer culture of meniscal cells was examined using an ATP-induced (45)calcium deposition assay. RESULTS Calcium depositions were detected in OA menisci but not in normal menisci. The expression of several genes involved in biomineralization including ENPP1 and ANKH was upregulated in OA meniscal cells. Consistently, ATP-induced calcium deposition in the monolayer culture of OA meniscal cells was much higher than that in the monolayer culture of control meniscal cells. CONCLUSIONS Calcium deposition is common in OA menisci. OA meniscal cells calcify more readily than normal meniscal cells. Pathological meniscal calcification, which may alter the biomechanical properties of the knee meniscus, is potentially an important contributory factor to OA.
Collapse
Affiliation(s)
- Yubo Sun
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Navarro-González JF, Mora-Fernández C, Muros M, Herrera H, García J. Mineral metabolism and inflammation in chronic kidney disease patients: a cross-sectional study. Clin J Am Soc Nephrol 2009; 4:1646-54. [PMID: 19808245 DOI: 10.2215/cjn.02420409] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Mineral metabolism abnormalities and inflammation are concerns in chronic kidney disease (CKD). Interrelationships among these parameters have not been analyzed. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS The study included 133 patients with CKD not on dialysis and not receiving calcium (Ca) supplements, phosphate binders, or vitamin D. Estimated GFR (eGFR) was 34.1 +/- 6.8 ml/min/1.73 m(2); 107 participants had stage 3 CKD, and 26 had stage 4. RESULTS Patients were classified by tertiles of Ca, phosphorus (P), Ca-P product (Ca x P), and parathyroid hormone (PTH). After adjustment for age, gender, and eGFR, the levels of C-reactive protein (CRP) and IL-6 (IL-6) of the third tertile of P, Ca x P, and PTH were significantly higher than those of the first and second tertiles. Serum P and Ca x P directly correlated with CRP and IL-6, whereas HDL-cholesterol and eGFR inversely correlated with the levels of the inflammatory parameters. After partial correlation analysis, the previous associations between CRP and eGFR, and serum P, as well as the relationship between IL-6 and eGFR, and serum P, remained significant. Multiple regression analysis demonstrated that eGFR and serum P were independently associated with CRP and IL-6. Finally, logistic regression analysis using the presence/absence of an inflammatory state as the dependent variable showed that eGFR was a protective factor, whereas serum P was an independent risk factor for the presence of an inflammatory state. CONCLUSIONS Elevated serum P might play a role in the development of inflammation in CKD.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Calcium pyrophosphate dihydrate and basic calcium phosphate crystals are the two most common calcium-containing crystals involved in rheumatic diseases. Recent literature concerning their role in the pathogenesis of osteoarthritis is reviewed. RECENT FINDINGS In some instances, these calcium crystals might worsen osteoarthritis cartilage destruction. Laboratory investigations have identified determinants of cartilage calcification, especially a better characterization of matrix vesicle content and a better understanding of the regulation of inorganic pyrophosphate and phosphate concentration. In-vitro studies have highlighted new pathogenic mechanisms of calcium crystal-induced cell activation. Several intracellular signalling pathways are activated by calcium crystals. Recent studies suggested the implication of the inflammasome complex and a pivotal role for IL-1 in pseudogout attacks and chondrocyte apoptosis in basic calcium phosphate crystal-related arthropathies. SUMMARY Animal models of osteoarthritis and in-vitro studies using calcium pyrophosphate dihydrate and basic calcium phosphate crystals will improve our knowledge of these common crystals and could suggest new targets for drugs, as these common diseases are 'orphan' with respect to therapy.
Collapse
|
21
|
McCarthy GM, Cheung HS. Point: Hydroxyapatite crystal deposition is intimately involved in the pathogenesis and progression of human osteoarthritis. Curr Rheumatol Rep 2009; 11:141-7. [PMID: 19296887 DOI: 10.1007/s11926-009-0020-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cause of osteoarthritis (OA), the most common form of arthritis, is most likely multifactorial. No drug exists to slow the progression or reverse OA disease progression. Ample data support a key role of calcium-containing crystals, such as hydroxyapatite, in OA pathogenesis. The presence of these crystals, far higher in OA than in any other form of arthritis, correlates with the degree of radiographic degeneration. Calcium-containing crystals have potent biologic effects in vitro that emphasize their pathogenic potential. OA-associated matrix and chondrocyte alterations play an intimate role in the crystal deposition process. A major difficulty has been the lack of a simple technique for crystal identification in affected joints. Enhanced effort is needed to establish calcium-containing crystals as a therapeutic target in OA, as current data suggest an intimate association in its pathogenesis and progression.
Collapse
Affiliation(s)
- Geraldine M McCarthy
- Department of Medicine, University College Dublin and Mater Misericordiae University Hospital, Eccles St, Dublin 7, Ireland
| | | |
Collapse
|
22
|
Roman-Blas JA, Jimenez SA. Targeting NF-kappaB: a promising molecular therapy in inflammatory arthritis. Int Rev Immunol 2009; 27:351-74. [PMID: 18853343 DOI: 10.1080/08830180802295740] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The nuclear factor-kappa B family of transcription factors is intimately involved in the regulation of the inflammatory responses that play a fundamental role in the damage of articular tissues. Thus, many studies have examined the important contributions of components of the NF-kappaB signaling pathways to the pathogenesis of various rheumatic diseases and their pharmacologic modulation. Currently available therapeutic agents including nonsteroidal anti-inflammatory drugs, corticosteroids, nutraceuticals, and disease-modifying antirheumatic drugs, as well as novel specific small-molecule inhibitors have been employed. In addition, promising nucleic acid-based strategies have shown encouraging results. However, further research will be needed before NF-kappaB-aimed strategies become an effective therapy for inflammatory arthritis.
