1
|
Barssotti L, Soares GM, Marconato-Júnior E, Lourençoni Alves B, Oliveira KM, Carneiro EM, Boschero AC, Barbosa HCL. KSRP improves pancreatic beta cell function and survival. Sci Rep 2024; 14:6136. [PMID: 38480757 PMCID: PMC10937633 DOI: 10.1038/s41598-024-55505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/24/2024] [Indexed: 03/17/2024] Open
Abstract
Impaired insulin production and/or secretion by pancreatic beta cells can lead to high blood glucose levels and type 2 diabetes (T2D). Therefore, investigating new proteins involved in beta cell response to stress conditions could be useful in finding new targets for therapeutic approaches. KH-type splicing regulatory protein (KSRP) is a protein usually involved in gene expression due to its role in post-transcriptional regulation. Although there are studies describing the important role of KSRP in tissues closely related to glucose homeostasis, its effect on pancreatic beta cells has not been explored so far. Pancreatic islets from diet-induced obese mice (C57BL/6JUnib) were used to determine KSRP expression and we also performed in vitro experiments exposing INS-1E cells (pancreatic beta cell line) to different stressors (palmitate or cyclopiazonic acid-CPA) to induce cellular dysfunction. Here we show that KSRP expression is reduced in all the beta cell dysfunction models tested. In addition, when manipulated to knock down KSRP, beta cells exhibited increased death and impaired insulin secretion, whereas KSRP overexpression prevented cell death and increased insulin secretion. Taken together, our findings suggest that KSRP could be an important target to protect beta cells from impaired functioning and death.
Collapse
Affiliation(s)
- Leticia Barssotti
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Gabriela Moreira Soares
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Emílio Marconato-Júnior
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Bruna Lourençoni Alves
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Kênia Moreno Oliveira
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Antonio Carlos Boschero
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Helena Cristina Lima Barbosa
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil.
| |
Collapse
|
2
|
Veloso A, Bleuart A, Conrard L, Orban T, Bruyr J, Cabochette P, Germano RFV, Schevenels G, Bernard A, Zindy E, Demeyer S, Vanhollebeke B, Dequiedt F, Martin M. The cytoskeleton adaptor protein Sorbs1 controls the development of lymphatic and venous vessels in zebrafish. BMC Biol 2024; 22:51. [PMID: 38414014 PMCID: PMC10900589 DOI: 10.1186/s12915-024-01850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.
Collapse
Affiliation(s)
- Alexandra Veloso
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Anouk Bleuart
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Louise Conrard
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Tanguy Orban
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Jonathan Bruyr
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Pauline Cabochette
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
- Present Address: Laboratory of Developmental Genetics, ULB Neuroscience Institute, Université Libre de Bruxelles, B-6041, Gosselies, Belgium
| | - Raoul F V Germano
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Giel Schevenels
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Alice Bernard
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, University of Liège (ULiège), Liège, Belgium
| | - Egor Zindy
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Sofie Demeyer
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Benoit Vanhollebeke
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Franck Dequiedt
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Maud Martin
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium.
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium.
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium.
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium.
- WEL Research Institute (WELBIO Department), Avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
3
|
Gonçalves J, Sharma A, Coyaud É, Laurent EMN, Raught B, Pelletier L. LUZP1 and the tumor suppressor EPLIN modulate actin stability to restrict primary cilia formation. J Cell Biol 2021; 219:151837. [PMID: 32496561 PMCID: PMC7337498 DOI: 10.1083/jcb.201908132] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Cilia and flagella are microtubule-based cellular projections with important sensory and motility functions. Their absence or malfunction is associated with a growing number of human diseases collectively referred to as ciliopathies. However, the fundamental mechanisms underpinning cilia biogenesis and functions remain only partly understood. Here, we show that depleting LUZP1 or its interacting protein, EPLIN, increases the levels of MyosinVa at the centrosome and primary cilia formation. We further show that LUZP1 localizes to both actin filaments and the centrosome/basal body. Like EPLIN, LUZP1 is an actin-stabilizing protein that regulates actin dynamics, at least in part, by mobilizing ARP2 to the centrosomes. Both LUZP1 and EPLIN interact with known ciliogenesis and cilia-length regulators and as such represent novel players in actin-dependent centrosome to basal body conversion. Ciliogenesis deregulation caused by LUZP1 or EPLIN loss may thus contribute to the pathology of their associated disease states.
Collapse
Affiliation(s)
- João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Amit Sharma
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Jammrath J, Reim I, Saumweber H. Cbl-Associated Protein CAP contributes to correct formation and robust function of the Drosophila heart tube. PLoS One 2020; 15:e0233719. [PMID: 32469960 PMCID: PMC7259718 DOI: 10.1371/journal.pone.0233719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
The formation of a tube-like structure is a basic step in the making of functional hearts in vertebrates and invertebrates and therefore, its understanding provides important information on heart development and function. In Drosophila, the cardiac tube originates from two bilateral rows of dorsally migrating cells. On meeting at the dorsal midline, coordinated changes in cell shape and adhesive properties transform the two sheets of cells into a linear tube. ECM and transmembrane proteins linked to the cytoskeleton play an important role during these dynamic processes. Here we characterize the requirement of Cbl-Associated Protein (CAP) in Drosophila heart formation. In embryos, CAP is expressed in late migrating cardioblasts and is located preferentially at their luminal and abluminal periphery. CAP mutations result in irregular cardioblast alignment and imprecisely controlled cardioblast numbers. Furthermore, CAP mutant embryos show a strongly reduced heart lumen and an aberrant shape of lumen forming cardioblasts. Analysis of double heterozygous animals reveals a genetic interaction of CAP with Integrin- and Talin-encoding genes. In post-embryonic stages, CAP closely colocalizes with Integrin near Z-bands and at cell-cell contact sites. CAP mutants exhibit a reduced contractility in larval hearts and show a locally disrupted morphology, which correlates with a reduced pumping efficiency. Our observations imply a function of CAP in linking Integrin signaling with the actin cytoskeleton. As a modulator of the cytoskeleton, CAP is involved in the establishment of proper cell shapes during cardioblast alignment and cardiac lumen formation in the Drosophila embryo. Furthermore, CAP is required for correct heart function throughout development.
Collapse
Affiliation(s)
- Jennifer Jammrath
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Cytogenetics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Ingolf Reim
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| | - Harald Saumweber
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Cytogenetics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
5
|
Cho WC, Jang JE, Kim KH, Yoo BC, Ku JL. SORBS1 serves a metastatic role via suppression of AHNAK in colorectal cancer cell lines. Int J Oncol 2020; 56:1140-1151. [PMID: 32319594 PMCID: PMC7115741 DOI: 10.3892/ijo.2020.5006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Cbl-associated protein (CAP) is encoded by the sorbin and SH3 domain-containing 1 (SORBS1) gene. CAP has been reported to be associated with the actin cytoskeleton, receptor tyrosine kinase signaling and cell adhesion through interactions with various proteins. It may be hypothesized that SORBS1 has numerous unknown functions, which may include providing a favorable condition for metastasis. Although CAP has been demonstrated to possess a number of functions, the role of this protein has only been reported in metabolic signaling pathways and its function in cancer remains to be elucidated. In the present study, SORBS1 expression was detected in colorectal cancer cell lines divided into the primary group and the metastatic group by reverse transcription-quantitative PCR and western blot analysis. In addition, SORBS1 expression was manipulated by vector transfection and lentivirus transduction. The metastatic role of SORBS1, as determined by assessing its effects on cell proliferation and migration, was determined by colony formation assay, cell cycle analysis and Boyden chamber assay. To elucidate the SORBS1-binding protein, immunoprecipitation was performed. Co-localization of SORBS1 and AHNAK nucleoprotein (AHNAK) was identified by confocal microscopy. Notably, the protein expression levels of CAP were higher in SNU-769A and SW480 cells than in SNU-769B and SW620 cells. In addition, the number of colonies in the SORBS1-overexpressing group was significantly increased compared with that of the control group, as determined using the colony formation assay; the SORBS1 overexpression group formed >8-fold more colonies than the control group. The proliferative ability of the SORBS1 overexpression group was also significantly increased compared with the control group over the entire incubation period. Cell migration assays revealed that the number of migrated SORBS1-knockdown cells was reduced compared with the control in both HCT-116 and SNU-C4 cell lines; migration area was decreased to 31 and 26% in HCT-116 and SNU-C4 cell lines, respectively. Consequently, it was confirmed that SORBS1 could form a complex with AHNAK, which functions as a tumor suppressor through inhibition of phosphorylated-ERK and Rho-associated coiled-coil containing protein kinase 1. In conclusion, SORBS1 may serve a crucial role in cancer growth and migration via inhibition of AHNAK expression.
