1
|
Markussen KH, Corti M, Byrne BJ, Kooi CWV, Sun RC, Gentry MS. The multifaceted roles of the brain glycogen. J Neurochem 2024; 168:728-743. [PMID: 37554056 PMCID: PMC10901277 DOI: 10.1111/jnc.15926] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Glycogen is a biologically essential macromolecule that is directly involved in multiple human diseases. While its primary role in carbohydrate storage and energy metabolism in the liver and muscle is well characterized, recent research has highlighted critical metabolic and non-metabolic roles for glycogen in the brain. In this review, the emerging roles of glycogen homeostasis in the healthy and diseased brain are discussed with a focus on advancing our understanding of the role of glycogen in the brain. Innovative technologies that have led to novel insights into glycogen functions are detailed. Key insights into how cellular localization impacts neuronal and glial function are discussed. Perturbed glycogen functions are observed in multiple disorders of the brain, including where it serves as a disease driver in the emerging category of neurological glycogen storage diseases (n-GSDs). n-GSDs include Lafora disease (LD), adult polyglucosan body disease (APBD), Cori disease, Glucose transporter type 1 deficiency syndrome (G1D), GSD0b, and late-onset Pompe disease (PD). They are neurogenetic disorders characterized by aberrant glycogen which results in devastating neurological and systemic symptoms. In the most severe cases, rapid neurodegeneration coupled with dementia results in death soon after diagnosis. Finally, we discuss current treatment strategies that are currently being developed and have the potential to be of great benefit to patients with n-GSD. Taken together, novel technologies and biological insights have resulted in a renaissance in brain glycogen that dramatically advanced our understanding of both biology and disease. Future studies are needed to expand our understanding and the multifaceted roles of glycogen and effectively apply these insights to human disease.
Collapse
Affiliation(s)
- Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, USA
| | - Barry J. Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, USA
| | - Craig W. Vander Kooi
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida
- Lafora Epilepsy Cure Initiative
| | - Ramon C. Sun
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida
- Lafora Epilepsy Cure Initiative
| | - Matthew S. Gentry
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida
- Lafora Epilepsy Cure Initiative
| |
Collapse
|
2
|
Ma H, Qu J, Liao Y, Liu L, Yan M, Wei Y, Xu W, Luo J, Dai Y, Pang Z, Qu Q. Equilibrative nucleotide transporter ENT3 (SLC29A3): A unique transporter for inherited disorders and cancers. Exp Cell Res 2024; 434:113892. [PMID: 38104646 DOI: 10.1016/j.yexcr.2023.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
As a crucial gene associated with diseases, the SLC29A3 gene encodes the equilibrative nucleoside transporter 3 (ENT3). ENT3 plays an essential regulatory role in transporting intracellular hydrophilic nucleosides, nucleotides, hydrophilic anticancer and antiviral nucleoside drugs, energy metabolism, subcellular localization, protein stability, and signal transduction. The mutation and inactivation of SLC29A3 are intimately linked to the occurrence, development, and prognosis of various human tumors. Moreover, many hereditary human diseases, such as H syndrome, pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) syndrome, Faisalabad histiocytosis (FHC), are related to SLC29A3 mutations. This review explores the mechanisms of SLC29A3 mutations and expression alterations in inherited disorders and cancers. Additionally, we compile studies on the inhibition of ENT3, which may serve as an effective strategy to potentiate the anticancer activity of chemotherapy. Thus, the synopsis of genetics, permeant function and drug therapy of ENT3 provides a new theoretical and empirical foundation for the diagnosis, prognosis of evaluation and treatment of various related diseases.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Yongkang Liao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yiwen Wei
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yuxin Dai
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China.
| |
Collapse
|
3
|
Zheng X, Zhang W, Hu Y, Zhao Z, Wu J, Zhang X, Hao F, Han J, Xu J, Hao W, Wang R, Tian M, Radak Z, Nakabeppu Y, Boldogh I, Ba X. DNA repair byproduct 8-oxoguanine base promotes myoblast differentiation. Redox Biol 2023; 61:102634. [PMID: 36827746 PMCID: PMC9982643 DOI: 10.1016/j.redox.2023.102634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Muscle contraction increases the level of reactive oxygen species (ROS), which has been acknowledged as key signaling entities in muscle remodeling and to underlie the healthy adaptation of skeletal muscle. ROS inevitably endows damage to various cellular molecules including DNA. DNA damage ought to be repaired to ensure genome integrity; yet, how DNA repair byproducts affect muscle adaptation remains elusive. Here, we showed that exercise elicited the generation of 8-oxo-7,8-dihydroguanine (8-oxoG), that was primarily found in mitochondrial genome of myofibers. Upon exercise, TA muscle's 8-oxoG excision capacity markedly enhanced, and in the interstitial fluid of TA muscle from the post-exercise mice, the level of free 8-oxoG base was significantly increased. Addition of 8-oxoG to myoblasts triggered myogenic differentiation via activating Ras-MEK-MyoD signal axis. 8-Oxoguanine DNA glycosylase1 (OGG1) silencing from cells or Ogg1 KO from mice decreased Ras activation, ERK phosphorylation, MyoD transcriptional activation, myogenic regulatory factors gene (MRFs) expression. In reconstruction experiments, exogenously added 8-oxoG base enhanced the expression of MRFs and accelerated the recovery of the injured skeletal muscle. Collectively, these data not only suggest that DNA repair metabolite 8-oxoG function as a signal entity for muscle remodeling and contribute to exercise-induced adaptation of skeletal muscle, but also raised the potential for utilizing 8-oxoG in clinical treatment to skeletal muscle damage-related disorders.
Collapse
Affiliation(s)
- Xu Zheng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenhe Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yinchao Hu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhexuan Zhao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jiaxin Wu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xiaoqing Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Fengqi Hao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Physical Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jinling Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jing Xu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenjing Hao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Meihong Tian
- School of Physical Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, H-1123, Budapest, Hungary
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China.
| |
Collapse
|
4
|
Li R, Mak WWS, Li J, Zheng C, Shiu PHT, Seto SW, Lee SMY, Leung GPH. Structure-Activity Relationship Studies of 4-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-6-imino-N-(naphthalen-2-yl)-1,3,5-triazin-2-amine (FPMINT) Analogues as Inhibitors of Human Equilibrative Nucleoside Transporters. Front Pharmacol 2022; 13:837555. [PMID: 35264969 PMCID: PMC8899516 DOI: 10.3389/fphar.2022.837555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) play a vital role in nucleotide synthesis, regulation of adenosine function and chemotherapy. Current inhibitors of ENTs are mostly ENT1-selective. Our previous study has demonstrated that 4-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-6-imino-N-(naphthalen-2-yl)-1,3,5-triazin-2-amine (FPMINT) is a novel inhibitor of ENTs, which is more selective to ENT2 than to ENT1. The present study aimed to screen a series of FPMINT analogues and study their structure-activity relationship. Nucleoside transporter-deficient cells transfected with cloned human ENT1 and ENT2 were used as in vitro models. The results of the [3H]uridine uptake study showed that the replacement of the naphthalene moiety with the benzene moiety could abolish the inhibitory effects on ENT1 and ENT2. The addition of chloride to the meta position of this benzene moiety could restore only the inhibitory effect on ENT1 but had no effect on ENT2. However, the addition of the methyl group to the meta position or the ethyl or oxymethyl group to the para position of this benzene moiety could regain the inhibitory activity on both ENT1 and ENT2. The presence of a halogen substitute, regardless of the position, in the fluorophenyl moiety next to the piperazine ring was essential for the inhibitory effects on ENT1 and ENT2. Among the analogues tested, compound 3c was the most potent inhibitor. Compound 3c reduced V max of [3H]uridine uptake in ENT1 and ENT2 without affecting K m. The inhibitory effect of compound 3c could not be washed out. Compound 3c did not affect cell viability, protein expression and internalization of ENT1 and ENT2. Therefore, similar to FPMINT, compound 3c was an irreversible and non-competitive inhibitor. Molecular docking analysis also showed that the binding site of compound 3c in ENT1 may be different from that of other conventional inhibitors. It is expected that structural modification may further improve its potency and selectivity and lead to the development of useful pharmacological agents.