Collapse
Affiliation(s)
- Jorge A Roman-Blas
- Thomas Jefferson University, Jefferson Institute of Molecular Medicine, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
23
|
Inspirational calcification: how rheumatology research directs investigation in vascular biology. Curr Opin Rheumatol 2009; 21:47-9. [DOI: 10.1097/bor.0b013e32831e9ca3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Molloy ES, Morgan MP, Doherty GA, McDonnell B, Hilliard M, O'Byrne J, Fitzgerald DJ, McCarthy GM. Mechanism of basic calcium phosphate crystal-stimulated cyclo-oxygenase-1 up-regulation in osteoarthritic synovial fibroblasts. Rheumatology (Oxford) 2008; 47:965-71. [DOI: 10.1093/rheumatology/ken144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
25
|
Lastro M, Kourtidis A, Farley K, Conklin DS. xCT expression reduces the early cell cycle requirement for calcium signaling. Cell Signal 2007; 20:390-9. [PMID: 18054200 DOI: 10.1016/j.cellsig.2007.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 10/30/2007] [Indexed: 12/24/2022]
Abstract
Calcium has long been recognized as an important regulator of cell cycle transitions although the mechanisms are largely unknown. A functional genomic screen has identified genes involved in the regulation of early cell cycle progression by calcium. These genes when overexpressed confer the ability to bypass the G1/S arrest induced by Ca(2+)-channel antagonists in mouse fibroblasts. Overexpression of the cystine-glutamate exchanger, xCT, had the greatest ability to evade calcium antagonist-induced cell cycle arrest. xCT carries out the rate limiting step of glutathione synthesis in many cell types and is responsible for the uptake of cystine in most human cancer cell lines. Functional analysis indicates that the cystine uptake activity of xCT overcomes the G1/S arrest induced by Ca(2+)-channel antagonists by bypassing the requirement for calcium signaling. Since cells overexpressing xCT were found to have increased levels and activity of the AP-1 transcription factor in G1, redox stimulation of AP-1 activity accounts for the observed growth of these cells in the presence of calcium channel antagonists. These results suggest that reduced calcium signaling impairs AP-1 activation and that xCT expression may directly affect cell proliferation.
Collapse
Affiliation(s)
- Michele Lastro
- Department of Biomedical Sciences, Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Room 210, One Discovery Drive, Rensselaer, NY 12144-3456, United States
| | | | | | | |
Collapse
|
26
|
|
27
|
Nadra I, Boccaccini AR, Philippidis P, Whelan LC, McCarthy GM, Haskard DO, Landis RC. Effect of particle size on hydroxyapatite crystal-induced tumor necrosis factor alpha secretion by macrophages. Atherosclerosis 2007; 196:98-105. [PMID: 17350022 DOI: 10.1016/j.atherosclerosis.2007.02.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
Macrophages may promote a vicious cycle of inflammation and calcification in the vessel wall by ingesting neointimal calcific deposits (predominantly hydroxyapatite) and secreting tumor necrosis factor (TNF)alpha, itself a vascular calcifying agent. Here we have investigated whether particle size affects the proinflammatory potential of hydroxyapatite crystals in vitro and whether the nuclear factor (NF)-kappaB pathway plays a role in the macrophage TNFalpha response. The particle size and nano-topography of nine different crystal preparations was analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and gas sorbtion analysis. Macrophage TNFalpha secretion was inversely related to hydroxyapatite particle size (P=0.011, Spearman rank correlation test) and surface pore size (P=0.014). A necessary role for the NF-kappaB pathway was demonstrated by time-dependent I kappaB alpha degradation and sensitivity to inhibitors of I kappaB alpha degradation. To test whether smaller particles were intrinsically more bioactive, their mitogenic activity on fibroblast proliferation was examined. This showed close correlation between TNFalpha secretion and crystal-induced fibroblast proliferation (P=0.007). In conclusion, the ability of hydroxyapatite crystals to stimulate macrophage TNFalpha secretion depends on NF-kappaB activation and is inversely related to particle and pore size, with crystals of 1-2 microm diameter and pore size of 10-50 A the most bioactive. Microscopic calcific deposits in early stages of atherosclerosis may therefore pose a greater inflammatory risk to the plaque than macroscopically or radiologically visible deposits in more advanced lesions.
Collapse
Affiliation(s)
- Imad Nadra
- British Heart Foundation Cardiovascular Medicine Unit, Eric Bywaters Centre for Vascular Inflammation, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | - Aldo R Boccaccini
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP, UK
| | - Pandelis Philippidis
- British Heart Foundation Cardiovascular Medicine Unit, Eric Bywaters Centre for Vascular Inflammation, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | - Linda C Whelan
- Department of Clinical Pharmacology, The Royal College of Surgeons and Mater Misericordiae University Hospital, Dublin, Ireland
| | - Geraldine M McCarthy
- Department of Clinical Pharmacology, The Royal College of Surgeons and Mater Misericordiae University Hospital, Dublin, Ireland
| | - Dorian O Haskard
- British Heart Foundation Cardiovascular Medicine Unit, Eric Bywaters Centre for Vascular Inflammation, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | - R Clive Landis
- British Heart Foundation Cardiovascular Medicine Unit, Eric Bywaters Centre for Vascular Inflammation, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK.
| |
Collapse
|
28
|
Major ML, Cheung HS, Misra RP. Basic calcium phosphate crystals activate c-fos expression through a Ras/ERK dependent signaling mechanism. Biochem Biophys Res Commun 2007; 355:654-60. [PMID: 17307136 PMCID: PMC1855205 DOI: 10.1016/j.bbrc.2007.01.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
Diseases caused by calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals occur frequently in osteoarthritic joints. Both crystals induce mitogenesis, metalloproteinase synthesis and secretion by fibroblasts and chondrocytes, promoting degradation of articular tissue. We investigated the mechanism by which BCP activates the c-fos proto-oncogene, which has been shown to activate various matrix metalloproteinases (MMPs). We demonstrate that BCP crystals induce c-fos expression primarily through a Ras/ERK-dependent signaling mechanism targeting two highly conserved regulatory binding sites, the serum response element (SRE) and the cAMP response element (CRE). These results establish a calcium crystal induced, calcium/calmodulin independent, signaling pathway in which BCP crystals activate Ras/MAPK, which can directly target an SRF-containing transcription factor complex, to induce fibroblasts to secrete metalloproteinases.