Collapse
Affiliation(s)
- Woo-Cheol Cho
- Department of Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jee-Eun Jang
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyung-Hee Kim
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Byong-Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Ja-Lok Ku
- Department of Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
6
|
Anterior Pituitary Transcriptome Suggests Differences in ACTH Release in Tame and Aggressive Foxes. G3-GENES GENOMES GENETICS 2018; 8:859-873. [PMID: 29378821 PMCID: PMC5844307 DOI: 10.1534/g3.117.300508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes (Vulpes vulpes). RNA was sequenced from the anterior pituitary of six foxes selectively bred for tameness ("tame foxes") and six foxes selectively bred for aggression ("aggressive foxes"). Expression, splicing, and network differences identified between the two lines indicated the importance of genes related to regulation of exocytosis, specifically mediated by cAMP, organization of pseudopodia, and cell motility. These findings provide new insights into biological mechanisms that may have been targeted when these lines of foxes were selected for behavior and suggest new directions for research into HPA axis regulation and the biological underpinnings of domestication.
Collapse
|
7
|
Guo K, Liang Z, Li F, Wang H. Comparison of miRNA and gene expression profiles between metastatic and primary prostate cancer. Oncol Lett 2017; 14:6085-6090. [PMID: 29113250 DOI: 10.3892/ol.2017.6969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/21/2017] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to identify the regulatory mechanisms associated with the metastasis of prostate cancer (PC). The microRNA (miRNA/miR) microarray dataset GSE21036 and gene transcript dataset GSE21034 were downloaded from the Gene Expression Omnibus database. Following pre-processing, differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) between samples from patients with primary prostate cancer (PPC) and metastatic prostate cancer (MPC) with |log2 fold change (FC)| >1 and a false discovery rate <0.05 were selected using the Linear Models for Microarray and RNA-seq Data 4 package of R. Next, a DEM-DEG regulatory network was constructed by downloading miRNA-DEG pairs from the miRNA.org database. Finally, functional annotation of each DEM-DEG module was performed using the Database for Annotation, Visualization and Integrated Discovery based on the Gene Ontology database. The upregulated miRNAs, including miR-144, miR-494 and miR-181a, exhibited a higher degree of connections compared with other nodes, including in the DEM-DEG regulatory network, and regulated a number of downregulated DEGs. According to the functional annotation of the DEM-DEG modules, miR-144 and its targeted DEGs enriched the highest number of biological process terms (36 terms), followed by miR-494 (24 terms), miR-30d (18 terms), miR-181a (15 terms), hsa-miR-196a (8 terms), miR-708 (7 terms) and miR-486-5p (2 terms). Therefore, these miRNAs may serve roles in the metastasis of PC cells via downregulation of their corresponding target DEGs.
Collapse
Affiliation(s)
- Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zuowen Liang
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fubiao Li
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
8
|
Ichikawa T, Kita M, Matsui TS, Nagasato AI, Araki T, Chiang SH, Sezaki T, Kimura Y, Ueda K, Deguchi S, Saltiel AR, Kioka N. Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation. J Cell Sci 2017; 130:3517-3531. [PMID: 28864765 DOI: 10.1242/jcs.200691] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Vinexin, c-Cbl associated protein (CAP) and Arg-binding protein 2 (ArgBP2) constitute an adaptor protein family called the vinexin (SORBS) family that is targeted to focal adhesions (FAs). Although numerous studies have focused on each of the SORBS proteins and partially elucidated their involvement in mechanotransduction, a comparative analysis of their function has not been well addressed. Here, we established mouse embryonic fibroblasts that individually expressed SORBS proteins and analysed their functions in an identical cell context. Both vinexin-α and CAP co-localized with vinculin at FAs and promoted the appearance of vinculin-rich FAs, whereas ArgBP2 co-localized with α-actinin at the proximal end of FAs and punctate structures on actin stress fibers (SFs), and induced paxillin-rich FAs. Furthermore, both vinexin-α and CAP contributed to extracellular matrix stiffness-dependent vinculin behaviors, while ArgBP2 stabilized α-actinin on SFs and enhanced intracellular contractile forces. These results demonstrate the differential roles of SORBS proteins in mechanotransduction.
Collapse
Affiliation(s)
- Takafumi Ichikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Masahiro Kita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tsubasa S Matsui
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan.,Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ayaka Ichikawa Nagasato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomohiko Araki
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan
| | - Shian-Huey Chiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Takuhito Sezaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Shinji Deguchi
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan.,Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
9
|
Nadeau SA, An W, Mohapatra BC, Mushtaq I, Bielecki TA, Luan H, Zutshi N, Ahmad G, Storck MD, Sanada M, Ogawa S, Band V, Band H. Structural Determinants of the Gain-of-Function Phenotype of Human Leukemia-associated Mutant CBL Oncogene. J Biol Chem 2017; 292:3666-3682. [PMID: 28082680 DOI: 10.1074/jbc.m116.772723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 01/19/2023] Open
Abstract
Mutations of the tyrosine kinase-directed ubiquitin ligase CBL cause myeloid leukemias, but the molecular determinants of the dominant leukemogenic activity of mutant CBL oncogenes are unclear. Here, we first define a gain-of-function attribute of the most common leukemia-associated CBL mutant, Y371H, by demonstrating its ability to increase proliferation of hematopoietic stem/progenitor cells (HSPCs) derived from CBL-null and CBL/CBL-B-null mice. Next, we express second-site point/deletion mutants of CBL-Y371H in CBL/CBL-B-null HSPCs or the cytokine-dependent human leukemic cell line TF-1 to show that individual or combined Tyr → Phe mutations of established phosphotyrosine residues (Tyr-700, Tyr-731, and Tyr-774) had little impact on the activity of the CBL-Y371H mutant in HSPCs, and the triple Tyr → Phe mutant was only modestly impaired in TF-1 cells. In contrast, intact tyrosine kinase-binding (TKB) domain and proline-rich region (PRR) were critical in both cell models. PRR deletion reduced the stem cell factor (SCF)-induced hyper-phosphorylation of the CBL-Y371H mutant and the c-KIT receptor and eliminated the sustained p-ERK1/2 and p-AKT induction by SCF. GST fusion protein pulldowns followed by phospho-specific antibody array analysis identified distinct CBL TKB domains or PRR-binding proteins that are phosphorylated in CBL-Y371H-expressing TF-1 cells. Our results support a model of mutant CBL gain-of-function in which mutant CBL proteins effectively compete with the remaining wild type CBL-B and juxtapose TKB domain-associated PTKs with PRR-associated signaling proteins to hyper-activate signaling downstream of hematopoietic growth factor receptors. Elucidation of mutant CBL domains required for leukemogenesis should facilitate targeted therapy approaches for patients with mutant CBL-driven leukemias.
Collapse
Affiliation(s)
- Scott A Nadeau
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Wei An
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Bhopal C Mohapatra
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Biochemistry and Molecular Biology
| | - Insha Mushtaq
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Pathology and Microbiology, College of Medicine, and
| | | | - Haitao Luan
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Neha Zutshi
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Pathology and Microbiology, College of Medicine, and
| | - Gulzar Ahmad
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Matthew D Storck
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Masashi Sanada
- the Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- the Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Vimla Band
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy.,the Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Hamid Band
- From the Eppley Institute for Research in Cancer and Allied Diseases, .,the Departments of Genetics, Cell Biology and Anatomy.,Biochemistry and Molecular Biology.,Pathology and Microbiology, College of Medicine, and.,the Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| |
Collapse
|
10
|
Missaire M, Hindges R. The role of cell adhesion molecules in visual circuit formation: from neurite outgrowth to maps and synaptic specificity. Dev Neurobiol 2015; 75:569-83. [PMID: 25649254 PMCID: PMC4855686 DOI: 10.1002/dneu.22267] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/08/2022]
Abstract
The formation of visual circuitry is a multistep process that involves cell–cell interactions based on a range of molecular mechanisms. The correct implementation of individual events, including axon outgrowth and guidance, the formation of the topographic map, or the synaptic targeting of specific cellular subtypes, are prerequisites for a fully functional visual system that is able to appropriately process the information captured by the eyes. Cell adhesion molecules (CAMs) with their adhesive properties and their high functional diversity have been identified as key actors in several of these fundamental processes. Because of their growth‐promoting properties, CAMs play an important role in neuritogenesis. Furthermore, they are necessary to control additional neurite development, regulating dendritic spacing and axon pathfinding. Finally, trans‐synaptic interactions of CAMs ensure cell type‐specific connectivity as a basis for the establishment of circuits processing distinct visual features. Recent discoveries implicating CAMs in novel mechanisms have led to a better general understanding of neural circuit formation, but also revealed an increasing complexity of their function. This review aims at describing the different levels of action for CAMs to shape neural connectivity, with a special focus on the visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 569–583, 2015
Collapse
Affiliation(s)
- Mégane Missaire
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Robert Hindges
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| |
Collapse
|
11
|
Zhao D, Wang X, Peng J, Wang C, Li F, Sun Q, Zhang Y, Zhang J, Cai G, Zuo X, Wu J, Shi Y, Zhang Z, Gong Q. Structural investigation of the interaction between the tandem SH3 domains of c-Cbl-associated protein and vinculin. J Struct Biol 2014; 187:194-205. [DOI: 10.1016/j.jsb.2014.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/14/2023]
|
12
|
The adapter protein c-Cbl-associated protein (CAP) protects from acute CVB3-mediated myocarditis through stabilization of type I interferon production and reduced cytotoxicity. Basic Res Cardiol 2014; 109:411. [PMID: 24763933 DOI: 10.1007/s00395-014-0411-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 04/02/2014] [Accepted: 04/14/2014] [Indexed: 12/24/2022]
Abstract
c-Cbl-associated protein (CAP), also called Sorbs1 or ponsin, has been described as an essential adapter protein in the insulin-signalling pathway. Here, we describe for the first time a unique protective role for CAP in viral myocarditis. Mortality and heart failure development were increased in CAP(-/-) mice compared to CAP(+/+) littermates after Coxsackievirus (CVB3) infection. Mechanistically, CAP protected from tissue apoptosis because of reduced CD8(+) T and natural killer cell cytotoxicity. Despite reduced cytotoxic elimination of CVB3-infected cells in CAP(+/+) hearts, however, CAP enhanced interferon regulatory factor 3 (IRF3)-dependent antiviral type I interferon production and decreased viral proliferation in vitro by binding to the cytoplasmic RIG-I-like receptor melanoma differentiation-associated protein 5 (MDA5). Taken together, these findings reveal a novel modulatory role for CAP in the heart as a key protein stabilizing antiviral type I interferon production, while protecting from excessive cytotoxic responses. Our study will help to define future strategies to develop treatments to limit detrimental responses during viral heart inflammation.
