1
|
The prognosis of lipid reprogramming with the HMG-CoA reductase inhibitor, rosuvastatin, in castrated Egyptian prostate cancer patients: Randomized trial. PLoS One 2022; 17:e0278282. [PMID: 36480560 PMCID: PMC9731457 DOI: 10.1371/journal.pone.0278282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
AIM The role of surgical castration and rosuvastatin treatment on lipid profile and lipid metabolism related markers was evaluated for their prognostic significance in metastatic prostate cancer (mPC) patients. METHODS A total of 84 newly diagnosed castrated mPC patients treated with castration were recruited and divided into two groups: Group I served as control (statin non-users) while group II treated with Rosuvastatin (20 mg/day) for 6 months and served as statin users. Prostate specific antigen (PSA), epidermal growth factor receptor (EGFR), Caveolin-1 (CAV1), lipid profile (LDL, HDL, triglycerides (TG) and total cholesterol (TC)) and lipid metabolism related markers (aldoketoreductase (AKR1C4), HMG-CoA reductase (HMGCR), ATP-binding cassette transporter A1 (ABCA1), and soluble low density lipoprotein receptor related protein 1 (SLDLRP1)) were measured at baseline, after 3 and 6 months. Overall survival (OS) was analyzed by Kaplan-Meier and COX regression for prognostic significance. RESULTS Before castration, HMG-CoA reductase was elevated in patients <65 years (P = 0.009). Bone metastasis was associated with high PSA level (P = 0.013), but low HMGCR (P = 0.004). Patients with positive family history for prostate cancer showed high levels of EGFR, TG, TC, LDL, alkaline phosphatase (ALP), but low AKR1C4, SLDLRP1, CAV1 and ABCA-1 levels. Smokers had high CAV1 level (P = 0.017). After 6 months of castration and rosuvastatin administration, PSA, TG, LDL and TC were significantly reduced, while AKR1C4, HMGCR, SLDLRP1, CAV1 and ABCA-1 were significantly increased. Overall survival was reduced in patients with high baseline of SLDLRP1 (>3385 pg/ml, P = 0.001), PSA (>40 ng/ml, P = 0.003) and CAV1 (>4955 pg/ml, P = 0.021). CONCLUSION Results of the current study suggest that the peripheral lipidogenic effects of rosuvastatin may have an impact on the treatment outcome and survival of castrated mPC patients. TRAIL REGISTRATION This trial was registered at the Pan African Clinical Trial Registry with identification number PACTR202102664354163 and at ClinicalTrials.gov with identification number NCT04776889.
Collapse
|
2
|
Pliss A, Kuzmin AN, Lita A, Kumar R, Celiku O, Atilla-Gokcumen GE, Gokcumen O, Chandra D, Larion M, Prasad PN. A Single-Organelle Optical Omics Platform for Cell Science and Biomarker Discovery. Anal Chem 2021; 93:8281-8290. [PMID: 34048235 DOI: 10.1021/acs.analchem.1c01131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research in fundamental cell biology and pathology could be revolutionized by developing the capacity for quantitative molecular analysis of subcellular structures. To that end, we introduce the Ramanomics platform, based on confocal Raman microspectrometry coupled to a biomolecular component analysis algorithm, which together enable us to molecularly profile single organelles in a live-cell environment. This emerging omics approach categorizes the entire molecular makeup of a sample into about a dozen of general classes and subclasses of biomolecules and quantifies their amounts in submicrometer volumes. A major contribution of our study is an attempt to bridge Raman spectrometry with big-data analysis in order to identify complex patterns of biomolecules in a single cellular organelle and leverage discovery of disease biomarkers. Our data reveal significant variations in organellar composition between different cell lines. We also demonstrate the merits of Ramanomics for identifying diseased cells by using prostate cancer as an example. We report large-scale molecular transformations in the mitochondria, Golgi apparatus, and endoplasmic reticulum that accompany the development of prostate cancer. Based on these findings, we propose that Ramanomics datasets in distinct organelles constitute signatures of cellular metabolism in healthy and diseased states.
Collapse
Affiliation(s)
- Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and Department of Chemistry, Natural Science Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Andrey N Kuzmin
- Institute for Lasers, Photonics and Biophotonics and Department of Chemistry, Natural Science Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Adrian Lita
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Orieta Celiku
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, Natural Science Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Omer Gokcumen
- Department of Biological Sciences, Cooke Hall, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Mioara Larion
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Paras N Prasad
- Institute for Lasers, Photonics and Biophotonics and Department of Chemistry, Natural Science Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
3
|
Dłubek J, Rysz J, Jabłonowski Z, Gluba-Brzózka A, Franczyk B. The Correlation between Lipid Metabolism Disorders and Prostate Cancer. Curr Med Chem 2021; 28:2048-2061. [PMID: 32767911 DOI: 10.2174/0929867327666200806103744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
Prostate cancer is the second most common cancer affecting the male population all over the world. The existence of a correlation between lipid metabolism disorders and cancer of the prostate gland has been widely known for a long time. According to hypotheses, cholesterol may contribute to prostate cancer progression as a result of its participation as a signaling molecule in prostate growth and differentiation via numerous biologic mechanisms including Akt signaling and de novo steroidogenesis. The results of some studies suggest that increased cholesterol levels may be associated with a higher risk of a more aggressive course of the disease. The aforementioned alterations in the synthesis of fatty acids are a unique feature of cancer and, therefore, constitute an attractive target for therapeutic intervention in the treatment of prostate cancer. Pharmacological or gene therapy aims to reduce the activity of enzymes involved in de novo synthesis of fatty acids, FASN, ACLY (ATP citrate lyase) or SCD-1 (Stearoyl-CoA Desaturase) in particular, that may result in cells growth arrest. Nevertheless, not all cancers are unequivocally associated with hypocholesterolaemia. It cannot be ruled out that the relationship between prostate cancer and lipid disorders is not a direct quantitative correlation between carcinogenesis and the amount of circulating cholesterol. Perhaps the correspondence is more sophisticated and connected to the distribution of cholesterol fractions or even sub-fractions of e.g. HDL cholesterol.