Collapse
Affiliation(s)
| | - Herman S. Cheung
- Geriatric Research Education and Clinical Center, VA Medical Center and Department of Medicine, University of Miami School of Medicine, Miami, FL 33101
| | - Ravi P. Misra
- *To whom correspondence should be addressed: Tel. # 414-456-8433, Fax # 414-456-6510, Internet:
| |
Collapse
|
29
|
Abstract
Calcific tendonitis is a common clinical condition associated with high rates of tendon rupture, prolonged symptoms, and poor response to therapy. Little is known about the pathogenesis of calcifications in tendons and consequently few effective therapies are available. We hypothesized that tendon calcification, like pathologic calcification in other sites, was generated by extracellular organelles known as matrix vesicles and that isolated matrix vesicles would constitute the basis for a useful model of this process. Tendon matrix vesicles were isolated from adult porcine patellar tendons using enzymatic digestion and differential centrifugation. Vesicle morphology was examined with electron microscopy. Levels of calcium, phosphate, pyrophosphate, ATP, and mineralization-associated enzymes were measured and compared with articular cartilage vesicles from porcine articular cartilage. Vesicles were embedded in agarose gels with or without type I collagen or dermatan sulfate and incubated in calcifying salt solution trace labeled with (45)calcium. (45)Calcium in the vesicle fraction was measured after 5-7 days. The type of mineral formed was determined by micro-x-ray diffraction. Matrix vesicles isolated from adult porcine tendon were similar morphologically to those obtained from articular cartilage. They contained mineralization-related enzymes and formed hydroxyapatite mineral in vitro. Mineralization was suppressed by levamisole and modulated by extracellular matrix components. Matrix vesicles isolated from tendons mineralize in vitro. This model may aid in the study of the pathogenesis of calcific tendonitis as well as serve as a means to identify effective therapies for this common disorder.
Collapse
Affiliation(s)
- Claudia M Gohr
- Medical College of Wisconsin and Zablocki VA Medical Center, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
30
|
|
31
|
Molloy ES, McCarthy GM. Calcium crystal deposition diseases: update on pathogenesis and manifestations. Rheum Dis Clin North Am 2006; 32:383-400, vii. [PMID: 16716885 DOI: 10.1016/j.rdc.2006.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate crystals are the most common types of pathologic calcium-containing crystals. Although these crystals long have been associated with a variety of rheumatic syndromes, recent evidence implicates BCP crystals in the pathogenesis of breast cancer and atherosclerosis. Although understanding of molecular mechanisms involved in generating these pathologic effects has been advanced significantly in recent years, they still are understood incompletely. Such advances are essential to the ongoing search for effective therapies for crystal-associated diseases.
Collapse
Affiliation(s)
- E S Molloy
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, 9500 Euclid Avenue, A50 Cleveland, OH 44195, USA.
| | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Basic calcium phosphate crystals have long been associated with rheumatic syndromes. Although an understanding of the molecular mechanisms involved in generating these pathological effects has been significantly advanced in recent years, it is still incomplete. RECENT FINDINGS Basic calcium phosphate crystals have been shown to increase prostaglandin E(2) production in human fibroblasts, mediated by the induction of both cyclooxygenases 1 and 2. Basic calcium phosphate crystals have also been found to upregulate IL-1beta in fibroblasts and chondrocytes. The upregulation of inducible nitric oxide synthase and stimulation of nitric oxide production in chondrocytes by octacalcium phosphate crystals has been demonstrated. The involvement of protein kinase C isoforms in basic calcium phosphate crystal-mediated matrix metalloproteinase 1 and 3 expression in human fibroblasts has been clarified. Two pathways are involved: protein kinase Calpha mediates the calcium-dependent pathway, whereas protein kinase Cmu activates the extracellular-regulated kinase pathway in a calcium-independent cascade. In addition, basic calcium phosphate crystals activate the transcription factor Egr-1, an effect that may contribute to the mitogenic effect of these crystals on fibroblasts. SUMMARY Recent findings have emphasized the potential for basic calcium phosphate crystals to stimulate the production of a variety of inflammatory mediators such as prostaglandin E(2), nitric oxide, IL-1beta and matrix metalloproteinases, and have helped to elucidate the mechanisms of these effects. Such advances are essential for the ongoing search for effective therapies for basic calcium phosphate crystal-associated diseases.
Collapse
Affiliation(s)
- Eamonn S Molloy
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
33
|
Merhi-Soussi F, Berti M, Wehrle-Haller B, Gabay C. Intracellular interleukin-1 receptor antagonist type 1 antagonizes the stimulatory effect of interleukin-1α precursor on cell motility. Cytokine 2005; 32:163-70. [PMID: 16246569 DOI: 10.1016/j.cyto.2005.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 09/06/2005] [Accepted: 09/09/2005] [Indexed: 11/17/2022]
Abstract
Interleukin (IL)-1alpha, a proinflammatory cytokine, is produced as a 33 kDa protein precursor (preIL-1alpha) which is cleaved to generate the 17 kDa C-terminal mature IL-1alpha (mIL-1alpha) and the 16kDa N-terminal IL-1alpha propiece (NIL-1alpha). The biological effect of IL-1alpha is regulated by the IL-1 receptor antagonist (IL-1Ra), its naturally occurring inhibitor. Four different isoforms of the IL-1Ra have been described, one secreted (sIL-1Ra) and three intracellular (icIL-1Ra1, 2, 3). Whether the icIL-1Ra1 isoform can antagonize some of the biological effects of intracellular IL-1alpha is still unknown. The aim of this study is to investigate effects of preIL-1alpha and icIL-1Ra1 on cell motility in stably transfected ECV304 cells. We show that expression of preIL-1alpha in ECV304 cells significantly increases cell motility. Furthermore, transfection with NIL-1alpha propiece also increases cell motility whereas this stimulatory effect was not observed by addition of exogenous mIL-1alpha, suggesting an intracellular effect of preIL-1alpha mediated by NIL-1alpha propiece. Co-transfection of ECV304 cells with icIL-1Ra1 completely antagonizes the stimulatory effect of preIL-1alpha and NIL-1alpha propiece on cell motility. In conclusion, NIL-1alpha propiece increases ECV304 cell motility and icIL-1Ra1 exerts intracellular functions regulating this stimulatory effect.