Collapse
|
13
|
Roignot J, Bonacci T, Ghigo E, Iovanna JL, Soubeyran P. Oligomerization and phosphorylation dependent regulation of ArgBP2 adaptive capabilities and associated functions. PLoS One 2014; 9:e87130. [PMID: 24475245 PMCID: PMC3903627 DOI: 10.1371/journal.pone.0087130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/11/2013] [Indexed: 11/22/2022] Open
Abstract
ArgBP2 (Arg-Binding Protein 2/SORBS2) is an adaptor protein involved in cytoskeleton associated signal transduction, thereby regulating cell migration and adhesion. These features are associated with its antitumoral role in pancreatic cancer cells. Tyrosine phosphorylation of ArgBP2, mediated by c-Abl kinase and counterbalanced by PTP-PEST phosphatase, regulates many of its interactions. However, the exact mechanisms of action and of regulation of ArgBP2 remain largely unknown. We found that ArgBP2 has the capacity to form oligomers which are destabilized by tyrosine phosphorylation. We could show that ArgBP2 oligomerization involves the binding of one of its SH3 domains to a specific proline rich cluster. ArgBP2 self-association increases its binding to some of its molecular partners and decreased its affinity for others. Hence, the phosphorylation/oligomerization state of ArgBP2 directly regulates its functions by modulating its adaptive capabilities. Importantly, using a human pancreatic cancer cell model (MiaPaCa-2 cells), we could validate that this property of ArgBP2 is critical for its cytoskeleton associated functions. In conclusions, we describe a new mechanism of regulation of ArgBP2 where tyrosine phosphorylation of the protein interfere with a SH3 mediated self-interaction, thereby controlling its panel of interacting partners and related functions.
Collapse
Affiliation(s)
- Julie Roignot
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Marseille, France
| | - Thomas Bonacci
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Marseille, France
| | - Eric Ghigo
- URMITE-IRD198, CNRS UMR7278, INSERM U1095, Aix-Marseille Univ, Marseille, France
| | - Juan L. Iovanna
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Marseille, France
| | - Philippe Soubeyran
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Marseille, France
- * E-mail:
| |
Collapse
|
14
|
Structural basis for recognition of the third SH3 domain of full-length R85 (R85FL)/ponsin by ataxin-7. FEBS Lett 2013; 587:2905-11. [PMID: 23892081 DOI: 10.1016/j.febslet.2013.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/01/2013] [Accepted: 07/04/2013] [Indexed: 11/22/2022]
Abstract
Ataxin-7 (Atx7) is a component of the nuclear transcription co-activator complex; its polyglutamine (polyQ) expansion may cause nuclear accumulation and recruit numerous proteins to the intranuclear inclusion bodies. Full-length R85 (R85FL) is such a protein sequestered by polyQ-expanded Atx7. Here, we report that Atx7 specifically interacts with the third SH3 domain (SH3C) of R85FL through its second portion of proline-rich region (PRR). NMR structural analysis of the SH3C domain and its complex with PRR revealed that SH3C contains a large negatively charged surface for binding with the RRTR motif of Atx7. Microscopy imaging demonstrated that sequestration of R85FL by the polyQ-expanded Atx7 in cell is mediated by this specific SH3C-PRR interaction, which is implicated in the pathogenesis of spinocerebellar ataxia 7.
Collapse
|
15
|
Briñas L, Vassilopoulos S, Bonne G, Guicheney P, Bitoun M. Role of dynamin 2 in the disassembly of focal adhesions. J Mol Med (Berl) 2013; 91:803-9. [DOI: 10.1007/s00109-013-1040-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
|
16
|
Lee JO, Lee SK, Kim JH, Kim N, You GY, Moon JW, Kim SJ, Park SH, Kim HS. Metformin regulates glucose transporter 4 (GLUT4) translocation through AMP-activated protein kinase (AMPK)-mediated Cbl/CAP signaling in 3T3-L1 preadipocyte cells. J Biol Chem 2012; 287:44121-9. [PMID: 23135276 DOI: 10.1074/jbc.m112.361386] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metformin is a leading oral anti-diabetes mellitus medication and is known to stimulate GLUT4 translocation. However, the mechanism by which metformin acts is still largely unknown. Here, we showed that short time treatment with metformin rapidly increased phosphorylation of Cbl in an AMP-activated protein kinase (AMPK)-dependent fashion in 3T3-L1 preadipocytes. Metformin also increased phosphorylation of Src in an AMPK-dependent manner. Src inhibition blocked metformin-mediated Cbl phosphorylation, suggesting that metformin stimulates AMPK-Src-Cbl axis pathway. In addition, long term treatment with metformin stimulated the expression of Cbl-associated protein (CAP) mRNA and protein. Long term treatment with metformin stimulated phosphorylation of c-Jun N-terminal kinase (JNK) and its downstream molecule c-Jun, which is a critical molecule for CAP transcription. Knockdown of AMPK and JNK blocked metformin-induced expression of CAP, implying that metformin stimulates AMPK-JNK-CAP axis pathway. Moreover, AMPK knockdown attenuated metformin-induced Cbl/CAP multicomplex formation, which is critical for GLUT4 translocation. A colorimetric absorbance assay demonstrated that metformin-induced translocation of GLUT4 was suppressed in CAP or Cbl knockdown cells. Furthermore, the promoter activity of CAP was increased by metformin in an AMPK/JNK-dependent fashion. In summary, these results demonstrate that metformin modulates GLUT4 translocation by regulating Cbl and CAP signals via AMPK.
Collapse
Affiliation(s)
- Jung Ok Lee
- Department of Anatomy, Korea University College of Medicine, Seoul 136-705, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Functional mechanisms and roles of adaptor proteins in abl-regulated cytoskeletal actin dynamics. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:414913. [PMID: 22675626 PMCID: PMC3362954 DOI: 10.1155/2012/414913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/16/2012] [Indexed: 01/20/2023]
Abstract
Abl is a nonreceptor tyrosine kinase and plays an essential role in the modeling and remodeling of F-actin by transducing extracellular signals. Abl and its paralog, Arg, are unique among the tyrosine kinase family in that they contain an unusual extended C-terminal half consisting of multiple functional domains. This structural characteristic may underlie the role of Abl as a mediator of upstream signals to downstream signaling machineries involved in actin dynamics. Indeed, a group of SH3-containing accessory proteins, or adaptor proteins, have been identified that bind to a proline-rich domain of the C-terminal portion of Abl and modulate its kinase activity, substrate recognition, and intracellular localization. Moreover, the existence of signaling cascade and biological outcomes unique to each adaptor protein has been demonstrated. In this paper, we summarize functional roles and mechanisms of adaptor proteins in Abl-regulated actin dynamics, mainly focusing on a family of adaptor proteins, Abi. The mechanism of Abl's activation and downstream signaling mediated by Abi is described in comparison with those by another adaptor protein, Crk.
Collapse
|
18
|
Carisey A, Ballestrem C. Vinculin, an adapter protein in control of cell adhesion signalling. Eur J Cell Biol 2010; 90:157-63. [PMID: 20655620 PMCID: PMC3526775 DOI: 10.1016/j.ejcb.2010.06.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/21/2010] [Accepted: 06/23/2010] [Indexed: 01/09/2023] Open
Abstract
Vinculin, discovered in 1979 (Geiger, 1979), is an adapter protein with binding sites for more than 15 proteins. Biochemical and structural analyses have contributed to detailed knowledge about potential binding partners and the understanding of how their binding may be regulated. Despite all this information the molecular basis of how vinculin acts in cells and controls a wide variety of signals remains elusive. This review aims to highlight recent discoveries with an emphasis on how vinculin is involved in the coordination of a network of signals.