Collapse
Affiliation(s)
- Justyna Dłubek
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| | - Zbigniew Jabłonowski
- Department of Urology, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
4
|
Body composition, serum lipid levels, and transcriptomic characterization in the adipose tissue of male pigs in response to sex hormone deficiency. Gene 2018; 646:74-82. [DOI: 10.1016/j.gene.2017.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/09/2017] [Accepted: 12/27/2017] [Indexed: 11/20/2022]
|
5
|
Xu Y, Xiao YJ, Baudhuin LM, Schwartz BM. The Role and Clinical Applications of Bioactive Lysolipids in Ovarian Cancer. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760100800101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yan Xu
- Department of Cancer Biology Lerner Research Institute and the Department of Gynecology and Obstetrics Cleveland Clinic Foundation; Department of Chemistry, Cleveland State University, Cleveland, Ohio; Department of Cancer Biology, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195
| | | | | | - Benjamin M. Schwartz
- Department of Cancer Biology Lerner Research Institute and the Department of Gynecology and Obstetrics Cleveland Clinic Foundation; Department of Chemistry, Cleveland State University, Cleveland, Ohio
| |
Collapse
|
6
|
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC. Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. Oncotarget 2016; 8:52237-52255. [PMID: 28881726 PMCID: PMC5581025 DOI: 10.18632/oncotarget.11111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 07/16/2016] [Indexed: 02/06/2023] Open
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC–MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression.
Collapse
Affiliation(s)
- Carolina Soekmadji
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - James D Riches
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Pamela J Russell
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Jayde E Ruelcke
- Translational Research Institute, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Stephen McPherson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Chenwei Wang
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Chris M Hovens
- Australian Prostate Cancer Research Centre Epworth, and Department of Surgery, University of Melbourne, Australia
| | - Niall M Corcoran
- Australian Prostate Cancer Research Centre Epworth, and Department of Surgery, University of Melbourne, Australia
| | | | - Michelle M Hill
- Translational Research Institute, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Butler LM, Centenera MM, Swinnen JV. Androgen control of lipid metabolism in prostate cancer: novel insights and future applications. Endocr Relat Cancer 2016; 23:R219-27. [PMID: 27130044 DOI: 10.1530/erc-15-0556] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022]
Abstract
One of the most typical hallmarks of prostate cancer cells is their exquisite dependence on androgens, which is the basis of the widely applied androgen deprivation therapy. Among the variety of key cellular processes and functions that are regulated by androgens, lipid metabolism stands out by its complex regulation and its many intricate links with cancer cell biology. Here, we review our current knowledge on the links between androgens and lipid metabolism in prostate cancer, and highlight recent developments and insights into the links between key oncogenic stimuli and altered lipid synthesis and/or uptake that may hold significant potential for biomarker development and provide new vulnerabilities for therapeutic intervention.
Collapse
Affiliation(s)
- Lisa M Butler
- School of MedicineUniversity of Adelaide, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Margaret M Centenera
- School of MedicineUniversity of Adelaide, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and CancerDepartment of Oncology, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Levina E, Ji H, Chen M, Baig M, Oliver D, Ohouo P, Lim CU, Schools G, Carmack S, Ding Y, Broude EV, Roninson IB, Buttyan R, Shtutman M. Identification of novel genes that regulate androgen receptor signaling and growth of androgen-deprived prostate cancer cells. Oncotarget 2016; 6:13088-104. [PMID: 26036626 PMCID: PMC4537001 DOI: 10.18632/oncotarget.3743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/10/2015] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer progression to castration refractory disease is associated with anomalous transcriptional activity of the androgen receptor (AR) in an androgen-depleted milieu. To identify novel gene products whose downregulation transactivates AR in prostate cancer cells, we performed a screen of enzymatically-generated shRNA lenti-libraries selecting for transduced LNCaP cells with elevated expression of a fluorescent reporter gene under the control of an AR-responsive promoter. The shRNAs present in selected populations were analyzed using high-throughput sequencing to identify target genes. Highly enriched gene targets were then validated with siRNAs against selected genes, testing first for increased expression of luciferase from an AR-responsive promoter and then for altered expression of endogenous androgen-regulated genes in LNCaP cells. We identified 20 human genes whose silencing affected the expression of exogenous and endogenous androgen-responsive genes in prostate cancer cells grown in androgen-depleted medium. Knockdown of four of these genes upregulated the expression of endogenous AR targets and siRNAs targeting two of these genes (IGSF8 and RTN1) enabled androgen-independent proliferation of androgen-dependent cells. The effects of IGSF8 appear to be mediated through its interaction with a tetraspanin protein, CD9, previously implicated in prostate cancer progression. Remarkably, homozygous deletions of IGSF8 are found almost exclusively in prostate cancers but not in other cancer types. Our study shows that androgen independence can be achieved through the inhibition of specific genes and reveals a novel set of genes that regulate AR signaling in prostate cancers.
Collapse
Affiliation(s)
- Elina Levina
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA.,Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Mengqiang Chen
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Mirza Baig
- Cancer Center, Ordway Research Institute, Albany, NY, USA
| | - David Oliver
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Patrice Ohouo
- Cancer Center, Ordway Research Institute, Albany, NY, USA
| | - Chang-uk Lim
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Garry Schools
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Steven Carmack
- Wadsworth Center, NY State Department of Health, Albany, NY, USA
| | - Ye Ding
- Wadsworth Center, NY State Department of Health, Albany, NY, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Ralph Buttyan
- The Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
9
|
Del Giudice PT, Belardin LB, Camargo M, Zylbersztejn DS, Carvalho VM, Cardozo KHM, Bertolla RP, Cedenho AP. Determination of testicular function in adolescents with varicocoele - a proteomics approach. Andrology 2016; 4:447-55. [DOI: 10.1111/andr.12174] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/03/2015] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Affiliation(s)
- P. T. Del Giudice
- Division of Urology; Human Reproduction Section; Department of Surgery; Universidade Federal de São Paulo; São Paulo Brazil
| | - L. B. Belardin
- Division of Urology; Human Reproduction Section; Department of Surgery; Universidade Federal de São Paulo; São Paulo Brazil
| | - M. Camargo
- Division of Urology; Human Reproduction Section; Department of Surgery; Universidade Federal de São Paulo; São Paulo Brazil
| | - D. S. Zylbersztejn
- Division of Urology; Human Reproduction Section; Department of Surgery; Universidade Federal de São Paulo; São Paulo Brazil
- Hospital São Paulo; São Paulo Brazil
| | | | | | - R. P. Bertolla
- Division of Urology; Human Reproduction Section; Department of Surgery; Universidade Federal de São Paulo; São Paulo Brazil
- Hospital São Paulo; São Paulo Brazil
| | - A. P. Cedenho
- Division of Urology; Human Reproduction Section; Department of Surgery; Universidade Federal de São Paulo; São Paulo Brazil
| |
Collapse
|
10
|
Salas LA, Bustamante M, Gonzalez JR, Gracia-Lavedan E, Moreno V, Kogevinas M, Villanueva CM. DNA methylation levels and long-term trihalomethane exposure in drinking water: an epigenome-wide association study. Epigenetics 2016; 10:650-61. [PMID: 26039576 DOI: 10.1080/15592294.2015.1057672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Trihalomethanes (THM) are undesired disinfection byproducts (DBPs) formed during water treatment. Mice exposed to DBPs showed global DNA hypomethylation and c-myc and c-jun gene-specific hypomethylation, while evidence of epigenetic effects in humans is scarce. We explored the association between lifetime THM exposure and DNA methylation through an epigenome-wide association study. We selected 138 population-based controls from a case-control study of colorectal cancer conducted in Barcelona, Spain, exposed to average lifetime THM levels ≤85 μg/L vs. >85 μg/L (N = 68 and N = 70, respectively). Mean age of participants was 70 years, and 54% were male. Average lifetime THM level in the exposure groups was 64 and 130 µg/L, respectively. DNA was extracted from whole blood and was bisulphite converted to measure DNA methylation levels using the Illumina HumanMethylation450 BeadChip. Data preprocessing was performed using RnBeads. Methylation was compared between exposure groups using empirical Bayes moderated linear regression for CpG sites and Gaussian kernel for CpG regions. ConsensusPathDB was used for gene set enrichment. Statistically significant differences in methylation between exposure groups was found in 140 CpG sites and 30 gene-related regions, after false discovery rate <0.05 and adjustment for age, sex, methylation first principal component, and blood cell proportion. The annotated genes were localized to several cancer pathways. Among them, 29 CpGs had methylation levels associated with THM levels (|Δβ|≥0.05) located in 11 genes associated with cancer in other studies. Our results suggest that THM exposure may affect DNA methylation in genes related to tumors, including colorectal and bladder cancers. Future confirmation studies are required.