Collapse
Affiliation(s)
- Faten Merhi-Soussi
- Division of Rheumatology, Department of Internal Medicine, University Hospital of Geneva, 26 avenue de Beau-séjour, 1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
34
|
Silwood CJL, Grootveld M. Evaluation of the speciation status of aluminium(III) ions in isolated osteoarthritic knee-joint synovial fluid. Biochim Biophys Acta Gen Subj 2005; 1725:327-39. [PMID: 15978730 DOI: 10.1016/j.bbagen.2005.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/05/2005] [Accepted: 05/05/2005] [Indexed: 11/26/2022]
Abstract
High field 1H NMR spectroscopy demonstrated that the equilibration of added Al(III) ions in osteoarthritic (OA) knee-joint synovial fluid (SF) resulted in its complexation by citrate and, to a much lesser extent, tyrosine and histidine. The ability of these ligands, together with inorganic phosphate, to compete for the available Al(III) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their SF concentrations was probed through the use of computer speciation calculations, which considered low-molecular-mass binary and ternary Al(III) species, the predominant Al(III) plasma transport protein transferrin, and also relevant hydrolysis and precipitation processes. It was found that, at relatively low added Al(III) concentrations, citrate species were more favoured, whilst phosphate species became dominant at higher levels. The significance of these findings with regard to the in vivo corrosion of aluminium-containing metal alloy joint prostheses (e.g., TiAlV alloys) is discussed.
Collapse
Affiliation(s)
- Christopher J L Silwood
- Department of Applied Science, Faculty of Engineering, Science and the Built Environment, London South Bank University, London SE1 0AA, UK
| | | |
Collapse
|
35
|
Nadra I, Mason JC, Philippidis P, Florey O, Smythe CDW, McCarthy GM, Landis RC, Haskard DO. Proinflammatory Activation of Macrophages by Basic Calcium Phosphate Crystals via Protein Kinase C and MAP Kinase Pathways. Circ Res 2005; 96:1248-56. [PMID: 15905460 DOI: 10.1161/01.res.0000171451.88616.c2] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basic calcium phosphate (BCP) crystal deposition underlies the development of arterial calcification. Inflammatory macrophages colocalize with BCP deposits in developing atherosclerotic lesions and in vitro can promote calcification through the release of TNF alpha. Here we have investigated whether BCP crystals can elicit a proinflammatory response from monocyte-macrophages. BCP microcrystals were internalized into vacuoles of human monocyte-derived macrophages in vitro. This was associated with secretion of proinflammatory cytokines (TNFα, IL-1β and IL-8) capable of activating cultured endothelial cells and promoting capture of flowing leukocytes under shear flow. Critical roles for PKC, ERK1/2, JNK, but not p38 intracellular signaling pathways were identified in the secretion of TNF alpha, with activation of ERK1/2 but not JNK being dependent on upstream activation of PKC. Using confocal microscopy and adenoviral transfection approaches, we determined a specific role for the PKC-alpha isozyme. The response of macrophages to BCP crystals suggests that pathological calcification is not merely a passive consequence of chronic inflammatory disease but may lead to a positive feed-back loop of calcification and inflammation driving disease progression.
Collapse
Affiliation(s)
- Imad Nadra
- British Heart Foundation Cardiovascular Medicine Unit, Eric Bywaters Centre for Vascular Inflammation, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang Y, Zhang JS, Huang GC, Cheng Q, Zhao ZH. Effects of adrenomedullin gene overexpression on biological behavior of hepatic stellate cells. World J Gastroenterol 2005; 11:3549-53. [PMID: 15962372 PMCID: PMC4315958 DOI: 10.3748/wjg.v11.i23.3549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of adrenomedullin (AM) gene overexpression on the biological characteristics of human hepatic stellate cells (hHSCs) by stable transfection.
METHODS: hHSCs which express low basal levels of AM were stably transfected with an expression construct containing rat AM gene or with an empty expression vector. Expression of AM in hHSCs was determined by reverse transcription (RT)-polymerase chain reaction (PCR) and radioimmunoassay (RIA). Cell proliferation was evaluated by 5-bromo-2’-deoxyuridine (BrdU) incorporation and immunocytochemistry. RT-PCR and Western blot were used to test the expression of procollagen types I and III. Protein expressions of interstitial collagenase (MMP-1), gelatinase (MMP-2) and tissue inhibitors of matrix metalloproteinases-2 (TIMP-2) were assessed by Western blot.
RESULTS: Two cell clones (A-2, A-8) transfected with the AM gene expressed higher levels of AM mRNA (non-transfected group: 0.86±0.11, empty vector group: 1.01±0.11, A-2 clone group: 1.44±0.08 and A-8 clone group: 1.36±0.05) and protein (12.31±0.17, 12.35±0.12, 12.56±0.06 and 12.62±0.07) (P<0.05). AM gene overexpression had inhibitory effects on cell proliferation of hHSCs (29.6%, 30.9%, 18.9% and 21.8%, respectively. P<0.05) and expression of procollagen type I (0.58±0.1, 0.48±0.11, 0.3±0.06 and 0.31±0.07 at mRNA level) (0.27±0.07, 0.3±0.06, 0.14±0.05 and 0.13±0.05 at protein level) (P<0.05) and procollagen type III (0.17±0.04, 0.15±0.03, 0.1±0.02 and 0.09±0.02 at mRNA level) (0.22±0.04, 0.2±0.03, 0.11±0.04 and 0.13±0.03 at protein level) (P<0.05). Compared with cells non-transfected (TIMP2: 2.77±0.03, MMP-2: 0.5±0.04, MMP-1: 0.49±0.07) and transfected with empty vector (TIMP2: 2.79±0.04, MMP-2: 0.48±0.03, MMP-1: 0.45±0.09), these two clones had lower expression levels of TIMP2(A-2 clone group: 2.7±0.02 and A-8 clone group: 2.71±0.02) (P<0.05) and MMP-2(A-2 clone group: 0.15±0.05 and A-8 clone group: 0.13±0.04) (P<0.05) but displayed a higher expression level of MMP-1(A-2 clone group: 0.68±0.06 and A-8 clone group: 0.81±0.09) (P<0.05).