Collapse
Affiliation(s)
- Alex Carisey
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | | |
Collapse
|
19
|
Gehmlich K, Hayess K, Legler C, Haebel S, Van der Ven PFM, Ehler E, Fürst DO. Ponsin interacts with Nck adapter proteins: implications for a role in cytoskeletal remodelling during differentiation of skeletal muscle cells. Eur J Cell Biol 2010; 89:351-64. [PMID: 20129698 DOI: 10.1016/j.ejcb.2009.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/26/2009] [Accepted: 10/29/2009] [Indexed: 10/19/2022] Open
Abstract
Skeletal muscle differentiation is a complex process: It is characterised by changes in gene expression and protein composition. Simultaneously, a dramatic remodelling of the cytoskeleton and associated cell-matrix contacts, the costameres, occurs. The expression and localisation of the protein ponsin at cell-matrix contacts marks the establishment of costameres. In this report we show that skeletal muscle cells are characterised by a novel ponsin isoform, which contains a large insertion in its carboxy-terminus. This skeletal muscle-specific module binds the adapter proteins Nck1 and Nck2, and increased co-localisation of ponsin with Nck2 is observed at remodelling cell-matrix contacts of differentiating skeletal muscle cells. Since this ponsin insertion can be phosphorylated, it may adjust the interaction affinity with Nck adapter proteins. The novel ponsin isoform and its interaction with Nck1/2 provide exciting insight into the convergence of signalling pathways at the costameres, and its crucial role for skeletal muscle differentiation and re-generation.
Collapse
Affiliation(s)
- Katja Gehmlich
- Institute of Biochemistry and Biology, Cell Biology, University of Potsdam, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Georgomanolis T, Iatrou K, Swevers L. BmCAP, a silkmoth gene encoding multiple protein isoforms characterized by SoHo and SH3 domains: expression analysis during ovarian follicular development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:892-902. [PMID: 19861164 DOI: 10.1016/j.ibmb.2009.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 05/28/2023]
Abstract
CAP/ArgBP2/vinexin family proteins, adaptor proteins characterized by three SH3 domains at their C-termini and a SoHo domain towards their N-termini, are known to regulate cell adhesion, cytoskeletal organization, and growth factor signaling. Here we present the isolation and ovarian expression of the BmCAP gene which encodes CAP/ArgBP2/vinexin family proteins in the silkmoth, Bombyx mori. Screening for full-length cDNA clones identified three mRNA isoforms, BmCAP-A1, BmCAP-A2 and BmCAP-B, which show expression throughout ovarian follicular development. Using an antibody raised against a unique region between the SoHo and SH3 domains, BmCAP-A protein isoforms were identified that show specific expression in different compartments of the ovarian follicles. Immunofluorescence staining of the cells of the follicular epithelium establishes a dynamic pattern of BmCAP-A protein localization during choriogenesis. During early choriogenesis, BmCAP-A has a diffuse localization in the cytoplasm but could also be found concentrated at the apical and basal sides at the cell-cell junctions. During late choriogenesis, the diffuse cytoplasmic staining of BmCAP-A disappears while the staining pattern at the apical side resembles a blueprint for the eggshell surface structure. We suggest that BmCAP-A isoforms have important functions during ovarian development, which involve not only the traditional roles in actin organization or cell-cell adhesion but also the regulation of secretion of chorion proteins and the sculpting of the chorion surface.
Collapse
Affiliation(s)
- Theodoros Georgomanolis
- Insect Molecular Genetics and Biotechnology, Institute of Biology, National Centre for Scientific Research Demokritos, Aghia Paraskevi Attikis, Athens, Greece
| | | | | |
Collapse
|
21
|
Fernow I, Tomasovic A, Siehoff-Icking A, Tikkanen R. Cbl-associated protein is tyrosine phosphorylated by c-Abl and c-Src kinases. BMC Cell Biol 2009; 10:80. [PMID: 19891780 PMCID: PMC2777869 DOI: 10.1186/1471-2121-10-80] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 11/05/2009] [Indexed: 01/07/2023] Open
Abstract
Background The c-Cbl-associated protein (CAP), also known as ponsin, localizes to focal adhesions and stress fibers and is involved in signaling events. Phosphorylation has been described for the other two members of the sorbin homology family, vinexin and ArgBP2, but no data exist about the putative phosphorylation of CAP. According to previous findings, CAP binds to tyrosine kinase c-Abl. However, it is not known if CAP is a substrate of c-Abl or other tyrosine kinases or if phosphorylation regulates its localization. Results We here show that CAP is Tyr phosphorylated by and interacts with both c-Abl and c-Src. One major phosphorylation site, Tyr360, and two minor contributors Tyr326 and Tyr632 were identified as Abl phosphorylation sites, whereas Src preferentially phosphorylates Tyr326 and Tyr360. Phosphorylation of CAP was not necessary for its localization to focal adhesions and stress fibers, but Tyr326Phe substitution alters the function of CAP during cell spreading. Conclusion This is the first demonstration of phosphorylation of CAP by any kinase. Our findings suggest that coordinated action of Src and Abl might regulate the function of CAP and reveal a functional role especially for the Src-mediated Tyr phosphorylation of CAP in cell spreading.
Collapse
Affiliation(s)
- Inga Fernow
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | | | | | | |
Collapse
|
22
|
Hong KW, Jin HS, Lim JE, Go MJ, Lee JY, Hwang SY, Park HK, Oh BS. Identification of Genetic Variations in CBL, SORBS1, CRK, and RHOQ, Key Modulators in the CAP/TC10 Pathway of Insulin Signal Transduction, and Their Association with Type 2 Diabetes Mellitus in the Korean Population. Genomics Inform 2009. [DOI: 10.5808/gi.2009.7.2.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Roignot J, Soubeyran P. ArgBP2 and the SoHo family of adapter proteins in oncogenic diseases. Cell Adh Migr 2009; 3:167-70. [PMID: 19262174 DOI: 10.4161/cam.3.2.7576] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ArgBP2, a member of the SoHo family of adapter proteins, is a regulator of actin-dependent processes such as cell adhesion and migration. Recent data from our lab revealed that by regulating adhesion and migration of pancreatic cancer cells, ArgBP2 is endowed with an anti-tumoral function. We could show that part of the molecular mechanism involved the interaction of ArgBP2 with the Arp2/3 activator WAVE1, the tyrosine phosphatase PTP-PEST, and the tyrosine kinase c-Abl. As ArgBP2 shares common structural organization and overlapping functions with the two other members of this protein family, CAP and Vinexin, it raises the question whether these two other proteins could also be involved in cancer diseases. The control of cell migration being an important issue in tumor treatment, these recent findings suggest that ArgBP2 family-dependent signaling pathways represents potential targets for the development of therapeutic strategies, and highlight the importance of elucidating their molecular mechanisms of cytoskeletal regulation.
Collapse
Affiliation(s)
- Julie Roignot
- INSERM U, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | |
Collapse
|
24
|
Rao PV, Maddala R. Abundant expression of ponsin, a focal adhesion protein, in lens and downregulation of its expression by impaired cytoskeletal signaling. Invest Ophthalmol Vis Sci 2009; 50:1769-77. [PMID: 19029030 PMCID: PMC2716002 DOI: 10.1167/iovs.08-2909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE This study was undertaken to improve understanding of the defective lens developmental changes induced by the transgenic overexpression of the Rho GDP dissociation inhibitor RhoGDIalpha. The study was focused on a single differentially expressed gene encoding ponsin, a cell adhesion interacting signaling adaptor protein. METHODS Total RNA extracted from the P7 lenses of Rho GDIalpha transgenic mice was subjected to cDNA microarray analysis. Ponsin distribution in the mouse lenses was determined by immunofluorescence and immunoblot analyses. Interactions among ponsin, actin, and Rho GTPase signaling pathways were explored in lens epithelial cells. RESULTS The RhoGDIalpha transgenic mouse lenses revealed a marked downregulation of expression of multiple splice variants of ponsin. Expression of one of the ponsins (U58883) was found to be abundant in normal mouse lenses. Although ponsin was localized predominantly to the focal adhesions in lens epithelial cells, it was distributed to both the epithelium and fibers, with some isoforms being enriched primarily in the Triton X-100-insoluble fraction in lens tissue. Further, whereas constitutively active RhoA induced ponsin clustering at the leading edges, inhibition of Rho kinase and latrunculin treatment were noted to lead to decreases in ponsin protein levels in lens epithelial cells. CONCLUSIONS Abundant expression of ponsin, a focal adhesion protein in the lens tissue indicates a potential role for this protein in lens fiber cell migration and adhesion. Ponsin expression appears to be closely dependent on Rho GTPase-regulated integrity of actin cytoskeletal organization.