Collapse
Affiliation(s)
- Renkai Li
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Winston Wing-Shum Mak
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jingjing Li
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sai-Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
5
|
Yu Y, Ding J, Zhu S, Alptekin A, Dong Z, Yan C, Zha Y, Ding HF. Therapeutic targeting of both dihydroorotate dehydrogenase and nucleoside transport in MYCN-amplified neuroblastoma. Cell Death Dis 2021; 12:821. [PMID: 34462431 PMCID: PMC8405683 DOI: 10.1038/s41419-021-04120-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming is an integral part of the growth-promoting program driven by the MYC family of oncogenes. However, this reprogramming also imposes metabolic dependencies that could be exploited therapeutically. Here we report that the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is an attractive therapeutic target for MYCN-amplified neuroblastoma, a childhood cancer with poor prognosis. Gene expression profiling and metabolomic analysis reveal that MYCN promotes pyrimidine nucleotide production by transcriptional upregulation of DHODH and other enzymes of the pyrimidine-synthesis pathway. Genetic and pharmacological inhibition of DHODH suppresses the proliferation and tumorigenicity of MYCN-amplified neuroblastoma cell lines. Furthermore, we obtain evidence suggesting that serum uridine is a key factor in determining the efficacy of therapeutic agents that target DHODH. In the presence of physiological concentrations of uridine, neuroblastoma cell lines are highly resistant to DHODH inhibition. This uridine-dependent resistance to DHODH inhibitors can be abrogated by dipyridamole, an FDA-approved drug that blocks nucleoside transport. Importantly, dipyridamole synergizes with DHODH inhibition to suppress neuroblastoma growth in animal models. These findings suggest that a combination of targeting DHODH and nucleoside transport is a promising strategy to overcome intrinsic resistance to DHODH-based cancer therapeutics.
Collapse
Affiliation(s)
- Yajie Yu
- Institute of Neural Regeneration and Repair and Department of Neurology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang, 443000, China
| | - Jane Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ahmet Alptekin
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Zheng Dong
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Chunhong Yan
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Yunhong Zha
- Institute of Neural Regeneration and Repair and Department of Neurology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang, 443000, China.
| | - Han-Fei Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA.
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA.
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA.
| |
Collapse
|
6
|
Abstract
Nucleosides play central roles in all facets of life, from metabolism to cellular signaling. Because of their physiochemical properties, nucleosides are lipid bilayer impermeable and thus rely on dedicated transport systems to cross biological membranes. In humans, two unrelated protein families mediate nucleoside membrane transport: the concentrative and equilibrative nucleoside transporter families. The objective of this review is to provide a broad outlook on the current status of nucleoside transport research. We will discuss the role played by nucleoside transporters in human health and disease, with emphasis placed on recent structural advancements that have revealed detailed molecular principles of these important cellular transport systems and exploitable pharmacological features.
Collapse
Affiliation(s)
- Nicholas J. Wright
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
- Correspondence and requests for materials should be addressed to: S.-Y. Lee., , tel: 919-684-1005, fax: 919-684-8885
| |
Collapse
|
7
|
Equilibrative Nucleoside Transporter 2: Properties and Physiological Roles. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5197626. [PMID: 33344638 PMCID: PMC7732376 DOI: 10.1155/2020/5197626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Equilibrative nucleoside transporter 2 (ENT2) is a bidirectional transporter embedded in the biological membrane and is ubiquitously found in most tissue and cell types. ENT2 mediates the uptake of purine and pyrimidine nucleosides and nucleobase besides transporting a variety of nucleoside-derived drugs, mostly in anticancer therapy. Since high expression of ENT2 has been correlated with advanced stages of different types of cancers, consequently, this has gained significant interest in the role of ENT2 as a potential therapeutic target. Furthermore, ENT2 plays critical roles in signaling pathway and cell cycle progression. Therefore, elucidating the physiological roles of ENT2 and its properties may contribute to a better understanding of ENT2 roles beyond their transportation mechanism. This review is aimed at highlighting the main roles of ENT2 and at providing a brief update on the recent research.
Collapse
|
8
|
Mollick T, Laín S. Modulating pyrimidine ribonucleotide levels for the treatment of cancer. Cancer Metab 2020; 8:12. [PMID: 33020720 PMCID: PMC7285601 DOI: 10.1186/s40170-020-00218-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
By providing the necessary building blocks for nucleic acids and precursors for cell membrane synthesis, pyrimidine ribonucleotides are essential for cell growth and proliferation. Therefore, depleting pyrimidine ribonucleotide pools has long been considered as a strategy to reduce cancer cell growth. Here, we review the pharmacological approaches that have been employed to modulate pyrimidine ribonucleotide synthesis and degradation routes and discuss their potential use in cancer therapy. New developments in the treatment of myeloid malignancies with inhibitors of pyrimidine ribonucleotide synthesis justify revisiting the literature as well as discussing whether targeting this metabolic pathway can be effective and sufficiently selective for cancer cells to warrant an acceptable therapeutic index in patients.
Collapse
Affiliation(s)
- Tanzina Mollick
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Stockholm, Sweden.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23, SE-171 65, Solna, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Stockholm, Sweden.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23, SE-171 65, Solna, Stockholm, Sweden
| |
Collapse
|
9
|
Miller SR, Hau RK, Jilek JL, Morales MN, Wright SH, Cherrington NJ. Nucleoside Reverse Transcriptase Inhibitor Interaction with Human Equilibrative Nucleoside Transporters 1 and 2. Drug Metab Dispos 2020; 48:603-612. [PMID: 32393653 PMCID: PMC7318791 DOI: 10.1124/dmd.120.090720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Equilibrative nucleoside transporters (ENTs) transport nucleosides across the blood-testis barrier (BTB). ENTs are of interest to study the disposition of nucleoside reverse-transcriptase inhibitors (NRTIs) in the human male genital tract because of their similarity in structure to nucleosides. HeLa S3 cells express ENT1 and ENT2 and were used to compare relative interactions of these transporters with selected NRTIs. Inhibition of [3H]uridine uptake by NBMPR was biphasic, with IC50 values of 11.3 nM for ENT1 and 9.6 μM for ENT2. Uptake measured with 100 nM NBMPR represented ENT2-mediated transport; subtracting that from total uptake represented ENT1-mediated transport. The kinetics of ENT1- and ENT2-mediated [3H]uridine uptake revealed no difference in Jmax (16.53 and 30.40 pmol cm-2 min-1) and an eightfold difference in Kt (13.6 and 108.9 μM). The resulting fivefold difference in intrinsic clearance (Jmax/Kt) for ENT1- and ENT2 transport accounted for observed inhibition of [3H]uridine uptake by 100 nM NBMPR. Millimolar concentrations of the NRTIs emtricitabine, didanosine, lamivudine, stavudine, tenofovir disoproxil, and zalcitabine had no effect on ENT transport activity, whereas abacavir, entecavir, and zidovudine inhibited both transporters with IC50 values of ∼200 µM, 2.5 mM, and 2 mM, respectively. Using liquid chromatography-tandem mass spectrometry and [3H] compounds, the data suggest that entecavir is an ENT substrate, abacavir is an ENT inhibitor, and zidovudine uptake is carrier-mediated, although not an ENT substrate. These data show that HeLa S3 cells can be used to explore complex transporter selectivity and are an adequate model for studying ENTs present at the BTB. SIGNIFICANCE STATEMENT: This study characterizes an in vitro model using S-[(4-nitrophenyl)methyl]-6-thioinosine to differentiate between equilibrative nucleoside transporter (ENT) 1- and ENT2-mediated uridine transport in HeLa cells. This provides a method to assess the influence of nucleoside reverse-transcriptase inhibitors on natively expressed transporter function. Determining substrate selectivity of the ENTs in HeLa cells can be effectively translated into the activity of these transporters in Sertoli cells that comprise the blood-testis barrier, thereby assisting targeted drug development of compounds capable of circumventing the blood-testis barrier.