CONCLUSION: AM gene exerts negative influence to some extent on hHSCs by inhibiting proliferation and production of extracellular matrix (ECM) in addition to inducing MMP-1 expression.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathology, Medical Center, Fudan University, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Calcium-containing crystals can cause the degeneration of articular tissues in two separate pathways. In the direct pathway, crystals directly induce synoviocytes to proliferate and produce metalloproteinases and prostaglandins. The other pathway, the paracrine pathway, involves the interaction between crystals and macrophages/monocytes, which leads to the synthesis and release of cytokines, which can reinforce the action of crystals on synoviocytes and/or induce chondrocytes to secrete enzymes and which eventually causes the degeneration of articular tissues. The purpose of this review is to highlight the recent findings of the biologic effect of these crystals. RECENT FINDINGS In the past few years, major advances in the understanding of the biologic effect of crystals and the signal transduction pathway of crystal-induced cell activation offer a unique opportunity to examine the role of crystal in osteoarthritis and cartilage degeneration. SUMMARY Evidence for a causal role of crystals in cartilage degeneration in osteoarthritis is primarily inferential and is based on correlative data. Clinical observations indicate that exaggerated and uniquely distributed cartilage degeneration is associated with these deposits. Measurements of putative markers of cartilage breakdown suggest that these crystals magnify the degenerative process. Studies have shown two potential mechanisms by which crystals cause degeneration. These involve the stimulation of mitogenesis in synovial fibroblasts and the secretion of metalloproteinases by cells that subject these crystals to phagocytosis. New information on how crystals form and how they exert their biologic effects will help in the design of an effective therapeutic approach.
Collapse
Affiliation(s)
- Herman S Cheung
- Miami Veterans Administration Medical Center and Department of Biomedical Engineering, University of Miami, Miami, Florida, USA.
| |
Collapse
|
38
|
Morgan MP, Cooke MM, McCarthy GM. Microcalcifications associated with breast cancer: an epiphenomenon or biologically significant feature of selected tumors? J Mammary Gland Biol Neoplasia 2005; 10:181-7. [PMID: 16025224 DOI: 10.1007/s10911-005-5400-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Radiographic mammary calcifications occur in 30-50% of breast cancers and constitute one of the most important diagnostic markers of both benign and malignant lesions of the breast. The presence of oxalate-type microcalcification appears to be a reliable criterion in favor of the benign nature of the lesion or, at most, of a lobular carcinoma in situ. In contrast, calcium hydroxyapatite (HA) crystals are associated with both benign and malignant breast tumors. Although the diagnostic value of microcalcifications in breast cancer is of great importance, the genesis of these calcifications is unclear. Despite numerous histological ultrastructure studies of HA deposits in breast carcinomas, to date there have been limited investigations of the potential role of these crystals in breast cancer. We review the literature examining the biological effects of HA crystals in breast cancer cell lines, specifically the mechanism of HA-induced mitogenesis and upregulation of gene expression.
Collapse
|
39
|
Abstract
Basic calcium phosphate, calcium pyrophosphate dihydrate, and monosodium urate crystals are the most common types of crystals associated with human disease. Although there is a well-established association between these crystals and various forms of joint disease, recent evidence points to an association of basic calcium phosphate crystals with breast cancer and atherosclerosis. Crystal-induced tissue damage is affected by degradative proteases, cytokines, chemokines, and prostanoids produced by cells stimulated by crystals. In the case of basic calcium phosphate and calcium pyrophosphate dihydrate crystals, these responses are augmented by the cellular proliferation that results from their induction of mitogenesis. The understanding of the molecular mechanisms involved in generating these pathologic effects has been significantly advanced in recent years. Such advances are essential to the ongoing search for more effective therapies for crystal-associated diseases.
Collapse
Affiliation(s)
- Eamonn S Molloy
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
40
|
Ohana E, Segal D, Palty R, Ton-That D, Moran A, Sensi SL, Weiss JH, Hershfinkel M, Sekler I. A Sodium Zinc Exchange Mechanism Is Mediating Extrusion of Zinc in Mammalian Cells. J Biol Chem 2004; 279:4278-84. [PMID: 14581475 DOI: 10.1074/jbc.m309229200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc influx, driven by a steep inward electrochemical gradient, plays a fundamental role in zinc signaling and in pathophysiologies linked to intracellular accumulation of toxic zinc. Yet, the cellular transport mechanisms that actively generate or maintain the transmembrane gradients are not well understood. We monitored Na+-dependent Zn2+ transport in HEK293 cells and cortical neurons, using fluorescent imaging. Treatment of the HEK293 cells with CaPO4 precipitates induced Na+-dependent Zn2+ extrusion, against a 500-fold transmembrane zinc gradient, or zinc influx upon reversal of Na+ gradient, thus indicating that Na+/Zn2+ exchange is catalyzing active Zn2+ transport. Depletion of intracellular ATP did not inhibit the Na+-dependent Zn2+ extrusion, consistent with a mechanism involving a secondary active transporter. Inhibitors of the Na+/Ca2+ exchanger failed to inhibit Na+-dependent Zn2+ efflux. In addition, zinc transport was unchanged in HEK293 cells heterologously expressing functional cardiac or neuronal Na+/Ca2+ exchangers, thus indicating that the Na+/Zn2+ exchange activity is not mediated by the Na+/Ca2+ exchanger. Sodium-dependent zinc exchange, facilitating the removal of intracellular zinc, was also monitored in neurons. To our knowledge, the Na+/Zn2+ exchanger described here is the first example of a mammalian transport mechanism capable of Na+-dependent active extrusion of zinc. Such mechanism is likely to play an important role, not only in generating the transmembrane zinc gradients, but also in protecting cells from the potentially toxic effects of permeation of this ion.