Collapse
Affiliation(s)
- P Vasantha Rao
- Departments of Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
25
|
Yamada Y, Ando F, Shimokata H. Association of polymorphisms of SORBS1, GCK and WISP1 with hypertension in community-dwelling Japanese individuals. Hypertens Res 2009; 32:325-31. [PMID: 19282865 DOI: 10.1038/hr.2009.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although various loci and genes have been implicated in predisposition to hypertension by genetic linkage analyses and candidate gene association studies, the genes that confer susceptibility to this condition remain to be identified definitively. We have now examined the relationships of 22 candidate gene polymorphisms with the prevalence of hypertension and with blood pressure (BP) in a 6-year population-based longitudinal cohort study and observed significant relationships of three polymorphisms of SORBS1, GCK and WISP1 with hypertension. The 2233 subjects (1106 women, 1127 men) were aged 40-79 years and were randomly recruited to a population-based prospective cohort study of aging and age-related diseases in Japan. BP was measured with subjects having rested in the sitting position for at least 15 min. Genotypes for the 682A --> G (Thr228Ala) polymorphism of SORBS1, the -30G --> A polymorphism of GCK and the 2364A --> G polymorphism of WISP1 were determined by melting curve analysis. Longitudinal analysis with a generalized estimating equation revealed that the polymorphisms of SORBS1 and GCK and that of WISP1 were significantly associated with the prevalence of hypertension in women and men, respectively. Longitudinal analysis with a mixed-effect model revealed that the polymorphism of SORBS1 was significantly related to diastolic BP in women and that those of GCK and WISP1 were significantly related to both systolic and diastolic BP in women and men, respectively. These results suggest that SORBS1 and GCK are susceptibility loci for hypertension in Japanese women and that WISP1 is such a locus in men.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Mie, Japan.
| | | | | |
Collapse
|
26
|
Tosoni D, Cestra G. CAP (Cbl associated protein) regulates receptor-mediated endocytosis. FEBS Lett 2008; 583:293-300. [PMID: 19116150 DOI: 10.1016/j.febslet.2008.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/02/2008] [Accepted: 12/16/2008] [Indexed: 10/25/2022]
Abstract
CAP (c-Cbl associated protein)/ponsin belongs to a family of adaptor proteins implicated in cell adhesion and signaling. Here we show that CAP binds to and co-localizes with the essential endocytic factor dynamin. We demonstrate that CAP promotes the formation of dynamin-decorated tubule like structures, which are also coated with actin filaments. Accordingly, we found that the expression of CAP leads to the inhibition of dynamin-mediated endocytosis and increases EGFR stability. Thus, we suggest that CAP may coordinate the function of dynamin with the regulation of the actin cytoskeleton during endocytosis.
Collapse
Affiliation(s)
- Daniela Tosoni
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | | |
Collapse
|
27
|
Langhorst MF, Jaeger FA, Mueller S, Sven Hartmann L, Luxenhofer G, Stuermer CA. Reggies/flotillins regulate cytoskeletal remodeling during neuronal differentiation via CAP/ponsin and Rho GTPases. Eur J Cell Biol 2008; 87:921-31. [DOI: 10.1016/j.ejcb.2008.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Revised: 06/29/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022] Open
|
28
|
Hagiwara N, Kitazono T, Kamouchi M, Kuroda J, Ago T, Hata J, Ninomiya T, Ooboshi H, Kumai Y, Yoshimura S, Tamaki K, Fujii K, Nagao T, Okada Y, Toyoda K, Nakane H, Sugimori H, Yamashita Y, Wakugawa Y, Kubo M, Tanizaki Y, Kiyohara Y, Ibayashi S, Iida M. Polymorphism in the sorbin and SH3-domain-containing-1 (SORBS1) gene and the risk of brain infarction in the Japanese population: the Fukuoka Stroke Registry and the Hisayama study. Eur J Neurol 2008; 15:481-6. [DOI: 10.1111/j.1468-1331.2008.02105.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Adachi R, Suzuki K. Lyn, one of the Src-family tyrosine kinases expressed in phagocytes, plays an important role in beta2 integrin-signalling pathways in opsonized zymosan-activated macrophage-like U937 cells. Cell Biochem Funct 2007; 25:323-33. [PMID: 17173331 DOI: 10.1002/cbf.1393] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have investigated the contribution of Hck, Lyn and Fgr, highly expressed Src family tyrosine kinases (SFKs) in signalling pathways in opsonized zymosan (OZ)-activated phagocytes by using short interfering RNAs (siRNAs). Treatment of macrophage-like U937 cells with the siRNAs targeted to these transcripts decreased the protein content of each kinase to less than half that of untreated cells. Among these siRNAs, siRNA targeted to Lyn was the most effective in diminishing two kinds of phagocyte functions, that is oxidative burst and phagocytosis. Phosphorylation of c-Cbl, a multidomain adaptor protein in the beta2 integrin-signalling pathway, was also largely inhibited by treatment with siRNA to Lyn. Thus, the results with siRNAs highly specific for Hck, Lyn and Fgr suggested that, among these three SFKs, Lyn plays the most important role in signalling pathways downstream of beta2 integrins in OZ-stimulated phagocytes.
Collapse
Affiliation(s)
- Reiko Adachi
- Division of Biosignaling, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan.
| | | |
Collapse
|
30
|
Abstract
Cbl proteins are ubiquitin ligases and multifunctional adaptor proteins that are implicated in the regulation of signal transduction in various cell types and in response to different stimuli. Cbl-associated proteins can assemble together at a given time or space inside the cell, and such an interactome can form signal competent networks that control many physiological processes. Dysregulation of spatial or temporal constraints in the Cbl interactome results in the development of human pathologies such as immune diseases, diabetes and cancer.
Collapse
Affiliation(s)
- Mirko H H Schmidt
- Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
31
|
Watson RT, Saltiel AR, Pessin JE, Kanzaki M. Subcellular Compartmentalization of Insulin Signaling Processes and GLUT4 Trafficking Events. MECHANISMS OF INSULIN ACTION 2007:33-51. [DOI: 10.1007/978-0-387-72204-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Babuke T, Tikkanen R. Dissecting the molecular function of reggie/flotillin proteins. Eur J Cell Biol 2007; 86:525-32. [PMID: 17482313 DOI: 10.1016/j.ejcb.2007.03.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 12/11/2022] Open
Abstract
Reggie-1/flotillin-2 and reggie-2/flotillin-1 are ubiquitously expressed, well-conserved proteins that are associated with membrane microdomains known as rafts. Studies from us and others have suggested a role in various cellular processes such as insulin signaling, T cell activation, membrane trafficking, phagocytosis, and epidermal growth factor receptor signaling. Recent findings also demonstrate that reggie-1 is associated with cell motility and transformation. However, the exact function of reggie proteins remains to be clarified. In this review, we will focus on some recent findings that have shed new light on the elusive molecular function of these highly interesting proteins. We will especially discuss the emerging role of reggie proteins in membrane receptor signaling and membrane trafficking, with emphasis on the regulation of the molecular function of reggies by post-translational modifications such as phosphorylation and lipid modifications.
Collapse
Affiliation(s)
- Tanja Babuke
- Institute of Biochemistry II and Cluster of Excellence Frankfurt Macromolecular Complexes, University Clinic of Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
33
|
He J, Liu Y, He S, Wang Q, Pu H, Ji J. Proteomic analysis of a membrane skeleton fraction from human liver. J Proteome Res 2007; 6:3509-18. [PMID: 17676884 DOI: 10.1021/pr070197v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cytoskeleton networks around liver cell cortex can resist Triton extraction and co-pellet with their tightly associated integral membrane proteins, forming assemblies called "membrane skeletons". Despite their important roles in determining cell shape and in signal transduction pathways, the membrane skeletons of human liver cells are uncharacterized to a great extent. In the present work, we prepared a membrane skeleton fraction by Triton extraction of human liver plasma membranes and then separated its protein components by 2-D gels. We optimized the detergent used for protein solubilization and found that 2% ASB-14 allowed the best recovery of membrane skeleton proteins. By analyzing the protein spots with MALDI-TOF and MALDI-TOF-TOF MS, we identified 104 nonredundant proteins, wherein 38 were cytoskeletal proteins that were further classified into several groups, including proteins in fodrin-based meshworks, adhesion proteins (proteins involved in adherens junctions, focal adhesions, desmosomes, hemidesmosomes and tight junctions), proteins that regulate F-actin dynamics, motor proteins, and some other cytoskeletal proteins. To the best of our knowledge, this is one of the largest data sets of membrane skeleton proteins to date. All the results suggested that the liver cells had complex actin- and cytokeratin-based membrane skeletons. This work provided a representative 2-DE map of membrane skeletons from human normal liver, for the purpose of helping to elucidate the composition and function of the membrane skeletons.