Collapse
Affiliation(s)
- Siennah R Miller
- College of Pharmacy, Department of Pharmacology and Toxicology (S.R.M., R.K.H., J.L.J., N.J.C.) and College of Medicine, Department of Physiology (M.N.M., S.H.W.), University of Arizona, Tucson, Arizona
| | - Raymond K Hau
- College of Pharmacy, Department of Pharmacology and Toxicology (S.R.M., R.K.H., J.L.J., N.J.C.) and College of Medicine, Department of Physiology (M.N.M., S.H.W.), University of Arizona, Tucson, Arizona
| | - Joseph L Jilek
- College of Pharmacy, Department of Pharmacology and Toxicology (S.R.M., R.K.H., J.L.J., N.J.C.) and College of Medicine, Department of Physiology (M.N.M., S.H.W.), University of Arizona, Tucson, Arizona
| | - Mark N Morales
- College of Pharmacy, Department of Pharmacology and Toxicology (S.R.M., R.K.H., J.L.J., N.J.C.) and College of Medicine, Department of Physiology (M.N.M., S.H.W.), University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology and Toxicology (S.R.M., R.K.H., J.L.J., N.J.C.) and College of Medicine, Department of Physiology (M.N.M., S.H.W.), University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology and Toxicology (S.R.M., R.K.H., J.L.J., N.J.C.) and College of Medicine, Department of Physiology (M.N.M., S.H.W.), University of Arizona, Tucson, Arizona
| |
Collapse
|
10
|
Takenaka R, Yasujima T, Furukawa J, Hishikawa Y, Yamashiro T, Ohta K, Inoue K, Yuasa H. Functional Analysis of the Role of Equilibrative Nucleobase Transporter 1 (ENBT1/SLC43A3) in Adenine Transport in HepG2 Cells. J Pharm Sci 2020; 109:2622-2628. [PMID: 32339528 DOI: 10.1016/j.xphs.2020.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
Equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) has recently been identified as a purine-selective nucleobase transporter. Although it is highly expressed in the liver, its role in nucleobase transport has not been confirmed yet in hepatocytes or any relevant cell models. We, therefore, examined its role in adenine transport in the HepG2 cell line as a human hepatocyte model. The uptake of [3H]adenine in HepG2 cells was highly saturable, indicating the involvement of carrier-mediated transport. The carrier-mediated transport component, for which the Michaelis constant was estimated to be 0.268 μM, was sensitive to decynium-22, an ENBT1 inhibitor, with the half maximal inhibitory concentration of 2.59 μM, which was comparable to that of 2.30 μM for [3H]adenine uptake by ENBT1 in its transient transfectant human embryonic kidney 293 cells. Although equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and ENT2/SLC29A2 are also known to be able to transport adenine, [3H]adenine uptake in HepG2 cells was not inhibited by the ENT1/2-specific inhibitor of either dipyridamole or nitrobenzylthioinosine. Finally, [3H]adenine uptake was extensively reduced by silencing of ENBT1 by RNA interference in the hepatocyte model. All these results, taken together, suggest the predominant role of ENBT1 in the uptake of adenine in HepG2 cells.
Collapse
Affiliation(s)
- Risa Takenaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Junji Furukawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yosuke Hishikawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takahiro Yamashiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kinya Ohta
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
11
|
Altaweraqi RA, Yao SYM, Smith KM, Cass CE, Young JD. HPLC reveals novel features of nucleoside and nucleobase homeostasis, nucleoside metabolism and nucleoside transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183247. [PMID: 32126230 DOI: 10.1016/j.bbamem.2020.183247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/31/2022]
Abstract
Humans possess three members of the cation-coupled concentrative nucleoside transporter CNT (SLC 28) family, hCNT1-3: hCNT1 is selective for pyrimidine nucleosides but also transports adenosine, hCNT2 transports purine nucleosides and uridine, and hCNT3 transports both pyrimidine and purine nucleosides. hCNT1/2 transport nucleosides using the transmembrane Na+ electrochemical gradient, while hCNT3 is both Na+- and H+-coupled. By producing recombinant hCNT3 in Xenopus laevis oocytes, we have used radiochemical high performance liquid chromatography (HPLC) analysis to investigate the metabolic fate of transported [3H] or [14C] pyrimidine and purine nucleosides once inside cells. With the exception of adenosine, transported nucleosides were generally subject to minimal intracellular metabolism. We also used radiochemical HPLC analysis to study the mechanism by which adenosine functions as a low Km, low Vmax permeant of hCNT1. hCNT1-producing oocytes were pre-loaded with [3H] uridine, after which efflux of accumulated radioactivity was measured in transport medium alone, or in the presence of extracellular non-radiolabelled adenosine or uridine. hCNT1-mediated [3H]-efflux was stimulated by extracellular uridine, but inhibited by extracellular adenosine, with >95% of the radioactivity exiting cells being unmetabolized uridine, consistent with a low transmembrane mobility of the hCNT1/adenosine complex. Humans also possess four members of the equilibrative nucleoside transporter ENT (SLC 29) family, hENT1-4. Of these, hENT1 and hENT2 transport both nucleosides and nucleobases into and out of cells, but their relative contributions to nucleoside and nucleobase homeostasis and, in particular, to adenosine signaling via purinoreceptors, are not known. We therefore used HPLC to determine plasma nucleoside and nucleobase concentrations in wild-type, mENT1-, mENT2- and mENT1/mENT2-knockout (KO) mice, and to compare the findings with knockout of mCNT3. Results demonstrated that ENT1 was more important than ENT2 or CNT3 in determining plasma adenosine concentrations, indicated modest roles of ENT1 in the homeostasis of other nucleosides, and suggested that none of the transporters is a major participant in handling of nucleobases.
Collapse
Affiliation(s)
- Reema A Altaweraqi
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Sylvia Y M Yao
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Kyla M Smith
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Carol E Cass
- Membrane Protein Disease Research Group, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - James D Young
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
12
|
Zhou Z, Austin GL, Shaffer R, Armstrong DD, Gentry MS. Antibody-Mediated Enzyme Therapeutics and Applications in Glycogen Storage Diseases. Trends Mol Med 2019; 25:1094-1109. [PMID: 31522955 PMCID: PMC6889062 DOI: 10.1016/j.molmed.2019.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023]
Abstract
The use of antibodies as targeting molecules or cell-penetrating tools has emerged at the forefront of pharmaceutical research. Antibody-directed therapies in the form of antibody-drug conjugates, immune modulators, and antibody-directed enzyme prodrugs have been most extensively utilized as hematological, rheumatological, and oncological therapies, but recent developments are identifying additional applications of antibody-mediated delivery systems. A novel application of this technology is for the treatment of glycogen storage disorders (GSDs) via an antibody-enzyme fusion (AEF) platform to penetrate cells and deliver an enzyme to the cytoplasm, nucleus, and/or other organelles. Exciting developments are currently underway for AEFs in the treatment of the GSDs Pompe disease and Lafora disease (LD). Antibody-based therapies are quickly becoming an integral part of modern disease therapeutics.
Collapse
Affiliation(s)
- Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Epilepsy and Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
13
|
Brewer MK, Uittenbogaard A, Austin GL, Segvich DM, DePaoli-Roach A, Roach PJ, McCarthy JJ, Simmons ZR, Brandon JA, Zhou Z, Zeller J, Young LEA, Sun RC, Pauly JR, Aziz NM, Hodges BL, McKnight TR, Armstrong DD, Gentry MS. Targeting Pathogenic Lafora Bodies in Lafora Disease Using an Antibody-Enzyme Fusion. Cell Metab 2019; 30:689-705.e6. [PMID: 31353261 PMCID: PMC6774808 DOI: 10.1016/j.cmet.2019.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Annette Uittenbogaard
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - John J McCarthy
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zoe R Simmons
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jason A Brandon
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jill Zeller
- Northern Biomedical Research, Spring Lake, MI 49456, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Ramon C Sun
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA; University of Kentucky Epilepsy & Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
14
|
Tasfaout H, Cowling BS, Laporte J. Centronuclear myopathies under attack: A plethora of therapeutic targets. J Neuromuscul Dis 2019; 5:387-406. [PMID: 30103348 PMCID: PMC6218136 DOI: 10.3233/jnd-180309] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centronuclear myopathies are a group of congenital myopathies characterized by severe muscle weakness, genetic heterogeneity, and defects in the structural organization of muscle fibers. Their names are derived from the central position of nuclei on biopsies, while they are at the fiber periphery under normal conditions. No specific therapy exists yet for these debilitating diseases. Mutations in the myotubularin phosphoinositides phosphatase, the GTPase dynamin 2, or amphiphysin 2 have been identified to cause respectively X-linked centronuclear myopathies (also called myotubular myopathy) or autosomal dominant and recessive forms. Mutations in additional genes, as RYR1, TTN, SPEG or CACNA1S, were linked to phenotypes that can overlap with centronuclear myopathies. Numerous animal models of centronuclear myopathies have been studied over the last 15 years, ranging from invertebrate to large mammalian models. Their characterization led to a partial understanding of the pathomechanisms of these diseases and allowed the recent validation of therapeutic proof-of-concepts. Here, we review the different therapeutic strategies that have been tested so far for centronuclear myopathies, some of which may be translated to patients.