Collapse
Affiliation(s)
- Ehud Ohana
- Department of Physiology, Faculty of Health Science, Ben Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Morgan MP, Whelan LC, Sallis JD, McCarthy CJ, Fitzgerald DJ, McCarthy GM. Basic calcium phosphate crystal-induced prostaglandin E2 production in human fibroblasts: Role of cyclooxygenase 1, cyclooxygenase 2, and interleukin-1? ACTA ACUST UNITED AC 2004; 50:1642-9. [PMID: 15146435 DOI: 10.1002/art.20223] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To elucidate the mechanism of basic calcium phosphate (BCP) crystal-induced prostaglandin E(2) (PGE(2)) production in human foreskin fibroblasts (HFFs), to identify the signaling pathway involved in the induction of cyclooxygenase 2 (COX-2) messenger RNA (mRNA) by BCP crystals, to examine the effect of BCP crystals on interleukin-1beta (IL-1beta) mRNA expression, and to investigate the potential of phosphocitrate to abrogate the BCP crystal-induced effects. METHODS PGE(2) levels were quantified using a commercial enzyme immunoassay kit. COX-2 and COX-1 transcript levels were quantified using real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Induction of IL-1beta and COX-2 mRNA was examined by end-point RT-PCR. COX-2 protein expression was assessed by Western blotting. RESULTS PGE(2) production measured 4 and 30 hours after BCP crystal treatment was higher in BCP crystal-treated (mean +/- SEM 1,891 +/- 273 pg/microg and 1,792 +/- 233 pg/microg, respectively) than in untreated (88 +/- 5 pg/microg and 205 +/- 93 pg/microg, respectively) HFFs. The PGE(2) produced after 4 hours was sensitive to inhibition with NS398, a selective COX-2 inhibitor, implying that it was COX-2 mediated, whereas the PGE(2) produced at 30 hours could not be completely inhibited by NS398. Real-time RT-PCR demonstrated a 23-fold increase in COX-2 mRNA that was maximal at 4 hours, whereas analysis of mRNA for COX-1 showed up-regulation of transcript peaking at 24 hours poststimulation (1.75-fold increase). The protein kinase C and phosphatidylinositol 3-kinase signal-transduction inhibitors bisindolylmaleimide I and LY294002, respectively, blocked BCP crystal-induced COX-2 mRNA in HFFs. In addition, BCP crystals were found to up-regulate the proinflammatory cytokine IL-1beta (maximal at 8 hours). The induction of both COX-2 and IL-1beta by BCP crystals was attenuated when the cells were treated with phosphocitrate. CONCLUSION These findings indicate that BCP crystals may be an important amplifier of PGE(2) production through induction of the COX enzymes and the proinflammatory cytokine IL-1beta.
Collapse
Affiliation(s)
- Maria P Morgan
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Basic calcium phosphate (BCP) crystals include partially carbonate-substituted hydroxyapatite, octacalcium phosphate, and tricalcium phosphate. They may form deposits, which are frequently asymptomatic but may give rise to a number of clinical syndromes including calcific periarthritis, Milwaukee shoulder syndrome, and osteoarthritis, in and around joints. Recent data suggest that magnesium whitlockite, another form of BCP, may play a pathologic role in arthritis. Data from the past year have provided further understanding of the mechanisms by which BCP crystals induce inflammation and degeneration. There remains no specific treatment to modify the effects of BCP crystals. Although potential drugs are being identified as the complex pathophysiology of BCP crystals is unraveled, much work remains to be done in order to translate research advances to date into tangible clinical benefits.
Collapse
Affiliation(s)
- Eamonn S Molloy
- Department of Rheumatology, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Ireland
| | | |
Collapse
|
43
|
Cooke MM, McCarthy GM, Sallis JD, Morgan MP. Phosphocitrate inhibits calcium hydroxyapatite induced mitogenesis and upregulation of matrix metalloproteinase-1, interleukin-1beta and cyclooxygenase-2 mRNA in human breast cancer cell lines. Breast Cancer Res Treat 2003; 79:253-63. [PMID: 12825860 DOI: 10.1023/a:1023908307108] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microcalcifications containing calcium hydroxyapatite (HA) are often associated with malignant human breast lesions. Frequently, they are the only mammographic features that indicate the presence of a tumoural lesion. We previously reported the induction of both mitogenesis and prostaglandin E2 (PGE2) production and the increased activities of matrix metalloproteinases (MMPs) MMP-2 and MMP-9 in normal human mammary epithelial cells and breast cancer cell lines, treated with HA. In the present study we attempted to elucidate the mechanism of these biological effects. Firstly, we found that direct cell-crystal contact was required for induction of mitogenesis as the effect was not merely a result of isotopic exchange of calcium into the culture medium. Treatment with bafilomycin A1, a proton pump inhibitor, abrogated HA-induced mitogenesis to control cell levels. These results suggest that phagocytosis and intracellular crystal dissolution is required for HA-induced mitogenesis. We also demonstrated that the increase in prostaglandin E2, previously reported, is due, at least in part, to HA-induced upregulation of cyclooxygenase-2 (COX-2) in Hs578T cells. An accumulation of MMP-1 mRNA was also shown in response to HA stimulation in Hs578T cells. Furthermore, a HA-induced increase in interleukin-1beta (IL-1beta), a potent inducer of MMP-1 gene expression, was demonstrated in Hs578T cells at 2 and 4 h. Treatment with phosphocitrate (PC) (a naturally occurring inhibitor of calcium phosphate crystallisation, which is known to block a number of HA-induced biological effects in other cell types) blocked HA-mediated mitogenesis, as well as, COX-2, MMP-1 and IL-1beta induction, at the transcriptional level. These results show that calcium HA crystals are capable of exerting significant biological effects on surrounding cells which can be abrogated by PC and emphasise the role of calcium HA in amplifying the pathological process involved in breast cancer.