Collapse
Affiliation(s)
- Jintang He
- Department of Biochemistry and Molecular Biology, College of Life Sciences, The National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing 100871, P. R. China
| | | | | | | | | | | |
Collapse
|
34
|
Gehmlich K, Pinotsis N, Hayess K, van der Ven PFM, Milting H, El Banayosy A, Körfer R, Wilmanns M, Ehler E, Fürst DO. Paxillin and ponsin interact in nascent costameres of muscle cells. J Mol Biol 2007; 369:665-82. [PMID: 17462669 DOI: 10.1016/j.jmb.2007.03.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 11/30/2022]
Abstract
Muscle differentiation requires the transition from motile myoblasts to sessile myotubes and the assembly of a highly regular contractile apparatus. This striking cytoskeletal remodelling is coordinated with a transformation of focal adhesion-like cell-matrix contacts into costameres. To assess mechanisms underlying this differentiation process, we searched for muscle specific-binding partners of paxillin. We identified an interaction of paxillin with the vinexin adaptor protein family member ponsin in nascent costameres during muscle differentiation, which is mediated by an interaction of the second src homology domain 3 (SH3) domain of ponsin with the proline-rich region of paxillin. To understand the molecular basis of this interaction, we determined the structure of this SH3 domain at 0.83 A resolution, as well as its complex with the paxillin binding peptide at 1.63 A resolution. Upon binding, the paxillin peptide adopts a polyproline-II helix conformation in the complex. Contrary to the charged SH3 binding interface, the peptide contains only non-polar residues and for the first time such an interaction was observed structurally in SH3 domains. Fluorescence titration confirmed the ponsin/paxillin interaction, characterising it further by a weak binding affinity. Transfection experiments revealed further characteristics of ponsin functions in muscle cells: All three SH3 domains in the C terminus of ponsin appeared to synergise in targeting the protein to force-transducing structures. The overexpression of ponsin resulted in altered muscle cell-matrix contact morphology, suggesting its involvement in the establishment of mature costameres. Further evidence for the role of ponsin in the maintenance of mature mechanotransduction sites in cardiomyocytes comes from the observation that ponsin expression was down-regulated in end-stage failing hearts, and that this effect was reverted upon mechanical unloading. These results provide new insights in how low affinity protein-protein interactions may contribute to a fine tuning of cytoskeletal remodelling processes during muscle differentiation and in adult cardiomyocytes.
Collapse
Affiliation(s)
- Katja Gehmlich
- Institute of Biochemistry and Biology, University of Potsdam, Germany. <>
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Limpert AS, Karlo JC, Landreth GE. Nerve growth factor stimulates the concentration of TrkA within lipid rafts and extracellular signal-regulated kinase activation through c-Cbl-associated protein. Mol Cell Biol 2007; 27:5686-98. [PMID: 17548467 PMCID: PMC1952120 DOI: 10.1128/mcb.01109-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nerve growth factor (NGF) acts through its receptor, TrkA, to elicit the neuronal differentiation of PC12 cells through the action of extracellular signal-regulated kinase 1 (ERK1) and ERK2. Upon NGF binding, TrkA translocates and concentrates in cholesterol-rich membrane microdomains or lipid rafts, facilitating formation of receptor-associated signaling complexes, activation of downstream signaling pathways, and internalization into endosomes. We have investigated the mechanisms responsible for the localization of TrkA within lipid rafts and its ability to activate ERK1 and ERK2. We report that NGF treatment results in the translocation of activated forms of TrkA to lipid rafts, and this localization is important for efficient activation of the ERKs. TrkA is recruited and retained within lipid rafts through its association with flotillin, an intrinsic constituent of these membrane microdomains, via the adapter protein, c-Cbl associated protein (CAP). Mutant forms of CAP that lack protein interaction domains block TrkA localization to lipid rafts and attenuate ERK activation. Importantly, suppression of endogenous CAP expression inhibited NGF-stimulated neurite outgrowth from primary dorsal root ganglion neurons. These data provide a mechanism for the lipid raft localization of TrkA and establish the importance of the CAP adaptor protein for NGF activation of the ERKs and neuronal differentiation.
Collapse
Affiliation(s)
- Allison S Limpert
- Department of Neurosciences, Alzheimer Research Laboratory, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4928, USA
| | | | | |
Collapse
|
36
|
Zhang M, Liu J, Cheng A, DeYoung SM, Chen X, Dold LH, Saltiel AR. CAP interacts with cytoskeletal proteins and regulates adhesion-mediated ERK activation and motility. EMBO J 2006; 25:5284-93. [PMID: 17082770 PMCID: PMC1636617 DOI: 10.1038/sj.emboj.7601406] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 10/05/2006] [Indexed: 12/19/2022] Open
Abstract
CAP/Ponsin belongs to the SoHo family of adaptor molecules that includes ArgBP2 and Vinexin. These proteins possess an N-terminal sorbin homology (SoHo) domain and three C-terminal SH3 domains that bind to diverse signaling molecules involved in a variety of cellular processes. Here, we show that CAP binds to the cytoskeletal proteins paxillin and vinculin. CAP localizes to cell-extracellular matrix (ECM) adhesion sites, and this process requires binding to vinculin. Overexpression of CAP induces the aggregation of paxillin, vinculin and actin at cell-ECM adhesion sites. Moreover, CAP inhibits adhesion-dependent processes such as cell spreading and focal adhesion turnover, whereas a CAP mutant that is unable to localize to cell-ECM adhesion sites is incapable of exerting these effects. Finally, depletion of CAP by siRNA-mediated knockdown leads to enhanced cell spreading, migration and the activation of the PAK/MEK/ERK pathway in REF52 cells. Taken together, these results indicate that CAP is a cytoskeletal adaptor protein involved in modulating adhesion-mediated signaling events that lead to cell migration.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jun Liu
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Alan Cheng
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie M DeYoung
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaowei Chen
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Lisa H Dold
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Alan R Saltiel
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, 3rd Floor, Ann Arbor, MI 48109, USA. Tel.: +1 734 615 9787; Fax: +1 734 763 6492; E-mail:
| |
Collapse
|
37
|
Mitsushima M, Ueda K, Kioka N. Vinexin β regulates the phosphorylation of epidermal growth factor receptor on the cell surface. Genes Cells 2006; 11:971-82. [PMID: 16923119 DOI: 10.1111/j.1365-2443.2006.00995.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epidermal growth factor (EGF) regulates various cellular events, including proliferation, differentiation, migration and oncogenesis. In this study, we found that exogenous expression of vinexin beta enhanced the phosphorylation of 180-kDa proteins in an EGF-dependent manner in Cos-7 cells. Western blot analysis using phospho-specific antibodies against EGFR identified EGFR as a phosphorylated 180-kDa protein. Vinexin beta did not stimulate the phosphorylation of EGFR but suppressed the dephosphorylation, resulting in a sustained phosphorylation. Mutational analyses revealed that both the first and third SH3 domains were required for a sustained phosphorylation of EGFR. Small interfering RNA-mediated knockdown of vinexin beta reduced the phosphorylation of EGFR on the cell surface in HeLa cells. The sustained phosphorylation of EGFR induced by vinexin beta was completely abolished by adding the EGFR-specific inhibitor AG1478 even after EGF stimulation, suggesting that the kinase activity of EGFR is required for the sustained phosphorylation induced by vinexin beta. We also found that E3 ubiquitin ligase c-Cbl is a binding partner of vinexin beta through the third SH3 domain. Expression of wild-type vinexin beta but not a mutant containing a mutation in the third SH3 domain decreased the cytosolic pool of c-Cbl and increased the amount of membrane-associated c-Cbl. Furthermore, over-expression of c-Cbl suppressed the sustained phosphorylation of EGFR induced by vinexin beta. These results suggest that vinexin beta plays a role in maintaining the phosphorylation of EGFR on the plasma membrane through the regulation of c-Cbl.
Collapse
Affiliation(s)
- Masaru Mitsushima
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
38
|
Mitsushima M, Takahashi H, Shishido T, Ueda K, Kioka N. Abl kinase interacts with and phosphorylates vinexin. FEBS Lett 2006; 580:4288-95. [PMID: 16831423 DOI: 10.1016/j.febslet.2006.06.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 05/22/2006] [Accepted: 06/25/2006] [Indexed: 10/24/2022]
Abstract
Non-receptor tyrosine kinase Abl is a well known regulator of the actin-cytoskeleton, including the formation of stress fibers and membrane ruffles. Vinexin is an adapter protein consisting of three SH3 domains, and involved in signal transduction and the reorganization of actin cytoskeleton. In this study, we found that vinexin alpha as well as beta interacts with c-Abl mainly through the third SH3 domain, and that vinexin and c-Abl were colocalized at membrane ruffles in rat astrocytes. This interaction was reduced by latrunculin B, suggesting an F-actin-mediated regulatory mechanism. We also found that vinexin alpha but not beta was phosphorylated at tyrosine residue when c-Abl or v-Abl was co-expressed. A mutational analysis identified tyrosine 127 on vinexin alpha as a major site of phosphorylation by c- or v-Abl. These results suggest that vinexin alpha is a novel substrate for Abl.