Collapse
Affiliation(s)
- Lucas A Salas
- a Centre for Research in Environmental Epidemiology (CREAL) ; Barcelona , Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Peroxisome Proliferator-Activated Receptor γ Regulates the Expression of Lipid Phosphate Phosphohydrolase 1 in Human Vascular Endothelial Cells. PPAR Res 2014; 2014:740121. [PMID: 24955089 PMCID: PMC4052932 DOI: 10.1155/2014/740121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/01/2014] [Indexed: 12/31/2022] Open
Abstract
Lipid phosphate phosphohydrolase 1 (LPP1), a membrane ectophosphohydrolase regulating the availability of bioactive lipid phosphates, plays important roles in cellular signaling and physiological processes such as angiogenesis and endothelial migration. However, the regulated expression of LPP1 remains largely unknown. Here, we aimed to examine a role of peroxisome proliferator-activated receptor γ (PPARγ) in the transcriptional control of LPP1 gene expression. In human umbilical vein endothelial cells (HUVECs), quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) demonstrated that activation of PPARγ increased the mRNA level of LPP1. Chromatin immunoprecipitation assay showed that PPARγ binds to the putative PPAR-responsive elements (PPREs) within the 5′-flanking region of the human LPP1 gene. Genomic fragment containing 1.7-kilobase of the promoter region was cloned by using PCR. The luciferase reporter assays demonstrated that overexpression of PPARγ and rosiglitazone, a specific ligand for PPARγ, could significantly upregulate the reporter activity. However, site-directed mutagenesis of the PPRE motif abolished the induction. In conclusion, our results demonstrated that PPARγ transcriptionally activated the expression of LPP1 gene in ECs, suggesting a potential role of PPARγ in the metabolism of phospholipids.
Collapse
|
12
|
Gutiérrez-Martínez E, Fernández-Ulibarri I, Lázaro-Diéguez F, Johannes L, Pyne S, Sarri E, Egea G. Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. J Cell Sci 2013; 126:2641-55. [PMID: 23591818 DOI: 10.1242/jcs.117705] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The inhibition of phosphatidic acid phosphatase (PAP) activity by propanolol indicates that diacylglycerol (DAG) is required for the formation of transport carriers at the Golgi and for retrograde trafficking to the ER. Here we report that the PAP2 family member lipid phosphate phosphatase 3 (LPP3, also known as PAP2b) localizes in compartments of the secretory pathway from ER export sites to the Golgi complex. The depletion of human LPP3: (i) reduces the number of tubules generated from the ER-Golgi intermediate compartment and the Golgi, with those formed from the Golgi being longer in LPP3-silenced cells than in control cells; (ii) impairs the Rab6-dependent retrograde transport of Shiga toxin subunit B from the Golgi to the ER, but not the anterograde transport of VSV-G or ssDsRed; and (iii) induces a high accumulation of Golgi-associated membrane buds. LPP3 depletion also reduces levels of de novo synthesized DAG and the Golgi-associated DAG contents. Remarkably, overexpression of a catalytically inactive form of LPP3 mimics the effects of LPP3 knockdown on Rab6-dependent retrograde transport. We conclude that LPP3 participates in the formation of retrograde transport carriers at the ER-Golgi interface, where it transitorily cycles, and during its route to the plasma membrane.
Collapse
Affiliation(s)
- Enric Gutiérrez-Martínez
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Kok BPC, Venkatraman G, Capatos D, Brindley DN. Unlike two peas in a pod: lipid phosphate phosphatases and phosphatidate phosphatases. Chem Rev 2012; 112:5121-46. [PMID: 22742522 DOI: 10.1021/cr200433m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bernard P C Kok
- Signal Transduction Research Group, Department of Biochemistry, School of Translational Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
14
|
Abstract
Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.
Collapse
|
15
|
Pospisil P, Korideck H, Wang K, Yang Y, Iyer LK, Kassis AI. Computational and biological evaluation of quinazolinone prodrug for targeting pancreatic cancer. Chem Biol Drug Des 2012; 79:926-34. [PMID: 22304734 DOI: 10.1111/j.1747-0285.2012.01350.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our concept of enzyme-mediated cancer imaging and therapy aims to use radiolabeled compounds to target hydrolases over-expressed on the extracellular surface of solid tumors. A data mining approach identified extracellular sulfatase 1 (SULF1) as an enzyme expressed on the surface of pancreatic cancer cells. We designed, synthesized, and characterized 2-(2'-sulfooxyphenyl)-6-iodo-4-(3H)-quinazolinone (IQ(2-S)) as well as its radioiodinated form ((125) IQ(2-S)) as a prodrug with potential for hydrolysis by SULF1. IQ(2-S) was successfully docked in silico into three enzymes - homolog of SULF1, alkaline phosphatase, and prostatic acid phosphatase. The incubation of (125) IQ(2-S) and (125) IQ(2-P) with the three enzymes in solution confirms the docking results and enzyme selectivity for the analogs. The hydrolysis of both radioactive compounds produces the water-insoluble, fluorescent product 2-(2'-hydroxyphenyl)-6-[(125) I]iodo-4-(3H)-quinazolinone ((125) IQ(2-OH)). The in vitro incubation of (127) IQ(2-S) and (127) IQ(2-P) with pancreatic, ovarian, and prostate cancer cells expressing studied hydrolases also results in their hydrolysis and the precipitation of (127) IQ(2-OH) fluorescent crystals on the cell surface. To our knowledge, these findings are the first to report the targeting of a radioactive substrate to SULF1 and that this prodrug may be potentially useful in the imaging ((123) I/(124) I/(131) I) and radiotherapy ((131) I) of pancreatic cancer.