Collapse
Affiliation(s)
- Hichem Tasfaout
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Belinda S. Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Correspondence to: Jocelyn Laporte, Tel.: 33 0 388653412; E-mail:
| |
Collapse
|
15
|
Role of cysteine 416 in N-ethylmaleimide sensitivity of human equilibrative nucleoside transporter 1 (hENT1). Biochem J 2018; 475:3293-3309. [PMID: 30254099 DOI: 10.1042/bcj20180543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Human equilibrative nucleoside transporter 1 (hENT1), the first identified member of the ENT family of integral membrane proteins, is the primary mechanism for cellular uptake of physiologic nucleosides and many antineoplastic and antiviral nucleoside drugs. hENT1, which is potently inhibited by nitrobenzylthioinosine (NBMPR), possesses 11 transmembrane helical domains with an intracellular N-terminus and an extracellular C-terminus. As a protein with 10 endogenous cysteine residues, it is sensitive to inhibition by the membrane permeable sulfhydryl-reactive reagent N-ethylmaleimide (NEM) but is unaffected by the membrane impermeable sulfhydryl-reactive reagent p-chloromercuriphenyl sulfonate. To identify the residue(s) involved in NEM inhibition, we created a cysteine-less version of hENT1 (hENT1C-), with all 10 endogenous cysteine residues mutated to serine, and showed that it displays wild-type uridine transport and NBMPR-binding characteristics when produced in the Xenopus oocyte heterologous expression system, indicating that endogenous cysteine residues are not essential for hENT1 function. We then tested NEM sensitivity of recombinant wild-type hENT1, hENT1 mutants C1S to C10S (single cysteine residues replaced by serine), hENT1C- (all cysteine residues replaced by serine), and hENT1C- mutants S1C to S10C (single serine residues converted back to cysteine). Mutants C9S (C416S/hENT1) and S9C (S416C/hENT1C-) were insensitive and sensitive, respectively, to inhibition by NEM, identifying Cys416 as the endofacial cysteine residue in hENT1 responsible for NEM inhibition. Kinetic experiments suggested that NEM modification of Cys416, which is located at the inner extremity of TM10, results in the inhibition of hENT1 uridine transport and NBMPR binding by constraining the protein in its inward-facing conformation.
Collapse
|
16
|
Abstract
Nucleobases are water-soluble compounds that need specific transporters to cross biological membranes. Cumulative evidence based on studies using animal tissues and cells indicates that the carrier-mediated transport systems for purine and pyrimidine nucleobases can be classified into the following two types: concentrative transport systems that mediate nucleobase transport depending on the sodium ion concentration gradient; and other systems that mediate facilitated diffusion depending on the concentration gradient of the substrate. Recently, several molecular transporters that are involved in both transport systems have been identified. The function and activity of these transporters could be of pharmacological significance considering the roles that they play not only in nucleotide synthesis and metabolism but also in the pharmacokinetics and delivery of a variety of nucleobase analogues used in anticancer and antiviral drug therapy. The present review provides an overview of the recent advances in our understanding of the molecular basis of nucleobase transport systems, focusing on the transporters that mediate purine nucleobases, and discusses the involvement of intracellular metabolism in purine nucleobase transport and chemotherapy using ganciclovir.
Collapse
Affiliation(s)
- Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
17
|
Sharma HP, Halder N, Singh SB, Velpandian T. Involvement of nucleoside transporters in the transcorneal permeation of topically instilled substrates in rabbits in-vivo. Eur J Pharm Sci 2018; 114:364-371. [DOI: 10.1016/j.ejps.2017.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/09/2017] [Accepted: 12/29/2017] [Indexed: 01/02/2023]
|
18
|
Takahashi K, Yoshisue K, Chiba M, Nakanishi T, Tamai I. Contribution of equilibrative nucleoside transporter(s) to intestinal basolateral and apical transports of anticancer trifluridine. Biopharm Drug Dispos 2017; 39:38-46. [PMID: 29055025 DOI: 10.1002/bdd.2110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/01/2017] [Accepted: 10/02/2017] [Indexed: 11/10/2022]
Abstract
Trifluridine (FTD) exhibits anticancer activities after its oral administration despite its hydrophilic nature. It was previously reported that concentrative nucleoside transporter (CNT) 1 mediates the apical uptake of FTD in human small intestinal epithelial cells (HIECs). In the present study, FTD was also identified as a substrate for equilibrative nucleoside transporter (ENT) 1 and ENT2 in transporter gene-transfected cells. An immunocytochemical analysis revealed that ENT1 was expressed at the basolateral and apical membranes of HIECs. Cellular accumulation increased in the presence of S-(4-nitrobenzyl)-6-thioinosine (NBMPR), an ENT selective inhibitor. Cytotoxicity in HIEC monolayers at low FTD concentrations was increased by NBMPR, and this may have been due to inhibition of the ENT-mediated basolateral transport of FTD by NBMPR. These results suggest that ENTs reduce the intestinal cytotoxicity of FTD by facilitating its basolateral efflux. On the other hand, the intracellular accumulation and cytotoxicity of FTD in HIECs were decreased at higher concentrations of FTD by NBMPR, and this may have been due to the NBMPR inhibition of the apical uptake of FTD, which has been suggested to be mediated by CNTs and ENTs. In conclusion, ENTs were responsible for intestinal transepithelial permeation by mediating the basolateral efflux of FTD after its uptake by CNT1 from the apical side, resulting in decreases in its intracellular accumulation and intestinal toxicity in humans. Equilibrative nucleoside transporters may also partially contribute to the low-affinity uptake of FTD across the apical membrane along with high-affinity CNT1.
Collapse
Affiliation(s)
- Koichi Takahashi
- Pharmacokinetics Research Laboratories, Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, Ibaraki, Japan.,Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Kunihiro Yoshisue
- Pharmacokinetics Research Laboratories, Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, Ibaraki, Japan
| | - Masato Chiba
- Pharmacokinetics Research Laboratories, Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, Ibaraki, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
19
|
Grañé-Boladeras N, Spring CM, Hanna WJB, Pastor-Anglada M, Coe IR. Novel nuclear hENT2 isoforms regulate cell cycle progression via controlling nucleoside transport and nuclear reservoir. Cell Mol Life Sci 2016; 73:4559-4575. [PMID: 27271752 PMCID: PMC11108336 DOI: 10.1007/s00018-016-2288-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 10/25/2022]
Abstract
Nucleosides participate in many cellular processes and are the fundamental building blocks of nucleic acids. Nucleoside transporters translocate nucleosides across plasma membranes although the mechanism by which nucleos(t)ides are translocated into the nucleus during DNA replication is unknown. Here, we identify two novel functional splice variants of equilibrative nucleoside transporter 2 (ENT2), which are present at the nuclear envelope. Under proliferative conditions, these splice variants are up-regulated and recruit wild-type ENT2 to the nuclear envelope to translocate nucleosides into the nucleus for incorporation into DNA during replication. Reduced presence of hENT2 splice variants resulted in a dramatic decrease in cell proliferation and dysregulation of cell cycle due to a lower incorporation of nucleotides into DNA. Our findings support a novel model of nucleoside compartmentalisation at the nuclear envelope and translocation into the nucleus through hENT2 and its variants, which are essential for effective DNA synthesis and cell proliferation.