Collapse
Affiliation(s)
- Masaru Mitsushima
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
39
|
Gupte A, Mora S. Activation of the Cbl insulin signaling pathway in cardiac muscle; Dysregulation in obesity and diabetes. Biochem Biophys Res Commun 2006; 342:751-7. [PMID: 16494846 DOI: 10.1016/j.bbrc.2006.02.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 02/07/2006] [Indexed: 11/16/2022]
Abstract
In adipocytes, the Cbl/CAP dependent signaling pathway has been involved in regulating insulin-stimulated glucose uptake. We investigated activation of Cbl and its downstream effector TC10 in cardiac and skeletal muscle of Balb/C mice. Insulin administration resulted in Cbl phosphorylation in cardiac, skeletal muscle, and adipose tissue. Subsequent TC10 activation was detected only in heart and adipose tissue. c-Cbl and CAP gene expression was significantly reduced in the heart tissue of streptozotocin-induced diabetic animals, whereas no change was observed for other components of the pathway. No changes in Cbl expression were detected in hindlimb muscle. In leptin-/- obese mice Cbl expression in heart and adipose tissue was maintained, although insulin-mediated Cbl phosphorylation and subsequent TC10 activation were significantly reduced. In conclusion, our data demonstrate that Cbl/CAP/TC10 insulin signaling pathway is active in cardiac muscle and impaired during obesity and insulin deficiency.
Collapse
Affiliation(s)
- Anisha Gupte
- Division of Biology, Kansas State University, 232 Ackert Hall, Manhattan, KS 66506, USA
| | | |
Collapse
|
40
|
Takahashi H, Mitsushima M, Okada N, Ito T, Aizawa S, Akahane R, Umemoto T, Ueda K, Kioka N. Role of interaction with vinculin in recruitment of vinexins to focal adhesions. Biochem Biophys Res Commun 2005; 336:239-46. [PMID: 16126177 DOI: 10.1016/j.bbrc.2005.08.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 08/02/2005] [Indexed: 10/25/2022]
Abstract
Although vinexin was originally identified as a protein binding to the proline-rich hinge region of vinculin, the functions and biochemical properties of the vinexin-vinculin interaction are not known. Here, we determined the affinity of the vinexin-vinculin interaction using surface plasmon resonance measurements and found that vinexin beta interacts with the C-terminal half of vinculin, which mimics an activated "open" form, with a threefold higher affinity than with the full-length "closed" vinculin. Coimmunoprecipitation experiments showed that cell adhesion on fibronectin enhances the vinexin-vinculin interaction. We also show that the interaction with vinculin is necessary for the efficient localization of vinexin alpha and beta at focal adhesions. These observations suggest a model that "activated" vinculin localized at focal adhesions recruits vinexins to focal adhesions.
Collapse
Affiliation(s)
- Honami Takahashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Giorgino F, Laviola L, Eriksson JW. Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. ACTA ACUST UNITED AC 2005; 183:13-30. [PMID: 15654917 DOI: 10.1111/j.1365-201x.2004.01385.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue is now recognized to have a multitude of functions that are of importance in the regulation of energy balance and substrate metabolism. Different hormones, in particular insulin and catecholamines, govern the storage and utilization of energy in the triglyceride depots. In addition, adipocytes produce several different substances with endocrine or paracrine functions, which regulate the overall energetic homeostasis. With excess energy storage, obesity develops, leading to increased risk for type 2 diabetes and cardiovascular disease. The distribution of body fat appears to be even more important than the total amount of fat. Abdominal and, in particular, visceral adiposity is strongly linked to insulin resistance, type 2 diabetes, hypertension and dyslipidaemia, leading to increased risk of cardiovascular disease. The adverse metabolic impact of visceral fat has been attributed to distinct biological properties of adipocytes in this depot compared with other adipose tissue depots. Indeed, regional variations in the metabolic activity of fat cells have been observed. Furthermore, expression studies aiming at defining the unique biological properties of adipose tissues from distinct anatomical sites have identified depot-related differences in the protein content of fat-produced molecules. In this review we wish to summarize important results from the literature and also some recent data from our own work. The main scope is to describe the biological functions of adipose tissue, and to focus on metabolic, hormonal, and signalling differences between fat depots.
Collapse
Affiliation(s)
- F Giorgino
- Medicina Interna, Endocrinologia e Malattie Metaboliche, Dipartimento dell'Emergenza e dei Trapianti di Organi, Università degli Studi di Bari, Piazza Giulio Cesare, 11, 1-70124 Bari, Italy
| | | | | |
Collapse
|
42
|
Liu J, Deyoung SM, Zhang M, Dold LH, Saltiel AR. The Stomatin/Prohibitin/Flotillin/HflK/C Domain of Flotillin-1 Contains Distinct Sequences That Direct Plasma Membrane Localization and Protein Interactions in 3T3-L1 Adipocytes. J Biol Chem 2005; 280:16125-34. [PMID: 15713660 DOI: 10.1074/jbc.m500940200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Flotillin-1 is a lipid raft-associated protein that has been implicated in various cellular processes. We examined the subcellular distribution of flotillin-1 in different cell types and found that localization is cell type-specific. Flotillin-1 relocates from a cytoplasmic compartment to the plasma membrane upon the differentiation of 3T3-L1 adipocytes. To delineate the structural determinants necessary for its localization, we generated a series of truncation mutants of flotillin-1. Wild type flotillin-1 has two putative hydrophobic domains and is localized to lipid raft microdomains at the plasma membrane. Flotillin-1 fragments lacking the N-terminal hydrophobic stretch are excluded from the lipid raft compartments but remain at the plasma membrane. On the other hand, mutants with the second hydrophobic region deleted fail to traffic to the plasma membrane but are instead found in intracellular granule-like structures. Flotillin-1 specifically interacts with the adaptor protein CAP, the Src family kinase Fyn, and cortical F-actin in lipid raft microdomains in adipocytes. Furthermore, CAP and Fyn associate with different regions in the N-terminal sequences of flotillin-1. These results furthered our understanding for how flotillin-1 can function as a molecular link between lipid rafts of the plasma membrane and a multimeric signaling complex at the actin cytoskeleton.
Collapse
Affiliation(s)
- Jun Liu
- Department of Internal Medicine, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
43
|
Harney DF, Butler RK, Edwards RJ. Tyrosine phosphorylation of myosin heavy chain during skeletal muscle differentiation: an integrated bioinformatics approach. Theor Biol Med Model 2005; 2:12. [PMID: 15790426 PMCID: PMC1079951 DOI: 10.1186/1742-4682-2-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Accepted: 03/25/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previously it has been shown that insulin-mediated tyrosine phosphorylation of myosin heavy chain is concomitant with enhanced association of C-terminal SRC kinase during skeletal muscle differentiation. We sought to identify putative site(s) for this phosphorylation event. RESULTS A combined bioinformatics approach of motif prediction and evolutionary and structural analyses identified tyrosines163 and 1856 of the skeletal muscle heavy chain as the leading candidate for the sites of insulin-mediated tyrosine phosphorylation. CONCLUSION Our work is suggestive that tyrosine phosphorylation of myosin heavy chain, whether in skeletal muscle or in platelets, is a significant event that may initiate cytoskeletal reorganization of muscle cells and platelets. Our studies provide a good starting point for further functional analysis of MHC phosphor-signalling events within different cells.
Collapse
Affiliation(s)
- DF Harney
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - RK Butler
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - RJ Edwards
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| |
Collapse
|
44
|
Matson SA, Pare GC, Kapiloff MS. A novel isoform of Cbl-associated protein that binds protein kinase A. ACTA ACUST UNITED AC 2004; 1727:145-9. [PMID: 15716063 DOI: 10.1016/j.bbaexp.2004.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 12/15/2004] [Indexed: 01/15/2023]
Abstract
A novel isoform of Cbl-associated protein (CAP) was identified in a yeast two-hybrid screen for A-kinase anchoring proteins expressed in the heart. CAP is a scaffold protein implicated in insulin signaling and cytoskeleton regulation. The protein kinase A binding site is encoded by a previously unidentified, alternatively spliced exon.
Collapse
Affiliation(s)
- Sarah A Matson
- Department of Pediatrics, Oregon Health and Science University, NRC5, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, United States
| | | | | |
Collapse
|
45
|
Brozinick JT, Hawkins ED, Strawbridge AB, Elmendorf JS. Disruption of cortical actin in skeletal muscle demonstrates an essential role of the cytoskeleton in glucose transporter 4 translocation in insulin-sensitive tissues. J Biol Chem 2004; 279:40699-706. [PMID: 15247264 PMCID: PMC2409066 DOI: 10.1074/jbc.m402697200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cell culture work suggests that signaling to polymerize cortical filamentous actin (F-actin) represents a required pathway for the optimal redistribution of the insulin-responsive glucose transporter, GLUT4, to the plasma membrane. Recent in vitro study further suggests that the actin-regulatory neural Wiskott-Aldrich syndrome protein (N-WASP) mediates the effect of insulin on the actin filament network. Here we tested whether similar cytoskeletal mechanics are essential for insulin-regulated glucose transport in isolated rat epitrochlearis skeletal muscle. Microscopic analysis revealed that cortical F-actin is markedly diminished in muscle exposed to latrunculin B. Depolymerization of cortical F-actin with latrunculin B caused a time- and concentration-dependent decline in 2-deoxyglucose transport. The loss of cortical F-actin and glucose transport was paralleled by a decline in insulin-stimulated GLUT4 translocation, as assessed by photolabeling of cell surface GLUT4 with Bio-LC-ATB-BMPA. Although latrunculin B impaired insulin-stimulated GLUT4 translocation and glucose transport, activation of phosphatidylinositol 3-kinase and Akt by insulin was not rendered ineffective. In contrast, the ability of insulin to elicit the cortical F-actin localization of N-WASP was abrogated. These data provide the first evidence that actin cytoskeletal mechanics are an essential feature of the glucose transport process in intact skeletal muscle. Furthermore, these findings support a distal actin-based role for N-WASP in insulin action in vivo.