Collapse
Affiliation(s)
- Michelle M Cooke
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | |
Collapse
|
44
|
Abstract
The association of crystal deposition with osteoarthritis and joint destruction is well established. Recent advances in understanding the mechanisms whereby calcium crystals contribute to cartilage damage are highlighted in this review. In vitro studies have shown that when calcium-containing crystals come in contact with cells they cause an influx in Ca 2+ concentration and activation of p42/44 mitogen-activated protein kinases. This is followed by induction of proto-oncogenes (c- fos, c- jun ) and induction of the nuclear transcription factors activator protein-1 and nuclear factor-kappaB, which in turn lead to crystal-induced modulation of normal gene expression. Some of the downstream effects known to date include increased mitogenesis, up-regulation of members of the matrix metalloproteinase family, down-regulation of tissue inhibitor of metalloproteinase-1 and -2 in fibroblasts, induction of neutrophil chemotactic chemokines such as interleukin-8, activation and degranulation of neutrophils, and inhibition of neutrophil apoptosis. Because no known drug prevents or treats the consequences of basic calcium phosphate crystal deposition, an improved understanding of the molecular mechanisms leading to crystal-induced joint degeneration is essential to the development of a rational approach to target the consequences of crystal deposition.
Collapse
Affiliation(s)
- Maria P Morgan
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
45
|
Reuben PM, Brogley MA, Sun Y, Cheung HS. Molecular mechanism of the induction of metalloproteinases 1 and 3 in human fibroblasts by basic calcium phosphate crystals. Role of calcium-dependent protein kinase C alpha. J Biol Chem 2002; 277:15190-8. [PMID: 11836255 DOI: 10.1074/jbc.m200278200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synovial fluid basic calcium phosphate (BCP) crystals are common in osteoarthritis and are often associated with destructive arthropathies involving cartilage degeneration. These crystals are mitogenic and induce oncogene expression and matrix metalloproteinase (MMP) synthesis and secretion in human fibroblasts. To date, BCP crystal-elicited signal transduction pathways have not been completely studied. Because protein kinase C (PKC) is known to play an important role in signal transduction, we investigated the participation of this pathway in the BCP crystal induction of MMP-1 and MMP-3 mRNA and protein expressions in human fibroblasts. Using reverse transcription/polymerase chain reaction (RT-PCR) and Northern and Western blotting techniques, we show here that BCP crystal stimulation of MMP-1 and MMP-3 mRNA and protein expressions in human fibroblasts is dependent upon the calcium-dependent PKC signal transduction pathway and that the PKC alpha isozyme is specifically involved in the pathway. We have previously shown that BCP crystal induction of MMP-1 and MMP-3 is also dependent on the p44/42 mitogen-activated protein kinase (p44/42 MAPK) signal transduction pathway. We now show that these two pathways operate independently and seem to complement each other. This leads to our hypothesis that the two pathways initially function independently, ultimately leading to an increase in mitogenesis and MMP synthesis, and may converge downstream of PKC and p44/42 MAPK to mediate BCP crystal-induced cellular responses.
Collapse
Affiliation(s)
- Paul M Reuben
- Department of Medicine, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
46
|
Chen NX, O'Neill KD, Niwa T, Moe SM. Signal transduction of beta2m-induced expression of VCAM-1 and COX-2 in synovial fibroblasts. Kidney Int 2002; 61:414-24. [PMID: 11849381 DOI: 10.1046/j.1523-1755.2002.00136.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND beta2 microglobulin (beta2m) amyloidosis is a destructive articular disease affecting dialysis patients. We have demonstrated that beta2m increases the expression of vascular cell adhesion molecule (VCAM-1) and cyclooxygenase-2 (COX-2) in human osteoarthritic synovial fibroblasts (SFLs). METHODS To determine the cell signaling pathways, SFLs were incubated with beta2m in the presence or absence of various inhibitors for 24 hours. Intracellular calcium ([Ca2+]i) was measured by fluorometric techniques and vascular cell adhesion molecule-1 (VCAM-1) and cyclooxygenase-2 (COX-2) expression was determined by immunohistochemistry and Western blotting. RESULTS beta2m increased [Ca2+]i levels in a dose dependent manner (P < 0.05) in SFLs. BAPTA-AM, a [Ca2+]i chelator, completely inhibited beta2m-induced expression of VCAM-1 and COX-2. U73122 [phospholipase C (PLC) inhibitor] or 2-APB [specific inhibitor of inositol 1,4,5-trisphosphate (IP3)-induced [Ca2+]i release] completely blocked the beta2m-induced increase in [Ca2+]i and the up-regulation of VCAM-1 and COX-2. However, pretreatment with staurosporin, a protein kinase C inhibitor, had no effect. Disruption of the actin cytoskeleton by treatment with cytochalasin D or latrunculin A blocked beta2m up-regulation of VCAM-1 and COX-2. Finally, cells treated with phosphatidylinositol-3 kinase (PI-3 kinase) inhibitors wortmannin or LY294002 also failed to express VCAM-1 and COX-2. CONCLUSIONS These results demonstrate that IP3-mediated [Ca2+]i release, PI-3 kinase, and actin cytoskeleton reorganization are involved in beta2m-induced expression of VCAM-1 and COX-2 in human SFLs. Understanding the potential pathways by which beta2m exerts its inflammatory-like effects may lead to the development of future therapies.