Collapse
Affiliation(s)
- Natalia Grañé-Boladeras
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain.
- Oncology Program, CIBER EHD, Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.
| | - Christopher M Spring
- Research Core Facilities, Keenan Research Centre, Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - W J Brad Hanna
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Marçal Pastor-Anglada
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain
- Oncology Program, CIBER EHD, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Imogen R Coe
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
20
|
Boswell-Casteel RC, Hays FA. Equilibrative nucleoside transporters-A review. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 36:7-30. [PMID: 27759477 DOI: 10.1080/15257770.2016.1210805] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that mediate the transport of nucleosides, nucleobases, and therapeutic analogs. The best-characterized ENTs are the human transporters hENT1 and hENT2. However, non-mammalian eukaryotic ENTs have also been studied (e.g., yeast, parasitic protozoa). ENTs are major pharmaceutical targets responsible for modulating the efficacy of more than 30 approved drugs. However, the molecular mechanisms and chemical determinants of ENT-mediated substrate recognition, binding, inhibition, and transport are poorly understood. This review highlights findings on the characterization of ENTs by surveying studies on genetics, permeant and inhibitor interactions, mutagenesis, and structural models of ENT function.
Collapse
Affiliation(s)
- Rebba C Boswell-Casteel
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Franklin A Hays
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA.,b Stephenson Cancer Center , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA.,c Harold Hamm Diabetes Center , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
21
|
Tang PCT, Yang C, Li RWS, Lee SMY, Hoi MPM, Chan SW, Kwan YW, Tse CM, Leung GPH. Inhibition of human equilibrative nucleoside transporters by 4-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-6-imino-N-(naphthalen-2-yl)-1,3,5-triazin-2-amine. Eur J Pharmacol 2016; 791:544-551. [PMID: 27388143 DOI: 10.1016/j.ejphar.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 01/07/2023]
Abstract
Equilibrative nucleoside transporters (ENTs) play a crucial role in the transport of nucleoside and nucleoside analogues, which are important for nucleotide synthesis and chemotherapy. In addition, ENTs regulate extracellular adenosine levels in the vicinity of its receptors and hence influence adenosine-related functions. The clinical applications of ENT inhibitors in the treatment of cardiovascular diseases and cancer therapy have been explored in numerous studies. However, all ENT inhibitors to date are selective for ENT1 but not ENT2. In the present study, we investigated the novel compound 4-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-6-imino-N-(naphthalen-2-yl)-1,3,5-triazin-2-amine (FPMINT) as an inhibitor of ENT1 and ENT2. Nucleoside transporter-deficient PK15NTD cells stably expressing ENT1 and ENT2 showed that FPMINT inhibited [3H]uridine and [3H]adenosine transport through both ENT1 and ENT2 in a concentration-dependent manner. The IC50 value of FPMINT for ENT2 was 5-10-fold less than for ENT1, and FPMINT could not be displaced with excess washing. Kinetic studies revealed that FPMINT reduced Vmax of [3H]uridine transport in ENT1 and ENT2 without affecting KM. Therefore, we conclude that FPMINT inhibits ENTs in an irreversible and non-competitive manner. Although already selective for ENT2 over ENT1, further modification of the chemical structure of FPMINT may lead to even better ENT2-selective inhibitors of potential clinical, physiological and pharmacological importance.
Collapse
Affiliation(s)
- Philip C T Tang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Rachel Wai-Sum Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | | | - Maggie Pui-Man Hoi
- Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chung-Ming Tse
- Department of Medicine, Division of Gastroenterology, School of Medicine, The Johns Hopkins University, United States
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Aseervatham J, Tran L, Machaca K, Boudker O. The Role of Flexible Loops in Folding, Trafficking and Activity of Equilibrative Nucleoside Transporters. PLoS One 2015; 10:e0136779. [PMID: 26406980 PMCID: PMC4583308 DOI: 10.1371/journal.pone.0136779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/07/2015] [Indexed: 11/25/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) are integral membrane proteins, which reside in plasma membranes of all eukaryotic cells and mediate thermodynamically downhill transport of nucleosides. This process is essential for nucleoside recycling, and also plays a key role in terminating adenosine-mediated cellular signaling. Furthermore, ENTs mediate the uptake of many drugs, including anticancer and antiviral nucleoside analogues. The structure and mechanism, by which ENTs catalyze trans-membrane transport of their substrates, remain unknown. To identify the core of the transporter needed for stability, activity, and for its correct trafficking to the plasma membrane, we have expressed human ENT deletion mutants in Xenopus laevis oocytes and determined their localization, transport properties and susceptibility to inhibition. We found that the carboxyl terminal trans-membrane segments are essential for correct protein folding and trafficking. In contrast, the soluble extracellular and intracellular loops appear to be dispensable, and must be involved in the fine-tuning of transport regulation.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar foundation, Education City, Doha, Qatar
| | - Lucky Tran
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States of America
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar foundation, Education City, Doha, Qatar
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Shimada T, Nakanishi T, Tajima H, Yamazaki M, Yokono R, Takabayashi M, Shimada T, Sawamoto K, Miyamoto KI, Kitagawa H, Ohta T, Tamai I, Sai Y. Saturable Hepatic Extraction of Gemcitabine Involves Biphasic Uptake Mediated by Nucleoside Transporters Equilibrative Nucleoside Transporter 1 and 2. J Pharm Sci 2015; 104:3162-9. [PMID: 26037416 DOI: 10.1002/jps.24498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Abstract
Hepatic arterial infusion (HAI) chemotherapy with gemcitabine (GEM) is expected to be more effective and safer method to treat hepatic metastasis of pancreatic cancer compared with intravenous administration, because it affords higher tumor exposure with lower systemic exposure. Thus, a key issue for dose selection is the saturability of hepatic uptake of GEM. Therefore, we investigated GEM uptake in rat and human isolated hepatocytes. Hepatic GEM uptake involved high- and low-affinity saturable components with Km values of micromolar and millimolar order, respectively. The uptake was inhibited concentration dependently by S-(4-nitrobenzyl)-6-thioinosine (NBMPR) and was sodium-ion-independent, suggesting a contribution of equilibrative nucleoside transporters (ENTs). The concentration dependence of uptake in the presence of 0.1 μM NBMPR showed a single low-affinity binding site. Therefore, the high- and low-affinity sites correspond to ENT1 and ENT2, respectively. Our results indicate hepatic extraction of GEM is predominantly mediated by the low-affinity site (hENT2), and at clinically relevant hepatic concentrations of GEM, hENT2-mediated uptake would not be completely saturated. This is critical for HAI, because saturation of hepatic uptake would result in a marked increase of GEM concentration in the peripheral circulation, abrogating the advantage of HAI over intravenous administration in terms of severe adverse events.
Collapse
Affiliation(s)
- Takuya Shimada
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hidehiro Tajima
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Maiko Yamazaki
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Rina Yokono
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Makiko Takabayashi
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Tsutomu Shimada
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Kazuki Sawamoto
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Ken-Ichi Miyamoto
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Hirohisa Kitagawa
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Tetsuo Ohta
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yoshimichi Sai
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
24
|
Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:320941. [PMID: 25866775 PMCID: PMC4383356 DOI: 10.1155/2015/320941] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 01/01/2023]
Abstract
Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.
Collapse
Affiliation(s)
- Arijit Bhowmik
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Rajni Khan
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Mrinal Kanti Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
25
|
Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014; 20:1422-49. [PMID: 23789948 DOI: 10.2174/13816128113199990463] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from "brute force" approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters.