Collapse
|
46
|
Mitsushima M, Suwa A, Amachi T, Ueda K, Kioka N. Extracellular signal-regulated kinase activated by epidermal growth factor and cell adhesion interacts with and phosphorylates vinexin. J Biol Chem 2004; 279:34570-7. [PMID: 15184391 DOI: 10.1074/jbc.m402304200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Extracellular signal-regulated kinase 1/2 (ERK1/2) is activated by various extracellular stimuli including growth factors and cytokines and plays a pivotal role in regulating cell proliferation and differentiation by phosphorylating nuclear transcription factors. Recently, it was reported that activated ERK1/2 also concentrates at adhesion sites and regulates cell spreading and migration. Vinexin is a focal adhesion protein regulating both cell spreading and growth factor signaling. We show here that vinexin was directly phosphorylated by ERK1/2 upon stimulation with growth factors. ERK1/2 phosphorylated the linker region of vinexin between the second and third SH3 domains. Site-directed mutagenesis revealed that ERK2 mainly phosphorylated the serine 189 residue of vinexin beta. Furthermore, vinexin beta interacted with ERK1/2 both in vitro and in vivo. Vinexin interacted with the active but not inactive form of ERK1/2. A putative DEF (docking for ERK FXFP) domain located in the linker region of vinexin was required for the interaction with ERK1/2 and efficient phosphorylation of vinexin beta by ERK2. Finally, we showed that cell adhesion to fibronectin also induced the association of vinexin beta with ERK2 and the phosphorylation of vinexin beta. Furthermore, vinexin and ERK were co-localized to the periphery of cells during cell spreading on fibronectin. Together, these results suggest that vinexin is a novel substrate of ERK2 and may play roles in ERK-dependent cell regulation during cell spreading as well as in growth factor-induced responses.
Collapse
Affiliation(s)
- Masaru Mitsushima
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
47
|
Haglund K, Ivankovic-Dikic I, Shimokawa N, Kruh GD, Dikic I. Recruitment of Pyk2 and Cbl to lipid rafts mediates signals important for actin reorganization in growing neurites. J Cell Sci 2004; 117:2557-68. [PMID: 15128873 DOI: 10.1242/jcs.01148] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protein tyrosine kinase Pyk2 and multifunctional adaptor protein Cbl are implicated in the regulation of the cytoskeleton in several cell types. We report that Pyk2 and Cbl form a signaling complex that is translocated to lipid rafts and is enriched in growth cones of differentiating PC12 cells following growth factor stimulation. We found that Pyk2 and Cbl interacted with the adaptor protein ArgBP2, which also bound to flotillin-1, a component of lipid raft microdomains. These interactions contributed to recruitment of the Pyk2/Cbl complex to lipid raft compartments. In addition, Pyk2, Cbl and ArgBP2 were found co-localized with actin in axons and growth cones of differentiated PC12 cells. Moreover, co-expression of Pyk2, ArgBP2 and Cbl facilitated growth factor-induced formation of lamellipodia at the tip of neurites. Formation of these growth cone lamellipodia was dependent on intact lipid rafts and the Cbl-associated effectors Crk and phosphatidylinositol 3 (PI 3)-kinase. Our results indicate that recruitment of Pyk2/Cbl complexes to lipid rafts participates in growth factor-induced regulation of the actin cytoskeleton in growing neurites.
Collapse
Affiliation(s)
- Kaisa Haglund
- Institute for Biochemistry II, Building 75, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
48
|
Siu MKY, Cheng CY. Extracellular matrix: recent advances on its role in junction dynamics in the seminiferous epithelium during spermatogenesis. Biol Reprod 2004; 71:375-91. [PMID: 15115723 DOI: 10.1095/biolreprod.104.028225] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Spermatogenesis takes place in the seminiferous epithelium of the mammalian testis in which one type A1 spermatogonium (diploid, 2n) gives rise to 256 spermatids (haploid, 1n). To accomplish this, developing germ cells, such as preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) entering into the adluminal compartment for further development into round, elongating, and elongate spermatids. Recent studies have shown that the basement membrane in the testis (a modified form of extracellular matrix, ECM) is important to the event of germ cell movement across the BTB because proteins in the ECM were shown to regulate BTB dynamics via the interactions between collagens, proteases, and protease inhibitors, possibly under the regulation of cytokines. While these findings are intriguing, they are not entirely unexpected. For one, the basement membrane in the testis is intimately associated with the BTB, which represents the basolateral region of Sertoli cells. Also, Sertoli cell tight junctions (TJs) that constitute the BTB are present side-by-side with cell-cell actin-based adherens junctions (AJ, such as basal ectoplasmic specialization [ES]) and intermediate filament-based desmosome-like junctions. As such, the relative morphological layout between TJs, AJs, and desmosome-like junctions in the seminiferous epithelium is in sharp contrast to other epithelia where TJs are located at the apical portion of an epithelium or endothelium, furthest away from ECM, to be followed by AJs and desmosomes, which in turn constitute the junctional complex. For another, anchoring junctions between a cell epithelium and ECM found in multiple tissues, also known as focal contacts (or focal adhesion complex, FAC, an actin-based cell-matrix anchoring junction type), are the most efficient junction type that permits rapid junction restructuring to accommodate cell movement. It is therefore physiologically plausible, and perhaps essential, that the testis is using some components of the focal contacts to regulate rapid restructuring of AJs between Sertoli and germ cells when germ cells traverse the seminiferous epithelium. Indeed, recent findings have shown that the apical ES, a testis-specific AJ type in the seminiferous epithelium, is equipped with proteins of FAC to regulate its restructuring. In this review, we provide a timely update on this exciting yet rapidly developing field regarding how the homeostasis of basement membrane in the tunica propria regulates BTB dynamics and spermatogenesis in the testis, as well as a critical review on the molecular architecture and the regulation of ES in the seminiferous epithelium.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
49
|
Tujague M, Thomsen JS, Mizuki K, Sadek CM, Gustafsson JA. The Focal Adhesion Protein Vinexin α Regulates the Phosphorylation and Activity of Estrogen Receptor α. J Biol Chem 2004; 279:9255-63. [PMID: 14625289 DOI: 10.1074/jbc.m312160200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid receptors are transcription factors that regulate hormone-responsive genes and whose activity is controlled by their interaction with numerous other proteins. Observations reported here reveal that estrogen receptors alpha and beta (ERalpha and ERbeta), androgen receptor, and glucocorticoid receptor bind in vitro to vinexin alpha, a multiple SH3 motif-containing protein associated with the cytoskeleton. The SH3 domains are not involved in this interaction. Furthermore, we demonstrate that vinexin alpha stimulates the ligand-induced transactivation function of these receptors, although it is devoid of intrinsic transcriptional activity when tethered to DNA. In addition, the ectopic coexpression of vinexin alpha and ERalpha results in a loss of ERalpha phosphorylation on serines and the partial redistribution of vinexin alpha into the nucleus, where it colocalizes with ERalpha. These results establish a new model of transcriptional regulation where components of the cell-cell and cell-substrate adhesion complexes can regulate the phosphorylation and activity of steroid receptors.
Collapse
Affiliation(s)
- Michel Tujague
- Department of Biosciences, Karolinska Institutet, Novum, S-14157 Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
50
|
Yeaman C, Grindstaff KK, Nelson WJ. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J Cell Sci 2004; 117:559-70. [PMID: 14709721 PMCID: PMC3368615 DOI: 10.1242/jcs.00893] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sec6/8 (exocyst) complex regulates vesicle delivery and polarized membrane growth in a variety of cells, but mechanisms regulating Sec6/8 localization are unknown. In epithelial cells, Sec6/8 complex is recruited to cell-cell contacts with a mixture of junctional proteins, but then sorts out to the apex of the lateral membrane with components of tight junction and nectin complexes. Sec6/8 complex fractionates in a high molecular mass complex with tight junction proteins and a portion of E-cadherin, and co-immunoprecipitates with cell surface-labeled E-cadherin and nectin-2alpha. Recruitment of Sec6/8 complex to cell-cell contacts can be achieved in fibroblasts when E-cadherin and nectin-2alpha are co-expressed. These results support a model in which localized recruitment of Sec6/8 complex to the plasma membrane by specific cell-cell adhesion complexes defines a site for vesicle delivery and polarized membrane growth during development of epithelial cell polarity.
Collapse
Affiliation(s)
- Charles Yeaman
- Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| | | | | |
Collapse
|