Collapse
Affiliation(s)
- Pavel Pospisil
- Harvard Medical School, Department of Radiology, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, Luo F, Guo L, Lv X, Deng C, Zhou C, Fan Y, Li X, Huang L, Hu Y, Liang C, Hu X, Xu J, Yu X. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol 2011; 12:R107. [PMID: 22023798 PMCID: PMC3333777 DOI: 10.1186/gb-2011-12-10-r107] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 09/13/2011] [Accepted: 10/24/2011] [Indexed: 02/07/2023] Open
Abstract
Background Clonorchis sinensis is a carcinogenic human liver fluke that is widespread in Asian countries. Increasing infection rates of this neglected tropical disease are leading to negative economic and public health consequences in affected regions. Experimental and epidemiological studies have shown a strong association between the incidence of cholangiocarcinoma and the infection rate of C. sinensis. To aid research into this organism, we have sequenced its genome. Results We combined de novo sequencing with computational techniques to provide new information about the biology of this liver fluke. The assembled genome has a total size of 516 Mb with a scaffold N50 length of 42 kb. Approximately 16,000 reliable protein-coding gene models were predicted. Genes for the complete pathways for glycolysis, the Krebs cycle and fatty acid metabolism were found, but key genes involved in fatty acid biosynthesis are missing from the genome, reflecting the parasitic lifestyle of a liver fluke that receives lipids from the bile of its host. We also identified pathogenic molecules that may contribute to liver fluke-induced hepatobiliary diseases. Large proteins such as multifunctional secreted proteases and tegumental proteins were identified as potential targets for the development of drugs and vaccines. Conclusions This study provides valuable genomic information about the human liver fluke C. sinensis and adds to our knowledge on the biology of the parasite. The draft genome will serve as a platform to develop new strategies for parasite control.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Senda K, Koizumi K, Prangsaengtong O, Minami T, Suzuki S, Takasaki I, Tabuchi Y, Sakurai H, Doki Y, Misaki T, Saiki I. Inducible capillary formation in lymphatic endothelial cells by blocking lipid phosphate phosphatase-3 activity. Lymphat Res Biol 2009; 7:69-74. [PMID: 19473074 DOI: 10.1089/lrb.2009.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Lymphangiogenesis plays critical roles under normal and/or pathological conditions; however, the molecular contributors to this event were unknown until recently. In the present study, we first employed gene chip analysis and confirmed that lipid phosphate phosphatase-3 (LPP3) expression was increased until capillary formation in the conditionally immortalized rat lymphatic endothelial cell line. Signaling responses occur when several lipids induce acute biological functions; further, lipid phosphate phosphatases (LPPs) control their functions via dephosphorylation; however, there is no report on the association between LPP3 and lymphangiogenesis. siRNA-targeted LPP3 significantly increased capillary formation of human lymphatic endothelial cells; in contrast, it decreased cell adhesion to the basement membrane matrix. Furthermore, the inducible effect of the LPP inhibitor on capillary formation was observed. For the first time, we report that LPP3 abolishes accelerated abnormal lymphangiogenesis. Blocking LPP3 activities may aid in the development of novel therapy for lymph vessel defects.
Collapse
Affiliation(s)
- Kazutaka Senda
- Department of Surgery (I), Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tomsig JL, Snyder AH, Berdyshev EV, Skobeleva A, Mataya C, Natarajan V, Brindley DN, Lynch KR. Lipid phosphate phosphohydrolase type 1 (LPP1) degrades extracellular lysophosphatidic acid in vivo. Biochem J 2009; 419:611-8. [PMID: 19215222 PMCID: PMC2677185 DOI: 10.1042/bj20081888] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
LPA (lysophosphatidic acid) is a lipid mediator that stimulates cell proliferation and growth, and is involved in physiological and pathological processes such as wound healing, platelet activation, angiogenesis and the growth of tumours. Therefore defining the mechanisms of LPA production and degradation are of interest in understanding the regulation of these processes. Extracellular LPA synthesis is relatively well understood, whereas the mechanisms of its degradation are not. One route of LPA degradation is dephosphorylation. A candidate enzyme is the integral membrane exophosphatase LPP1 (lipid phosphate phosphohydrolase type 1). In the present paper, we report the development of a mouse wherein the LPP1 gene (Ppap2a) was disrupted. The homozygous mice, which are phenotypically unremarkable, generally lack Ppap2a mRNA, and multiple tissues exhibit a substantial (35-95%) reduction in LPA phosphatase activity. Compared with wild-type littermates, Ppap2a(tr/tr) animals have increased levels of plasma LPA, and LPA injected intravenously is metabolized at a 4-fold lower rate. Our results demonstrate that LPA is rapidly metabolized in the bloodstream and that LPP1 is an important determinant of this turnover. These results indicate that LPP1 is a catabolic enzyme for LPA in vivo.
Collapse
Affiliation(s)
- Jose L. Tomsig
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Ashley H. Snyder
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Evgeny V. Berdyshev
- Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois 60637
| | - Anastasia Skobeleva
- Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois 60637
| | - Chifundo Mataya
- Department of Biochemistry, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Viswanathan Natarajan
- Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois 60637
| | - David N. Brindley
- Department of Biochemistry, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
19
|
Kai M, Sakane F, Jia YJ, Imai SI, Yasuda S, Kanoh H. Lipid Phosphate Phosphatases 1 and 3 Are Localized in Distinct Lipid Rafts. ACTA ACUST UNITED AC 2006; 140:677-86. [PMID: 17005594 DOI: 10.1093/jb/mvj195] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipid phosphate phosphatases (LPPs), integral membrane proteins with six transmembrane domains, dephosphorylate a variety of extracellular lipid phosphates. Although LPP3 is already known to bind to Triton X-100-insoluble rafts, we here report that LPP1 is also associated with lipid rafts distinct from those harboring LPP3. We found that LPP1 was Triton X-100-soluble, but CHAPS-insoluble in LNCaP cells endogenously expressing LPP1 and several LPP1 cDNA-transfected cells including NIH3T3 fibroblasts. In addition to the non-ionic detergent insolubility, LPP1 further possessed several properties formulated for raft-localizing proteins as follows: first, the CHAPS-insolubility was resistant to the actin-disrupting drug cytochalasin D; second, the CHAPS-insoluble LPP1 floated in an Optiprep density gradient; third, the CHAPS insolubility of LPP1 was lost by cholesterol depletion; and finally, the subcellular distribution pattern of LPP1 exclusively overlapped with that of a raft marker, cholera toxin B subunit. Interestingly, confocal microscopic analysis showed that LPP1 was distributed to membrane compartments distinct from those of LPP3. Analysis using various LPP1/LPP3 chimeras revealed that their first extracellular regions determine the different Triton X-100 solubilities. These results indicate that LPP1 and LPP3 are distributed in distinct lipid rafts that may provide unique microenvironments defining their non-redundant physiological functions.