Collapse
Affiliation(s)
| | | | | | | | - Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050.
| |
Collapse
|
26
|
Nucleotides and Nucleosides: Transport, Metabolism, and Signaling Function of Extracellular ATP. PROGRESS IN BOTANY 2014. [DOI: 10.1007/978-3-642-38797-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Wang C, Lin W, Playa H, Sun S, Cameron K, Buolamwini J. Dipyridamole analogs as pharmacological inhibitors of equilibrative nucleoside transporters. Identification of novel potent and selective inhibitors of the adenosine transporter function of human equilibrative nucleoside transporter 4 (hENT4). Biochem Pharmacol 2013; 86:1531-40. [PMID: 24021350 PMCID: PMC3866046 DOI: 10.1016/j.bcp.2013.08.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/04/2023]
Abstract
To identify needed human equilibrative nucleoside transporter 4 (hENT4) inhibitors, we cloned and stably expressed the recombinant protein in PK15NTD (nucleoside transporter deficient) cells, and, investigated its interaction with a series of dipyridamole analogs synthesized in our laboratory. Compounds were tested in this newly established hENT4 expressing system as well in previous stably expressed hENT1 and hENT2 expressing systems. Of the dipyridamole analogs evaluated, about one fourth of the compounds inhibited hENT4 with higher potencies than dipyridamole. The most potent of them, Compound 30 displayed an IC₅₀ of 74.4 nM, making it about 38 times more potent than dipyridamole (IC₅₀=2.8 μM), and selectivities of about 80-fold and 20-fold relative to ENT1 and ENT2, respectively. Structure-activity relationship showed nitrogen-containing monocyclic rings and noncyclic substituents at the 4- and 8-positions of the pyrimido[5,4-d]pyrimidine were important for the inhibitory activity against hENT4. The most potent and selective hENT4 inhibitors tended to have a 2,6-di(N-monohydroxyethyl) substitution on the pyrimidopyrimidine ring system. The inhibitors of hENT4 identified in this study are the most selective and potent inhibitors of hENT4 adenosine transporter function to date, and should serve as useful pharmacological/biochemical tools and/or potential leads for ENT4-based therapeutics. Also, the new hENT4-expressing PK15 cell line established will serve as a useful screening tool for the discovery and design of hENT4 ligands.
Collapse
Affiliation(s)
- Chunmei Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | - Hilaire Playa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Shan Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Kenyuna Cameron
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - John Buolamwini
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
28
|
Lawlor MW, Armstrong D, Viola MG, Widrick JJ, Meng H, Grange RW, Childers MK, Hsu CP, O'Callaghan M, Pierson CR, Buj-Bello A, Beggs AH. Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy. Hum Mol Genet 2013; 22:1525-38. [PMID: 23307925 DOI: 10.1093/hmg/ddt003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
No effective treatment exists for patients with X-linked myotubular myopathy (XLMTM), a fatal congenital muscle disease caused by deficiency of the lipid phosphatase, myotubularin. The Mtm1δ4 and Mtm1 p.R69C mice model severely and moderately symptomatic XLMTM, respectively, due to differences in the degree of myotubularin deficiency. Contractile function of intact extensor digitorum longus (EDL) and soleus muscles from Mtm1δ4 mice, which produce no myotubularin, is markedly impaired. Contractile forces generated by chemically skinned single fiber preparations from Mtm1δ4 muscle were largely preserved, indicating that weakness was largely due to impaired excitation contraction coupling. Mtm1 p.R69C mice, which produce small amounts of myotubularin, showed impaired contractile function only in EDL muscles. Short-term replacement of myotubularin with a prototypical targeted protein replacement agent (3E10Fv-MTM1) in Mtm1δ4 mice improved contractile function and muscle pathology. These promising findings suggest that even low levels of myotubularin protein replacement can improve the muscle weakness and reverse the pathology that characterizes XLMTM.
Collapse
Affiliation(s)
- Michael W Lawlor
- Division of Genetics and Program in Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Marin JJG. Plasma membrane transporters in modern liver pharmacology. SCIENTIFICA 2012; 2012:428139. [PMID: 24278693 PMCID: PMC3820525 DOI: 10.6064/2012/428139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/26/2012] [Indexed: 06/02/2023]
Abstract
The liver plays a crucial role in the detoxification of drugs used in the treatment of many diseases. The liver itself is the target for drugs aimed to modify its function or to treat infections and tumours affecting this organ. Both detoxification and pharmacological processes occurring in the liver require the uptake of the drug by hepatic cells and, in some cases, the elimination into bile. These steps have been classified as detoxification phase 0 and phase III, respectively. Since most drugs cannot cross the plasma membrane by simple diffusion, the involvement of transporters is mandatory. Several members of the superfamilies of solute carriers (SLC) and ATP-binding cassette (ABC) proteins, with a minor participation of other families of transporters, account for the uptake and efflux, respectively, of endobiotic and xenobiotic compounds across the basolateral and apical membranes of hepatocytes and cholangiocytes. These transporters are also involved in the sensitivity and refractoriness to the pharmacological treatment of liver tumours. An additional interesting aspect of the role of plasma membrane transporters in liver pharmacology regards the promiscuity of many of these carriers, which accounts for a variety of drug-drug, endogenous substances-drug and food components-drug interactions with clinical relevance.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca and CIBERehd, Spain
- Department of Physiology and Pharmacology, Campus Miguel de Unamuno E.D. S09, 37007 Salamanca, Spain
| |
Collapse
|
30
|
Hiratochi M, Tatani K, Shimizu K, Kuramochi Y, Kikuchi N, Kamada N, Itoh F, Isaji M. Hypouricemic effects of novel concentrative nucleoside transporter 2 inhibitors through suppressing intestinal absorption of purine nucleosides. Eur J Pharmacol 2012; 690:183-91. [DOI: 10.1016/j.ejphar.2012.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/10/2012] [Accepted: 06/10/2012] [Indexed: 11/17/2022]
|
31
|
Nucleoside transporters: biological insights and therapeutic applications. Future Med Chem 2012; 4:1461-78. [DOI: 10.4155/fmc.12.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleoside transporters play important physiological roles by regulating intra- and extra-cellular concentrations of purine and pyrimidine (deoxy)nucleosides. This review describes the biological function and activity of the two major families of membrane nucleoside transporters that exist in mammalian cells. These include equilibrative nucleoside transporters that transport nucleosides in a gradient-dependent fashion and concentrative nucleoside transporters that import nucleosides against a gradient by coupling movement with sodium transport. Particular emphasis is placed on describing the roles of nucleoside transport in normal physiological processes, including inflammation, cardiovascular function and nutrient transport across the blood–brain barrier. In addition, the role of nucleoside transport in pathological conditions such as cardiovascular disease and cancer are discussed. The potential therapeutic applications of manipulating nucleoside transport activities are discussed, focusing on nucleoside analogs as anti-neoplastic agents. Finally, we discuss future directions for the development of novel chemical entities to measure nucleoside transport activity at the cellular and organismal level.
Collapse
|
32
|
Damaraju VL, Mowles D, Yao S, Ng A, Young JD, Cass CE, Tong Z. Role of human nucleoside transporters in the uptake and cytotoxicity of azacitidine and decitabine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:236-55. [PMID: 22356238 DOI: 10.1080/15257770.2011.652330] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The nucleoside analogs 5-azacytidine (azacitidine) and 5-aza-2'-deoxycytidine (decitabine) are active against acute myeloid leukemia and myelodysplastic syndromes. Cellular transport across membranes is crucial for uptake of these highly polar hydrophilic molecules. We assessed the ability of azacitidine, decitabine, and, for comparison, gemcitabine, to interact with human nucleoside transporters (hNTs) in Saccharomyces cerevisiae cells (hENT1/2, hCNT1/2/3) or Xenopus laevis oocytes (hENT3/4). All three drugs inhibited hCNT1/3 potently (K (i) values, 3-26 μM), hENT1/2 and hCNT2 weakly (K (i) values, 0.5-3.1 mM), and hENT3/4 poorly if at all. Rates of transport of [(3)H]gemcitabine, [(14)C]azacitidine, and [(3)H]decitabine observed in Xenopus oocytes expressing individual recombinant hNTs differed substantially. Cytotoxicity of azacitidine and decitabine was assessed in hNT-expressing or hNT-deficient cultured human cell lines in the absence or presence of transport inhibitors where available. The rank order of cytotoxic sensitivities (IC (50) values, μM) conferred by hNTs were hCNT1 (0.1) > hENT1 (0.3) ≫ hCNT2 (8.3), hENT2 (9.0) for azacitidine and hENT1 (0.3) > hCNT1 (0.8) ⋙ hENT2, hCNT2 (>100) for decitabine. Protection against cytotoxicity was observed for both drugs in the presence of inhibitors of nucleoside transport, thus suggesting the importance of hNTs in manifestation of toxicity. In summary, all seven hNTs transported azacitidine, with hCNT3 showing the highest rates, whereas hENT1 and hENT2 showed modest transport and hCNT1 and hCNT3 poor transport of decitabine. Our results show for the first time that azacitidine and decitabine exhibit different human nucleoside transportability profiles and their cytotoxicities are dependent on the presence of hNTs, which could serve as potential biomarkers of clinical response.