Collapse
Affiliation(s)
- Neal X Chen
- Indiana University School of Medicine and Richard L. Roudebush VAMC, Indianapolis, Indiana, USA.
| | | | | | | |
Collapse
|
47
|
Sun Y, Wenger L, Brinckerhoff CE, Misra RR, Cheung HS. Basic calcium phosphate crystals induce matrix metalloproteinase-1 through the Ras/mitogen-activated protein kinase/c-Fos/AP-1/metalloproteinase 1 pathway. Involvement of transcription factor binding sites AP-1 and PEA-3. J Biol Chem 2002; 277:1544-52. [PMID: 11682465 DOI: 10.1074/jbc.m100567200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synovial fluid basic calcium phosphate (BCP) crystals are common in osteoarthritis and are associated with severe degenerative arthropathy. Besides stimulating synovial fibroblast-like cells to proliferate, BCP crystals are a potent inducer of human matrix metalloproteinases (hMMPs), which can speed up the articular joint tissue degeneration of osteoarthritis patients. Here, we report that transfections with hMMP1 luciferase reporter plasmids in fibroblast-like synoviocytes revealed that the induction of hMMP1 promoter by BCP crystals was mainly mediated through the -72AP-1 element. Elimination of the -72AP-1 element either by mutation or deletion abolished the induction of hMMP1 promoter activity by BCP crystals almost completely. Interestingly, a mutation at the -88PEA-3 site also abolished the induction of hMMP1 promoter. Further mutation at the -181AP-1 site resumed the induction, indicating that the -181AP-1 element had an effect opposite to the -72AP-1 element. The effect of -181AP-1 could be inactivated either by a mutation at this -181AP-1 site or by the -88PEA-3 element. In addition, dominant negative Ras, Raf, and MEK1/2 could block the induction of hMMP1, and a MEK1/2-specific inhibitor (UO126) could block the induction of hMMP1 and c-Fos by BCP crystals. Taken together, these data indicate that multiple elements, including at least AP-1 and PEA-3, are involved in the induction of hMMP1 gene expression by BCP crystals and that the induction follows the Ras/MAPK/c-Fos/AP-1/MMP1 signaling pathway.
Collapse
Affiliation(s)
- Yubo Sun
- Department of Medicine, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | |
Collapse
|
48
|
Morgan MP, Cooke MM, Christopherson PA, Westfall PR, McCarthy GM. Calcium hydroxyapatite promotes mitogenesis and matrix metalloproteinase expression in human breast cancer cell lines. Mol Carcinog 2001; 32:111-7. [PMID: 11746823 DOI: 10.1002/mc.1070] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Radiographic mammary microcalcifications are one of the most pertinent diagnostic markers of breast cancer. Breast tissue calcification in the form of calcium hydroxyapatite (HA) is strongly associated with malignant disease. We tested the hypothesis that calcium HA may exert biological effects on surrounding cells, thereby facilitating breast cancer progression. Our findings showed that HA crystals enhanced mitogenesis in breast cancer cell lines MCF-7 and Hs578T and also in normal human mammary epithelial cells. HA crystals were also found to upregulate the production of a variety of matrix metalloproteinases (MMPs), including MMP-2, -9, and -13 in MCF-7 and MMP-9 in human mammary epithelial cell lines. HA crystals were found to greatly augment prostaglandin E(2) levels in Hs578T cells, and treatment with a cyclooxygenase inhibitor, aspirin, abrogated the HA-induced mitogenesis. These results suggest that calcium HA crystals may play an active role in amplifying the pathological process involved in breast cancer.
Collapse
Affiliation(s)
- M P Morgan
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | |
Collapse
|
49
|
McCarthy GM, Westfall PR, Masuda I, Christopherson PA, Cheung HS, Mitchell PG. Basic calcium phosphate crystals activate human osteoarthritic synovial fibroblasts and induce matrix metalloproteinase-13 (collagenase-3) in adult porcine articular chondrocytes. Ann Rheum Dis 2001; 60:399-406. [PMID: 11247873 PMCID: PMC1753595 DOI: 10.1136/ard.60.4.399] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To determine the ability of basic calcium phosphate (BCP) crystals to induce (a) mitogenesis, matrix metalloproteinase (MMP)-1, and MMP-13 in human osteoarthritic synovial fibroblasts (HOAS) and (b) MMP-13 in cultured porcine articular chondrocytes. METHODS Mitogenesis of HOAS was measured by [3H]thymidine incorporation assay and counts of cells in monolayer culture. MMP messenger RNA (mRNA) accumulation was determined either by northern blot analysis or reverse transcriptase-polymerase chain reaction (RT-PCR) of RNA from chondrocytes or HOAS treated with BCP crystals. MMP-13 secretion was identified by immunoprecipitation and MMP-1 secretion by western blot of conditioned media. RESULTS BCP crystals caused a 4.5-fold increase in [3H]thymidine incorporation by HOAS within 20 hours compared with untreated control cultures (p< or =0.05). BCP crystals induced MMP-13 mRNA accumulation and MMP-13 protein secretion by articular chondrocytes. In contrast, in HOAS, MMP-13 mRNA induced by BCP crystals was detectable only by RT-PCR, and MMP-13 protein was undetectable. BCP crystals induced MMP-1 mRNA accumulation and MMP-1 protein secretion by HOAS. MMP-1 expression was further augmented when HOAS were co-incubated with either BCP and tumour necrosis factor alpha (TNFalpha; threefold) or BCP and interleukin 1alpha (IL1alpha; twofold). CONCLUSION These data confirm the ability of BCP crystals to activate HOAS, leading to the induction of mitogenesis and MMP-1 production. MMP-13 production in response to BCP crystals is substantially more detectable in porcine articular chondrocytes than in HOAS. These data support the active role of BCP crystals in osteoarthritis and suggest that BCP crystals act synergistically with IL1alpha and TNFalpha to promote MMP production and subsequent joint degeneration.
Collapse
Affiliation(s)
- G M McCarthy
- Department of Clinical Pharmacology, The Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Crystals are an important cause of inflammatory rheumatic diseases and provide relatively simple paradigms for modelling inflammatory responses in general. Thus, in the case of gout, we know that hyperuricemia leads to precipitation of monosodium urate (MSU) crystals in joints, which are taken up by leukocytes, and then an acute attack of arthritis is triggered. However, fundamental questions remain unanswered. Why are only certain hyperuricemic individuals, and then only certain joints, affected? What factors maintain joints in a quiescent state, what prompts the resolution of an inflammatory attack, and are these related? This article draws on developments during the past year to support the idea that the mononuclear phagocyte may play a key role within the synovial compartment, tipping the balance from the asymptomatic state to acute inflammation, or vice versa, depending on their state of monocyte to macrophage differentiation.
Collapse
Affiliation(s)
- R C Landis
- BHF Cardiovascular Medicine Unit, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, United Kingdom
| | | |
Collapse
|