Collapse
Affiliation(s)
- Masahiro Kai
- Department of Biochemistry, Sapporo Medical University School of Medicine, West-17, South-1, Sapporo 060-8556
| | | | | | | | | | | |
Collapse
|
20
|
Long J, Yokoyama K, Tigyi G, Pyne N, Pyne S. Lipid phosphate phosphatase-1 regulates lysophosphatidic acid- and platelet-derived-growth-factor-induced cell migration. Biochem J 2006; 394:495-500. [PMID: 16356167 PMCID: PMC1408680 DOI: 10.1042/bj20051674] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LPPs (lipid phosphate phosphatases) are members of a family of enzymes that catalyse the dephosphorylation of lipid phosphates. The only known form of regulation of this family of enzymes is via de novo expression of LPP isoforms in response to growth factors. In this respect, we evaluated the effect of moderate increases in the expression of recombinant LPP1 on signal transduction by both G-protein-coupled receptors and receptor tyrosine kinases. We present evidence for a novel role of LPP1 in reducing PDGF (platelet-derived growth factor)- and lysophosphatidic acid-induced migration of embryonic fibroblasts. We demonstrate that the overexpression of LPP1 inhibits cell migration by reducing the PDGF-induced activation of p42/p44 MAPK (mitogen-activated protein kinase). This appears to occur via a mechanism that involves the LPP1-induced down-regulation of typical PKC (protein kinase C) isoform(s), which are normally required for PDGF-induced activation of p42/p44 MAPK and migration. In this regard, DAG (diacylglycerol) levels are high and sustained in cells overexpressing LPP1, suggesting a dynamic interconversion of phosphatidic acid into DAG by LPP1. This may account for the effects of LPP1 on cell migration, as sustained DAG is known to down-regulate PKC isoforms in cells. Therefore the physiological changes in the expression levels of LPP1 might represent a heterologous desensitization mechanism for attenuating PKC-mediated signalling and regulation of cell migration.
Collapse
Affiliation(s)
- Jaclyn S. Long
- *Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, U.K
| | - Kazuaki Yokoyama
- †Department of Physiology, University of Tennessee Health Science Center Memphis, 894 Union Avenue, Memphis, TN, U.S.A
| | - Gabor Tigyi
- †Department of Physiology, University of Tennessee Health Science Center Memphis, 894 Union Avenue, Memphis, TN, U.S.A
| | - Nigel J. Pyne
- *Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, U.K
| | - Susan Pyne
- *Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
21
|
Brindley DN. Lipid phosphate phosphatases and related proteins: signaling functions in development, cell division, and cancer. J Cell Biochem 2005; 92:900-12. [PMID: 15258914 DOI: 10.1002/jcb.20126] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lipid phosphates initiate key signaling cascades in cell activation. Lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) are produced by activated platelets. LPA is also formed from circulating lysophosphatidylcholine by autotaxin, a protein involved tumor progression and metastasis. Extracellular LPA and S1P stimulate families of G-protein coupled receptors that elicit diverse responses. LPA is involved in wound repair and tumor growth. Exogenous S1P is a potent stimulator of angiogenesis, a process vital in development, tissue repair and the growth of aggressive tumors. Inside the cell, phosphatidate (PA), ceramide 1-phosphate (C1P), LPA, and S1P act as signaling molecules with distinct functions including the stimulation of cell division, cytoskeletal rearrangement, Ca(2+) transients, and membrane movement. These observations imply that phosphatases that degrade lipid phosphates on the cell surface, or inside the cell, regulate cell signaling under physiological and pathological conditions. This occurs through attenuation of signaling by the lipid phosphates and by the production of bioactive products (diacylglycerol, ceramide, and sphingosine). Three lipid phosphate phosphatases (LPPs) and a splice variant dephosphorylate LPA, PA, CIP, and S1P. Two S1P phosphatases (SPPs) act specifically on S1P. In addition, there is family of four LPP-related proteins (LPRs, or plasticity-related genes, PRGs). PRG-1 expression in neurons has been reported to increase extracellular LPA breakdown and attenuate LPA-induced axonal retraction. It is unclear whether the LRPs dephosphorylate LPA directly, stimulate LPP activity, or bind LPA and S1P. Also, the importance of extra- versus intra-cellular actions of the LPPs and SPPs, and the individual roles of different isoforms is not firmly established. Understanding the functions and regulation of the LPPs, SPPs and related proteins will hopefully contribute to interventions to correct dysfunctions in conditions such as wound repair, inflammation, angiogenesis, tumor growth, and metastasis.
Collapse
Affiliation(s)
- David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| |
Collapse
|
22
|
Pyne S, Kong KC, Darroch PI. Lysophosphatidic acid and sphingosine 1-phosphate biology: the role of lipid phosphate phosphatases. Semin Cell Dev Biol 2005; 15:491-501. [PMID: 15271294 DOI: 10.1016/j.semcdb.2004.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biological actions of the lysolipid agonists sphingosine 1-phosphate and lysophosphatidic acid, in addition to other bioactive lipid phosphates such as phosphatidic acid and ceramide 1-phosphate, can be influenced by a family of lipid phosphate phosphatases (LPP), including LPP1, LPP2, LPP3, the Drosophila homologues Wunen (Wun) and Wunen2 (Wun2) and sphingosine 1-phosphate phosphatases 1 and 2 (SPP1, SPP2). This review describes the characteristic of these enzymes and their potential physiological roles in regulating intracellular and extracellular actions and amounts of these lipids in addition to the involvement of these phosphatases in development.