Collapse
Affiliation(s)
- Vijaya L Damaraju
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Koczor CA, Torres RA, Lewis W. The role of transporters in the toxicity of nucleoside and nucleotide analogs. Expert Opin Drug Metab Toxicol 2012; 8:665-76. [PMID: 22509856 DOI: 10.1517/17425255.2012.680885] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Two families of nucleoside analogs have been developed to treat viral infections and cancer, but these compounds can cause tissue- and cell-specific toxicity related to their uptake and subcellular activity, which are dictated by host enzymes and transporters. Cellular uptake of these compounds requires nucleoside transporters that share functional similarities but differ in substrate specificity. Tissue-specific cellular expression of these transporters enables nucleoside analogs to produce their tissue-specific toxic effects, a limiting factor in the treatment of retroviruses and cancer. AREAS COVERED This review discusses the families of nucleoside transporters and how they mediate cellular uptake of nucleoside analogs. Specific focus is placed on examples of known cases of transporter-mediated cellular toxicity and classification of the toxicities resulting. Efflux transporters are also explored as a contributor to analog toxicity and cell-specific effects. EXPERT OPINION Efforts to modulate transporter uptake/clearance remain long-term goals of oncologists and virologists. Accordingly, subcellular approaches that either increase or decrease intracellular nucleoside analog concentrations are eagerly sought and include transporter inhibitors and targeting transporter expression. However, additional understanding of nucleoside transporter kinetics, tissue expression and genetic polymorphisms is required to design better molecules and better therapies.
Collapse
|
34
|
Fukuda Y, Schuetz JD. ABC transporters and their role in nucleoside and nucleotide drug resistance. Biochem Pharmacol 2012; 83:1073-83. [PMID: 22285911 DOI: 10.1016/j.bcp.2011.12.042] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 11/30/2011] [Accepted: 12/30/2011] [Indexed: 01/12/2023]
Abstract
ATP-binding cassette (ABC) transporters confer drug resistance against a wide range of chemotherapeutic agents, including nucleoside and nucleotide based drugs. While nucleoside based drugs have been used for many years in the treatment of solid and hematological malignancies as well as viral and autoimmune diseases, the potential contribution of ABC transporters has only recently been recognized. This neglect is likely because activation of nucleoside derivatives require an initial carrier-mediated uptake step followed by phosphorylation by nucleoside kinases, and defects in uptake or kinase activation were considered the primary mechanisms of nucleoside drug resistance. However, recent studies demonstrate that members of the ABCC transporter subfamily reduce the intracellular concentration of monophosphorylated nucleoside drugs. In addition to the ABCC subfamily members, ABCG2 has been shown to transport nucleoside drugs and nucleoside-monophosphate derivatives of clinically relevant nucleoside drugs such as cytarabine, cladribine, and clofarabine to name a few. This review will discuss ABC transporters and how they interact with other processes affecting the efficacy of nucleoside based drugs.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
35
|
Damaraju VL, Mowles D, Smith KM, Yao SYM, Young JD, Marquez VE, Cass CE. Influence of Sugar Ring Conformation on the Transportability of Nucleosides by Human Nucleoside Transporters. Chembiochem 2011; 12:2774-8. [DOI: 10.1002/cbic.201100567] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Indexed: 11/09/2022]
|
36
|
Yao SYM, Ng AML, Cass CE, Baldwin SA, Young JD. Nucleobase transport by human equilibrative nucleoside transporter 1 (hENT1). J Biol Chem 2011; 286:32552-62. [PMID: 21795683 DOI: 10.1074/jbc.m111.236117] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human equilibrative nucleoside transporters hENT1 and hENT2 (each with 456 residues) are 40% identical in amino acid sequence and contain 11 putative transmembrane helices. Both transport purine and pyrimidine nucleosides and are distinguished functionally by a difference in sensitivity to inhibition by nanomolar concentrations of nitrobenzylmercaptopurine ribonucleoside (NBMPR), hENT1 being NBMPR-sensitive. Previously, we used heterologous expression in Xenopus oocytes to demonstrate that recombinant hENT2 and its rat ortholog rENT2 also transport purine and pyrimidine bases, h/rENT2 representing the first identified mammalian nucleobase transporter proteins (Yao, S. Y., Ng, A. M., Vickers, M. F., Sundaram, M., Cass, C. E., Baldwin, S. A., and Young, J. D. (2002) J. Biol. Chem. 277, 24938-24948). The same study also revealed lower, but significant, transport of hypoxanthine by h/rENT1. In the present investigation, we have used the enhanced Xenopus oocyte expression vector pGEMHE to demonstrate that hENT1 additionally transports thymine and adenine and, to a lesser extent, uracil and guanine. Fluxes of hypoxanthine, thymine, and adenine by hENT1 were saturable and inhibited by NBMPR. Ratios of V(max) (pmol/oocyte · min(-1)):K(m) (mm), a measure of transport efficiency, were 86, 177, and 120 for hypoxantine, thymine, and adenine, respectively, compared with 265 for uridine. Hypoxanthine influx was competitively inhibited by uridine, indicating common or overlapping nucleobase and nucleoside permeant binding pockets, and the anticancer nucleobase drugs 5-fluorouracil and 6-mercaptopurine were also transported. Nucleobase transport activity was absent from an engineered cysteine-less version hENT1 (hENT1C-) in which all 10 endogenous cysteine residues were mutated to serine. Site-directed mutagenesis identified Cys-414 in transmembrane helix 10 of hENT1 as the residue conferring nucleobase transport activity to the wild-type transporter.
Collapse
Affiliation(s)
- Sylvia Y M Yao
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND Nucleoside/nucleobase transporters have been investigated since the 1960s. In particular, equilibrative nucleoside transporters were thought to be valuable drug targets, since they are involved in various kinds of viral and parasitic diseases as well as cancers. DISCUSSION In the postgenomic era multiple transporters, including different subtypes, have been cloned and characterized on the molecular level. In this article we summarize recent advances regarding structure, function and localization of nucleoside/nucleobase transporters as well as the pharmacological profile of selected drugs. CONCLUSION Knowledge of the different kinetic properties and structural features of nucleoside transporters can either be used for the rational design of therapeutics directly targeting the transporter itself or for the delivery of drugs using the transporter as a port of entry into the target cell. Equilibrative nucleoside transporters are of considerable pharmacological interest as drug targets for the development of drugs tailored to each patient's need for the treatment of cardiac disease, cancer and viral infections.
Collapse
|
38
|
Tanaka A, Nishida K, Okuda H, Nishiura T, Higashi Y, Fujimoto S, Nagasawa K. Peroxynitrite treatment reduces adenosine uptake via the equilibrative nucleoside transporter in rat astrocytes. Neurosci Lett 2011; 498:52-6. [DOI: 10.1016/j.neulet.2011.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/11/2011] [Accepted: 04/23/2011] [Indexed: 01/09/2023]
|
39
|
Asatryan L, Nam HW, Lee MR, Thakkar MM, Saeed Dar M, Davies DL, Choi DS. Implication of the purinergic system in alcohol use disorders. Alcohol Clin Exp Res 2011; 35:584-94. [PMID: 21223299 PMCID: PMC3076125 DOI: 10.1111/j.1530-0277.2010.01379.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the central nervous system, adenosine and adenosine 5'-triphosphate (ATP) play an important role in regulating neuronal activity as well as controlling other neurotransmitter systems, such as, GABA, glutamate, and dopamine. Ethanol increases extracellular adenosine levels that regulate the ataxic and hypnotic/sedative effects of ethanol. Interestingly, ethanol is known to increase adenosine levels by inhibiting an ethanol-sensitive adenosine transporter, equilibrative nucleoside transporter type 1 (ENT1). Ethanol is also known to inhibit ATP-specific P2X receptors, which might result in such similar effects as those caused by an increase in adenosine. Adenosine and ATP exert their functions through P1 (metabotropic) and P2 (P2X-ionotropic and P2Y-metabotropic) receptors, respectively. Purinergic signaling in cortex-striatum-ventral tegmental area (VTA) has been implicated in regulating cortical glutamate signaling as well as VTA dopaminergic signaling, which regulates the motivational effect of ethanol. Moreover, several nucleoside transporters and receptors have been identified in astrocytes, which regulate not only adenosine-ATP neurotransmission, but also homeostasis of major inhibitory-excitatory neurotransmission (i.e., GABA or glutamate) through neuron-glial interactions. This review will present novel findings on the implications of adenosine and ATP neurotransmission in alcohol use disorders.
Collapse
Affiliation(s)
- Liana Asatryan
- Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, University of Southern California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Cano-Soldado P, Pastor-Anglada M. Transporters that translocate nucleosides and structural similar drugs: structural requirements for substrate recognition. Med Res Rev 2011; 32:428-57. [DOI: 10.1002/med.20221] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pedro Cano-Soldado
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| | - Marçal Pastor-Anglada
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| |
Collapse
|
41
|
Errasti-Murugarren E, Pastor-Anglada M. Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics 2010; 11:809-41. [PMID: 20504255 DOI: 10.2217/pgs.10.70] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article focuses on the different types of transporter proteins that have been implicated in the influx and efflux of nucleoside-derived drugs currently used in the treatment of cancer, viral infections (i.e., AIDS) and other conditions, including autoimmune and inflammatory diseases. Genetic variations in nucleoside-derived drug transporter proteins encoded by the gene families SLC15, SLC22, SLC28, SLC29, ABCB, ABCC and ABCG will be specifically considered. Variants known to affect biological function are summarized, with a particular emphasis on those for which clinical correlations have already been established. Given that relatively little is known regarding the genetic variability of the players involved in determining nucleoside-derived drug bioavailability, it is anticipated that major challenges will be faced in this area of research.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- The Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
- Center for Biomedical Research Network in the Subject Area of Liver and Digestive Diseases (CIBERehd), Barcelona 08071, Spain
| | | |
Collapse
|
42
|
Abstract
BACKGROUND Equilibrative nucleoside transporter 1 (ENT1) and excitatory amino acid transporter 2 (EAAT2) are predominantly expressed in astrocytes where they are thought to regulate synaptic adenosine and glutamate levels. Because mice lacking ENT1 display increased glutamate levels in the ventral striatum, we investigated whether ENT1 regulates the expression and function of EAAT2 in astrocytes, which could contribute to altered glutamate levels in the striatum. METHODS We examined the effect of ENT1 inhibition and overexpression on the expression of EAAT2 using quantitative real-time PCR and measured glutamate uptake activity in cultured astrocytes. We also examined the effect of 0 to 200 mM ethanol doses for 0 to 24 hours of ethanol exposure on EAAT2 expression and glutamate uptake activity. We further examined the effect of ENT1 knockdown by a specific siRNA on ethanol-induced EAAT2 expression. RESULTS An ENT1-specific antagonist and siRNA treatments significantly reduced both EAAT2 expression and glutamate uptake activity while ENT1 overexpression up-regulated EAAT2 mRNA expression. Interestingly, 100 or 200 mM ethanol exposure increased EAAT2 mRNA expression as well as glutamate uptake activity. Moreover, we found that ENT1 knockdown inhibited the ethanol-induced EAAT2 up-regulation. CONCLUSIONS Our results suggest that ENT1 regulates glutamate uptake activity by altering EAAT2 expression and function, which might be implicated in ethanol intoxication and preference.
Collapse
Affiliation(s)
- Jinhua Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
43
|
Damaraju VL, Sawyer MB, Mackey JR, Young JD, Cass CE. Human nucleoside transporters: biomarkers for response to nucleoside drugs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:450-63. [PMID: 20183595 DOI: 10.1080/15257770903044499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This review describes recent advances in developing human nucleoside transporters (hNTs) as biomarkers to predict response to nucleoside analog drugs with clinical activity. Understanding processes that contribute to drug response or lack thereof will provide strategies to potentiate efficacy or avoid toxicities of nucleoside analog drugs. hNT abundance, evaluated by immunohistochemical methods, has shown promise as a predictive marker to assess clinical drug response that could be used to identify patients who would most likely benefit from nucleoside analog drug treatment.
Collapse
Affiliation(s)
- Vijaya L Damaraju
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
44
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 581] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
45
|
Yamamoto T, Sugawara M, Kikukawa T, Miyauchi S, Yamaguchi M, Tero A, Takagi S, Nakagaki T. Kinetic study of anti-viral ribavirin uptake mediated by hCNT3 and hENT1 in Xenopus laevis oocytes. Biophys Chem 2010; 147:59-65. [DOI: 10.1016/j.bpc.2009.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/25/2009] [Accepted: 12/28/2009] [Indexed: 01/09/2023]
|
46
|
Vickers MF, Young JD, Baldwin SA, Ellison MJ, Cass CE. Functional production of mammalian concentrative nucleoside transporters inSaccharomyces cerevisiae. Mol Membr Biol 2009. [DOI: 10.1080/09687680010033306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
47
|
Sylvia Y. M. Yao, Amy M. L. Ng, Man. Transport of antiviral 3'-deoxy-nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine (NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced inXenopusoocytes. Mol Membr Biol 2009. [DOI: 10.1080/09687680118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Appleford PJ, Griffiths M, Yao SYM, Ng AML, Chomey EG, Isaac RE, Coates D, Hope IA, Cass CE, Young JD, Baldwin SA. Functional redundancy of two nucleoside transporters of the ENT family (CeENT1, CeENT2) required for development ofCaenorhabditis elegans. Mol Membr Biol 2009; 21:247-59. [PMID: 15371014 DOI: 10.1080/09687680410001712550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The genome of Caenorhabditis elegans encodes multiple homologues of the two major families of mammalian equilibrative and concentrative nucleoside transporters. As part of a programme aimed at understanding the biological rationale underlying the multiplicity of eukaryote nucleoside transporters, we have now demonstrated that the nematode genes ZK809.4 (ent-1) and K09A9.3 (ent-2) encode equilibrative transporters, which we designate CeENT1 and CeENT2 respectively. These transporters resemble their human counterparts hENT1 and hENT2 in exhibiting similar broad permeant specificities for nucleosides, while differing in their permeant selectivities for nucleobases. They are insensitive to the classic inhibitors of mammalian nucleoside transport, nitrobenzylthioinosine, dilazep and draflazine, but are inhibited by the vasoactive drug dipyridamole. Use of green fluorescent protein reporter constructs indicated that the transporters are present in a limited number of locations in the adult, including intestine and pharynx. Their potential roles in these tissues were explored by using RNA interference to disrupt gene expression. Although disruption of ent-1 or ent-2 expression alone had no effect, simultaneous disruption of both genes yielded pronounced developmental defects involving the intestine and vulva.
Collapse
Affiliation(s)
- Peter J Appleford
- School of Biochemistry & Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hyde RJ, Cass CE, Young JD, Stephen A. Baldwin JD. The ENT family of eukaryote nucleoside and nucleobase transporters: recent advances in the investigation of structure/function relationships and the identification of novel isoforms. Mol Membr Biol 2009. [DOI: 10.1080/09687680118799] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Mabel W. L. Ritzel, Amy M. L. Ng, S. Recent molecular advances in studies of the concentrative Na+-dependent nucleoside transporter (CNT) family: identification and characterization of novel human and mouse proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (systemcib). Mol Membr Biol 2009. [DOI: 10.1080/09687680118530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|