Collapse
Affiliation(s)
- Susan Pyne
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Research, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, UK.
| | | | | |
Collapse
|
23
|
Swinnen JV, Heemers H, van de Sande T, de Schrijver E, Brusselmans K, Heyns W, Verhoeven G. Androgens, lipogenesis and prostate cancer. J Steroid Biochem Mol Biol 2004; 92:273-9. [PMID: 15663990 DOI: 10.1016/j.jsbmb.2004.10.013] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both experimental and epidemiological data indicate that androgens are among the main factors controlling the development, maintenance and progression of prostate cancer. Identifying the genes that are regulated by androgens represents a major step towards the elucidation of the mechanisms underlying the impact of androgens on prostate cancer cell biology and is an attractive approach to find novel targets for prostate cancer therapy. Among the genes that have been identified thus far, several genes encode lipogenic enzymes. Studies aimed at the elucidation of the mechanisms underlying androgen regulation of lipogenic genes revealed that androgens coordinately stimulate the expression of these genes through interference with the molecular mechanism controlling activation of sterol regulatory element-binding proteins (SREBPs), lipogenic transcription factors governing cellular lipid homeostasis. The resulting increase in lipogenesis serves the synthesis of key membrane components (phospholipids, cholesterol) and is a major hallmark of cancer cells. Pharmacologic inhibition of lipogenesis or RNA-interference-mediated down-regulation of key lipogenic genes induces apoptosis in cancer cell lines and reduces tumor growth in xenograft models. While increased lipogenesis is already found in the earliest stages of cancer development (PIN) and initially is androgen-responsive it persists or re-emerges with the development of androgen-independent cancer, indicating that lipogenesis is a fundamental aspect of prostate cancer cell biology and is a potential target for chemoprevention and for antineoplastic therapy in advanced prostate cancer.
Collapse
Affiliation(s)
- Johannes V Swinnen
- Laboratory for Experimental Medicine and Endocrinology, University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Gabor Tigyi
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | |
Collapse
|
25
|
Utleg AG, Yi EC, Xie T, Shannon P, White JT, Goodlett DR, Hood L, Lin B. Proteomic analysis of human prostasomes. Prostate 2003; 56:150-61. [PMID: 12746840 DOI: 10.1002/pros.10255] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prostasomes are secretory particles in human seminal fluid. Other than a microscopic description of these secretory particles and an incomplete two-dimensional gel electrophoresis (2DE) study, little is known about the composition of proteins in prostasomes. METHODS We employed a direct iterative approach using Gas phase fractionation and microcapillary HPLC-tandem mass spectrometry (microLC-MS/MS) to catalogue the prostasome proteome. RESULTS We identified 139 proteins that can be divided into the following categories: (1). enzymes (33.8% of total), (2). transport/structural (19.4% of total), (3). GTP proteins (14.4% of total), (4). chaperone proteins (5.8% of total), (5). signal transduction proteins (17.3% of total), and (6). unannotated proteins (9.4% of total). A total of 128 of the 139 proteins have not previously been described as prostasomal. CONCLUSIONS The proteins identified can be used as reference dataset in future work comparing prostasome proteins between normal and pathological states such as prostate cancer, benign prostatic hyperplasia, prostatitis, and infertility.
Collapse
|
26
|
Qi H, Labrie Y, Grenier J, Fournier A, Fillion C, Labrie C. Androgens induce expression of SPAK, a STE20/SPS1-related kinase, in LNCaP human prostate cancer cells. Mol Cell Endocrinol 2001; 182:181-92. [PMID: 11514053 DOI: 10.1016/s0303-7207(01)00560-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genes that are regulated by androgens in the human prostate are believed to play an essential role in prostate physiology and they may also be involved in the proliferative response of prostate cancer cells to androgens. We used a cDNA subtraction approach to identify novel androgen-regulated transcripts in LNCaP cells that were exposed to 0.1 nM R1881 for 24 h. We report here that SPAK, a recently identified STE20/SPS1-related kinase that modulates p38 MAP kinase activity, exhibited increased expression in androgen-treated LNCaP cells. Androgen regulation of SPAK was both dose- and time-dependent. R1881-induced SPAK expression was completely abrogated by the antiandrogen casodex and by actinomycin D indicating that androgen induction of SPAK requires the androgen receptor and transcription. Cycloheximide caused a partial inhibition of R1881-induced SPAK expression which suggests that androgen induction of SPAK expression may require synthesis of additional proteins. Northern blot and ribonuclease protection assays demonstrated that SPAK is expressed at high levels in normal human testes and prostate, as well as in a number of breast and prostate cancer cell lines. These results identify SPAK, a member of a key cell signalling pathway, as an androgen-responsive gene in LNCaP cells. We hypothesize that SPAK may mediate androgen action in the normal and cancerous prostate gland.
Collapse
Affiliation(s)
- H Qi
- Oncology and Molecular Endocrinology Research Center, CHUL Research Center (CHUQ), Laval University, Quebec, Canada G1V 4G2
| | | | | | | | | | | |
Collapse
|
27
|
Zhang N, Sundberg JP, Gridley T. Mice mutant for Ppap2c, a homolog of the germ cell migration regulator wunen, are viable and fertile. Genesis 2000; 27:137-40. [PMID: 10992322 DOI: 10.1002/1526-968x(200008)27:4<137::aid-gene10>3.0.co;2-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphatidic acid phosphatases (PAPs) catalyze the conversion of phosphatidic acid to diacylglycerol and inorganic phosphate and have been postulated to function both in lipid biosynthesis and in cellular signal transduction. In Drosophila melanogaster, the Type 2 phosphatidic acid phosphatase protein encoded by the wunen gene, negatively regulates primordial germ cell migration. We recently described the cloning and characterization of the mouse Ppap2c gene, which encodes the Type 2 phosphatidic acid phosphatase Pap2c (Zhang et al., Genomics 63:142-144). To analyze the in vivo role of the Ppap2c gene we constructed a null mutation by gene targeting. Ppap2c(-/-) homozygous mutant mice were viable, fertile, and exhibited no obvious phenotypic defects. These data demonstrate that the Ppap2c gene is not essential for embryonic development or fertility in mice.
Collapse
Affiliation(s)
- N Zhang
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | |
Collapse
|
28
|
Xu LL, Shanmugam N, Segawa T, Sesterhenn IA, McLeod DG, Moul JW, Srivastava S. A novel androgen-regulated gene, PMEPA1, located on chromosome 20q13 exhibits high level expression in prostate. Genomics 2000; 66:257-63. [PMID: 10873380 DOI: 10.1006/geno.2000.6214] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biologic effects of androgen on target cells are mediated in part by transcriptional regulation of androgen-regulated genes (ARGs) by androgen receptor. Using serial analysis of gene expression (SAGE), we have identified a comprehensive repertoire of ARGs in LNCaP cells. One of the SAGE-derived tags exhibiting homology to an expressed sequence tag was maximally induced in response to synthetic androgen R1881 treatment. The open reading frame of the androgen-induced RNA (PMEPA1) was characterized as a 759-bp nucleotide sequence coding for a 252-amino-acid protein. The analysis of PMEPA1 protein sequence indicated the existence of a type Ib transmembrane domain between residues 9 and 25. Analysis of multiple-tissue Northern blots revealed the highest level of PMEPA1 expression in prostate tissue. PMEPA1 expression was predominately detected in glandular epithelial cells of prostate by in situ hybridization analysis. The expression of PMEPA1 in LNCaP cells was induced by androgen in a time- and dose-specific manner. Evaluation of PMEPA1 expression in androgen-dependent/independent tumors of the CWR22 xenograft model revealed that PMEPA1 was overexpressed in three of four androgen-independent tumor tissues. These observations define PMEPA1 as a novel androgen-regulated gene exhibiting abundant expression in prostate tissue. The increased expression of PMEPA1 in relapsed tumors of the CWR22 model suggests activation of androgen signaling in hormone refractory disease. PMEPA1, along with other highly androgen-induced prostate-specific genes, has potential to serve as an androgen signaling read-out biomarker in prostate tissue.
Collapse
Affiliation(s)
- L L Xu
- Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20814-4799, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Leung DW, Tompkins CK, White T. Characterization of two spliced variants of human phosphatidic acid phosphatase cDNAs that are differentially expressed in normal and tumor cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 469:639-46. [PMID: 10667393 DOI: 10.1007/978-1-4615-4793-8_92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- D W Leung
- Molecular Biology Department, Cell Therapeutics, Inc., Seattle, WA 98119, USA
| | | | | |
Collapse
|
30
|
Hiroyama M, Takenawa T. Isolation of a cDNA encoding human lysophosphatidic acid phosphatase that is involved in the regulation of mitochondrial lipid biosynthesis. J Biol Chem 1999; 274:29172-80. [PMID: 10506173 DOI: 10.1074/jbc.274.41.29172] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we isolated cDNA encoding lysophosphatidic acid (LPA) phosphatase (LPAP). The amino acid sequence deduced from the cDNA encoding LPAP had 421 residues including a putative signal peptide and was homologous to acid phosphatase, especially at the active site. Human LPAP had 28.5% amino acid identity to human prostatic acid phosphatase. Northern blot analysis showed a ubiquitous expression of LPAP, which was marked in kidney, heart, small intestine, muscle, and liver. Human chromosome map obtained by fluorescence in situ hybridazation showed that the gene for LPAP was localized to chromosome 1 q21. The mutant in which histidine was replaced with alanine at the active site and the putative signal peptide-deleted LPAP had no LPA phosphatase activity. In addition, the putative signal peptide-deleted LPAP showed no mitochondrial localization. The site of intracellular localization of endogenous LPAP was also mitochondria in MDCK cells and differentiated C2C12 cells. The LPAP homologous phosphatase, human prostatic acid phosphatase, also has LPA phosphatase activity. LPAP-stable transfected NIH 3T3 cells showed less phosphatidic acid, phosphatidylglycerol, and cardiolipin. These results suggested that LPAP regulates lipid metabolism in mitochondria via the hydrolysis of LPA to monoacylglycerol.
Collapse
Affiliation(s)
- M Hiroyama
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
31
|
Ulrix W, Swinnen JV, Heyns W, Verhoeven G. Androgens down-regulate the expression of the human homologue of paternally expressed gene-3 in the prostatic adenocarcinoma cell line LNCaP. Mol Cell Endocrinol 1999; 155:69-76. [PMID: 10580840 DOI: 10.1016/s0303-7207(99)00113-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
mRNA differential display polymerase chain reaction analysis was used to screen systematically for novel androgen-regulated genes in the human prostatic adenocarcinoma cell line LNCaP. A 232 bp PCR fragment was found to be consistently down-regulated by the synthetic androgen R1881. Sequencing revealed complete identity with the human homologue of mouse Paternally expressed gene 3 (Peg3), an imprinted gene that plays an important role as a downstream mediator of the effects of tumor necrosis factor (TNF). The down-regulation of Peg3 mRNA by androgens was confirmed by Northern blot hybridization. The effect proved time and dose dependent with maximal repression (3.5-fold) after 24 h of treatment with 10(-8) M R1881. The steroid specificity of Peg3 mRNA regulation reflected the aberrant ligand specificity of the mutated androgen receptor in LNCaP cells, supporting the involvement of the androgen receptor in the repression process. Basal expression of Peg3 mRNA was almost completely abolished by the protein synthesis inhibitor cycloheximide. Experiments with Actinomycin D suggested that androgens act at a transcriptional level rather than by changing the stability of Peg3 mRNA. Comparison of the expression of Peg3 mRNA in 50 different human tissues revealed ubiquitous expression, but low levels in the prostate. The highest levels were observed in endocrine tissues such as ovary, placenta, adrenal and pituitary. High levels were also noted in various parts of the brain. No detectable levels of Peg3 mRNA were observed in two other androgen receptor-positive prostate tumor cell lines (MDA PCa-2a and -2b), and in the poorly differentiated and androgen receptor-negative prostate tumor lines PC-3 and DU-145. It is concluded that both androgens and loss of differentiation may affect the expression of Peg3, a mediator of the effects of TNF. Further experiments will be required to explore whether these changes affect the responsiveness of prostate tumor cells to TNF.
Collapse
Affiliation(s)
- W Ulrix
- Laboratory for Experimental Medicine and Endocrinology, Faculty of Medicine, Onderwijs en Navorsing, Gasthuisberg, Belgium
| | | | | | | |
Collapse
|
32
|
Choo CK, Ling MT, Chan KW, Tsao SW, Zheng Z, Zhang D, Chan LC, Wong YC. Immortalization of human prostate epithelial cells by HPV 16 E6/E7 open reading frames. Prostate 1999; 40:150-8. [PMID: 10398276 DOI: 10.1002/(sici)1097-0045(19990801)40:3<150::aid-pros2>3.0.co;2-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The exact pathogenesis for prostate cancer is not known. Progress made in prostate cancer research has been slow, largely due to the lack of suitable in vitro models. Here, we report our work on the immortalization of a human prostate epithelial cell line and show that it can be used as a model to study prostate tumorigenesis. METHODS Replication-defective retrovirus harboring the human papillomavirus (HPV) type 16 E6 and E7 open reading frames was used to infect primary human prostate epithelial cells. Polymerase chain reaction, followed by Southern hybridization for the HPV 16 E6/E7, Western blot for prostatic acid phosphatase, telomeric repeat amplification protocol assay for telomerase activity, two-dimensional gels for cytokeratins, and cytogenetic analysis were undertaken to characterized the infected cells. RESULTS The retrovirus-infected cell line, HPr-1, continued to grow in culture for more than 80 successive passages. Normal primary cells failed to proliferate after passage 6. HPr-1 cells bore close resemblance to normal primary prostate epithelial cells, both morphologically and biochemically. However, they possessed telomerase activity and proliferated indefinitely. Cytogenetic analysis of HPr-1 cells revealed a human male karyotype with clonal abnormalities and the appearance of multiple double minutes. CONCLUSIONS The HPr-1 cells expressed prostatic acid phosphatase and cytokeratins K8 and K18, proving that they were prostate epithelial cells. They were benign in nude mice tumor formation and soft agar colony formation assay. The HPr-1 cell line is an in vitro representation of early prostate neoplastic progression.
Collapse
Affiliation(s)
- C K Choo
- Department of Pathology, University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Waggoner DW, Xu J, Singh I, Jasinska R, Zhang QX, Brindley DN. Structural organization of mammalian lipid phosphate phosphatases: implications for signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:299-316. [PMID: 10425403 DOI: 10.1016/s1388-1981(99)00102-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This article describes the regulation of cell signaling by lipid phosphate phosphatases (LPPs) that control the conversion of bioactive lipid phosphates to their dephosphorylated counterparts. A structural model of the LPPs, that were previously called Type 2 phosphatidate phosphatases, is described. LPPs are characterized by having no Mg(2+) requirement and their insensitivity to inhibition by N-ethylmaleimide. The LPPs have six putative transmembrane domains and three highly conserved domains that define a phosphatase superfamily. The conserved domains are juxtaposed to the proposed membrane spanning domains such that they probably form the active sites of the phosphatases. It is predicted that the active sites of the LPPs are exposed at the cell surface or on the luminal surface of intracellular organelles, such as Golgi or the endoplasmic reticulum, depending where various LPPs are expressed. LPPs could attenuate cell activation by dephosphorylating bioactive lipid phosphate esters such as phosphatidate, lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate. In so doing, the LPPs could generate alternative signals from diacylglycerol, sphingosine and ceramide. The LPPs might help to modulate cell signaling by the phospholipase D pathway. For example, phosphatidate generated within the cell by phospholipase D could be converted by an LPP to diacylglycerol. This should change the relative balance of signaling by these two lipids. Another possible function of the LPPs relates to the secretion of lysophosphatidate and sphingosine 1-phosphate by activated platelets and other cells. These exogenous lipids activate phospholipid growth factor receptors on the surface of cells. LPP activities could attenuate cell activation by lysophosphatidate and sphingosine 1-phosphate through their respective receptors.
Collapse
Affiliation(s)
- D W Waggoner
- Department of Biochemistry (Signal Transduction Laboratories), Lipid and Lipoprotein Research Group, University of Alberta, 357 Heritage Medical Research Centre, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Ulrix W, Swinnen JV, Heyns W, Verhoeven G. The differentiation-related gene 1, Drg1, is markedly upregulated by androgens in LNCaP prostatic adenocarcinoma cells. FEBS Lett 1999; 455:23-6. [PMID: 10428464 DOI: 10.1016/s0014-5793(99)00845-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A differential display technique was used to identify androgen-regulated genes in LNCaP prostatic adenocarcinoma cells. One of the genes markedly upregulated by androgens proved to be identical to differentiation-related gene 1 (Drg1; also described as RTP, Cap43 and rit42), a gene whose expression has recently been shown to be diminished in colon, breast and prostate tumors. We show that Drg1 is abundantly expressed in the (androgen-exposed) human prostate and that its expression is stimulated some 14-fold in androgen-treated LNCaP cells. The ligand specificity of the induction reflects the altered specificity of the mutated androgen receptor in LNCaP. In androgen receptor negative tumor lines basal expression is slightly higher than in LNCaP but inducibility is absent. These data suggest that Drg1 is a novel marker of androgen-induced differentiation in the human prostate.
Collapse
Affiliation(s)
- W Ulrix
- Laboratory for Experimental Medicine and Endocrinology, Faculty of Medicine, Onderwijs en Navorsing, Gasthuisberg, Belgium
| | | | | | | |
Collapse
|
35
|
Abstract
Phosphatidic acid phosphatase (PAP) converts phosphatidic acid to diacylglycerol, thus regulating the de novo synthesis of glycerolipids and also signal transduction mediated by phospholipase D. We initially succeeded in the cDNA cloning of the mouse 35 kDa PAP bound to plasma membranes (type 2 enzyme). This work subsequently led us to the identification of two human PAP isozymes designated 2a and 2b. A third human PAP isozyme (2c) has also been described. The cloned enzymes are, in common, N-glycosylated and possess six transmembrane domains. The transmembrane dispositions of these enzymes are predicted and the catalytic sites are tentatively located in the 2nd and 3rd extracellular loops, thus suggesting that the type 2 PAPs may act as ecto-enzymes dephosphorylating exogenous substrates. Furthermore, the type 2 PAPs have been proposed to belong to a novel phosphatase superfamily consisting of a number of soluble and membrane-bound enzymes. In vitro enzyme assays show that the type 2 PAPs can dephosphorylate lyso-phosphatidate, ceramide-1-phosphate, sphingosine-1-phosphate and diacylglycerol pyrophosphate. Although the physiological implications of such a broad substrate specificity need to be further investigated, the type 2 PAPs appear to metabolize a wide range of lipid mediators derived from both glycero- and sphingolipids.
Collapse
Affiliation(s)
- H Kanoh
- Department of Biochemistry, Sapporo Medical University School of Medicine, Japan.
| | | | | |
Collapse
|
36
|
Affiliation(s)
- D N Brindley
- Signal Transduction Laboratories, Lipid and Lipoprotein Research Group, and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| | | |
Collapse
|
37
|
Hooks SB, Ragan SP, Lynch KR. Identification of a novel human phosphatidic acid phosphatase type 2 isoform. FEBS Lett 1998; 427:188-92. [PMID: 9607309 DOI: 10.1016/s0014-5793(98)00421-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two human isoforms of membrane associated phosphatidic acid phosphatase have been described (PAP-2a and -2b), and both enzymes have been shown to have broad substrate specificity and wide tissue distribution [Kai et al., J. Biol. Chem. 272 (1997) 24572-24578]. With this report we describe a third isoform, PAP-2c, that we found by searching the database of expressed sequence tags (dbEST) with PAP-2a and PAP-2b sequences. Key structural features described previously in PAP-2a and -2b, including the glycosylation site, putative transmembrane domains, and the proposed catalytic site, are conserved in the novel phosphatase. The kinetics of the three enzymes were compared using as substrates phosphatidic acid, lysophosphatidic acid, and N-oleoyl ethanolamine phosphatidic acid. Km values for each of the substrates, respectively, were (in microM) PAP-2a: 98, 170, 116; PAP-2b: 100, 110, 56; and PAP-2c: 150, 340, 138. Expression of PAP-2c mRNA is more restricted than the two previously described isoforms.
Collapse
Affiliation(s)
- S B Hooks
- Department of Biochemistry, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|